pmap.c revision 1.97 1 /* $NetBSD: pmap.c,v 1.97 2002/05/14 19:22:34 chris Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.97 2002/05/14 19:22:34 chris Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static LIST_HEAD(, pmap) pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 static pt_entry_t *csrc_pte, *cdst_pte;
199 static vaddr_t csrcp, cdstp;
200
201 char *memhook;
202 extern caddr_t msgbufaddr;
203
204 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
205 /*
206 * locking data structures
207 */
208
209 static struct lock pmap_main_lock;
210 static struct simplelock pvalloc_lock;
211 static struct simplelock pmaps_lock;
212 #ifdef LOCKDEBUG
213 #define PMAP_MAP_TO_HEAD_LOCK() \
214 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
216 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
217
218 #define PMAP_HEAD_TO_MAP_LOCK() \
219 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
221 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
222 #else
223 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
224 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
225 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
226 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
227 #endif /* LOCKDEBUG */
228
229 /*
230 * pv_page management structures: locked by pvalloc_lock
231 */
232
233 TAILQ_HEAD(pv_pagelist, pv_page);
234 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
236 static int pv_nfpvents; /* # of free pv entries */
237 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
238 static vaddr_t pv_cachedva; /* cached VA for later use */
239
240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
242 /* high water mark */
243
244 /*
245 * local prototypes
246 */
247
248 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
249 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
250 #define ALLOCPV_NEED 0 /* need PV now */
251 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
252 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
253 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
254 static void pmap_enter_pv __P((struct vm_page *,
255 struct pv_entry *, struct pmap *,
256 vaddr_t, struct vm_page *, int));
257 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
258 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
259 static void pmap_free_pv_doit __P((struct pv_entry *));
260 static void pmap_free_pvpage __P((void));
261 static boolean_t pmap_is_curpmap __P((struct pmap *));
262 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
263 vaddr_t));
264 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
265 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
266
267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
268 u_int, u_int));
269
270 /*
271 * Structure that describes and L1 table.
272 */
273 struct l1pt {
274 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
275 struct pglist pt_plist; /* Allocated page list */
276 vaddr_t pt_va; /* Allocated virtual address */
277 int pt_flags; /* Flags */
278 };
279 #define PTFLAG_STATIC 0x01 /* Statically allocated */
280 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
281 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
282
283 static void pmap_free_l1pt __P((struct l1pt *));
284 static int pmap_allocpagedir __P((struct pmap *));
285 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
286 static void pmap_remove_all __P((struct vm_page *));
287
288 static int pmap_alloc_ptpt(struct pmap *);
289 static void pmap_free_ptpt(struct pmap *);
290
291 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
292 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
293 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
294
295 extern paddr_t physical_start;
296 extern paddr_t physical_freestart;
297 extern paddr_t physical_end;
298 extern paddr_t physical_freeend;
299 extern unsigned int free_pages;
300 extern int max_processes;
301
302 vaddr_t virtual_avail;
303 vaddr_t virtual_end;
304 vaddr_t pmap_curmaxkvaddr;
305
306 vaddr_t avail_start;
307 vaddr_t avail_end;
308
309 extern pv_addr_t systempage;
310
311 /* Variables used by the L1 page table queue code */
312 SIMPLEQ_HEAD(l1pt_queue, l1pt);
313 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
314 static int l1pt_static_queue_count; /* items in the static l1 queue */
315 static int l1pt_static_create_count; /* static l1 items created */
316 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
317 static int l1pt_queue_count; /* items in the l1 queue */
318 static int l1pt_create_count; /* stat - L1's create count */
319 static int l1pt_reuse_count; /* stat - L1's reused count */
320
321 /* Local function prototypes (not used outside this file) */
322 void pmap_pinit __P((struct pmap *));
323 void pmap_freepagedir __P((struct pmap *));
324
325 /* Other function prototypes */
326 extern void bzero_page __P((vaddr_t));
327 extern void bcopy_page __P((vaddr_t, vaddr_t));
328
329 struct l1pt *pmap_alloc_l1pt __P((void));
330 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
331 vaddr_t l2pa, boolean_t));
332
333 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
334 static void pmap_unmap_ptes __P((struct pmap *));
335
336 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
337 pt_entry_t *, boolean_t));
338 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
339 pt_entry_t *, boolean_t));
340 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
341 pt_entry_t *, boolean_t));
342
343 /*
344 * real definition of pv_entry.
345 */
346
347 struct pv_entry {
348 struct pv_entry *pv_next; /* next pv_entry */
349 struct pmap *pv_pmap; /* pmap where mapping lies */
350 vaddr_t pv_va; /* virtual address for mapping */
351 int pv_flags; /* flags */
352 struct vm_page *pv_ptp; /* vm_page for the ptp */
353 };
354
355 /*
356 * pv_entrys are dynamically allocated in chunks from a single page.
357 * we keep track of how many pv_entrys are in use for each page and
358 * we can free pv_entry pages if needed. there is one lock for the
359 * entire allocation system.
360 */
361
362 struct pv_page_info {
363 TAILQ_ENTRY(pv_page) pvpi_list;
364 struct pv_entry *pvpi_pvfree;
365 int pvpi_nfree;
366 };
367
368 /*
369 * number of pv_entry's in a pv_page
370 * (note: won't work on systems where NPBG isn't a constant)
371 */
372
373 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
374 sizeof(struct pv_entry))
375
376 /*
377 * a pv_page: where pv_entrys are allocated from
378 */
379
380 struct pv_page {
381 struct pv_page_info pvinfo;
382 struct pv_entry pvents[PVE_PER_PVPAGE];
383 };
384
385 #ifdef MYCROFT_HACK
386 int mycroft_hack = 0;
387 #endif
388
389 /* Function to set the debug level of the pmap code */
390
391 #ifdef PMAP_DEBUG
392 void
393 pmap_debug(int level)
394 {
395 pmap_debug_level = level;
396 printf("pmap_debug: level=%d\n", pmap_debug_level);
397 }
398 #endif /* PMAP_DEBUG */
399
400 __inline static boolean_t
401 pmap_is_curpmap(struct pmap *pmap)
402 {
403
404 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
405 pmap == pmap_kernel())
406 return (TRUE);
407
408 return (FALSE);
409 }
410
411 #include "isadma.h"
412
413 #if NISADMA > 0
414 /*
415 * Used to protect memory for ISA DMA bounce buffers. If, when loading
416 * pages into the system, memory intersects with any of these ranges,
417 * the intersecting memory will be loaded into a lower-priority free list.
418 */
419 bus_dma_segment_t *pmap_isa_dma_ranges;
420 int pmap_isa_dma_nranges;
421
422 /*
423 * Check if a memory range intersects with an ISA DMA range, and
424 * return the page-rounded intersection if it does. The intersection
425 * will be placed on a lower-priority free list.
426 */
427 static boolean_t
428 pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
429 psize_t *sizep)
430 {
431 bus_dma_segment_t *ds;
432 int i;
433
434 if (pmap_isa_dma_ranges == NULL)
435 return (FALSE);
436
437 for (i = 0, ds = pmap_isa_dma_ranges;
438 i < pmap_isa_dma_nranges; i++, ds++) {
439 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
440 /*
441 * Beginning of region intersects with this range.
442 */
443 *pap = trunc_page(pa);
444 *sizep = round_page(min(pa + size,
445 ds->ds_addr + ds->ds_len) - pa);
446 return (TRUE);
447 }
448 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
449 /*
450 * End of region intersects with this range.
451 */
452 *pap = trunc_page(ds->ds_addr);
453 *sizep = round_page(min((pa + size) - ds->ds_addr,
454 ds->ds_len));
455 return (TRUE);
456 }
457 }
458
459 /*
460 * No intersection found.
