pmap.c revision 1.96 1 /* $NetBSD: pmap.c,v 1.96 2002/04/24 17:35:10 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.96 2002/04/24 17:35:10 thorpej Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static LIST_HEAD(, pmap) pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 static pt_entry_t *csrc_pte, *cdst_pte;
199 static vaddr_t csrcp, cdstp;
200
201 char *memhook;
202 extern caddr_t msgbufaddr;
203
204 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
205 /*
206 * locking data structures
207 */
208
209 static struct lock pmap_main_lock;
210 static struct simplelock pvalloc_lock;
211 static struct simplelock pmaps_lock;
212 #ifdef LOCKDEBUG
213 #define PMAP_MAP_TO_HEAD_LOCK() \
214 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
216 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
217
218 #define PMAP_HEAD_TO_MAP_LOCK() \
219 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
221 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
222 #else
223 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
224 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
225 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
226 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
227 #endif /* LOCKDEBUG */
228
229 /*
230 * pv_page management structures: locked by pvalloc_lock
231 */
232
233 TAILQ_HEAD(pv_pagelist, pv_page);
234 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
236 static int pv_nfpvents; /* # of free pv entries */
237 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
238 static vaddr_t pv_cachedva; /* cached VA for later use */
239
240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
242 /* high water mark */
243
244 /*
245 * local prototypes
246 */
247
248 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
249 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
250 #define ALLOCPV_NEED 0 /* need PV now */
251 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
252 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
253 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
254 static void pmap_enter_pv __P((struct vm_page *,
255 struct pv_entry *, struct pmap *,
256 vaddr_t, struct vm_page *, int));
257 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
258 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
259 static void pmap_free_pv_doit __P((struct pv_entry *));
260 static void pmap_free_pvpage __P((void));
261 static boolean_t pmap_is_curpmap __P((struct pmap *));
262 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
263 vaddr_t));
264 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
265 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
266
267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
268 u_int, u_int));
269
270 /*
271 * Structure that describes and L1 table.
272 */
273 struct l1pt {
274 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
275 struct pglist pt_plist; /* Allocated page list */
276 vaddr_t pt_va; /* Allocated virtual address */
277 int pt_flags; /* Flags */
278 };
279 #define PTFLAG_STATIC 0x01 /* Statically allocated */
280 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
281 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
282
283 static void pmap_free_l1pt __P((struct l1pt *));
284 static int pmap_allocpagedir __P((struct pmap *));
285 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
286 static void pmap_remove_all __P((struct vm_page *));
287
288 static int pmap_alloc_ptpt(struct pmap *);
289 static void pmap_free_ptpt(struct pmap *);
290
291 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
292 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
293 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
294
295 extern paddr_t physical_start;
296 extern paddr_t physical_freestart;
297 extern paddr_t physical_end;
298 extern paddr_t physical_freeend;
299 extern unsigned int free_pages;
300 extern int max_processes;
301
302 vaddr_t virtual_avail;
303 vaddr_t virtual_end;
304 vaddr_t pmap_curmaxkvaddr;
305
306 vaddr_t avail_start;
307 vaddr_t avail_end;
308
309 extern pv_addr_t systempage;
310
311 /* Variables used by the L1 page table queue code */
312 SIMPLEQ_HEAD(l1pt_queue, l1pt);
313 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
314 static int l1pt_static_queue_count; /* items in the static l1 queue */
315 static int l1pt_static_create_count; /* static l1 items created */
316 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
317 static int l1pt_queue_count; /* items in the l1 queue */
318 static int l1pt_create_count; /* stat - L1's create count */
319 static int l1pt_reuse_count; /* stat - L1's reused count */
320
321 /* Local function prototypes (not used outside this file) */
322 void pmap_pinit __P((struct pmap *));
323 void pmap_freepagedir __P((struct pmap *));
324
325 /* Other function prototypes */
326 extern void bzero_page __P((vaddr_t));
327 extern void bcopy_page __P((vaddr_t, vaddr_t));
328
329 struct l1pt *pmap_alloc_l1pt __P((void));
330 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
331 vaddr_t l2pa, boolean_t));
332
333 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
334 static void pmap_unmap_ptes __P((struct pmap *));
335
336 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
337 pt_entry_t *, boolean_t));
338 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
339 pt_entry_t *, boolean_t));
340 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
341 pt_entry_t *, boolean_t));
342
343 /*
344 * real definition of pv_entry.
345 */
346
347 struct pv_entry {
348 struct pv_entry *pv_next; /* next pv_entry */
349 struct pmap *pv_pmap; /* pmap where mapping lies */
350 vaddr_t pv_va; /* virtual address for mapping */
351 int pv_flags; /* flags */
352 struct vm_page *pv_ptp; /* vm_page for the ptp */
353 };
354
355 /*
356 * pv_entrys are dynamically allocated in chunks from a single page.
357 * we keep track of how many pv_entrys are in use for each page and
358 * we can free pv_entry pages if needed. there is one lock for the
359 * entire allocation system.
360 */
361
362 struct pv_page_info {
363 TAILQ_ENTRY(pv_page) pvpi_list;
364 struct pv_entry *pvpi_pvfree;
365 int pvpi_nfree;
366 };
367
368 /*
369 * number of pv_entry's in a pv_page
370 * (note: won't work on systems where NPBG isn't a constant)
371 */
372
373 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
374 sizeof(struct pv_entry))
375
376 /*
377 * a pv_page: where pv_entrys are allocated from
378 */
379
380 struct pv_page {
381 struct pv_page_info pvinfo;
382 struct pv_entry pvents[PVE_PER_PVPAGE];
383 };
384
385 #ifdef MYCROFT_HACK
386 int mycroft_hack = 0;
387 #endif
388
389 /* Function to set the debug level of the pmap code */
390
391 #ifdef PMAP_DEBUG
392 void
393 pmap_debug(int level)
394 {
395 pmap_debug_level = level;
396 printf("pmap_debug: level=%d\n", pmap_debug_level);
397 }
398 #endif /* PMAP_DEBUG */
399
400 __inline static boolean_t
401 pmap_is_curpmap(struct pmap *pmap)
402 {
403
404 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
405 pmap == pmap_kernel())
406 return (TRUE);
407
408 return (FALSE);
409 }
410
411 #include "isadma.h"
412
413 #if NISADMA > 0
414 /*
415 * Used to protect memory for ISA DMA bounce buffers. If, when loading
416 * pages into the system, memory intersects with any of these ranges,
417 * the intersecting memory will be loaded into a lower-priority free list.
418 */
419 bus_dma_segment_t *pmap_isa_dma_ranges;
420 int pmap_isa_dma_nranges;
421
422 /*
423 * Check if a memory range intersects with an ISA DMA range, and
424 * return the page-rounded intersection if it does. The intersection
425 * will be placed on a lower-priority free list.
426 */
427 static boolean_t
428 pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
429 psize_t *sizep)
430 {
431 bus_dma_segment_t *ds;
432 int i;
433
434 if (pmap_isa_dma_ranges == NULL)
435 return (FALSE);
436
437 for (i = 0, ds = pmap_isa_dma_ranges;
438 i < pmap_isa_dma_nranges; i++, ds++) {
439 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
440 /*
441 * Beginning of region intersects with this range.
442 */
443 *pap = trunc_page(pa);
444 *sizep = round_page(min(pa + size,
445 ds->ds_addr + ds->ds_len) - pa);
446 return (TRUE);
447 }
448 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
449 /*
450 * End of region intersects with this range.
451 */
452 *pap = trunc_page(ds->ds_addr);
453 *sizep = round_page(min((pa + size) - ds->ds_addr,
454 ds->ds_len));
455 return (TRUE);
456 }
457 }
458
459 /*
460 * No intersection found.
461 */
462 return (FALSE);
463 }
464 #endif /* NISADMA > 0 */
465
466 /*
467 * p v _ e n t r y f u n c t i o n s
468 */
469
470 /*
471 * pv_entry allocation functions:
472 * the main pv_entry allocation functions are:
473 * pmap_alloc_pv: allocate a pv_entry structure
474 * pmap_free_pv: free one pv_entry
475 * pmap_free_pvs: free a list of pv_entrys
476 *
477 * the rest are helper functions
478 */
479
480 /*
481 * pmap_alloc_pv: inline function to allocate a pv_entry structure
482 * => we lock pvalloc_lock
483 * => if we fail, we call out to pmap_alloc_pvpage
484 * => 3 modes:
485 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
486 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
487 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
488 * one now
489 *
490 * "try" is for optional functions like pmap_copy().
491 */
492
493 __inline static struct pv_entry *
494 pmap_alloc_pv(struct pmap *pmap, int mode)
495 {
496 struct pv_page *pvpage;
497 struct pv_entry *pv;
498
499 simple_lock(&pvalloc_lock);
500
501 pvpage = TAILQ_FIRST(&pv_freepages);
502
503 if (pvpage != NULL) {
504 pvpage->pvinfo.pvpi_nfree--;
505 if (pvpage->pvinfo.pvpi_nfree == 0) {
506 /* nothing left in this one? */
507 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
508 }
509 pv = pvpage->pvinfo.pvpi_pvfree;
510 KASSERT(pv);
511 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
512 pv_nfpvents--; /* took one from pool */
513 } else {
514 pv = NULL; /* need more of them */
515 }
516
517 /*
518 * if below low water mark or we didn't get a pv_entry we try and
519 * create more pv_entrys ...
520 */
521
522 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
523 if (pv == NULL)
524 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
525 mode : ALLOCPV_NEED);
526 else
527 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
528 }
529
530 simple_unlock(&pvalloc_lock);
531 return(pv);
532 }
533
534 /*
535 * pmap_alloc_pvpage: maybe allocate a new pvpage
536 *
537 * if need_entry is false: try and allocate a new pv_page
538 * if need_entry is true: try and allocate a new pv_page and return a
539 * new pv_entry from it. if we are unable to allocate a pv_page
540 * we make a last ditch effort to steal a pv_page from some other
541 * mapping. if that fails, we panic...
542 *
543 * => we assume that the caller holds pvalloc_lock
544 */
545
546 static struct pv_entry *
547 pmap_alloc_pvpage(struct pmap *pmap, int mode)
548 {
549 struct vm_page *pg;
550 struct pv_page *pvpage;
551 struct pv_entry *pv;
552 int s;
553
554 /*
555 * if we need_entry and we've got unused pv_pages, allocate from there
556 */
557
558 pvpage = TAILQ_FIRST(&pv_unusedpgs);
559 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
560
561 /* move it to pv_freepages list */
562 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
563 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
564
565 /* allocate a pv_entry */
566 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
567 pv = pvpage->pvinfo.pvpi_pvfree;
568 KASSERT(pv);
569 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
570
571 pv_nfpvents--; /* took one from pool */
572 return(pv);
573 }
574
575 /*
576 * see if we've got a cached unmapped VA that we can map a page in.
577 * if not, try to allocate one.
578 */
579
580
581 if (pv_cachedva == 0) {
582 s = splvm();
583 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
584 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
585 splx(s);
586 if (pv_cachedva == 0) {
587 return (NULL);
588 }
589 }
590
591 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
592 UVM_PGA_USERESERVE);
593
594 if (pg == NULL)
595 return (NULL);
596 pg->flags &= ~PG_BUSY; /* never busy */
597
598 /*
599 * add a mapping for our new pv_page and free its entrys (save one!)
600 *
601 * NOTE: If we are allocating a PV page for the kernel pmap, the
602 * pmap is already locked! (...but entering the mapping is safe...)
603 */
604
605 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
606 VM_PROT_READ|VM_PROT_WRITE);
607 pmap_update(pmap_kernel());
608 pvpage = (struct pv_page *) pv_cachedva;
609 pv_cachedva = 0;
610 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
611 }
612
613 /*
614 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
615 *
616 * => caller must hold pvalloc_lock
617 * => if need_entry is true, we allocate and return one pv_entry
618 */
619
620 static struct pv_entry *
621 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
622 {
623 int tofree, lcv;
624
625 /* do we need to return one? */
626 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
627
628 pvp->pvinfo.pvpi_pvfree = NULL;
629 pvp->pvinfo.pvpi_nfree = tofree;
630 for (lcv = 0 ; lcv < tofree ; lcv++) {
631 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
632 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
633 }
634 if (need_entry)
635 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
636 else
637 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
638 pv_nfpvents += tofree;
639 return((need_entry) ? &pvp->pvents[lcv] : NULL);
640 }
641
642 /*
643 * pmap_free_pv_doit: actually free a pv_entry
644 *
645 * => do not call this directly! instead use either
646 * 1. pmap_free_pv ==> free a single pv_entry
647 * 2. pmap_free_pvs => free a list of pv_entrys
648 * => we must be holding pvalloc_lock
649 */
650
651 __inline static void
652 pmap_free_pv_doit(struct pv_entry *pv)
653 {
654 struct pv_page *pvp;
655
656 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
657 pv_nfpvents++;
658 pvp->pvinfo.pvpi_nfree++;
659
660 /* nfree == 1 => fully allocated page just became partly allocated */
661 if (pvp->pvinfo.pvpi_nfree == 1) {
662 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
663 }
664
665 /* free it */
666 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
667 pvp->pvinfo.pvpi_pvfree = pv;
668
669 /*
670 * are all pv_page's pv_entry's free? move it to unused queue.
671 */
672
673 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
674 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
675 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
676 }
677 }
678
679 /*
680 * pmap_free_pv: free a single pv_entry
681 *
682 * => we gain the pvalloc_lock
683 */
684
685 __inline static void
686 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
687 {
688 simple_lock(&pvalloc_lock);
689 pmap_free_pv_doit(pv);
690
691 /*
692 * Can't free the PV page if the PV entries were associated with
693 * the kernel pmap; the pmap is already locked.