461 */
462 return (FALSE);
463 }
464 #endif /* NISADMA > 0 */
465
466 /*
467 * p v _ e n t r y f u n c t i o n s
468 */
469
470 /*
471 * pv_entry allocation functions:
472 * the main pv_entry allocation functions are:
473 * pmap_alloc_pv: allocate a pv_entry structure
474 * pmap_free_pv: free one pv_entry
475 * pmap_free_pvs: free a list of pv_entrys
476 *
477 * the rest are helper functions
478 */
479
480 /*
481 * pmap_alloc_pv: inline function to allocate a pv_entry structure
482 * => we lock pvalloc_lock
483 * => if we fail, we call out to pmap_alloc_pvpage
484 * => 3 modes:
485 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
486 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
487 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
488 * one now
489 *
490 * "try" is for optional functions like pmap_copy().
491 */
492
493 __inline static struct pv_entry *
494 pmap_alloc_pv(struct pmap *pmap, int mode)
495 {
496 struct pv_page *pvpage;
497 struct pv_entry *pv;
498
499 simple_lock(&pvalloc_lock);
500
501 pvpage = TAILQ_FIRST(&pv_freepages);
502
503 if (pvpage != NULL) {
504 pvpage->pvinfo.pvpi_nfree--;
505 if (pvpage->pvinfo.pvpi_nfree == 0) {
506 /* nothing left in this one? */
507 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
508 }
509 pv = pvpage->pvinfo.pvpi_pvfree;
510 KASSERT(pv);
511 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
512 pv_nfpvents--; /* took one from pool */
513 } else {
514 pv = NULL; /* need more of them */
515 }
516
517 /*
518 * if below low water mark or we didn't get a pv_entry we try and
519 * create more pv_entrys ...
520 */
521
522 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
523 if (pv == NULL)
524 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
525 mode : ALLOCPV_NEED);
526 else
527 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
528 }
529
530 simple_unlock(&pvalloc_lock);
531 return(pv);
532 }
533
534 /*
535 * pmap_alloc_pvpage: maybe allocate a new pvpage
536 *
537 * if need_entry is false: try and allocate a new pv_page
538 * if need_entry is true: try and allocate a new pv_page and return a
539 * new pv_entry from it. if we are unable to allocate a pv_page
540 * we make a last ditch effort to steal a pv_page from some other
541 * mapping. if that fails, we panic...
542 *
543 * => we assume that the caller holds pvalloc_lock
544 */
545
546 static struct pv_entry *
547 pmap_alloc_pvpage(struct pmap *pmap, int mode)
548 {
549 struct vm_page *pg;
550 struct pv_page *pvpage;
551 struct pv_entry *pv;
552 int s;
553
554 /*
555 * if we need_entry and we've got unused pv_pages, allocate from there
556 */
557
558 pvpage = TAILQ_FIRST(&pv_unusedpgs);
559 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
560
561 /* move it to pv_freepages list */
562 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
563 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
564
565 /* allocate a pv_entry */
566 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
567 pv = pvpage->pvinfo.pvpi_pvfree;
568 KASSERT(pv);
569 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
570
571 pv_nfpvents--; /* took one from pool */
572 return(pv);
573 }
574
575 /*
576 * see if we've got a cached unmapped VA that we can map a page in.
577 * if not, try to allocate one.
578 */
579
580
581 if (pv_cachedva == 0) {
582 s = splvm();
583 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
584 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
585 splx(s);
586 if (pv_cachedva == 0) {
587 return (NULL);
588 }
589 }
590
591 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
592 UVM_PGA_USERESERVE);
593
594 if (pg == NULL)
595 return (NULL);
596 pg->flags &= ~PG_BUSY; /* never busy */
597
598 /*
599 * add a mapping for our new pv_page and free its entrys (save one!)
600 *
601 * NOTE: If we are allocating a PV page for the kernel pmap, the
602 * pmap is already locked! (...but entering the mapping is safe...)
603 */
604
605 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
606 VM_PROT_READ|VM_PROT_WRITE);
607 pmap_update(pmap_kernel());
608 pvpage = (struct pv_page *) pv_cachedva;
609 pv_cachedva = 0;
610 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
611 }
612
613 /*
614 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
615 *
616 * => caller must hold pvalloc_lock
617 * => if need_entry is true, we allocate and return one pv_entry
618 */
619
620 static struct pv_entry *
621 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
622 {
623 int tofree, lcv;
624
625 /* do we need to return one? */
626 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
627
628 pvp->pvinfo.pvpi_pvfree = NULL;
629 pvp->pvinfo.pvpi_nfree = tofree;
630 for (lcv = 0 ; lcv < tofree ; lcv++) {
631 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
632 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
633 }
634 if (need_entry)
635 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
636 else
637 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
638 pv_nfpvents += tofree;
639 return((need_entry) ? &pvp->pvents[lcv] : NULL);
640 }
641
642 /*
643 * pmap_free_pv_doit: actually free a pv_entry
644 *
645 * => do not call this directly! instead use either
646 * 1. pmap_free_pv ==> free a single pv_entry
647 * 2. pmap_free_pvs => free a list of pv_entrys
648 * => we must be holding pvalloc_lock
649 */
650
651 __inline static void
652 pmap_free_pv_doit(struct pv_entry *pv)
653 {
654 struct pv_page *pvp;
655
656 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
657 pv_nfpvents++;
658 pvp->pvinfo.pvpi_nfree++;
659
660 /* nfree == 1 => fully allocated page just became partly allocated */
661 if (pvp->pvinfo.pvpi_nfree == 1) {
662 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
663 }
664
665 /* free it */
666 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
667 pvp->pvinfo.pvpi_pvfree = pv;
668
669 /*
670 * are all pv_page's pv_entry's free? move it to unused queue.
671 */
672
673 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
674 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
675 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
676 }
677 }
678
679 /*
680 * pmap_free_pv: free a single pv_entry
681 *
682 * => we gain the pvalloc_lock
683 */
684
685 __inline static void
686 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
687 {
688 simple_lock(&pvalloc_lock);
689 pmap_free_pv_doit(pv);
690
691 /*
692 * Can't free the PV page if the PV entries were associated with
693 * the kernel pmap; the pmap is already locked.
694 */
695 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
696 pmap != pmap_kernel())
697 pmap_free_pvpage();
698
699 simple_unlock(&pvalloc_lock);
700 }
701
702 /*
703 * pmap_free_pvs: free a list of pv_entrys
704 *
705 * => we gain the pvalloc_lock
706 */
707
708 __inline static void
709 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
710 {
711 struct pv_entry *nextpv;
712
713 simple_lock(&pvalloc_lock);
714
715 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
716 nextpv = pvs->pv_next;
717 pmap_free_pv_doit(pvs);
718 }
719
720 /*
721 * Can't free the PV page if the PV entries were associated with
722 * the kernel pmap; the pmap is already locked.
723 */
724 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
725 pmap != pmap_kernel())
726 pmap_free_pvpage();
727
728 simple_unlock(&pvalloc_lock);
729 }
730
731
732 /*
733 * pmap_free_pvpage: try and free an unused pv_page structure
734 *
735 * => assume caller is holding the pvalloc_lock and that
736 * there is a page on the pv_unusedpgs list
737 * => if we can't get a lock on the kmem_map we try again later
738 */
739
740 static void
741 pmap_free_pvpage(void)
742 {
743 int s;
744 struct vm_map *map;
745 struct vm_map_entry *dead_entries;
746 struct pv_page *pvp;
747
748 s = splvm(); /* protect kmem_map */
749
750 pvp = TAILQ_FIRST(&pv_unusedpgs);
751
752 /*
753 * note: watch out for pv_initpage which is allocated out of
754 * kernel_map rather than kmem_map.
755 */
756 if (pvp == pv_initpage)
757 map = kernel_map;
758 else
759 map = kmem_map;
760 if (vm_map_lock_try(map)) {
761
762 /* remove pvp from pv_unusedpgs */
763 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
764
765 /* unmap the page */
766 dead_entries = NULL;
767 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
768 &dead_entries);
769 vm_map_unlock(map);
770
771 if (dead_entries != NULL)
772 uvm_unmap_detach(dead_entries, 0);
773
774 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
775 }
776 if (pvp == pv_initpage)
777 /* no more initpage, we've freed it */
778 pv_initpage = NULL;
779
780 splx(s);
781 }
782
783 /*
784 * main pv_entry manipulation functions:
785 * pmap_enter_pv: enter a mapping onto a vm_page list
786 * pmap_remove_pv: remove a mappiing from a vm_page list
787 *
788 * NOTE: pmap_enter_pv expects to lock the pvh itself
789 * pmap_remove_pv expects te caller to lock the pvh before calling
790 */
791
792 /*
793 * pmap_enter_pv: enter a mapping onto a vm_page lst
794 *
795 * => caller should hold the proper lock on pmap_main_lock
796 * => caller should have pmap locked
797 * => we will gain the lock on the vm_page and allocate the new pv_entry
798 * => caller should adjust ptp's wire_count before calling
799 * => caller should not adjust pmap's wire_count
800 */
801
802 __inline static void
803 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
804 vaddr_t va, struct vm_page *ptp, int flags)
805 {
806 pve->pv_pmap = pmap;
807 pve->pv_va = va;
808 pve->pv_ptp = ptp; /* NULL for kernel pmap */
809 pve->pv_flags = flags;
810 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
811 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
812 pg->mdpage.pvh_list = pve; /* ... locked list */
813 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
814 if (pve->pv_flags & PVF_WIRED)
815 ++pmap->pm_stats.wired_count;
816 }
817
818 /*
819 * pmap_remove_pv: try to remove a mapping from a pv_list
820 *
821 * => caller should hold proper lock on pmap_main_lock
822 * => pmap should be locked
823 * => caller should hold lock on vm_page [so that attrs can be adjusted]
824 * => caller should adjust ptp's wire_count and free PTP if needed
825 * => caller should NOT adjust pmap's wire_count
826 * => we return the removed pve
827 */
828
829 __inline static struct pv_entry *
830 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
831 {
832 struct pv_entry *pve, **prevptr;
833
834 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
835 pve = *prevptr;
836 while (pve) {
837 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
838 *prevptr = pve->pv_next; /* remove it! */
839 if (pve->pv_flags & PVF_WIRED)
840 --pmap->pm_stats.wired_count;
841 break;
842 }
843 prevptr = &pve->pv_next; /* previous pointer */
844 pve = pve->pv_next; /* advance */
845 }
846 return(pve); /* return removed pve */
847 }
848
849 /*
850 *
851 * pmap_modify_pv: Update pv flags
852 *
853 * => caller should hold lock on vm_page [so that attrs can be adjusted]
854 * => caller should NOT adjust pmap's wire_count
855 * => caller must call pmap_vac_me_harder() if writable status of a page
856 * may have changed.
857 * => we return the old flags
858 *
859 * Modify a physical-virtual mapping in the pv table
860 */
861
862 static /* __inline */ u_int
863 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
864 u_int bic_mask, u_int eor_mask)
865 {
866 struct pv_entry *npv;
867 u_int flags, oflags;
868
869 /*
870 * There is at least one VA mapping this page.
871 */
872
873 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
874 if (pmap == npv->pv_pmap && va == npv->pv_va) {
875 oflags = npv->pv_flags;
876 npv->pv_flags = flags =
877 ((oflags & ~bic_mask) ^ eor_mask);
878 if ((flags ^ oflags) & PVF_WIRED) {
879 if (flags & PVF_WIRED)
880 ++pmap->pm_stats.wired_count;
881 else
882 --pmap->pm_stats.wired_count;
883 }
884 return (oflags);
885 }
886 }
887 return (0);
888 }
889
890 /*
891 * Map the specified level 2 pagetable into the level 1 page table for
892 * the given pmap to cover a chunk of virtual address space starting from the
893 * address specified.
894 */
895 static __inline void
896 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
897 {
898 vaddr_t ptva;
899
900 /* Calculate the index into the L1 page table. */
901 ptva = (va >> L1_S_SHIFT) & ~3;
902
903 /* Map page table into the L1. */
904 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
905 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
906 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
907 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
908
909 /* Map the page table into the page table area. */
910 if (selfref)
911 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
912 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
913 }
914
915 #if 0
916 static __inline void
917 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
918 {
919 vaddr_t ptva;
920
921 /* Calculate the index into the L1 page table. */
922 ptva = (va >> L1_S_SHIFT) & ~3;
923
924 /* Unmap page table from the L1. */
925 pmap->pm_pdir[ptva + 0] = 0;
926 pmap->pm_pdir[ptva + 1] = 0;
927 pmap->pm_pdir[ptva + 2] = 0;
928 pmap->pm_pdir[ptva + 3] = 0;
929
930 /* Unmap the page table from the page table area. */
931 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
932 }
933 #endif
934
935 /*
936 * Used to map a range of physical addresses into kernel
937 * virtual address space.
938 *
939 * For now, VM is already on, we only need to map the
940 * specified memory.
941 */
942 vaddr_t
943 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
944 {
945 while (spa < epa) {
946 pmap_kenter_pa(va, spa, prot);
947 va += NBPG;
948 spa += NBPG;
949 }
950 pmap_update(pmap_kernel());
951 return(va);
952 }
953
954
955 /*
956 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
957 *
958 * bootstrap the pmap system. This is called from initarm and allows
959 * the pmap system to initailise any structures it requires.
960 *
961 * Currently this sets up the kernel_pmap that is statically allocated
962 * and also allocated virtual addresses for certain page hooks.
963 * Currently the only one page hook is allocated that is used
964 * to zero physical pages of memory.
965 * It also initialises the start and end address of the kernel data space.
966 */
967 extern paddr_t physical_freestart;
968 extern paddr_t physical_freeend;
969
970 char *boot_head;
971
972 void
973 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
974 {
975 pt_entry_t *pte;
976 int loop;
977 paddr_t start, end;
978 #if NISADMA > 0
979 paddr_t istart;
980 psize_t isize;
981 #endif
982
983 pmap_kernel()->pm_pdir = kernel_l1pt;
984 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
985 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
986 simple_lock_init(&pmap_kernel()->pm_lock);
987 pmap_kernel()->pm_obj.pgops = NULL;
988 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
989 pmap_kernel()->pm_obj.uo_npages = 0;
990 pmap_kernel()->pm_obj.uo_refs = 1;
991
992 /*
993 * Initialize PAGE_SIZE-dependent variables.
994 */
995 uvm_setpagesize();
996
997 loop = 0;
998 while (loop < bootconfig.dramblocks) {
999 start = (paddr_t)bootconfig.dram[loop].address;
1000 end = start + (bootconfig.dram[loop].pages * NBPG);
1001 if (start < physical_freestart)
1002 start = physical_freestart;
1003 if (end > physical_freeend)
1004 end = physical_freeend;
1005 #if 0
1006 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1007 #endif
1008 #if NISADMA > 0
1009 if (pmap_isa_dma_range_intersect(start, end - start,
1010 &istart, &isize)) {
1011 /*
1012 * Place the pages that intersect with the
1013 * ISA DMA range onto the ISA DMA free list.
1014 */
1015 #if 0
1016 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1017 istart + isize - 1);
1018 #endif
1019 uvm_page_physload(atop(istart),
1020 atop(istart + isize), atop(istart),
1021 atop(istart + isize), VM_FREELIST_ISADMA);
1022
1023 /*
1024 * Load the pieces that come before
1025 * the intersection into the default
1026 * free list.
1027 */
1028 if (start < istart) {
1029 #if 0
1030 printf(" BEFORE 0x%lx -> 0x%lx\n",
1031 start, istart - 1);
1032 #endif
1033 uvm_page_physload(atop(start),
1034 atop(istart), atop(start),
1035 atop(istart), VM_FREELIST_DEFAULT);
1036 }
1037
1038 /*
1039 * Load the pieces that come after
1040 * the intersection into the default
1041 * free list.