694 */
695 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
696 pmap != pmap_kernel())
697 pmap_free_pvpage();
698
699 simple_unlock(&pvalloc_lock);
700 }
701
702 /*
703 * pmap_free_pvs: free a list of pv_entrys
704 *
705 * => we gain the pvalloc_lock
706 */
707
708 __inline static void
709 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
710 {
711 struct pv_entry *nextpv;
712
713 simple_lock(&pvalloc_lock);
714
715 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
716 nextpv = pvs->pv_next;
717 pmap_free_pv_doit(pvs);
718 }
719
720 /*
721 * Can't free the PV page if the PV entries were associated with
722 * the kernel pmap; the pmap is already locked.
723 */
724 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
725 pmap != pmap_kernel())
726 pmap_free_pvpage();
727
728 simple_unlock(&pvalloc_lock);
729 }
730
731
732 /*
733 * pmap_free_pvpage: try and free an unused pv_page structure
734 *
735 * => assume caller is holding the pvalloc_lock and that
736 * there is a page on the pv_unusedpgs list
737 * => if we can't get a lock on the kmem_map we try again later
738 */
739
740 static void
741 pmap_free_pvpage(void)
742 {
743 int s;
744 struct vm_map *map;
745 struct vm_map_entry *dead_entries;
746 struct pv_page *pvp;
747
748 s = splvm(); /* protect kmem_map */
749
750 pvp = TAILQ_FIRST(&pv_unusedpgs);
751
752 /*
753 * note: watch out for pv_initpage which is allocated out of
754 * kernel_map rather than kmem_map.
755 */
756 if (pvp == pv_initpage)
757 map = kernel_map;
758 else
759 map = kmem_map;
760 if (vm_map_lock_try(map)) {
761
762 /* remove pvp from pv_unusedpgs */
763 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
764
765 /* unmap the page */
766 dead_entries = NULL;
767 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
768 &dead_entries);
769 vm_map_unlock(map);
770
771 if (dead_entries != NULL)
772 uvm_unmap_detach(dead_entries, 0);
773
774 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
775 }
776 if (pvp == pv_initpage)
777 /* no more initpage, we've freed it */
778 pv_initpage = NULL;
779
780 splx(s);
781 }
782
783 /*
784 * main pv_entry manipulation functions:
785 * pmap_enter_pv: enter a mapping onto a vm_page list
786 * pmap_remove_pv: remove a mappiing from a vm_page list
787 *
788 * NOTE: pmap_enter_pv expects to lock the pvh itself
789 * pmap_remove_pv expects te caller to lock the pvh before calling
790 */
791
792 /*
793 * pmap_enter_pv: enter a mapping onto a vm_page lst
794 *
795 * => caller should hold the proper lock on pmap_main_lock
796 * => caller should have pmap locked
797 * => we will gain the lock on the vm_page and allocate the new pv_entry
798 * => caller should adjust ptp's wire_count before calling
799 * => caller should not adjust pmap's wire_count
800 */
801
802 __inline static void
803 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
804 vaddr_t va, struct vm_page *ptp, int flags)
805 {
806 pve->pv_pmap = pmap;
807 pve->pv_va = va;
808 pve->pv_ptp = ptp; /* NULL for kernel pmap */
809 pve->pv_flags = flags;
810 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
811 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
812 pg->mdpage.pvh_list = pve; /* ... locked list */
813 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
814 if (pve->pv_flags & PVF_WIRED)
815 ++pmap->pm_stats.wired_count;
816 }
817
818 /*
819 * pmap_remove_pv: try to remove a mapping from a pv_list
820 *
821 * => caller should hold proper lock on pmap_main_lock
822 * => pmap should be locked
823 * => caller should hold lock on vm_page [so that attrs can be adjusted]
824 * => caller should adjust ptp's wire_count and free PTP if needed
825 * => caller should NOT adjust pmap's wire_count
826 * => we return the removed pve
827 */
828
829 __inline static struct pv_entry *
830 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
831 {
832 struct pv_entry *pve, **prevptr;
833
834 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
835 pve = *prevptr;
836 while (pve) {
837 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
838 *prevptr = pve->pv_next; /* remove it! */
839 if (pve->pv_flags & PVF_WIRED)
840 --pmap->pm_stats.wired_count;
841 break;
842 }
843 prevptr = &pve->pv_next; /* previous pointer */
844 pve = pve->pv_next; /* advance */
845 }
846 return(pve); /* return removed pve */
847 }
848
849 /*
850 *
851 * pmap_modify_pv: Update pv flags
852 *
853 * => caller should hold lock on vm_page [so that attrs can be adjusted]
854 * => caller should NOT adjust pmap's wire_count
855 * => caller must call pmap_vac_me_harder() if writable status of a page
856 * may have changed.
857 * => we return the old flags
858 *
859 * Modify a physical-virtual mapping in the pv table
860 */
861
862 static /* __inline */ u_int
863 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
864 u_int bic_mask, u_int eor_mask)
865 {
866 struct pv_entry *npv;
867 u_int flags, oflags;
868
869 /*
870 * There is at least one VA mapping this page.
871 */
872
873 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
874 if (pmap == npv->pv_pmap && va == npv->pv_va) {
875 oflags = npv->pv_flags;
876 npv->pv_flags = flags =
877 ((oflags & ~bic_mask) ^ eor_mask);
878 if ((flags ^ oflags) & PVF_WIRED) {
879 if (flags & PVF_WIRED)
880 ++pmap->pm_stats.wired_count;
881 else
882 --pmap->pm_stats.wired_count;
883 }
884 return (oflags);
885 }
886 }
887 return (0);
888 }
889
890 /*
891 * Map the specified level 2 pagetable into the level 1 page table for
892 * the given pmap to cover a chunk of virtual address space starting from the
893 * address specified.
894 */
895 static __inline void
896 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
897 {
898 vaddr_t ptva;
899
900 /* Calculate the index into the L1 page table. */
901 ptva = (va >> L1_S_SHIFT) & ~3;
902
903 /* Map page table into the L1. */
904 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
905 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
906 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
907 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
908
909 /* Map the page table into the page table area. */
910 if (selfref)
911 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
912 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
913 }
914
915 #if 0
916 static __inline void
917 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
918 {
919 vaddr_t ptva;
920
921 /* Calculate the index into the L1 page table. */
922 ptva = (va >> L1_S_SHIFT) & ~3;
923
924 /* Unmap page table from the L1. */
925 pmap->pm_pdir[ptva + 0] = 0;
926 pmap->pm_pdir[ptva + 1] = 0;
927 pmap->pm_pdir[ptva + 2] = 0;
928 pmap->pm_pdir[ptva + 3] = 0;
929
930 /* Unmap the page table from the page table area. */
931 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
932 }
933 #endif
934
935 /*
936 * Used to map a range of physical addresses into kernel
937 * virtual address space.
938 *
939 * For now, VM is already on, we only need to map the
940 * specified memory.
941 */
942 vaddr_t
943 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
944 {
945 while (spa < epa) {
946 pmap_kenter_pa(va, spa, prot);
947 va += NBPG;
948 spa += NBPG;
949 }
950 pmap_update(pmap_kernel());
951 return(va);
952 }
953
954
955 /*
956 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
957 *
958 * bootstrap the pmap system. This is called from initarm and allows
959 * the pmap system to initailise any structures it requires.
960 *
961 * Currently this sets up the kernel_pmap that is statically allocated
962 * and also allocated virtual addresses for certain page hooks.
963 * Currently the only one page hook is allocated that is used
964 * to zero physical pages of memory.
965 * It also initialises the start and end address of the kernel data space.
966 */
967 extern paddr_t physical_freestart;
968 extern paddr_t physical_freeend;
969
970 char *boot_head;
971
972 void
973 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
974 {
975 pt_entry_t *pte;
976 int loop;
977 paddr_t start, end;
978 #if NISADMA > 0
979 paddr_t istart;
980 psize_t isize;
981 #endif
982
983 pmap_kernel()->pm_pdir = kernel_l1pt;
984 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
985 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
986 simple_lock_init(&pmap_kernel()->pm_lock);
987 pmap_kernel()->pm_obj.pgops = NULL;
988 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
989 pmap_kernel()->pm_obj.uo_npages = 0;
990 pmap_kernel()->pm_obj.uo_refs = 1;
991
992 /*
993 * Initialize PAGE_SIZE-dependent variables.
994 */
995 uvm_setpagesize();
996
997 loop = 0;
998 while (loop < bootconfig.dramblocks) {
999 start = (paddr_t)bootconfig.dram[loop].address;
1000 end = start + (bootconfig.dram[loop].pages * NBPG);
1001 if (start < physical_freestart)
1002 start = physical_freestart;
1003 if (end > physical_freeend)
1004 end = physical_freeend;
1005 #if 0
1006 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1007 #endif
1008 #if NISADMA > 0
1009 if (pmap_isa_dma_range_intersect(start, end - start,
1010 &istart, &isize)) {
1011 /*
1012 * Place the pages that intersect with the
1013 * ISA DMA range onto the ISA DMA free list.
1014 */
1015 #if 0
1016 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1017 istart + isize - 1);
1018 #endif
1019 uvm_page_physload(atop(istart),
1020 atop(istart + isize), atop(istart),
1021 atop(istart + isize), VM_FREELIST_ISADMA);
1022
1023 /*
1024 * Load the pieces that come before
1025 * the intersection into the default
1026 * free list.
1027 */
1028 if (start < istart) {
1029 #if 0
1030 printf(" BEFORE 0x%lx -> 0x%lx\n",
1031 start, istart - 1);
1032 #endif
1033 uvm_page_physload(atop(start),
1034 atop(istart), atop(start),
1035 atop(istart), VM_FREELIST_DEFAULT);
1036 }
1037
1038 /*
1039 * Load the pieces that come after
1040 * the intersection into the default
1041 * free list.
1042 */
1043 if ((istart + isize) < end) {
1044 #if 0
1045 printf(" AFTER 0x%lx -> 0x%lx\n",
1046 (istart + isize), end - 1);
1047 #endif
1048 uvm_page_physload(atop(istart + isize),
1049 atop(end), atop(istart + isize),
1050 atop(end), VM_FREELIST_DEFAULT);
1051 }
1052 } else {
1053 uvm_page_physload(atop(start), atop(end),
1054 atop(start), atop(end), VM_FREELIST_DEFAULT);
1055 }
1056 #else /* NISADMA > 0 */
1057 uvm_page_physload(atop(start), atop(end),
1058 atop(start), atop(end), VM_FREELIST_DEFAULT);
1059 #endif /* NISADMA > 0 */
1060 ++loop;
1061 }
1062
1063 virtual_avail = KERNEL_VM_BASE;
1064 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1065
1066 /*
1067 * now we allocate the "special" VAs which are used for tmp mappings
1068 * by the pmap (and other modules). we allocate the VAs by advancing
1069 * virtual_avail (note that there are no pages mapped at these VAs).
1070 * we find the PTE that maps the allocated VA via the linear PTE
1071 * mapping.
1072 */
1073
1074 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1075
1076 csrcp = virtual_avail; csrc_pte = pte;
1077 virtual_avail += PAGE_SIZE; pte++;
1078
1079 cdstp = virtual_avail; cdst_pte = pte;
1080 virtual_avail += PAGE_SIZE; pte++;
1081
1082 memhook = (char *) virtual_avail; /* don't need pte */
1083 virtual_avail += PAGE_SIZE; pte++;
1084
1085 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1086 virtual_avail += round_page(MSGBUFSIZE);
1087 pte += atop(round_page(MSGBUFSIZE));
1088
1089 /*
1090 * init the static-global locks and global lists.
1091 */
1092 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1093 simple_lock_init(&pvalloc_lock);
1094 simple_lock_init(&pmaps_lock);
1095 LIST_INIT(&pmaps);
1096 TAILQ_INIT(&pv_freepages);
1097 TAILQ_INIT(&pv_unusedpgs);
1098
1099 /*
1100 * initialize the pmap pool.
1101 */
1102
1103 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1104 &pool_allocator_nointr);
1105
1106 cpu_dcache_wbinv_all();
1107 }
1108
1109 /*
1110 * void pmap_init(void)
1111 *
1112 * Initialize the pmap module.
1113 * Called by vm_init() in vm/vm_init.c in order to initialise
1114 * any structures that the pmap system needs to map virtual memory.
1115 */
1116
1117 extern int physmem;
1118
1119 void
1120 pmap_init(void)
1121 {
1122
1123 /*
1124 * Set the available memory vars - These do not map to real memory
1125 * addresses and cannot as the physical memory is fragmented.
1126 * They are used by ps for %mem calculations.
1127 * One could argue whether this should be the entire memory or just
1128 * the memory that is useable in a user process.
1129 */
1130 avail_start = 0;
1131 avail_end = physmem * NBPG;
1132
1133 /*
1134 * now we need to free enough pv_entry structures to allow us to get
1135 * the kmem_map/kmem_object allocated and inited (done after this
1136 * function is finished). to do this we allocate one bootstrap page out
1137 * of kernel_map and use it to provide an initial pool of pv_entry
1138 * structures. we never free this page.
1139 */
1140
1141 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1142 if (pv_initpage == NULL)
1143 panic("pmap_init: pv_initpage");
1144 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1145 pv_nfpvents = 0;
1146 (void) pmap_add_pvpage(pv_initpage, FALSE);
1147
1148 pmap_initialized = TRUE;
1149
1150 /* Initialise our L1 page table queues and counters */
1151 SIMPLEQ_INIT(&l1pt_static_queue);
1152 l1pt_static_queue_count = 0;
1153 l1pt_static_create_count = 0;
1154 SIMPLEQ_INIT(&l1pt_queue);
1155 l1pt_queue_count = 0;
1156 l1pt_create_count = 0;
1157 l1pt_reuse_count = 0;
1158 }
1159
1160 /*
1161 * pmap_postinit()
1162 *
1163 * This routine is called after the vm and kmem subsystems have been
1164 * initialised. This allows the pmap code to perform any initialisation
1165 * that can only be done one the memory allocation is in place.
1166 */
1167
1168 void
1169 pmap_postinit(void)
1170 {
1171 int loop;
1172 struct l1pt *pt;
1173
1174 #ifdef PMAP_STATIC_L1S
1175 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1176 #else /* PMAP_STATIC_L1S */
1177 for (loop = 0; loop < max_processes; ++loop) {
1178 #endif /* PMAP_STATIC_L1S */
1179 /* Allocate a L1 page table */
1180 pt = pmap_alloc_l1pt();
1181 if (!pt)
1182 panic("Cannot allocate static L1 page tables\n");
1183
1184 /* Clean it */
1185 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1186 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1187 /* Add the page table to the queue */
1188 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1189 ++l1pt_static_queue_count;
1190 ++l1pt_static_create_count;
1191 }
1192 }
1193
1194
1195 /*
1196 * Create and return a physical map.
1197 *
1198 * If the size specified for the map is zero, the map is an actual physical
1199 * map, and may be referenced by the hardware.
1200 *
1201 * If the size specified is non-zero, the map will be used in software only,
1202 * and is bounded by that size.
1203 */
1204
1205 pmap_t
1206 pmap_create(void)
1207 {
1208 struct pmap *pmap;
1209
1210 /*
1211 * Fetch pmap entry from the pool
1212 */
1213
1214 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1215 /* XXX is this really needed! */
1216 memset(pmap, 0, sizeof(*pmap));
1217
1218 simple_lock_init(&pmap->pm_obj.vmobjlock);
1219 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1220 TAILQ_INIT(&pmap->pm_obj.memq);
1221 pmap->pm_obj.uo_npages = 0;
1222 pmap->pm_obj.uo_refs = 1;
1223 pmap->pm_stats.wired_count = 0;
1224 pmap->pm_stats.resident_count = 1;
1225 pmap->pm_ptphint = NULL;
1226
1227 /* Now init the machine part of the pmap */
1228 pmap_pinit(pmap);
1229 return(pmap);
1230 }
1231
1232 /*
1233 * pmap_alloc_l1pt()
1234 *
1235 * This routine allocates physical and virtual memory for a L1 page table
1236 * and wires it.
1237 * A l1pt structure is returned to describe the allocated page table.
1238 *
1239 * This routine is allowed to fail if the required memory cannot be allocated.
1240 * In this case NULL is returned.
1241 */
1242
1243 struct l1pt *
1244 pmap_alloc_l1pt(void)
1245 {
1246 paddr_t pa;
1247 vaddr_t va;
1248 struct l1pt *pt;
1249 int error;
1250 struct vm_page *m;
1251 pt_entry_t *pte;
1252
1253 /* Allocate virtual address space for the L1 page table */
1254 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1255 if (va == 0) {
1256 #ifdef DIAGNOSTIC
1257 PDEBUG(0,
1258 printf("pmap: Cannot allocate pageable memory for L1\n"));
1259 #endif /* DIAGNOSTIC */
1260 return(NULL);
1261 }
1262
1263 /* Allocate memory for the l1pt structure */
1264 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1265
1266 /*
1267 * Allocate pages from the VM system.
1268 */
1269 TAILQ_INIT(&pt->pt_plist);
1270 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1271 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1272 if (error) {
1273 #ifdef DIAGNOSTIC
1274 PDEBUG(0,
1275 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1276 error));
1277 #endif /* DIAGNOSTIC */
1278 /* Release the resources we already have claimed */
1279 free(pt, M_VMPMAP);
1280 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1281 return(NULL);
1282 }
1283
1284 /* Map our physical pages into our virtual space */
1285 pt->pt_va = va;
1286 m = TAILQ_FIRST(&pt->pt_plist);
1287 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1288 pa = VM_PAGE_TO_PHYS(m);
1289
1290 pte = vtopte(va);
1291
1292 /*
1293 * Assert that the PTE is invalid. If it's invalid,
1294 * then we are guaranteed that there won't be an entry
1295 * for this VA in the TLB.
1296 */
1297 KDASSERT(pmap_pte_v(pte) == 0);
1298
1299 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(m) |
1300 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1301
1302 va += NBPG;
1303 m = m->pageq.tqe_next;
1304 }
1305
1306 #ifdef DIAGNOSTIC
1307 if (m)
1308 panic("pmap_alloc_l1pt: pglist not empty\n");
1309 #endif /* DIAGNOSTIC */
1310
1311 pt->pt_flags = 0;
1312 return(pt);
1313 }
1314
1315 /*
1316 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1317 */
1318 static void
1319 pmap_free_l1pt(struct l1pt *pt)
1320 {
1321 /* Separate the physical memory for the virtual space */
1322 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1323 pmap_update(pmap_kernel());
1324
1325 /* Return the physical memory */
1326 uvm_pglistfree(&pt->pt_plist);
1327
1328 /* Free the virtual space */
1329 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1330
1331 /* Free the l1pt structure */
1332 free(pt, M_VMPMAP);
1333 }
1334
1335 /*
1336 * pmap_alloc_ptpt:
1337 *
1338 * Allocate the page table that maps the PTE array.
1339 */
1340 static int
1341 pmap_alloc_ptpt(struct pmap *pmap)
1342 {
1343 struct vm_page *pg;
1344 pt_entry_t *pte;
1345
1346 KASSERT(pmap->pm_vptpt == 0);
1347
1348 pmap->pm_vptpt = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1349 if (pmap->pm_vptpt == 0) {
1350 PDEBUG(0,
1351 printf("pmap_alloc_ptpt: no KVA for PTPT\n"));
1352 return (ENOMEM);
1353 }
1354
1355 for (;;) {
1356 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1357 if (pg != NULL)
1358 break;
1359 uvm_wait("pmap_ptpt");
1360 }
1361
1362 pmap->pm_pptpt = VM_PAGE_TO_PHYS(pg);
1363
1364 pte = vtopte(pmap->pm_vptpt);
1365
1366 KDASSERT(pmap_pte_v(pte) == 0);
1367
1368 *pte = L2_S_PROTO | pmap->pm_pptpt |
1369 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1370
1371 return (0);
1372 }
1373
1374 /*
1375 * pmap_free_ptpt:
1376 *
1377 * Free the page table that maps the PTE array.
1378 */
1379 static void
1380 pmap_free_ptpt(struct pmap *pmap)
1381 {
1382
1383 pmap_kremove(pmap->pm_vptpt, L2_TABLE_SIZE);
1384 pmap_update(pmap_kernel());
1385
1386 uvm_pagefree(PHYS_TO_VM_PAGE(pmap->pm_pptpt));
1387
1388 uvm_km_free(kernel_map, pmap->pm_vptpt, L2_TABLE_SIZE);
1389 }
1390
1391 /*
1392 * Allocate a page directory.
1393 * This routine will either allocate a new page directory from the pool
1394 * of L1 page tables currently held by the kernel or it will allocate
1395 * a new one via pmap_alloc_l1pt().
1396 * It will then initialise the l1 page table for use.
1397 */
1398 static int
1399 pmap_allocpagedir(struct pmap *pmap)
1400 {
1401 paddr_t pa;
1402 struct l1pt *pt;
1403 int error;
1404
1405 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1406
1407 /* Do we have any spare L1's lying around ? */
1408 if (l1pt_static_queue_count) {
1409 --l1pt_static_queue_count;
1410 pt = l1pt_static_queue.sqh_first;
1411 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1412 } else if (l1pt_queue_count) {
1413 --l1pt_queue_count;
1414 pt = l1pt_queue.sqh_first;
1415 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1416 ++l1pt_reuse_count;
1417 } else {
1418 pt = pmap_alloc_l1pt();
1419 if (!pt)
1420 return(ENOMEM);
1421 ++l1pt_create_count;
1422 }
1423
1424 /* Store the pointer to the l1 descriptor in the pmap. */
1425 pmap->pm_l1pt = pt;
1426
1427 /* Get the physical address of the start of the l1 */
1428 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1429
1430 /* Store the virtual address of the l1 in the pmap. */
1431 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1432
1433 /* Clean the L1 if it is dirty */
1434 if (!(pt->pt_flags & PTFLAG_CLEAN))
1435 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1436
1437 /* Allocate a page table to map all the page tables for this pmap */
1438 if ((error = pmap_alloc_ptpt(pmap)) != 0) {
1439 pmap_freepagedir(pmap);
1440 return (error);
1441 }
1442
1443 /* need to lock this all up for growkernel */
1444 simple_lock(&pmaps_lock);
1445
1446 /* Duplicate the kernel mappings. */
1447 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1448 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1449 KERNEL_PD_SIZE);
1450
1451 /* Wire in this page table */
1452 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1453
1454 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1455
1456 /*
1457 * Map the kernel page tables into the new PT map.
1458 */
1459 bcopy((char *)(PTE_BASE
1460 + (PTE_BASE >> (PGSHIFT - 2))
1461 + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1462 (char *)pmap->pm_vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1463 (KERNEL_PD_SIZE >> 2));
1464
1465 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1466 simple_unlock(&pmaps_lock);
1467
1468 return(0);
1469 }
1470
1471
1472 /*
1473 * Initialize a preallocated and zeroed pmap structure,
1474 * such as one in a vmspace structure.
1475 */
1476
1477 void
1478 pmap_pinit(struct pmap *pmap)
1479 {
1480 int backoff = 6;
1481 int retry = 10;
1482
1483 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1484
1485 /* Keep looping until we succeed in allocating a page directory */
1486 while (pmap_allocpagedir(pmap) != 0) {
1487 /*
1488 * Ok we failed to allocate a suitable block of memory for an
1489 * L1 page table. This means that either:
1490 * 1. 16KB of virtual address space could not be allocated
1491 * 2. 16KB of physically contiguous memory on a 16KB boundary
1492 * could not be allocated.
1493 *
1494 * Since we cannot fail we will sleep for a while and try
1495 * again.
1496 *
1497 * Searching for a suitable L1 PT is expensive:
1498 * to avoid hogging the system when memory is really
1499 * scarce, use an exponential back-off so that
1500 * eventually we won't retry more than once every 8
1501 * seconds. This should allow other processes to run
1502 * to completion and free up resources.
1503 */
1504 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1505 NULL);
1506 if (--retry == 0) {
1507 retry = 10;
1508 if (backoff)
1509 --backoff;
1510 }
1511 }
1512
1513 if (vector_page < KERNEL_BASE) {
1514 /*
1515 * Map the vector page. This will also allocate and map
1516 * an L2 table for it.
1517 */
1518 pmap_enter(pmap, vector_page, systempage.pv_pa,
1519 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1520 pmap_update(pmap);
1521 }
1522 }
1523
1524
1525 void
1526 pmap_freepagedir(struct pmap *pmap)
1527 {
1528 /* Free the memory used for the page table mapping */
1529 if (pmap->pm_vptpt != 0)
1530 pmap_free_ptpt(pmap);
1531
1532 /* junk the L1 page table */
1533 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1534 /* Add the page table to the queue */
1535 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1536 ++l1pt_static_queue_count;
1537 } else if (l1pt_queue_count < 8) {
1538 /* Add the page table to the queue */
1539 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1540 ++l1pt_queue_count;
1541 } else
1542 pmap_free_l1pt(pmap->pm_l1pt);
1543 }
1544
1545
1546 /*
1547 * Retire the given physical map from service.
1548 * Should only be called if the map contains no valid mappings.
1549 */
1550
1551 void
1552 pmap_destroy(struct pmap *pmap)
1553 {
1554 struct vm_page *page;
1555 int count;
1556
1557 if (pmap == NULL)
1558 return;
1559
1560 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1561
1562 /*
1563 * Drop reference count
1564 */
1565 simple_lock(&pmap->pm_obj.vmobjlock);
1566 count = --pmap->pm_obj.uo_refs;
1567 simple_unlock(&pmap->pm_obj.vmobjlock);
1568 if (count > 0) {
1569 return;
1570 }
1571
1572 /*
1573 * reference count is zero, free pmap resources and then free pmap.
1574 */
1575
1576 /*
1577 * remove it from global list of pmaps
1578 */
1579
1580 simple_lock(&pmaps_lock);
1581 LIST_REMOVE(pmap, pm_list);
1582 simple_unlock(&pmaps_lock);
1583
1584 if (vector_page < KERNEL_BASE) {
1585 /* Remove the vector page mapping */
1586 pmap_remove(pmap, vector_page, vector_page + NBPG);
1587 pmap_update(pmap);
1588 }
1589
1590 /*
1591 * Free any page tables still mapped
1592 * This is only temporay until pmap_enter can count the number
1593 * of mappings made in a page table. Then pmap_remove() can
1594 * reduce the count and free the pagetable when the count
1595 * reaches zero. Note that entries in this list should match the
1596 * contents of the ptpt, however this is faster than walking a 1024
1597 * entries looking for pt's
1598 * taken from i386 pmap.c
1599 */
1600 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1601 KASSERT((page->flags & PG_BUSY) == 0);
1602 page->wire_count = 0;
1603 uvm_pagefree(page);
1604 }
1605
1606 /* Free the page dir */
1607 pmap_freepagedir(pmap);
1608
1609 /* return the pmap to the pool */
1610 pool_put(&pmap_pmap_pool, pmap);
1611 }
1612
1613
1614 /*
1615 * void pmap_reference(struct pmap *pmap)
1616 *
1617 * Add a reference to the specified pmap.