1042 */
1043 if ((istart + isize) < end) {
1044 #if 0
1045 printf(" AFTER 0x%lx -> 0x%lx\n",
1046 (istart + isize), end - 1);
1047 #endif
1048 uvm_page_physload(atop(istart + isize),
1049 atop(end), atop(istart + isize),
1050 atop(end), VM_FREELIST_DEFAULT);
1051 }
1052 } else {
1053 uvm_page_physload(atop(start), atop(end),
1054 atop(start), atop(end), VM_FREELIST_DEFAULT);
1055 }
1056 #else /* NISADMA > 0 */
1057 uvm_page_physload(atop(start), atop(end),
1058 atop(start), atop(end), VM_FREELIST_DEFAULT);
1059 #endif /* NISADMA > 0 */
1060 ++loop;
1061 }
1062
1063 virtual_avail = KERNEL_VM_BASE;
1064 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1065
1066 /*
1067 * now we allocate the "special" VAs which are used for tmp mappings
1068 * by the pmap (and other modules). we allocate the VAs by advancing
1069 * virtual_avail (note that there are no pages mapped at these VAs).
1070 * we find the PTE that maps the allocated VA via the linear PTE
1071 * mapping.
1072 */
1073
1074 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1075
1076 csrcp = virtual_avail; csrc_pte = pte;
1077 virtual_avail += PAGE_SIZE; pte++;
1078
1079 cdstp = virtual_avail; cdst_pte = pte;
1080 virtual_avail += PAGE_SIZE; pte++;
1081
1082 memhook = (char *) virtual_avail; /* don't need pte */
1083 virtual_avail += PAGE_SIZE; pte++;
1084
1085 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1086 virtual_avail += round_page(MSGBUFSIZE);
1087 pte += atop(round_page(MSGBUFSIZE));
1088
1089 /*
1090 * init the static-global locks and global lists.
1091 */
1092 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1093 simple_lock_init(&pvalloc_lock);
1094 simple_lock_init(&pmaps_lock);
1095 LIST_INIT(&pmaps);
1096 TAILQ_INIT(&pv_freepages);
1097 TAILQ_INIT(&pv_unusedpgs);
1098
1099 /*
1100 * initialize the pmap pool.
1101 */
1102
1103 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1104 &pool_allocator_nointr);
1105
1106 cpu_dcache_wbinv_all();
1107 }
1108
1109 /*
1110 * void pmap_init(void)
1111 *
1112 * Initialize the pmap module.
1113 * Called by vm_init() in vm/vm_init.c in order to initialise
1114 * any structures that the pmap system needs to map virtual memory.
1115 */
1116
1117 extern int physmem;
1118
1119 void
1120 pmap_init(void)
1121 {
1122
1123 /*
1124 * Set the available memory vars - These do not map to real memory
1125 * addresses and cannot as the physical memory is fragmented.
1126 * They are used by ps for %mem calculations.
1127 * One could argue whether this should be the entire memory or just
1128 * the memory that is useable in a user process.
1129 */
1130 avail_start = 0;
1131 avail_end = physmem * NBPG;
1132
1133 /*
1134 * now we need to free enough pv_entry structures to allow us to get
1135 * the kmem_map/kmem_object allocated and inited (done after this
1136 * function is finished). to do this we allocate one bootstrap page out
1137 * of kernel_map and use it to provide an initial pool of pv_entry
1138 * structures. we never free this page.
1139 */
1140
1141 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1142 if (pv_initpage == NULL)
1143 panic("pmap_init: pv_initpage");
1144 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1145 pv_nfpvents = 0;
1146 (void) pmap_add_pvpage(pv_initpage, FALSE);
1147
1148 pmap_initialized = TRUE;
1149
1150 /* Initialise our L1 page table queues and counters */
1151 SIMPLEQ_INIT(&l1pt_static_queue);
1152 l1pt_static_queue_count = 0;
1153 l1pt_static_create_count = 0;
1154 SIMPLEQ_INIT(&l1pt_queue);
1155 l1pt_queue_count = 0;
1156 l1pt_create_count = 0;
1157 l1pt_reuse_count = 0;
1158 }
1159
1160 /*
1161 * pmap_postinit()
1162 *
1163 * This routine is called after the vm and kmem subsystems have been
1164 * initialised. This allows the pmap code to perform any initialisation
1165 * that can only be done one the memory allocation is in place.
1166 */
1167
1168 void
1169 pmap_postinit(void)
1170 {
1171 int loop;
1172 struct l1pt *pt;
1173
1174 #ifdef PMAP_STATIC_L1S
1175 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1176 #else /* PMAP_STATIC_L1S */
1177 for (loop = 0; loop < max_processes; ++loop) {
1178 #endif /* PMAP_STATIC_L1S */
1179 /* Allocate a L1 page table */
1180 pt = pmap_alloc_l1pt();
1181 if (!pt)
1182 panic("Cannot allocate static L1 page tables\n");
1183
1184 /* Clean it */
1185 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1186 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1187 /* Add the page table to the queue */
1188 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1189 ++l1pt_static_queue_count;
1190 ++l1pt_static_create_count;
1191 }
1192 }
1193
1194
1195 /*
1196 * Create and return a physical map.
1197 *
1198 * If the size specified for the map is zero, the map is an actual physical
1199 * map, and may be referenced by the hardware.
1200 *
1201 * If the size specified is non-zero, the map will be used in software only,
1202 * and is bounded by that size.
1203 */
1204
1205 pmap_t
1206 pmap_create(void)
1207 {
1208 struct pmap *pmap;
1209
1210 /*
1211 * Fetch pmap entry from the pool
1212 */
1213
1214 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1215 /* XXX is this really needed! */
1216 memset(pmap, 0, sizeof(*pmap));
1217
1218 simple_lock_init(&pmap->pm_obj.vmobjlock);
1219 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1220 TAILQ_INIT(&pmap->pm_obj.memq);
1221 pmap->pm_obj.uo_npages = 0;
1222 pmap->pm_obj.uo_refs = 1;
1223 pmap->pm_stats.wired_count = 0;
1224 pmap->pm_stats.resident_count = 1;
1225 pmap->pm_ptphint = NULL;
1226
1227 /* Now init the machine part of the pmap */
1228 pmap_pinit(pmap);
1229 return(pmap);
1230 }
1231
1232 /*
1233 * pmap_alloc_l1pt()
1234 *
1235 * This routine allocates physical and virtual memory for a L1 page table
1236 * and wires it.
1237 * A l1pt structure is returned to describe the allocated page table.
1238 *
1239 * This routine is allowed to fail if the required memory cannot be allocated.
1240 * In this case NULL is returned.
1241 */
1242
1243 struct l1pt *
1244 pmap_alloc_l1pt(void)
1245 {
1246 paddr_t pa;
1247 vaddr_t va;
1248 struct l1pt *pt;
1249 int error;
1250 struct vm_page *m;
1251 pt_entry_t *pte;
1252
1253 /* Allocate virtual address space for the L1 page table */
1254 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1255 if (va == 0) {
1256 #ifdef DIAGNOSTIC
1257 PDEBUG(0,
1258 printf("pmap: Cannot allocate pageable memory for L1\n"));
1259 #endif /* DIAGNOSTIC */
1260 return(NULL);
1261 }
1262
1263 /* Allocate memory for the l1pt structure */
1264 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1265
1266 /*
1267 * Allocate pages from the VM system.
1268 */
1269 TAILQ_INIT(&pt->pt_plist);
1270 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1271 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1272 if (error) {
1273 #ifdef DIAGNOSTIC
1274 PDEBUG(0,
1275 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1276 error));
1277 #endif /* DIAGNOSTIC */
1278 /* Release the resources we already have claimed */
1279 free(pt, M_VMPMAP);
1280 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1281 return(NULL);
1282 }
1283
1284 /* Map our physical pages into our virtual space */
1285 pt->pt_va = va;
1286 m = TAILQ_FIRST(&pt->pt_plist);
1287 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1288 pa = VM_PAGE_TO_PHYS(m);
1289
1290 pte = vtopte(va);
1291
1292 /*
1293 * Assert that the PTE is invalid. If it's invalid,
1294 * then we are guaranteed that there won't be an entry
1295 * for this VA in the TLB.