1618 */
1619
1620 void
1621 pmap_reference(struct pmap *pmap)
1622 {
1623 if (pmap == NULL)
1624 return;
1625
1626 simple_lock(&pmap->pm_lock);
1627 pmap->pm_obj.uo_refs++;
1628 simple_unlock(&pmap->pm_lock);
1629 }
1630
1631 /*
1632 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1633 *
1634 * Return the start and end addresses of the kernel's virtual space.
1635 * These values are setup in pmap_bootstrap and are updated as pages
1636 * are allocated.
1637 */
1638
1639 void
1640 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1641 {
1642 *start = virtual_avail;
1643 *end = virtual_end;
1644 }
1645
1646 /*
1647 * Activate the address space for the specified process. If the process
1648 * is the current process, load the new MMU context.
1649 */
1650 void
1651 pmap_activate(struct proc *p)
1652 {
1653 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1654 struct pcb *pcb = &p->p_addr->u_pcb;
1655
1656 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1657 (paddr_t *)&pcb->pcb_pagedir);
1658
1659 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1660 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1661
1662 if (p == curproc) {
1663 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1664 setttb((u_int)pcb->pcb_pagedir);
1665 }
1666 }
1667
1668 /*
1669 * Deactivate the address space of the specified process.
1670 */
1671 void
1672 pmap_deactivate(struct proc *p)
1673 {
1674 }
1675
1676 /*
1677 * Perform any deferred pmap operations.
1678 */
1679 void
1680 pmap_update(struct pmap *pmap)
1681 {
1682
1683 /*
1684 * We haven't deferred any pmap operations, but we do need to
1685 * make sure TLB/cache operations have completed.
1686 */
1687 cpu_cpwait();
1688 }
1689
1690 /*
1691 * pmap_clean_page()
1692 *
1693 * This is a local function used to work out the best strategy to clean
1694 * a single page referenced by its entry in the PV table. It's used by
1695 * pmap_copy_page, pmap_zero page and maybe some others later on.
1696 *
1697 * Its policy is effectively:
1698 * o If there are no mappings, we don't bother doing anything with the cache.
1699 * o If there is one mapping, we clean just that page.
1700 * o If there are multiple mappings, we clean the entire cache.
1701 *
1702 * So that some functions can be further optimised, it returns 0 if it didn't
1703 * clean the entire cache, or 1 if it did.
1704 *
1705 * XXX One bug in this routine is that if the pv_entry has a single page
1706 * mapped at 0x00000000 a whole cache clean will be performed rather than
1707 * just the 1 page. Since this should not occur in everyday use and if it does
1708 * it will just result in not the most efficient clean for the page.
1709 */
1710 static int
1711 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1712 {
1713 struct pmap *pmap;
1714 struct pv_entry *npv;
1715 int cache_needs_cleaning = 0;
1716 vaddr_t page_to_clean = 0;
1717
1718 if (pv == NULL)
1719 /* nothing mapped in so nothing to flush */
1720 return (0);
1721
1722 /* Since we flush the cache each time we change curproc, we
1723 * only need to flush the page if it is in the current pmap.
1724 */
1725 if (curproc)
1726 pmap = curproc->p_vmspace->vm_map.pmap;
1727 else
1728 pmap = pmap_kernel();
1729
1730 for (npv = pv; npv; npv = npv->pv_next) {
1731 if (npv->pv_pmap == pmap) {
1732 /* The page is mapped non-cacheable in
1733 * this map. No need to flush the cache.
1734 */
1735 if (npv->pv_flags & PVF_NC) {
1736 #ifdef DIAGNOSTIC
1737 if (cache_needs_cleaning)
1738 panic("pmap_clean_page: "
1739 "cache inconsistency");
1740 #endif
1741 break;
1742 }
1743 #if 0
1744 /*
1745 * XXX Can't do this because pmap_protect doesn't
1746 * XXX clean the page when it does a write-protect.
1747 */
1748 else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1749 continue;
1750 #endif
1751 if (cache_needs_cleaning){
1752 page_to_clean = 0;
1753 break;
1754 }
1755 else
1756 page_to_clean = npv->pv_va;
1757 cache_needs_cleaning = 1;
1758 }
1759 }
1760
1761 if (page_to_clean)
1762 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1763 else if (cache_needs_cleaning) {
1764 cpu_idcache_wbinv_all();
1765 return (1);
1766 }
1767 return (0);
1768 }
1769
1770 /*
1771 * pmap_zero_page()
1772 *
1773 * Zero a given physical page by mapping it at a page hook point.
1774 * In doing the zero page op, the page we zero is mapped cachable, as with
1775 * StrongARM accesses to non-cached pages are non-burst making writing
1776 * _any_ bulk data very slow.
1777 */
1778 #if ARM_MMU_GENERIC == 1
1779 void
1780 pmap_zero_page_generic(paddr_t phys)
1781 {
1782 #ifdef DEBUG
1783 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1784
1785 if (pg->mdpage.pvh_list != NULL)
1786 panic("pmap_zero_page: page has mappings");
1787 #endif
1788
1789 KDASSERT((phys & PGOFSET) == 0);
1790
1791 /*
1792 * Hook in the page, zero it, and purge the cache for that
1793 * zeroed page. Invalidate the TLB as needed.
1794 */
1795 *cdst_pte = L2_S_PROTO | phys |
1796 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1797 cpu_tlb_flushD_SE(cdstp);
1798 cpu_cpwait();
1799 bzero_page(cdstp);
1800 cpu_dcache_wbinv_range(cdstp, NBPG);
1801 }
1802 #endif /* ARM_MMU_GENERIC == 1 */
1803
1804 #if ARM_MMU_XSCALE == 1
1805 void
1806 pmap_zero_page_xscale(paddr_t phys)
1807 {
1808 #ifdef DEBUG
1809 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1810
1811 if (pg->mdpage.pvh_list != NULL)
1812 panic("pmap_zero_page: page has mappings");
1813 #endif
1814
1815 KDASSERT((phys & PGOFSET) == 0);
1816
1817 /*
1818 * Hook in the page, zero it, and purge the cache for that
1819 * zeroed page. Invalidate the TLB as needed.
1820 */
1821 *cdst_pte = L2_S_PROTO | phys |
1822 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1823 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1824 cpu_tlb_flushD_SE(cdstp);
1825 cpu_cpwait();
1826 bzero_page(cdstp);
1827 xscale_cache_clean_minidata();
1828 }
1829 #endif /* ARM_MMU_XSCALE == 1 */
1830
1831 /* pmap_pageidlezero()
1832 *
1833 * The same as above, except that we assume that the page is not
1834 * mapped. This means we never have to flush the cache first. Called
1835 * from the idle loop.
1836 */
1837 boolean_t
1838 pmap_pageidlezero(paddr_t phys)
1839 {
1840 int i, *ptr;
1841 boolean_t rv = TRUE;
1842 #ifdef DEBUG
1843 struct vm_page *pg;
1844
1845 pg = PHYS_TO_VM_PAGE(phys);
1846 if (pg->mdpage.pvh_list != NULL)
1847 panic("pmap_pageidlezero: page has mappings");
1848 #endif
1849
1850 KDASSERT((phys & PGOFSET) == 0);
1851
1852 /*
1853 * Hook in the page, zero it, and purge the cache for that
1854 * zeroed page. Invalidate the TLB as needed.
1855 */
1856 *cdst_pte = L2_S_PROTO | phys |
1857 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1858 cpu_tlb_flushD_SE(cdstp);
1859 cpu_cpwait();
1860
1861 for (i = 0, ptr = (int *)cdstp;
1862 i < (NBPG / sizeof(int)); i++) {
1863 if (sched_whichqs != 0) {
1864 /*
1865 * A process has become ready. Abort now,
1866 * so we don't keep it waiting while we
1867 * do slow memory access to finish this
1868 * page.
1869 */
1870 rv = FALSE;
1871 break;
1872 }
1873 *ptr++ = 0;
1874 }
1875
1876 if (rv)
1877 /*
1878 * if we aborted we'll rezero this page again later so don't
1879 * purge it unless we finished it
1880 */
1881 cpu_dcache_wbinv_range(cdstp, NBPG);
1882 return (rv);
1883 }
1884
1885 /*
1886 * pmap_copy_page()
1887 *
1888 * Copy one physical page into another, by mapping the pages into
1889 * hook points. The same comment regarding cachability as in
1890 * pmap_zero_page also applies here.
1891 */
1892 #if ARM_MMU_GENERIC == 1
1893 void
1894 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1895 {
1896 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1897 #ifdef DEBUG
1898 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1899
1900 if (dst_pg->mdpage.pvh_list != NULL)
1901 panic("pmap_copy_page: dst page has mappings");
1902 #endif
1903
1904 KDASSERT((src & PGOFSET) == 0);
1905 KDASSERT((dst & PGOFSET) == 0);
1906
1907 /*
1908 * Clean the source page. Hold the source page's lock for
1909 * the duration of the copy so that no other mappings can
1910 * be created while we have a potentially aliased mapping.
1911 */
1912 simple_lock(&src_pg->mdpage.pvh_slock);
1913 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1914
1915 /*
1916 * Map the pages into the page hook points, copy them, and purge
1917 * the cache for the appropriate page. Invalidate the TLB
1918 * as required.
1919 */
1920 *csrc_pte = L2_S_PROTO | src |
1921 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1922 *cdst_pte = L2_S_PROTO | dst |
1923 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1924 cpu_tlb_flushD_SE(csrcp);
1925 cpu_tlb_flushD_SE(cdstp);
1926 cpu_cpwait();
1927 bcopy_page(csrcp, cdstp);
1928 cpu_dcache_inv_range(csrcp, NBPG);
1929 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1930 cpu_dcache_wbinv_range(cdstp, NBPG);
1931 }
1932 #endif /* ARM_MMU_GENERIC == 1 */
1933
1934 #if ARM_MMU_XSCALE == 1
1935 void
1936 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1937 {
1938 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1939 #ifdef DEBUG
1940 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1941
1942 if (dst_pg->mdpage.pvh_list != NULL)
1943 panic("pmap_copy_page: dst page has mappings");
1944 #endif
1945
1946 KDASSERT((src & PGOFSET) == 0);
1947 KDASSERT((dst & PGOFSET) == 0);
1948
1949 /*
1950 * Clean the source page. Hold the source page's lock for
1951 * the duration of the copy so that no other mappings can
1952 * be created while we have a potentially aliased mapping.
1953 */
1954 simple_lock(&src_pg->mdpage.pvh_slock);
1955 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1956
1957 /*
1958 * Map the pages into the page hook points, copy them, and purge
1959 * the cache for the appropriate page. Invalidate the TLB
1960 * as required.
1961 */
1962 *csrc_pte = L2_S_PROTO | src |
1963 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
1964 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1965 *cdst_pte = L2_S_PROTO | dst |
1966 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1967 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1968 cpu_tlb_flushD_SE(csrcp);
1969 cpu_tlb_flushD_SE(cdstp);
1970 cpu_cpwait();
1971 bcopy_page(csrcp, cdstp);
1972 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1973 xscale_cache_clean_minidata();
1974 }
1975 #endif /* ARM_MMU_XSCALE == 1 */
1976
1977 #if 0
1978 void
1979 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
1980 {
1981 pd_entry_t *pde;
1982 paddr_t pa;
1983 struct vm_page *m;
1984
1985 if (pmap == pmap_kernel())
1986 return;
1987
1988 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
1989 pa = pmap_pte_pa(pde);
1990 m = PHYS_TO_VM_PAGE(pa);
1991 ++m->wire_count;
1992 #ifdef MYCROFT_HACK
1993 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1994 pmap, va, pde, pa, m, m->wire_count);
1995 #endif
1996 }
1997
1998 void
1999 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2000 {
2001 pd_entry_t *pde;
2002 paddr_t pa;
2003 struct vm_page *m;
2004
2005 if (pmap == pmap_kernel())
2006 return;
2007
2008 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
2009 pa = pmap_pte_pa(pde);
2010 m = PHYS_TO_VM_PAGE(pa);
2011 --m->wire_count;
2012 #ifdef MYCROFT_HACK
2013 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2014 pmap, va, pde, pa, m, m->wire_count);
2015 #endif
2016 if (m->wire_count == 0) {
2017 #ifdef MYCROFT_HACK
2018 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2019 pmap, va, pde, pa, m);
2020 #endif
2021 pmap_unmap_in_l1(pmap, va);
2022 uvm_pagefree(m);
2023 --pmap->pm_stats.resident_count;
2024 }
2025 }
2026 #else
2027 #define pmap_pte_addref(pmap, va)
2028 #define pmap_pte_delref(pmap, va)
2029 #endif
2030
2031 /*
2032 * Since we have a virtually indexed cache, we may need to inhibit caching if
2033 * there is more than one mapping and at least one of them is writable.
2034 * Since we purge the cache on every context switch, we only need to check for
2035 * other mappings within the same pmap, or kernel_pmap.
2036 * This function is also called when a page is unmapped, to possibly reenable
2037 * caching on any remaining mappings.
2038 *
2039 * The code implements the following logic, where:
2040 *
2041 * KW = # of kernel read/write pages
2042 * KR = # of kernel read only pages
2043 * UW = # of user read/write pages
2044 * UR = # of user read only pages
2045 * OW = # of user read/write pages in another pmap, then
2046 *
2047 * KC = kernel mapping is cacheable
2048 * UC = user mapping is cacheable
2049 *
2050 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2051 * +---------------------------------------------
2052 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2053 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2054 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2055 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2056 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2057 *
2058 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2059 */
2060 __inline static void
2061 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2062 boolean_t clear_cache)
2063 {
2064 if (pmap == pmap_kernel())
2065 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2066 else
2067 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2068 }
2069
2070 static void
2071 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2072 boolean_t clear_cache)
2073 {
2074 int user_entries = 0;
2075 int user_writable = 0;
2076 int user_cacheable = 0;
2077 int kernel_entries = 0;
2078 int kernel_writable = 0;
2079 int kernel_cacheable = 0;
2080 struct pv_entry *pv;
2081 struct pmap *last_pmap = pmap;
2082
2083 #ifdef DIAGNOSTIC
2084 if (pmap != pmap_kernel())
2085 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2086 #endif
2087
2088 /*
2089 * Pass one, see if there are both kernel and user pmaps for
2090 * this page. Calculate whether there are user-writable or
2091 * kernel-writable pages.
2092 */
2093 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2094 if (pv->pv_pmap != pmap) {
2095 user_entries++;
2096 if (pv->pv_flags & PVF_WRITE)
2097 user_writable++;
2098 if ((pv->pv_flags & PVF_NC) == 0)
2099 user_cacheable++;
2100 } else {
2101 kernel_entries++;
2102 if (pv->pv_flags & PVF_WRITE)
2103 kernel_writable++;
2104 if ((pv->pv_flags & PVF_NC) == 0)
2105 kernel_cacheable++;
2106 }
2107 }
2108
2109 /*
2110 * We know we have just been updating a kernel entry, so if
2111 * all user pages are already cacheable, then there is nothing
2112 * further to do.
2113 */
2114 if (kernel_entries == 0 &&
2115 user_cacheable == user_entries)
2116 return;
2117
2118 if (user_entries) {
2119 /*
2120 * Scan over the list again, for each entry, if it
2121 * might not be set correctly, call pmap_vac_me_user
2122 * to recalculate the settings.
2123 */
2124 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2125 /*
2126 * We know kernel mappings will get set
2127 * correctly in other calls. We also know
2128 * that if the pmap is the same as last_pmap
2129 * then we've just handled this entry.
2130 */
2131 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2132 continue;
2133 /*
2134 * If there are kernel entries and this page
2135 * is writable but non-cacheable, then we can
2136 * skip this entry also.
2137 */
2138 if (kernel_entries > 0 &&
2139 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2140 (PVF_NC | PVF_WRITE))
2141 continue;
2142 /*
2143 * Similarly if there are no kernel-writable
2144 * entries and the page is already
2145 * read-only/cacheable.
2146 */
2147 if (kernel_writable == 0 &&
2148 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2149 continue;
2150 /*
2151 * For some of the remaining cases, we know
2152 * that we must recalculate, but for others we
2153 * can't tell if they are correct or not, so
2154 * we recalculate anyway.
2155 */
2156 pmap_unmap_ptes(last_pmap);
2157 last_pmap = pv->pv_pmap;
2158 ptes = pmap_map_ptes(last_pmap);
2159 pmap_vac_me_user(last_pmap, pg, ptes,
2160 pmap_is_curpmap(last_pmap));
2161 }
2162 /* Restore the pte mapping that was passed to us. */
2163 if (last_pmap != pmap) {
2164 pmap_unmap_ptes(last_pmap);
2165 ptes = pmap_map_ptes(pmap);
2166 }
2167 if (kernel_entries == 0)
2168 return;
2169 }
2170
2171 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2172 return;
2173 }
2174
2175 static void
2176 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2177 boolean_t clear_cache)
2178 {
2179 struct pmap *kpmap = pmap_kernel();
2180 struct pv_entry *pv, *npv;
2181 int entries = 0;
2182 int writable = 0;
2183 int cacheable_entries = 0;
2184 int kern_cacheable = 0;
2185 int other_writable = 0;
2186
2187 pv = pg->mdpage.pvh_list;
2188 KASSERT(ptes != NULL);
2189
2190 /*
2191 * Count mappings and writable mappings in this pmap.
2192 * Include kernel mappings as part of our own.
2193 * Keep a pointer to the first one.
2194 */
2195 for (npv = pv; npv; npv = npv->pv_next) {
2196 /* Count mappings in the same pmap */
2197 if (pmap == npv->pv_pmap ||
2198 kpmap == npv->pv_pmap) {
2199 if (entries++ == 0)
2200 pv = npv;
2201 /* Cacheable mappings */
2202 if ((npv->pv_flags & PVF_NC) == 0) {
2203 cacheable_entries++;
2204 if (kpmap == npv->pv_pmap)
2205 kern_cacheable++;
2206 }
2207 /* Writable mappings */
2208 if (npv->pv_flags & PVF_WRITE)
2209 ++writable;
2210 } else if (npv->pv_flags & PVF_WRITE)
2211 other_writable = 1;
2212 }
2213
2214 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2215 "writable %d cacheable %d %s\n", pmap, entries, writable,
2216 cacheable_entries, clear_cache ? "clean" : "no clean"));
2217
2218 /*
2219 * Enable or disable caching as necessary.
2220 * Note: the first entry might be part of the kernel pmap,
2221 * so we can't assume this is indicative of the state of the
2222 * other (maybe non-kpmap) entries.
2223 */
2224 if ((entries > 1 && writable) ||
2225 (entries > 0 && pmap == kpmap && other_writable)) {
2226 if (cacheable_entries == 0)
2227 return;
2228 for (npv = pv; npv; npv = npv->pv_next) {
2229 if ((pmap == npv->pv_pmap
2230 || kpmap == npv->pv_pmap) &&
2231 (npv->pv_flags & PVF_NC) == 0) {
2232 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2233 npv->pv_flags |= PVF_NC;
2234 /*
2235 * If this page needs flushing from the
2236 * cache, and we aren't going to do it
2237 * below, do it now.
2238 */
2239 if ((cacheable_entries < 4 &&
2240 (clear_cache || npv->pv_pmap == kpmap)) ||
2241 (npv->pv_pmap == kpmap &&
2242 !clear_cache && kern_cacheable < 4)) {
2243 cpu_idcache_wbinv_range(npv->pv_va,
2244 NBPG);
2245 cpu_tlb_flushID_SE(npv->pv_va);
2246 }
2247 }
2248 }
2249 if ((clear_cache && cacheable_entries >= 4) ||
2250 kern_cacheable >= 4) {
2251 cpu_idcache_wbinv_all();
2252 cpu_tlb_flushID();
2253 }
2254 cpu_cpwait();
2255 } else if (entries > 0) {
2256 /*
2257 * Turn cacheing back on for some pages. If it is a kernel
2258 * page, only do so if there are no other writable pages.
2259 */
2260 for (npv = pv; npv; npv = npv->pv_next) {
2261 if ((pmap == npv->pv_pmap ||
2262 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2263 (npv->pv_flags & PVF_NC)) {
2264 ptes[arm_btop(npv->pv_va)] |=
2265 pte_l2_s_cache_mode;
2266 npv->pv_flags &= ~PVF_NC;
2267 }
2268 }
2269 }
2270 }
2271
2272 /*
2273 * pmap_remove()
2274 *
2275 * pmap_remove is responsible for nuking a number of mappings for a range
2276 * of virtual address space in the current pmap. To do this efficiently
2277 * is interesting, because in a number of cases a wide virtual address
2278 * range may be supplied that contains few actual mappings. So, the
2279 * optimisations are:
2280 * 1. Try and skip over hunks of address space for which an L1 entry
2281 * does not exist.
2282 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2283 * maybe do just a partial cache clean. This path of execution is
2284 * complicated by the fact that the cache must be flushed _before_
2285 * the PTE is nuked, being a VAC :-)
2286 * 3. Maybe later fast-case a single page, but I don't think this is
2287 * going to make _that_ much difference overall.
2288 */
2289
2290 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2291
2292 void
2293 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2294 {
2295 int cleanlist_idx = 0;
2296 struct pagelist {
2297 vaddr_t va;
2298 pt_entry_t *pte;
2299 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2300 pt_entry_t *pte = 0, *ptes;
2301 paddr_t pa;
2302 int pmap_active;
2303 struct vm_page *pg;
2304
2305 /* Exit quick if there is no pmap */
2306 if (!pmap)
2307 return;
2308
2309 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2310 pmap, sva, eva));
2311
2312 /*
2313 * we lock in the pmap => vm_page direction
2314 */
2315 PMAP_MAP_TO_HEAD_LOCK();
2316
2317 ptes = pmap_map_ptes(pmap);
2318 /* Get a page table pointer */
2319 while (sva < eva) {
2320 if (pmap_pde_page(pmap_pde(pmap, sva)))
2321 break;
2322 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2323 }
2324
2325 pte = &ptes[arm_btop(sva)];
2326 /* Note if the pmap is active thus require cache and tlb cleans */
2327 pmap_active = pmap_is_curpmap(pmap);
2328
2329 /* Now loop along */
2330 while (sva < eva) {
2331 /* Check if we can move to the next PDE (l1 chunk) */
2332 if (!(sva & L2_ADDR_BITS))
2333 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2334 sva += L1_S_SIZE;
2335 pte += arm_btop(L1_S_SIZE);
2336 continue;
2337 }
2338
2339 /* We've found a valid PTE, so this page of PTEs has to go. */
2340 if (pmap_pte_v(pte)) {
2341 /* Update statistics */
2342 --pmap->pm_stats.resident_count;
2343
2344 /*
2345 * Add this page to our cache remove list, if we can.
2346 * If, however the cache remove list is totally full,
2347 * then do a complete cache invalidation taking note
2348 * to backtrack the PTE table beforehand, and ignore
2349 * the lists in future because there's no longer any
2350 * point in bothering with them (we've paid the
2351 * penalty, so will carry on unhindered). Otherwise,
2352 * when we fall out, we just clean the list.
2353 */
2354 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2355 pa = pmap_pte_pa(pte);
2356
2357 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2358 /* Add to the clean list. */
2359 cleanlist[cleanlist_idx].pte = pte;
2360 cleanlist[cleanlist_idx].va = sva;
2361 cleanlist_idx++;
2362 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2363 int cnt;
2364
2365 /* Nuke everything if needed. */
2366 if (pmap_active) {
2367 cpu_idcache_wbinv_all();
2368 cpu_tlb_flushID();
2369 }
2370
2371 /*
2372 * Roll back the previous PTE list,
2373 * and zero out the current PTE.
2374 */
2375 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2376 *cleanlist[cnt].pte = 0;
2377 pmap_pte_delref(pmap, cleanlist[cnt].va);
2378 }
2379 *pte = 0;
2380 pmap_pte_delref(pmap, sva);
2381 cleanlist_idx++;
2382 } else {
2383 /*
2384 * We've already nuked the cache and
2385 * TLB, so just carry on regardless,
2386 * and we won't need to do it again
2387 */
2388 *pte = 0;
2389 pmap_pte_delref(pmap, sva);
2390 }
2391
2392 /*
2393 * Update flags. In a number of circumstances,
2394 * we could cluster a lot of these and do a
2395 * number of sequential pages in one go.
2396 */
2397 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2398 struct pv_entry *pve;
2399 simple_lock(&pg->mdpage.pvh_slock);
2400 pve = pmap_remove_pv(pg, pmap, sva);
2401 pmap_free_pv(pmap, pve);
2402 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2403 simple_unlock(&pg->mdpage.pvh_slock);
2404 }
2405 }
2406 sva += NBPG;
2407 pte++;
2408 }
2409
2410 pmap_unmap_ptes(pmap);
2411 /*
2412 * Now, if we've fallen through down to here, chances are that there
2413 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2414 */
2415 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2416 u_int cnt;
2417
2418 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2419 if (pmap_active) {
2420 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2421 NBPG);
2422 *cleanlist[cnt].pte = 0;
2423 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2424 } else
2425 *cleanlist[cnt].pte = 0;
2426 pmap_pte_delref(pmap, cleanlist[cnt].va);
2427 }
2428 }
2429 PMAP_MAP_TO_HEAD_UNLOCK();
2430 }
2431
2432 /*
2433 * Routine: pmap_remove_all
2434 * Function:
2435 * Removes this physical page from
2436 * all physical maps in which it resides.
2437 * Reflects back modify bits to the pager.
2438 */
2439
2440 static void
2441 pmap_remove_all(struct vm_page *pg)
2442 {
2443 struct pv_entry *pv, *npv;
2444 struct pmap *pmap;
2445 pt_entry_t *pte, *ptes;
2446
2447 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2448
2449 /* set vm_page => pmap locking */
2450 PMAP_HEAD_TO_MAP_LOCK();
2451
2452 simple_lock(&pg->mdpage.pvh_slock);
2453
2454 pv = pg->mdpage.pvh_list;
2455 if (pv == NULL) {
2456 PDEBUG(0, printf("free page\n"));
2457 simple_unlock(&pg->mdpage.pvh_slock);
2458 PMAP_HEAD_TO_MAP_UNLOCK();
2459 return;
2460 }
2461 pmap_clean_page(pv, FALSE);
2462
2463 while (pv) {
2464 pmap = pv->pv_pmap;
2465 ptes = pmap_map_ptes(pmap);
2466 pte = &ptes[arm_btop(pv->pv_va)];
2467
2468 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2469 pv->pv_va, pv->pv_flags));
2470 #ifdef DEBUG
2471 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2472 pmap_pte_v(pte) == 0 ||
2473 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2474 panic("pmap_remove_all: bad mapping");
2475 #endif /* DEBUG */
2476
2477 /*
2478 * Update statistics
2479 */
2480 --pmap->pm_stats.resident_count;
2481
2482 /* Wired bit */
2483 if (pv->pv_flags & PVF_WIRED)
2484 --pmap->pm_stats.wired_count;
2485
2486 /*
2487 * Invalidate the PTEs.
2488 * XXX: should cluster them up and invalidate as many
2489 * as possible at once.