1296 */
1297 KDASSERT(pmap_pte_v(pte) == 0);
1298
1299 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(m) |
1300 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1301
1302 va += NBPG;
1303 m = m->pageq.tqe_next;
1304 }
1305
1306 #ifdef DIAGNOSTIC
1307 if (m)
1308 panic("pmap_alloc_l1pt: pglist not empty\n");
1309 #endif /* DIAGNOSTIC */
1310
1311 pt->pt_flags = 0;
1312 return(pt);
1313 }
1314
1315 /*
1316 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1317 */
1318 static void
1319 pmap_free_l1pt(struct l1pt *pt)
1320 {
1321 /* Separate the physical memory for the virtual space */
1322 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1323 pmap_update(pmap_kernel());
1324
1325 /* Return the physical memory */
1326 uvm_pglistfree(&pt->pt_plist);
1327
1328 /* Free the virtual space */
1329 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1330
1331 /* Free the l1pt structure */
1332 free(pt, M_VMPMAP);
1333 }
1334
1335 /*
1336 * pmap_alloc_ptpt:
1337 *
1338 * Allocate the page table that maps the PTE array.
1339 */
1340 static int
1341 pmap_alloc_ptpt(struct pmap *pmap)
1342 {
1343 struct vm_page *pg;
1344 pt_entry_t *pte;
1345
1346 KASSERT(pmap->pm_vptpt == 0);
1347
1348 pmap->pm_vptpt = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1349 if (pmap->pm_vptpt == 0) {
1350 PDEBUG(0,
1351 printf("pmap_alloc_ptpt: no KVA for PTPT\n"));
1352 return (ENOMEM);
1353 }
1354
1355 for (;;) {
1356 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1357 if (pg != NULL)
1358 break;
1359 uvm_wait("pmap_ptpt");
1360 }
1361
1362 pmap->pm_pptpt = VM_PAGE_TO_PHYS(pg);
1363
1364 pte = vtopte(pmap->pm_vptpt);
1365
1366 KDASSERT(pmap_pte_v(pte) == 0);
1367
1368 *pte = L2_S_PROTO | pmap->pm_pptpt |
1369 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1370
1371 return (0);
1372 }
1373
1374 /*
1375 * pmap_free_ptpt:
1376 *
1377 * Free the page table that maps the PTE array.
1378 */
1379 static void
1380 pmap_free_ptpt(struct pmap *pmap)
1381 {
1382
1383 pmap_kremove(pmap->pm_vptpt, L2_TABLE_SIZE);
1384 pmap_update(pmap_kernel());
1385
1386 uvm_pagefree(PHYS_TO_VM_PAGE(pmap->pm_pptpt));
1387
1388 uvm_km_free(kernel_map, pmap->pm_vptpt, L2_TABLE_SIZE);
1389 }
1390
1391 /*
1392 * Allocate a page directory.
1393 * This routine will either allocate a new page directory from the pool
1394 * of L1 page tables currently held by the kernel or it will allocate
1395 * a new one via pmap_alloc_l1pt().
1396 * It will then initialise the l1 page table for use.
1397 */
1398 static int
1399 pmap_allocpagedir(struct pmap *pmap)
1400 {
1401 paddr_t pa;
1402 struct l1pt *pt;
1403 int error;
1404
1405 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1406
1407 /* Do we have any spare L1's lying around ? */
1408 if (l1pt_static_queue_count) {
1409 --l1pt_static_queue_count;
1410 pt = l1pt_static_queue.sqh_first;
1411 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1412 } else if (l1pt_queue_count) {
1413 --l1pt_queue_count;
1414 pt = l1pt_queue.sqh_first;
1415 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1416 ++l1pt_reuse_count;
1417 } else {
1418 pt = pmap_alloc_l1pt();
1419 if (!pt)
1420 return(ENOMEM);
1421 ++l1pt_create_count;
1422 }
1423
1424 /* Store the pointer to the l1 descriptor in the pmap. */
1425 pmap->pm_l1pt = pt;
1426
1427 /* Get the physical address of the start of the l1 */
1428 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1429
1430 /* Store the virtual address of the l1 in the pmap. */
1431 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1432
1433 /* Clean the L1 if it is dirty */
1434 if (!(pt->pt_flags & PTFLAG_CLEAN))
1435 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1436
1437 /* Allocate a page table to map all the page tables for this pmap */
1438 if ((error = pmap_alloc_ptpt(pmap)) != 0) {
1439 pmap_freepagedir(pmap);
1440 return (error);
1441 }
1442
1443 /* need to lock this all up for growkernel */
1444 simple_lock(&pmaps_lock);
1445
1446 /* Duplicate the kernel mappings. */
1447 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1448 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1449 KERNEL_PD_SIZE);
1450
1451 /* Wire in this page table */
1452 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1453
1454 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1455
1456 /*
1457 * Map the kernel page tables into the new PT map.
1458 */
1459 bcopy((char *)(PTE_BASE
1460 + (PTE_BASE >> (PGSHIFT - 2))
1461 + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1462 (char *)pmap->pm_vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1463 (KERNEL_PD_SIZE >> 2));
1464
1465 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1466 simple_unlock(&pmaps_lock);
1467
1468 return(0);
1469 }
1470
1471
1472 /*
1473 * Initialize a preallocated and zeroed pmap structure,
1474 * such as one in a vmspace structure.
1475 */
1476
1477 void
1478 pmap_pinit(struct pmap *pmap)
1479 {
1480 int backoff = 6;
1481 int retry = 10;
1482
1483 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1484
1485 /* Keep looping until we succeed in allocating a page directory */
1486 while (pmap_allocpagedir(pmap) != 0) {
1487 /*
1488 * Ok we failed to allocate a suitable block of memory for an
1489 * L1 page table. This means that either:
1490 * 1. 16KB of virtual address space could not be allocated
1491 * 2. 16KB of physically contiguous memory on a 16KB boundary
1492 * could not be allocated.
1493 *
1494 * Since we cannot fail we will sleep for a while and try
1495 * again.
1496 *
1497 * Searching for a suitable L1 PT is expensive:
1498 * to avoid hogging the system when memory is really
1499 * scarce, use an exponential back-off so that
1500 * eventually we won't retry more than once every 8
1501 * seconds. This should allow other processes to run
1502 * to completion and free up resources.
1503 */
1504 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1505 NULL);
1506 if (--retry == 0) {
1507 retry = 10;
1508 if (backoff)
1509 --backoff;
1510 }
1511 }
1512
1513 if (vector_page < KERNEL_BASE) {
1514 /*
1515 * Map the vector page. This will also allocate and map
1516 * an L2 table for it.
1517 */
1518 pmap_enter(pmap, vector_page, systempage.pv_pa,
1519 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1520 pmap_update(pmap);
1521 }
1522 }
1523
1524
1525 void
1526 pmap_freepagedir(struct pmap *pmap)
1527 {
1528 /* Free the memory used for the page table mapping */
1529 if (pmap->pm_vptpt != 0)
1530 pmap_free_ptpt(pmap);
1531
1532 /* junk the L1 page table */
1533 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1534 /* Add the page table to the queue */
1535 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
1536 ++l1pt_static_queue_count;
1537 } else if (l1pt_queue_count < 8) {
1538 /* Add the page table to the queue */
1539 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1540 ++l1pt_queue_count;
1541 } else
1542 pmap_free_l1pt(pmap->pm_l1pt);
1543 }
1544
1545
1546 /*
1547 * Retire the given physical map from service.
1548 * Should only be called if the map contains no valid mappings.
1549 */
1550
1551 void
1552 pmap_destroy(struct pmap *pmap)
1553 {
1554 struct vm_page *page;
1555 int count;
1556
1557 if (pmap == NULL)
1558 return;
1559
1560 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1561
1562 /*
1563 * Drop reference count
1564 */
1565 simple_lock(&pmap->pm_obj.vmobjlock);
1566 count = --pmap->pm_obj.uo_refs;
1567 simple_unlock(&pmap->pm_obj.vmobjlock);
1568 if (count > 0) {
1569 return;
1570 }
1571
1572 /*
1573 * reference count is zero, free pmap resources and then free pmap.