2490 */
2491
2492 #ifdef needednotdone
2493 reduce wiring count on page table pages as references drop
2494 #endif
2495
2496 *pte = 0;
2497 pmap_pte_delref(pmap, pv->pv_va);
2498
2499 npv = pv->pv_next;
2500 pmap_free_pv(pmap, pv);
2501 pv = npv;
2502 pmap_unmap_ptes(pmap);
2503 }
2504 pg->mdpage.pvh_list = NULL;
2505 simple_unlock(&pg->mdpage.pvh_slock);
2506 PMAP_HEAD_TO_MAP_UNLOCK();
2507
2508 PDEBUG(0, printf("done\n"));
2509 cpu_tlb_flushID();
2510 cpu_cpwait();
2511 }
2512
2513
2514 /*
2515 * Set the physical protection on the specified range of this map as requested.
2516 */
2517
2518 void
2519 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2520 {
2521 pt_entry_t *pte = NULL, *ptes;
2522 struct vm_page *pg;
2523 int armprot;
2524 int flush = 0;
2525 paddr_t pa;
2526
2527 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2528 pmap, sva, eva, prot));
2529
2530 if (~prot & VM_PROT_READ) {
2531 /* Just remove the mappings. */
2532 pmap_remove(pmap, sva, eva);
2533 /* pmap_update not needed as it should be called by the caller
2534 * of pmap_protect */
2535 return;
2536 }
2537 if (prot & VM_PROT_WRITE) {
2538 /*
2539 * If this is a read->write transition, just ignore it and let
2540 * uvm_fault() take care of it later.
2541 */
2542 return;
2543 }
2544
2545 /* Need to lock map->head */
2546 PMAP_MAP_TO_HEAD_LOCK();
2547
2548 ptes = pmap_map_ptes(pmap);
2549
2550 /*
2551 * OK, at this point, we know we're doing write-protect operation.
2552 * If the pmap is active, write-back the range.
2553 */
2554 if (pmap_is_curpmap(pmap))
2555 cpu_dcache_wb_range(sva, eva - sva);
2556
2557 /*
2558 * We need to acquire a pointer to a page table page before entering
2559 * the following loop.
2560 */
2561 while (sva < eva) {
2562 if (pmap_pde_page(pmap_pde(pmap, sva)))
2563 break;
2564 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2565 }
2566
2567 pte = &ptes[arm_btop(sva)];
2568
2569 while (sva < eva) {
2570 /* only check once in a while */
2571 if ((sva & L2_ADDR_BITS) == 0) {
2572 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2573 /* We can race ahead here, to the next pde. */
2574 sva += L1_S_SIZE;
2575 pte += arm_btop(L1_S_SIZE);
2576 continue;
2577 }
2578 }
2579
2580 if (!pmap_pte_v(pte))
2581 goto next;
2582
2583 flush = 1;
2584
2585 armprot = 0;
2586 if (sva < VM_MAXUSER_ADDRESS)
2587 armprot |= L2_S_PROT_U;
2588 else if (sva < VM_MAX_ADDRESS)
2589 armprot |= L2_S_PROT_W; /* XXX Ekk what is this ? */
2590 *pte = (*pte & 0xfffff00f) | armprot;
2591
2592 pa = pmap_pte_pa(pte);
2593
2594 /* Get the physical page index */
2595
2596 /* Clear write flag */
2597 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2598 simple_lock(&pg->mdpage.pvh_slock);
2599 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2600 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2601 simple_unlock(&pg->mdpage.pvh_slock);
2602 }
2603
2604 next:
2605 sva += NBPG;
2606 pte++;
2607 }
2608 pmap_unmap_ptes(pmap);
2609 PMAP_MAP_TO_HEAD_UNLOCK();
2610 if (flush)
2611 cpu_tlb_flushID();
2612 }
2613
2614 /*
2615 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2616 * int flags)
2617 *
2618 * Insert the given physical page (p) at
2619 * the specified virtual address (v) in the
2620 * target physical map with the protection requested.
2621 *
2622 * If specified, the page will be wired down, meaning
2623 * that the related pte can not be reclaimed.
2624 *
2625 * NB: This is the only routine which MAY NOT lazy-evaluate
2626 * or lose information. That is, this routine must actually
2627 * insert this page into the given map NOW.
2628 */
2629
2630 int
2631 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2632 int flags)
2633 {
2634 pt_entry_t *ptes, opte, npte;
2635 paddr_t opa;
2636 boolean_t wired = (flags & PMAP_WIRED) != 0;
2637 struct vm_page *pg;
2638 struct pv_entry *pve;
2639 int error, nflags;
2640
2641 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2642 va, pa, pmap, prot, wired));
2643
2644 #ifdef DIAGNOSTIC
2645 /* Valid address ? */
2646 if (va >= (pmap_curmaxkvaddr))
2647 panic("pmap_enter: too big");
2648 if (pmap != pmap_kernel() && va != 0) {
2649 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2650 panic("pmap_enter: kernel page in user map");
2651 } else {
2652 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2653 panic("pmap_enter: user page in kernel map");
2654 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2655 panic("pmap_enter: entering PT page");
2656 }
2657 #endif
2658
2659 KDASSERT(((va | pa) & PGOFSET) == 0);
2660
2661 /*
2662 * Get a pointer to the page. Later on in this function, we
2663 * test for a managed page by checking pg != NULL.
2664 */
2665 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2666
2667 /* get lock */
2668 PMAP_MAP_TO_HEAD_LOCK();
2669
2670 /*
2671 * map the ptes. If there's not already an L2 table for this
2672 * address, allocate one.
2673 */
2674 ptes = pmap_map_ptes(pmap); /* locks pmap */
2675 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2676 struct vm_page *ptp;
2677
2678 /* kernel should be pre-grown */
2679 KASSERT(pmap != pmap_kernel());
2680
2681 /* if failure is allowed then don't try too hard */
2682 ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
2683 if (ptp == NULL) {
2684 if (flags & PMAP_CANFAIL) {
2685 error = ENOMEM;
2686 goto out;
2687 }
2688 panic("pmap_enter: get ptp failed");
2689 }
2690 }
2691 opte = ptes[arm_btop(va)];
2692
2693 nflags = 0;
2694 if (prot & VM_PROT_WRITE)
2695 nflags |= PVF_WRITE;
2696 if (wired)
2697 nflags |= PVF_WIRED;
2698
2699 /* Is the pte valid ? If so then this page is already mapped */
2700 if (l2pte_valid(opte)) {
2701 /* Get the physical address of the current page mapped */
2702 opa = l2pte_pa(opte);
2703
2704 /* Are we mapping the same page ? */
2705 if (opa == pa) {
2706 /* Has the wiring changed ? */
2707 if (pg != NULL) {
2708 simple_lock(&pg->mdpage.pvh_slock);
2709 (void) pmap_modify_pv(pmap, va, pg,
2710 PVF_WRITE | PVF_WIRED, nflags);
2711 simple_unlock(&pg->mdpage.pvh_slock);
2712 }
2713 } else {
2714 struct vm_page *opg;
2715
2716 /* We are replacing the page with a new one. */
2717 cpu_idcache_wbinv_range(va, NBPG);
2718
2719 /*
2720 * If it is part of our managed memory then we
2721 * must remove it from the PV list
2722 */
2723 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2724 simple_lock(&opg->mdpage.pvh_slock);
2725 pve = pmap_remove_pv(opg, pmap, va);
2726 simple_unlock(&opg->mdpage.pvh_slock);
2727 } else {
2728 pve = NULL;
2729 }
2730
2731 goto enter;
2732 }
2733 } else {
2734 opa = 0;
2735 pve = NULL;
2736 pmap_pte_addref(pmap, va);
2737
2738 /* pte is not valid so we must be hooking in a new page */
2739 ++pmap->pm_stats.resident_count;
2740
2741 enter:
2742 /*
2743 * Enter on the PV list if part of our managed memory
2744 */
2745 if (pg != NULL) {
2746 if (pve == NULL) {
2747 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2748 if (pve == NULL) {
2749 if (flags & PMAP_CANFAIL) {
2750 error = ENOMEM;
2751 goto out;
2752 }
2753 panic("pmap_enter: no pv entries "
2754 "available");
2755 }
2756 }
2757 /* enter_pv locks pvh when adding */
2758 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2759 } else {
2760 if (pve != NULL)
2761 pmap_free_pv(pmap, pve);
2762 }
2763 }
2764
2765 /* Construct the pte, giving the correct access. */
2766 npte = pa;
2767
2768 /* VA 0 is magic. */
2769 if (pmap != pmap_kernel() && va != vector_page)
2770 npte |= L2_S_PROT_U;
2771
2772 if (pg != NULL) {
2773 #ifdef DIAGNOSTIC
2774 if ((flags & VM_PROT_ALL) & ~prot)
2775 panic("pmap_enter: access_type exceeds prot");
2776 #endif
2777 npte |= pte_l2_s_cache_mode;
2778 if (flags & VM_PROT_WRITE) {
2779 npte |= L2_S_PROTO | L2_S_PROT_W;
2780 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2781 } else if (flags & VM_PROT_ALL) {
2782 npte |= L2_S_PROTO;
2783 pg->mdpage.pvh_attrs |= PVF_REF;
2784 } else
2785 npte |= L2_TYPE_INV;
2786 } else {
2787 if (prot & VM_PROT_WRITE)
2788 npte |= L2_S_PROTO | L2_S_PROT_W;
2789 else if (prot & VM_PROT_ALL)
2790 npte |= L2_S_PROTO;
2791 else
2792 npte |= L2_TYPE_INV;
2793 }
2794
2795 ptes[arm_btop(va)] = npte;
2796
2797 if (pg != NULL) {
2798 simple_lock(&pg->mdpage.pvh_slock);
2799 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2800 simple_unlock(&pg->mdpage.pvh_slock);
2801 }
2802
2803 /* Better flush the TLB ... */
2804 cpu_tlb_flushID_SE(va);
2805 error = 0;
2806 out:
2807 pmap_unmap_ptes(pmap); /* unlocks pmap */
2808 PMAP_MAP_TO_HEAD_UNLOCK();
2809
2810 return error;
2811 }
2812
2813 /*
2814 * pmap_kenter_pa: enter a kernel mapping
2815 *
2816 * => no need to lock anything assume va is already allocated
2817 * => should be faster than normal pmap enter function
2818 */
2819 void
2820 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2821 {
2822 pt_entry_t *pte;
2823
2824 pte = vtopte(va);
2825 KASSERT(!pmap_pte_v(pte));
2826
2827 *pte = L2_S_PROTO | pa |
2828 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2829 }
2830
2831 void
2832 pmap_kremove(vaddr_t va, vsize_t len)
2833 {
2834 pt_entry_t *pte;
2835
2836 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2837
2838 /*
2839 * We assume that we will only be called with small
2840 * regions of memory.
2841 */
2842
2843 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2844 pte = vtopte(va);
2845 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2846 *pte = 0;
2847 cpu_tlb_flushID_SE(va);
2848 }
2849 }
2850
2851 /*
2852 * pmap_page_protect:
2853 *
2854 * Lower the permission for all mappings to a given page.
2855 */
2856
2857 void
2858 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2859 {
2860
2861 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2862 VM_PAGE_TO_PHYS(pg), prot));
2863
2864 switch(prot) {
2865 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2866 case VM_PROT_READ|VM_PROT_WRITE:
2867 return;
2868
2869 case VM_PROT_READ:
2870 case VM_PROT_READ|VM_PROT_EXECUTE:
2871 pmap_clearbit(pg, PVF_WRITE);
2872 break;
2873
2874 default:
2875 pmap_remove_all(pg);
2876 break;
2877 }
2878 }
2879
2880
2881 /*
2882 * Routine: pmap_unwire
2883 * Function: Clear the wired attribute for a map/virtual-address
2884 * pair.
2885 * In/out conditions:
2886 * The mapping must already exist in the pmap.
2887 */
2888
2889 void
2890 pmap_unwire(struct pmap *pmap, vaddr_t va)
2891 {
2892 pt_entry_t *ptes;
2893 struct vm_page *pg;
2894 paddr_t pa;
2895
2896 PMAP_MAP_TO_HEAD_LOCK();
2897 ptes = pmap_map_ptes(pmap); /* locks pmap */
2898
2899 if (pmap_pde_v(pmap_pde(pmap, va))) {
2900 #ifdef DIAGNOSTIC
2901 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
2902 panic("pmap_unwire: invalid L2 PTE");
2903 #endif
2904 /* Extract the physical address of the page */
2905 pa = l2pte_pa(ptes[arm_btop(va)]);
2906
2907 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2908 goto out;
2909
2910 /* Update the wired bit in the pv entry for this page. */
2911 simple_lock(&pg->mdpage.pvh_slock);
2912 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
2913 simple_unlock(&pg->mdpage.pvh_slock);
2914 }
2915 #ifdef DIAGNOSTIC
2916 else {
2917 panic("pmap_unwire: invalid L1 PTE");
2918 }
2919 #endif
2920 out:
2921 pmap_unmap_ptes(pmap); /* unlocks pmap */
2922 PMAP_MAP_TO_HEAD_UNLOCK();
2923 }
2924
2925 /*
2926 * Routine: pmap_extract
2927 * Function:
2928 * Extract the physical page address associated
2929 * with the given map/virtual_address pair.