1574 */
1575
1576 /*
1577 * remove it from global list of pmaps
1578 */
1579
1580 simple_lock(&pmaps_lock);
1581 LIST_REMOVE(pmap, pm_list);
1582 simple_unlock(&pmaps_lock);
1583
1584 if (vector_page < KERNEL_BASE) {
1585 /* Remove the vector page mapping */
1586 pmap_remove(pmap, vector_page, vector_page + NBPG);
1587 pmap_update(pmap);
1588 }
1589
1590 /*
1591 * Free any page tables still mapped
1592 * This is only temporay until pmap_enter can count the number
1593 * of mappings made in a page table. Then pmap_remove() can
1594 * reduce the count and free the pagetable when the count
1595 * reaches zero. Note that entries in this list should match the
1596 * contents of the ptpt, however this is faster than walking a 1024
1597 * entries looking for pt's
1598 * taken from i386 pmap.c
1599 */
1600 /*
1601 * vmobjlock must be held while freeing pages
1602 */
1603 simple_lock(&pmap->pm_obj.vmobjlock);
1604 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1605 KASSERT((page->flags & PG_BUSY) == 0);
1606 page->wire_count = 0;
1607 uvm_pagefree(page);
1608 }
1609 simple_unlock(&pmap->pm_obj.vmobjlock);
1610
1611 /* Free the page dir */
1612 pmap_freepagedir(pmap);
1613
1614 /* return the pmap to the pool */
1615 pool_put(&pmap_pmap_pool, pmap);
1616 }
1617
1618
1619 /*
1620 * void pmap_reference(struct pmap *pmap)
1621 *
1622 * Add a reference to the specified pmap.
1623 */
1624
1625 void
1626 pmap_reference(struct pmap *pmap)
1627 {
1628 if (pmap == NULL)
1629 return;
1630
1631 simple_lock(&pmap->pm_lock);
1632 pmap->pm_obj.uo_refs++;
1633 simple_unlock(&pmap->pm_lock);
1634 }
1635
1636 /*
1637 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1638 *
1639 * Return the start and end addresses of the kernel's virtual space.
1640 * These values are setup in pmap_bootstrap and are updated as pages
1641 * are allocated.
1642 */
1643
1644 void
1645 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1646 {
1647 *start = virtual_avail;
1648 *end = virtual_end;
1649 }
1650
1651 /*
1652 * Activate the address space for the specified process. If the process
1653 * is the current process, load the new MMU context.
1654 */
1655 void
1656 pmap_activate(struct proc *p)
1657 {
1658 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1659 struct pcb *pcb = &p->p_addr->u_pcb;
1660
1661 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1662 (paddr_t *)&pcb->pcb_pagedir);
1663
1664 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1665 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1666
1667 if (p == curproc) {
1668 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1669 setttb((u_int)pcb->pcb_pagedir);
1670 }
1671 }
1672
1673 /*
1674 * Deactivate the address space of the specified process.
1675 */
1676 void
1677 pmap_deactivate(struct proc *p)
1678 {
1679 }
1680
1681 /*
1682 * Perform any deferred pmap operations.
1683 */
1684 void
1685 pmap_update(struct pmap *pmap)
1686 {
1687
1688 /*
1689 * We haven't deferred any pmap operations, but we do need to
1690 * make sure TLB/cache operations have completed.
1691 */
1692 cpu_cpwait();
1693 }
1694
1695 /*
1696 * pmap_clean_page()
1697 *
1698 * This is a local function used to work out the best strategy to clean
1699 * a single page referenced by its entry in the PV table. It's used by
1700 * pmap_copy_page, pmap_zero page and maybe some others later on.
1701 *
1702 * Its policy is effectively:
1703 * o If there are no mappings, we don't bother doing anything with the cache.
1704 * o If there is one mapping, we clean just that page.
1705 * o If there are multiple mappings, we clean the entire cache.
1706 *
1707 * So that some functions can be further optimised, it returns 0 if it didn't
1708 * clean the entire cache, or 1 if it did.
1709 *
1710 * XXX One bug in this routine is that if the pv_entry has a single page
1711 * mapped at 0x00000000 a whole cache clean will be performed rather than
1712 * just the 1 page. Since this should not occur in everyday use and if it does
1713 * it will just result in not the most efficient clean for the page.
1714 */
1715 static int
1716 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1717 {
1718 struct pmap *pmap;
1719 struct pv_entry *npv;
1720 int cache_needs_cleaning = 0;
1721 vaddr_t page_to_clean = 0;
1722
1723 if (pv == NULL)
1724 /* nothing mapped in so nothing to flush */
1725 return (0);
1726
1727 /* Since we flush the cache each time we change curproc, we
1728 * only need to flush the page if it is in the current pmap.
1729 */
1730 if (curproc)
1731 pmap = curproc->p_vmspace->vm_map.pmap;
1732 else
1733 pmap = pmap_kernel();
1734
1735 for (npv = pv; npv; npv = npv->pv_next) {
1736 if (npv->pv_pmap == pmap) {
1737 /* The page is mapped non-cacheable in
1738 * this map. No need to flush the cache.
1739 */
1740 if (npv->pv_flags & PVF_NC) {
1741 #ifdef DIAGNOSTIC
1742 if (cache_needs_cleaning)
1743 panic("pmap_clean_page: "
1744 "cache inconsistency");
1745 #endif
1746 break;
1747 }
1748 #if 0
1749 /*
1750 * XXX Can't do this because pmap_protect doesn't
1751 * XXX clean the page when it does a write-protect.
1752 */
1753 else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1754 continue;
1755 #endif
1756 if (cache_needs_cleaning){
1757 page_to_clean = 0;
1758 break;
1759 }
1760 else
1761 page_to_clean = npv->pv_va;
1762 cache_needs_cleaning = 1;
1763 }
1764 }
1765
1766 if (page_to_clean)
1767 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1768 else if (cache_needs_cleaning) {
1769 cpu_idcache_wbinv_all();
1770 return (1);
1771 }
1772 return (0);
1773 }
1774
1775 /*
1776 * pmap_zero_page()
1777 *
1778 * Zero a given physical page by mapping it at a page hook point.
1779 * In doing the zero page op, the page we zero is mapped cachable, as with
1780 * StrongARM accesses to non-cached pages are non-burst making writing
1781 * _any_ bulk data very slow.
1782 */
1783 #if ARM_MMU_GENERIC == 1
1784 void
1785 pmap_zero_page_generic(paddr_t phys)
1786 {
1787 #ifdef DEBUG
1788 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1789
1790 if (pg->mdpage.pvh_list != NULL)
1791 panic("pmap_zero_page: page has mappings");
1792 #endif
1793
1794 KDASSERT((phys & PGOFSET) == 0);
1795
1796 /*
1797 * Hook in the page, zero it, and purge the cache for that
1798 * zeroed page. Invalidate the TLB as needed.
1799 */
1800 *cdst_pte = L2_S_PROTO | phys |
1801 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1802 cpu_tlb_flushD_SE(cdstp);
1803 cpu_cpwait();
1804 bzero_page(cdstp);
1805 cpu_dcache_wbinv_range(cdstp, NBPG);
1806 }
1807 #endif /* ARM_MMU_GENERIC == 1 */
1808
1809 #if ARM_MMU_XSCALE == 1
1810 void
1811 pmap_zero_page_xscale(paddr_t phys)
1812 {
1813 #ifdef DEBUG
1814 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1815
1816 if (pg->mdpage.pvh_list != NULL)
1817 panic("pmap_zero_page: page has mappings");
1818 #endif
1819
1820 KDASSERT((phys & PGOFSET) == 0);
1821
1822 /*
1823 * Hook in the page, zero it, and purge the cache for that
1824 * zeroed page. Invalidate the TLB as needed.
1825 */
1826 *cdst_pte = L2_S_PROTO | phys |
1827 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1828 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1829 cpu_tlb_flushD_SE(cdstp);
1830 cpu_cpwait();
1831 bzero_page(cdstp);
1832 xscale_cache_clean_minidata();
1833 }
1834 #endif /* ARM_MMU_XSCALE == 1 */
1835
1836 /* pmap_pageidlezero()
1837 *
1838 * The same as above, except that we assume that the page is not
1839 * mapped. This means we never have to flush the cache first. Called
1840 * from the idle loop.