2930 */
2931 boolean_t
2932 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
2933 {
2934 pd_entry_t *pde;
2935 pt_entry_t *pte, *ptes;
2936 paddr_t pa;
2937
2938 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
2939
2940 ptes = pmap_map_ptes(pmap); /* locks pmap */
2941
2942 pde = pmap_pde(pmap, va);
2943 pte = &ptes[arm_btop(va)];
2944
2945 if (pmap_pde_section(pde)) {
2946 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
2947 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
2948 goto out;
2949 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
2950 PDEBUG(5, printf("no mapping\n"));
2951 goto failed;
2952 }
2953
2954 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
2955 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2956 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
2957 goto out;
2958 }
2959
2960 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2961 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
2962
2963 out:
2964 if (pap != NULL)
2965 *pap = pa;
2966
2967 pmap_unmap_ptes(pmap); /* unlocks pmap */
2968 return (TRUE);
2969
2970 failed:
2971 pmap_unmap_ptes(pmap); /* unlocks pmap */
2972 return (FALSE);
2973 }
2974
2975
2976 /*
2977 * pmap_copy:
2978 *
2979 * Copy the range specified by src_addr/len from the source map to the
2980 * range dst_addr/len in the destination map.
2981 *
2982 * This routine is only advisory and need not do anything.
2983 */
2984 /* Call deleted in <arm/arm32/pmap.h> */
2985
2986 #if defined(PMAP_DEBUG)
2987 void
2988 pmap_dump_pvlist(phys, m)
2989 vaddr_t phys;
2990 char *m;
2991 {
2992 struct vm_page *pg;
2993 struct pv_entry *pv;
2994
2995 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
2996 printf("INVALID PA\n");
2997 return;
2998 }
2999 simple_lock(&pg->mdpage.pvh_slock);
3000 printf("%s %08lx:", m, phys);
3001 if (pg->mdpage.pvh_list == NULL) {
3002 printf(" no mappings\n");
3003 return;
3004 }
3005
3006 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3007 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3008 pv->pv_va, pv->pv_flags);
3009
3010 printf("\n");
3011 simple_unlock(&pg->mdpage.pvh_slock);
3012 }
3013
3014 #endif /* PMAP_DEBUG */
3015
3016 static pt_entry_t *
3017 pmap_map_ptes(struct pmap *pmap)
3018 {
3019 struct proc *p;
3020
3021 /* the kernel's pmap is always accessible */
3022 if (pmap == pmap_kernel()) {
3023 return (pt_entry_t *)PTE_BASE;
3024 }
3025
3026 if (pmap_is_curpmap(pmap)) {
3027 simple_lock(&pmap->pm_obj.vmobjlock);
3028 return (pt_entry_t *)PTE_BASE;
3029 }
3030
3031 p = curproc;
3032 KDASSERT(p != NULL);
3033
3034 /* need to lock both curpmap and pmap: use ordered locking */
3035 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3036 simple_lock(&pmap->pm_obj.vmobjlock);
3037 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3038 } else {
3039 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3040 simple_lock(&pmap->pm_obj.vmobjlock);
3041 }
3042
3043 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
3044 FALSE);
3045 cpu_tlb_flushD();
3046 cpu_cpwait();
3047 return (pt_entry_t *)APTE_BASE;
3048 }
3049
3050 /*
3051 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3052 */
3053
3054 static void
3055 pmap_unmap_ptes(struct pmap *pmap)
3056 {
3057
3058 if (pmap == pmap_kernel()) {
3059 return;
3060 }
3061 if (pmap_is_curpmap(pmap)) {
3062 simple_unlock(&pmap->pm_obj.vmobjlock);
3063 } else {
3064 KDASSERT(curproc != NULL);
3065 simple_unlock(&pmap->pm_obj.vmobjlock);
3066 simple_unlock(
3067 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3068 }
3069 }
3070
3071 /*
3072 * Modify pte bits for all ptes corresponding to the given physical address.
3073 * We use `maskbits' rather than `clearbits' because we're always passing
3074 * constants and the latter would require an extra inversion at run-time.
3075 */
3076
3077 static void
3078 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3079 {
3080 struct pv_entry *pv;
3081 pt_entry_t *ptes;
3082 vaddr_t va;
3083 int tlbentry;
3084
3085 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3086 VM_PAGE_TO_PHYS(pg), maskbits));
3087
3088 tlbentry = 0;
3089
3090 PMAP_HEAD_TO_MAP_LOCK();
3091 simple_lock(&pg->mdpage.pvh_slock);
3092
3093 /*
3094 * Clear saved attributes (modify, reference)
3095 */
3096 pg->mdpage.pvh_attrs &= ~maskbits;
3097
3098 if (pg->mdpage.pvh_list == NULL) {
3099 simple_unlock(&pg->mdpage.pvh_slock);
3100 PMAP_HEAD_TO_MAP_UNLOCK();
3101 return;
3102 }
3103
3104 /*
3105 * Loop over all current mappings setting/clearing as appropos
3106 */
3107 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3108 va = pv->pv_va;
3109 pv->pv_flags &= ~maskbits;
3110 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3111 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3112 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3113 if ((pv->pv_flags & PVF_NC)) {
3114 /*
3115 * Entry is not cacheable: reenable
3116 * the cache, nothing to flush
3117 *
3118 * Don't turn caching on again if this
3119 * is a modified emulation. This
3120 * would be inconsitent with the
3121 * settings created by
3122 * pmap_vac_me_harder().
3123 *
3124 * There's no need to call
3125 * pmap_vac_me_harder() here: all
3126 * pages are loosing their write
3127 * permission.
3128 *
3129 */
3130 if (maskbits & PVF_WRITE) {
3131 ptes[arm_btop(va)] |=
3132 pte_l2_s_cache_mode;
3133 pv->pv_flags &= ~PVF_NC;
3134 }
3135 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3136 /*
3137 * Entry is cacheable: check if pmap is
3138 * current if it is flush it,
3139 * otherwise it won't be in the cache
3140 */
3141 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3142 }
3143
3144 /* make the pte read only */
3145 ptes[arm_btop(va)] &= ~L2_S_PROT_W;
3146 }
3147
3148 if (maskbits & PVF_REF)
3149 ptes[arm_btop(va)] =
3150 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_TYPE_INV;
3151
3152 if (pmap_is_curpmap(pv->pv_pmap)) {
3153 /*
3154 * if we had cacheable pte's we'd clean the
3155 * pte out to memory here
3156 *
3157 * flush tlb entry as it's in the current pmap
3158 */
3159 cpu_tlb_flushID_SE(pv->pv_va);
3160 }
3161 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3162 }
3163 cpu_cpwait();
3164
3165 simple_unlock(&pg->mdpage.pvh_slock);
3166 PMAP_HEAD_TO_MAP_UNLOCK();
3167 }
3168
3169 /*
3170 * pmap_clear_modify:
3171 *
3172 * Clear the "modified" attribute for a page.
3173 */
3174 boolean_t
3175 pmap_clear_modify(struct vm_page *pg)
3176 {
3177 boolean_t rv;
3178
3179 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3180 rv = TRUE;
3181 pmap_clearbit(pg, PVF_MOD);
3182 } else
3183 rv = FALSE;
3184
3185 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3186 VM_PAGE_TO_PHYS(pg), rv));
3187
3188 return (rv);
3189 }
3190
3191 /*
3192 * pmap_clear_reference:
3193 *
3194 * Clear the "referenced" attribute for a page.
3195 */
3196 boolean_t
3197 pmap_clear_reference(struct vm_page *pg)
3198 {
3199 boolean_t rv;
3200
3201 if (pg->mdpage.pvh_attrs & PVF_REF) {
3202 rv = TRUE;
3203 pmap_clearbit(pg, PVF_REF);
3204 } else
3205 rv = FALSE;
3206
3207 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3208 VM_PAGE_TO_PHYS(pg), rv));
3209
3210 return (rv);
3211 }
3212
3213 /*
3214 * pmap_is_modified:
3215 *
3216 * Test if a page has the "modified" attribute.
3217 */
3218 /* See <arm/arm32/pmap.h> */
3219
3220 /*
3221 * pmap_is_referenced:
3222 *
3223 * Test if a page has the "referenced" attribute.
3224 */
3225 /* See <arm/arm32/pmap.h> */
3226
3227 int
3228 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3229 {
3230 pt_entry_t *ptes;
3231 struct vm_page *pg;
3232 paddr_t pa;
3233 u_int flags;
3234 int rv = 0;
3235
3236 PDEBUG(2, printf("pmap_modified_emulation\n"));
3237
3238 PMAP_MAP_TO_HEAD_LOCK();
3239 ptes = pmap_map_ptes(pmap); /* locks pmap */
3240
3241 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3242 PDEBUG(2, printf("L1 PTE invalid\n"));
3243 goto out;
3244 }
3245
3246 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3247
3248 /* Check for a invalid pte */
3249 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3250 goto out;
3251
3252 /* This can happen if user code tries to access kernel memory. */
3253 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3254 goto out;
3255
3256 /* Extract the physical address of the page */
3257 pa = l2pte_pa(ptes[arm_btop(va)]);
3258 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3259 goto out;
3260
3261 /* Get the current flags for this page. */
3262 simple_lock(&pg->mdpage.pvh_slock);
3263
3264 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3265 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3266
3267 /*
3268 * Do the flags say this page is writable ? If not then it is a
3269 * genuine write fault. If yes then the write fault is our fault
3270 * as we did not reflect the write access in the PTE. Now we know
3271 * a write has occurred we can correct this and also set the
3272 * modified bit
3273 */
3274 if (~flags & PVF_WRITE) {
3275 simple_unlock(&pg->mdpage.pvh_slock);
3276 goto out;
3277 }
3278
3279 PDEBUG(0,
3280 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3281 va, ptes[arm_btop(va)]));
3282 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3283
3284 /*
3285 * Re-enable write permissions for the page. No need to call
3286 * pmap_vac_me_harder(), since this is just a
3287 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3288 * We've already set the cacheable bits based on the assumption
3289 * that we can write to this page.
3290 */
3291 ptes[arm_btop(va)] =
3292 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3293 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3294
3295 simple_unlock(&pg->mdpage.pvh_slock);
3296
3297 cpu_tlb_flushID_SE(va);
3298 cpu_cpwait();
3299 rv = 1;
3300 out:
3301 pmap_unmap_ptes(pmap); /* unlocks pmap */
3302 PMAP_MAP_TO_HEAD_UNLOCK();
3303 return (rv);
3304 }
3305
3306 int
3307 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3308 {
3309 pt_entry_t *ptes;
3310 struct vm_page *pg;
3311 paddr_t pa;
3312 int rv = 0;
3313
3314 PDEBUG(2, printf("pmap_handled_emulation\n"));
3315
3316 PMAP_MAP_TO_HEAD_LOCK();
3317 ptes = pmap_map_ptes(pmap); /* locks pmap */
3318
3319 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3320 PDEBUG(2, printf("L1 PTE invalid\n"));
3321 goto out;
3322 }
3323
3324 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3325
3326 /* Check for invalid pte */
3327 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3328 goto out;
3329
3330 /* This can happen if user code tries to access kernel memory. */
3331 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3332 goto out;
3333
3334 /* Extract the physical address of the page */
3335 pa = l2pte_pa(ptes[arm_btop(va)]);
3336 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3337 goto out;
3338
3339 simple_lock(&pg->mdpage.pvh_slock);
3340
3341 /*
3342 * Ok we just enable the pte and mark the attibs as handled
3343 * XXX Should we traverse the PV list and enable all PTEs?
3344 */
3345 PDEBUG(0,
3346 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3347 va, ptes[arm_btop(va)]));
3348 pg->mdpage.pvh_attrs |= PVF_REF;
3349
3350 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3351 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3352
3353 simple_unlock(&pg->mdpage.pvh_slock);
3354
3355 cpu_tlb_flushID_SE(va);
3356 cpu_cpwait();
3357 rv = 1;
3358 out:
3359 pmap_unmap_ptes(pmap); /* unlocks pmap */
3360 PMAP_MAP_TO_HEAD_UNLOCK();
3361 return (rv);
3362 }
3363
3364 /*
3365 * pmap_collect: free resources held by a pmap
3366 *
3367 * => optional function.
3368 * => called when a process is swapped out to free memory.
3369 */
3370
3371 void
3372 pmap_collect(struct pmap *pmap)
3373 {
3374 }
3375
3376 /*
3377 * Routine: pmap_procwr
3378 *
3379 * Function:
3380 * Synchronize caches corresponding to [addr, addr+len) in p.
3381 *
3382 */
3383 void
3384 pmap_procwr(struct proc *p, vaddr_t va, int len)
3385 {
3386 /* We only need to do anything if it is the current process. */
3387 if (p == curproc)
3388 cpu_icache_sync_range(va, len);
3389 }
3390 /*
3391 * PTP functions
3392 */
3393
3394 /*
3395 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3396 *
3397 * => pmap should NOT be pmap_kernel()
3398 * => pmap should be locked
3399 */
3400
3401 static struct vm_page *
3402 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3403 {
3404 struct vm_page *ptp;
3405
3406 if (pmap_pde_page(pmap_pde(pmap, va))) {
3407
3408 /* valid... check hint (saves us a PA->PG lookup) */
3409 if (pmap->pm_ptphint &&
3410 (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
3411 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3412 return (pmap->pm_ptphint);
3413 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3414 #ifdef DIAGNOSTIC
3415 if (ptp == NULL)
3416 panic("pmap_get_ptp: unmanaged user PTP");
3417 #endif
3418 pmap->pm_ptphint = ptp;
3419 return(ptp);
3420 }
3421
3422 /* allocate a new PTP (updates ptphint) */
3423 return(pmap_alloc_ptp(pmap, va));
3424 }
3425
3426 /*
3427 * pmap_alloc_ptp: allocate a PTP for a PMAP
3428 *
3429 * => pmap should already be locked by caller
3430 * => we use the ptp's wire_count to count the number of active mappings
3431 * in the PTP (we start it at one to prevent any chance this PTP
3432 * will ever leak onto the active/inactive queues)
3433 */
3434
3435 /*__inline */ static struct vm_page *
3436 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3437 {
3438 struct vm_page *ptp;
3439
3440 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3441 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3442 if (ptp == NULL)
3443 return (NULL);
3444
3445 /* got one! */
3446 ptp->flags &= ~PG_BUSY; /* never busy */
3447 ptp->wire_count = 1; /* no mappings yet */
3448 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3449 pmap->pm_stats.resident_count++; /* count PTP as resident */
3450 pmap->pm_ptphint = ptp;
3451 return (ptp);
3452 }
3453
3454 vaddr_t
3455 pmap_growkernel(vaddr_t maxkvaddr)
3456 {
3457 struct pmap *kpm = pmap_kernel(), *pm;
3458 int s;
3459 paddr_t ptaddr;
3460 struct vm_page *ptp;
3461
3462 if (maxkvaddr <= pmap_curmaxkvaddr)
3463 goto out; /* we are OK */
3464 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3465 pmap_curmaxkvaddr, maxkvaddr));
3466
3467 /*
3468 * whoops! we need to add kernel PTPs
3469 */
3470
3471 s = splhigh(); /* to be safe */
3472 simple_lock(&kpm->pm_obj.vmobjlock);
3473 /* due to the way the arm pmap works we map 4MB at a time */
3474 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3475 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3476
3477 if (uvm.page_init_done == FALSE) {
3478
3479 /*
3480 * we're growing the kernel pmap early (from
3481 * uvm_pageboot_alloc()). this case must be
3482 * handled a little differently.
3483 */
3484
3485 if (uvm_page_physget(&ptaddr) == FALSE)
3486 panic("pmap_growkernel: out of memory");
3487 pmap_zero_page(ptaddr);
3488
3489 /* map this page in */
3490 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
3491
3492 /* count PTP as resident */
3493 kpm->pm_stats.resident_count++;
3494 continue;
3495 }
3496
3497 /*
3498 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3499 * pmap_initialized == FALSE CASE! WE MAY BE
3500 * INVOKED WHILE pmap_init() IS RUNNING!
3501 */
3502
3503 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3504 panic("pmap_growkernel: alloc ptp failed");
3505
3506 /* distribute new kernel PTP to all active pmaps */
3507 simple_lock(&pmaps_lock);
3508 LIST_FOREACH(pm, &pmaps, pm_list) {
3509 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3510 VM_PAGE_TO_PHYS(ptp), TRUE);
3511 }
3512
3513 simple_unlock(&pmaps_lock);
3514 }
3515
3516 /*
3517 * flush out the cache, expensive but growkernel will happen so
3518 * rarely
3519 */
3520 cpu_tlb_flushD();
3521 cpu_cpwait();
3522
3523 simple_unlock(&kpm->pm_obj.vmobjlock);
3524 splx(s);
3525
3526 out:
3527 return (pmap_curmaxkvaddr);
3528 }
3529
3530 /************************ Utility routines ****************************/
3531
3532 /*
3533 * vector_page_setprot:
3534 *
3535 * Manipulate the protection of the vector page.
3536 */
3537 void
3538 vector_page_setprot(int prot)
3539 {
3540 pt_entry_t *pte;
3541
3542 pte = vtopte(vector_page);
3543
3544 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3545 cpu_tlb_flushD_SE(vector_page);
3546 cpu_cpwait();
3547 }
3548
3549 /************************ Bootstrapping routines ****************************/
3550
3551 /*
3552 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3553 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3554 * find them as necessary.
3555 *
3556 * Note that the data on this list is not valid after initarm() returns.
3557 */
3558 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3559
3560 static vaddr_t
3561 kernel_pt_lookup(paddr_t pa)
3562 {
3563 pv_addr_t *pv;
3564
3565 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3566 if (pv->pv_pa == pa)
3567 return (pv->pv_va);
3568 }
3569 return (0);
3570 }
3571
3572 /*
3573 * pmap_map_section:
3574 *
3575 * Create a single section mapping.
3576 */
3577 void
3578 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3579 {
3580 pd_entry_t *pde = (pd_entry_t *) l1pt;
3581 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3582
3583 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3584
3585 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3586 L1_S_PROT(PTE_KERNEL, prot) | fl;
3587 }
3588
3589 /*
3590 * pmap_map_entry:
3591 *
3592 * Create a single page mapping.
3593 */
3594 void
3595 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3596 {
3597 pd_entry_t *pde = (pd_entry_t *) l1pt;
3598 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3599 pt_entry_t *pte;
3600
3601 KASSERT(((va | pa) & PGOFSET) == 0);
3602
3603 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3604 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3605
3606 pte = (pt_entry_t *)
3607 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3608 if (pte == NULL)
3609 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3610
3611 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3612 L2_S_PROT(PTE_KERNEL, prot) | fl;
3613 }
3614
3615 /*
3616 * pmap_link_l2pt:
3617 *
3618 * Link the L2 page table specified by "pa" into the L1
3619 * page table at the slot for "va".
3620 */
3621 void
3622 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3623 {
3624 pd_entry_t *pde = (pd_entry_t *) l1pt;
3625 u_int slot = va >> L1_S_SHIFT;
3626
3627 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3628
3629 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3630 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3631 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3632 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3633
3634 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3635 }
3636
3637 /*
3638 * pmap_map_chunk:
3639 *
3640 * Map a chunk of memory using the most efficient mappings
3641 * possible (section, large page, small page) into the
3642 * provided L1 and L2 tables at the specified virtual address.
3643 */
3644 vsize_t
3645 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3646 int prot, int cache)
3647 {
3648 pd_entry_t *pde = (pd_entry_t *) l1pt;
3649 pt_entry_t *pte, fl;
3650 vsize_t resid;
3651 int i;
3652
3653 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3654
3655 if (l1pt == 0)
3656 panic("pmap_map_chunk: no L1 table provided");
3657
3658 #ifdef VERBOSE_INIT_ARM
3659 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3660 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3661 #endif
3662
3663 size = resid;
3664
3665 while (resid > 0) {
3666 /* See if we can use a section mapping. */
3667 if (((pa | va) & L1_S_OFFSET) == 0 &&
3668 resid >= L1_S_SIZE) {
3669 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3670 #ifdef VERBOSE_INIT_ARM
3671 printf("S");
3672 #endif
3673 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3674 L1_S_PROT(PTE_KERNEL, prot) | fl;
3675 va += L1_S_SIZE;
3676 pa += L1_S_SIZE;
3677 resid -= L1_S_SIZE;
3678 continue;
3679 }
3680
3681 /*
3682 * Ok, we're going to use an L2 table. Make sure
3683 * one is actually in the corresponding L1 slot
3684 * for the current VA.
3685 */
3686 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3687 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3688
3689 pte = (pt_entry_t *)
3690 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3691 if (pte == NULL)
3692 panic("pmap_map_chunk: can't find L2 table for VA"
3693 "0x%08lx", va);
3694
3695 /* See if we can use a L2 large page mapping. */
3696 if (((pa | va) & L2_L_OFFSET) == 0 &&
3697 resid >= L2_L_SIZE) {
3698 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3699 #ifdef VERBOSE_INIT_ARM
3700 printf("L");
3701 #endif
3702 for (i = 0; i < 16; i++) {
3703 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3704 L2_L_PROTO | pa |
3705 L2_L_PROT(PTE_KERNEL, prot) | fl;
3706 }
3707 va += L2_L_SIZE;
3708 pa += L2_L_SIZE;
3709 resid -= L2_L_SIZE;
3710 continue;
3711 }
3712
3713 /* Use a small page mapping. */
3714 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3715 #ifdef VERBOSE_INIT_ARM
3716 printf("P");
3717 #endif
3718 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3719 L2_S_PROT(PTE_KERNEL, prot) | fl;
3720 va += NBPG;
3721 pa += NBPG;
3722 resid -= NBPG;
3723 }
3724 #ifdef VERBOSE_INIT_ARM
3725 printf("\n");
3726 #endif
3727 return (size);
3728 }
3729
3730 /********************** PTE initialization routines **************************/
3731
3732 /*
3733 * These routines are called when the CPU type is identified to set up
3734 * the PTE prototypes, cache modes, etc.
3735 *
3736 * The variables are always here, just in case LKMs need to reference
3737 * them (though, they shouldn't).
3738 */
3739
3740 pt_entry_t pte_l1_s_cache_mode;
3741 pt_entry_t pte_l1_s_cache_mask;
3742
3743 pt_entry_t pte_l2_l_cache_mode;
3744 pt_entry_t pte_l2_l_cache_mask;
3745
3746 pt_entry_t pte_l2_s_cache_mode;
3747 pt_entry_t pte_l2_s_cache_mask;
3748
3749 pt_entry_t pte_l2_s_prot_u;
3750 pt_entry_t pte_l2_s_prot_w;
3751 pt_entry_t pte_l2_s_prot_mask;
3752
3753 pt_entry_t pte_l1_s_proto;
3754 pt_entry_t pte_l1_c_proto;
3755 pt_entry_t pte_l2_s_proto;
3756
3757 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3758 void (*pmap_zero_page_func)(paddr_t);
3759
3760 #if ARM_MMU_GENERIC == 1
3761 void
3762 pmap_pte_init_generic(void)
3763 {
3764
3765 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3766 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3767
3768 pte_l2_l_cache_mode = L2_B|L2_C;
3769 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3770
3771 pte_l2_s_cache_mode = L2_B|L2_C;
3772 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3773
3774 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3775 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3776 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3777
3778 pte_l1_s_proto = L1_S_PROTO_generic;
3779 pte_l1_c_proto = L1_C_PROTO_generic;
3780 pte_l2_s_proto = L2_S_PROTO_generic;
3781
3782 pmap_copy_page_func = pmap_copy_page_generic;
3783 pmap_zero_page_func = pmap_zero_page_generic;
3784 }
3785
3786 #if defined(CPU_ARM9)
3787 void
3788 pmap_pte_init_arm9(void)
3789 {
3790
3791 /*
3792 * ARM9 is compatible with generic, but we want to use
3793 * write-through caching for now.
3794 */
3795 pmap_pte_init_generic();
3796
3797 pte_l1_s_cache_mode = L1_S_C;
3798 pte_l2_l_cache_mode = L2_C;
3799 pte_l2_s_cache_mode = L2_C;
3800 }
3801 #endif /* CPU_ARM9 */
3802 #endif /* ARM_MMU_GENERIC == 1 */
3803
3804 #if ARM_MMU_XSCALE == 1
3805 void
3806 pmap_pte_init_xscale(void)
3807 {
3808 uint32_t auxctl;
3809
3810 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3811 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
3812
3813 pte_l2_l_cache_mode = L2_B|L2_C;
3814 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
3815
3816 pte_l2_s_cache_mode = L2_B|L2_C;
3817 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
3818
3819 #ifdef XSCALE_CACHE_WRITE_THROUGH
3820 /*
3821 * Some versions of the XScale core have various bugs in
3822 * their cache units, the work-around for which is to run
3823 * the cache in write-through mode. Unfortunately, this
3824 * has a major (negative) impact on performance. So, we
3825 * go ahead and run fast-and-loose, in the hopes that we
3826 * don't line up the planets in a way that will trip the
3827 * bugs.
3828 *
3829 * However, we give you the option to be slow-but-correct.
3830 */
3831 pte_l1_s_cache_mode = L1_S_C;
3832 pte_l2_l_cache_mode = L2_C;
3833 pte_l2_s_cache_mode = L2_C;
3834 #endif /* XSCALE_CACHE_WRITE_THROUGH */
3835
3836 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
3837 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
3838 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
3839
3840 pte_l1_s_proto = L1_S_PROTO_xscale;
3841 pte_l1_c_proto = L1_C_PROTO_xscale;
3842 pte_l2_s_proto = L2_S_PROTO_xscale;
3843
3844 pmap_copy_page_func = pmap_copy_page_xscale;
3845 pmap_zero_page_func = pmap_zero_page_xscale;
3846
3847 /*
3848 * Disable ECC protection of page table access, for now.
3849 */
3850 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
3851 : "=r" (auxctl));
3852 auxctl &= ~XSCALE_AUXCTL_P;
3853 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
3854 :
3855 : "r" (auxctl));
3856 }
3857
3858 /*
3859 * xscale_setup_minidata:
3860 *
3861 * Set up the mini-data cache clean area. We require the
3862 * caller to allocate the right amount of physically and
3863 * virtually contiguous space.
3864 */
3865 void
3866 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
3867 {
3868 extern vaddr_t xscale_minidata_clean_addr;
3869 extern vsize_t xscale_minidata_clean_size; /* already initialized */
3870 pd_entry_t *pde = (pd_entry_t *) l1pt;
3871 pt_entry_t *pte;
3872 vsize_t size;
3873 uint32_t auxctl;
3874
3875 xscale_minidata_clean_addr = va;
3876
3877 /* Round it to page size. */
3878 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
3879
3880 for (; size != 0;
3881 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
3882 pte = (pt_entry_t *)
3883 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3884 if (pte == NULL)
3885 panic("xscale_setup_minidata: can't find L2 table for "
3886 "VA 0x%08lx", va);
3887 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3888 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3889 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
3890 }
3891
3892 /*
3893 * Configure the mini-data cache for write-back with
3894 * read/write-allocate.
3895 *
3896 * NOTE: In order to reconfigure the mini-data cache, we must
3897 * make sure it contains no valid data! In order to do that,
3898 * we must issue a global data cache invalidate command!
3899 *
3900 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
3901 * THIS IS VERY IMPORTANT!
3902 */
3903
3904 /* Invalidate data and mini-data. */
3905 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
3906 :
3907 : "r" (auxctl));
3908
3909
3910 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
3911 : "=r" (auxctl));
3912 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
3913 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
3914 :
3915 : "r" (auxctl));
3916 }
3917 #endif /* ARM_MMU_XSCALE == 1 */
3918