1841 */
1842 boolean_t
1843 pmap_pageidlezero(paddr_t phys)
1844 {
1845 int i, *ptr;
1846 boolean_t rv = TRUE;
1847 #ifdef DEBUG
1848 struct vm_page *pg;
1849
1850 pg = PHYS_TO_VM_PAGE(phys);
1851 if (pg->mdpage.pvh_list != NULL)
1852 panic("pmap_pageidlezero: page has mappings");
1853 #endif
1854
1855 KDASSERT((phys & PGOFSET) == 0);
1856
1857 /*
1858 * Hook in the page, zero it, and purge the cache for that
1859 * zeroed page. Invalidate the TLB as needed.
1860 */
1861 *cdst_pte = L2_S_PROTO | phys |
1862 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1863 cpu_tlb_flushD_SE(cdstp);
1864 cpu_cpwait();
1865
1866 for (i = 0, ptr = (int *)cdstp;
1867 i < (NBPG / sizeof(int)); i++) {
1868 if (sched_whichqs != 0) {
1869 /*
1870 * A process has become ready. Abort now,
1871 * so we don't keep it waiting while we
1872 * do slow memory access to finish this
1873 * page.
1874 */
1875 rv = FALSE;
1876 break;
1877 }
1878 *ptr++ = 0;
1879 }
1880
1881 if (rv)
1882 /*
1883 * if we aborted we'll rezero this page again later so don't
1884 * purge it unless we finished it
1885 */
1886 cpu_dcache_wbinv_range(cdstp, NBPG);
1887 return (rv);
1888 }
1889
1890 /*
1891 * pmap_copy_page()
1892 *
1893 * Copy one physical page into another, by mapping the pages into
1894 * hook points. The same comment regarding cachability as in
1895 * pmap_zero_page also applies here.
1896 */
1897 #if ARM_MMU_GENERIC == 1
1898 void
1899 pmap_copy_page_generic(paddr_t src, paddr_t dst)
1900 {
1901 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1902 #ifdef DEBUG
1903 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1904
1905 if (dst_pg->mdpage.pvh_list != NULL)
1906 panic("pmap_copy_page: dst page has mappings");
1907 #endif
1908
1909 KDASSERT((src & PGOFSET) == 0);
1910 KDASSERT((dst & PGOFSET) == 0);
1911
1912 /*
1913 * Clean the source page. Hold the source page's lock for
1914 * the duration of the copy so that no other mappings can
1915 * be created while we have a potentially aliased mapping.
1916 */
1917 simple_lock(&src_pg->mdpage.pvh_slock);
1918 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1919
1920 /*
1921 * Map the pages into the page hook points, copy them, and purge
1922 * the cache for the appropriate page. Invalidate the TLB
1923 * as required.
1924 */
1925 *csrc_pte = L2_S_PROTO | src |
1926 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
1927 *cdst_pte = L2_S_PROTO | dst |
1928 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1929 cpu_tlb_flushD_SE(csrcp);
1930 cpu_tlb_flushD_SE(cdstp);
1931 cpu_cpwait();
1932 bcopy_page(csrcp, cdstp);
1933 cpu_dcache_inv_range(csrcp, NBPG);
1934 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1935 cpu_dcache_wbinv_range(cdstp, NBPG);
1936 }
1937 #endif /* ARM_MMU_GENERIC == 1 */
1938
1939 #if ARM_MMU_XSCALE == 1
1940 void
1941 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
1942 {
1943 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
1944 #ifdef DEBUG
1945 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
1946
1947 if (dst_pg->mdpage.pvh_list != NULL)
1948 panic("pmap_copy_page: dst page has mappings");
1949 #endif
1950
1951 KDASSERT((src & PGOFSET) == 0);
1952 KDASSERT((dst & PGOFSET) == 0);
1953
1954 /*
1955 * Clean the source page. Hold the source page's lock for
1956 * the duration of the copy so that no other mappings can
1957 * be created while we have a potentially aliased mapping.
1958 */
1959 simple_lock(&src_pg->mdpage.pvh_slock);
1960 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
1961
1962 /*
1963 * Map the pages into the page hook points, copy them, and purge
1964 * the cache for the appropriate page. Invalidate the TLB
1965 * as required.
1966 */
1967 *csrc_pte = L2_S_PROTO | src |
1968 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
1969 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1970 *cdst_pte = L2_S_PROTO | dst |
1971 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1972 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1973 cpu_tlb_flushD_SE(csrcp);
1974 cpu_tlb_flushD_SE(cdstp);
1975 cpu_cpwait();
1976 bcopy_page(csrcp, cdstp);
1977 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
1978 xscale_cache_clean_minidata();
1979 }
1980 #endif /* ARM_MMU_XSCALE == 1 */
1981
1982 #if 0
1983 void
1984 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
1985 {
1986 pd_entry_t *pde;
1987 paddr_t pa;
1988 struct vm_page *m;
1989
1990 if (pmap == pmap_kernel())
1991 return;
1992
1993 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
1994 pa = pmap_pte_pa(pde);
1995 m = PHYS_TO_VM_PAGE(pa);
1996 ++m->wire_count;
1997 #ifdef MYCROFT_HACK
1998 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
1999 pmap, va, pde, pa, m, m->wire_count);
2000 #endif
2001 }
2002
2003 void
2004 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2005 {
2006 pd_entry_t *pde;
2007 paddr_t pa;
2008 struct vm_page *m;
2009
2010 if (pmap == pmap_kernel())
2011 return;
2012
2013 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
2014 pa = pmap_pte_pa(pde);
2015 m = PHYS_TO_VM_PAGE(pa);
2016 --m->wire_count;
2017 #ifdef MYCROFT_HACK
2018 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2019 pmap, va, pde, pa, m, m->wire_count);
2020 #endif
2021 if (m->wire_count == 0) {
2022 #ifdef MYCROFT_HACK
2023 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2024 pmap, va, pde, pa, m);
2025 #endif
2026 pmap_unmap_in_l1(pmap, va);
2027 uvm_pagefree(m);
2028 --pmap->pm_stats.resident_count;
2029 }
2030 }
2031 #else
2032 #define pmap_pte_addref(pmap, va)
2033 #define pmap_pte_delref(pmap, va)
2034 #endif
2035
2036 /*
2037 * Since we have a virtually indexed cache, we may need to inhibit caching if
2038 * there is more than one mapping and at least one of them is writable.
2039 * Since we purge the cache on every context switch, we only need to check for
2040 * other mappings within the same pmap, or kernel_pmap.
2041 * This function is also called when a page is unmapped, to possibly reenable
2042 * caching on any remaining mappings.
2043 *
2044 * The code implements the following logic, where:
2045 *
2046 * KW = # of kernel read/write pages
2047 * KR = # of kernel read only pages
2048 * UW = # of user read/write pages
2049 * UR = # of user read only pages
2050 * OW = # of user read/write pages in another pmap, then
2051 *
2052 * KC = kernel mapping is cacheable
2053 * UC = user mapping is cacheable
2054 *
2055 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2056 * +---------------------------------------------
2057 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2058 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2059 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2060 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2061 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2062 *
2063 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2064 */
2065 __inline static void
2066 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2067 boolean_t clear_cache)
2068 {
2069 if (pmap == pmap_kernel())
2070 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2071 else
2072 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2073 }
2074
2075 static void
2076 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2077 boolean_t clear_cache)
2078 {
2079 int user_entries = 0;
2080 int user_writable = 0;
2081 int user_cacheable = 0;
2082 int kernel_entries = 0;
2083 int kernel_writable = 0;
2084 int kernel_cacheable = 0;
2085 struct pv_entry *pv;
2086 struct pmap *last_pmap = pmap;
2087
2088 #ifdef DIAGNOSTIC
2089 if (pmap != pmap_kernel())
2090 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2091 #endif
2092
2093 /*
2094 * Pass one, see if there are both kernel and user pmaps for
2095 * this page. Calculate whether there are user-writable or
2096 * kernel-writable pages.
2097 */
2098 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2099 if (pv->pv_pmap != pmap) {
2100 user_entries++;
2101 if (pv->pv_flags & PVF_WRITE)
2102 user_writable++;
2103 if ((pv->pv_flags & PVF_NC) == 0)
2104 user_cacheable++;
2105 } else {
2106 kernel_entries++;
2107 if (pv->pv_flags & PVF_WRITE)
2108 kernel_writable++;
2109 if ((pv->pv_flags & PVF_NC) == 0)
2110 kernel_cacheable++;
2111 }
2112 }
2113
2114 /*
2115 * We know we have just been updating a kernel entry, so if
2116 * all user pages are already cacheable, then there is nothing
2117 * further to do.
2118 */
2119 if (kernel_entries == 0 &&
2120 user_cacheable == user_entries)
2121 return;
2122
2123 if (user_entries) {
2124 /*
2125 * Scan over the list again, for each entry, if it
2126 * might not be set correctly, call pmap_vac_me_user
2127 * to recalculate the settings.
2128 */
2129 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2130 /*
2131 * We know kernel mappings will get set
2132 * correctly in other calls. We also know
2133 * that if the pmap is the same as last_pmap
2134 * then we've just handled this entry.
2135 */
2136 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2137 continue;
2138 /*
2139 * If there are kernel entries and this page
2140 * is writable but non-cacheable, then we can
2141 * skip this entry also.
2142 */
2143 if (kernel_entries > 0 &&
2144 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2145 (PVF_NC | PVF_WRITE))
2146 continue;
2147 /*
2148 * Similarly if there are no kernel-writable
2149 * entries and the page is already
2150 * read-only/cacheable.
2151 */
2152 if (kernel_writable == 0 &&
2153 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2154 continue;
2155 /*
2156 * For some of the remaining cases, we know
2157 * that we must recalculate, but for others we
2158 * can't tell if they are correct or not, so
2159 * we recalculate anyway.
2160 */
2161 pmap_unmap_ptes(last_pmap);
2162 last_pmap = pv->pv_pmap;
2163 ptes = pmap_map_ptes(last_pmap);
2164 pmap_vac_me_user(last_pmap, pg, ptes,
2165 pmap_is_curpmap(last_pmap));
2166 }
2167 /* Restore the pte mapping that was passed to us. */
2168 if (last_pmap != pmap) {
2169 pmap_unmap_ptes(last_pmap);
2170 ptes = pmap_map_ptes(pmap);
2171 }
2172 if (kernel_entries == 0)
2173 return;
2174 }
2175
2176 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2177 return;
2178 }
2179
2180 static void
2181 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2182 boolean_t clear_cache)
2183 {
2184 struct pmap *kpmap = pmap_kernel();
2185 struct pv_entry *pv, *npv;
2186 int entries = 0;
2187 int writable = 0;
2188 int cacheable_entries = 0;
2189 int kern_cacheable = 0;
2190 int other_writable = 0;
2191
2192 pv = pg->mdpage.pvh_list;
2193 KASSERT(ptes != NULL);
2194
2195 /*
2196 * Count mappings and writable mappings in this pmap.
2197 * Include kernel mappings as part of our own.
2198 * Keep a pointer to the first one.
2199 */
2200 for (npv = pv; npv; npv = npv->pv_next) {
2201 /* Count mappings in the same pmap */
2202 if (pmap == npv->pv_pmap ||
2203 kpmap == npv->pv_pmap) {
2204 if (entries++ == 0)
2205 pv = npv;
2206 /* Cacheable mappings */
2207 if ((npv->pv_flags & PVF_NC) == 0) {
2208 cacheable_entries++;
2209 if (kpmap == npv->pv_pmap)
2210 kern_cacheable++;
2211 }
2212 /* Writable mappings */
2213 if (npv->pv_flags & PVF_WRITE)
2214 ++writable;
2215 } else if (npv->pv_flags & PVF_WRITE)
2216 other_writable = 1;
2217 }
2218
2219 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2220 "writable %d cacheable %d %s\n", pmap, entries, writable,
2221 cacheable_entries, clear_cache ? "clean" : "no clean"));
2222
2223 /*
2224 * Enable or disable caching as necessary.
2225 * Note: the first entry might be part of the kernel pmap,
2226 * so we can't assume this is indicative of the state of the
2227 * other (maybe non-kpmap) entries.
2228 */
2229 if ((entries > 1 && writable) ||
2230 (entries > 0 && pmap == kpmap && other_writable)) {
2231 if (cacheable_entries == 0)
2232 return;
2233 for (npv = pv; npv; npv = npv->pv_next) {
2234 if ((pmap == npv->pv_pmap
2235 || kpmap == npv->pv_pmap) &&
2236 (npv->pv_flags & PVF_NC) == 0) {
2237 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2238 npv->pv_flags |= PVF_NC;
2239 /*
2240 * If this page needs flushing from the
2241 * cache, and we aren't going to do it
2242 * below, do it now.
2243 */
2244 if ((cacheable_entries < 4 &&
2245 (clear_cache || npv->pv_pmap == kpmap)) ||
2246 (npv->pv_pmap == kpmap &&
2247 !clear_cache && kern_cacheable < 4)) {
2248 cpu_idcache_wbinv_range(npv->pv_va,
2249 NBPG);
2250 cpu_tlb_flushID_SE(npv->pv_va);
2251 }
2252 }
2253 }
2254 if ((clear_cache && cacheable_entries >= 4) ||
2255 kern_cacheable >= 4) {
2256 cpu_idcache_wbinv_all();
2257 cpu_tlb_flushID();
2258 }
2259 cpu_cpwait();
2260 } else if (entries > 0) {
2261 /*
2262 * Turn cacheing back on for some pages. If it is a kernel
2263 * page, only do so if there are no other writable pages.
2264 */
2265 for (npv = pv; npv; npv = npv->pv_next) {
2266 if ((pmap == npv->pv_pmap ||
2267 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2268 (npv->pv_flags & PVF_NC)) {
2269 ptes[arm_btop(npv->pv_va)] |=
2270 pte_l2_s_cache_mode;
2271 npv->pv_flags &= ~PVF_NC;
2272 }
2273 }
2274 }
2275 }
2276
2277 /*
2278 * pmap_remove()
2279 *
2280 * pmap_remove is responsible for nuking a number of mappings for a range
2281 * of virtual address space in the current pmap. To do this efficiently
2282 * is interesting, because in a number of cases a wide virtual address
2283 * range may be supplied that contains few actual mappings. So, the
2284 * optimisations are:
2285 * 1. Try and skip over hunks of address space for which an L1 entry
2286 * does not exist.
2287 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2288 * maybe do just a partial cache clean. This path of execution is
2289 * complicated by the fact that the cache must be flushed _before_
2290 * the PTE is nuked, being a VAC :-)
2291 * 3. Maybe later fast-case a single page, but I don't think this is
2292 * going to make _that_ much difference overall.
2293 */
2294
2295 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2296
2297 void
2298 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2299 {
2300 int cleanlist_idx = 0;
2301 struct pagelist {
2302 vaddr_t va;
2303 pt_entry_t *pte;
2304 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2305 pt_entry_t *pte = 0, *ptes;
2306 paddr_t pa;
2307 int pmap_active;
2308 struct vm_page *pg;
2309
2310 /* Exit quick if there is no pmap */
2311 if (!pmap)
2312 return;
2313
2314 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2315 pmap, sva, eva));
2316
2317 /*
2318 * we lock in the pmap => vm_page direction
2319 */
2320 PMAP_MAP_TO_HEAD_LOCK();
2321
2322 ptes = pmap_map_ptes(pmap);
2323 /* Get a page table pointer */
2324 while (sva < eva) {
2325 if (pmap_pde_page(pmap_pde(pmap, sva)))
2326 break;
2327 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2328 }
2329
2330 pte = &ptes[arm_btop(sva)];
2331 /* Note if the pmap is active thus require cache and tlb cleans */
2332 pmap_active = pmap_is_curpmap(pmap);
2333
2334 /* Now loop along */
2335 while (sva < eva) {
2336 /* Check if we can move to the next PDE (l1 chunk) */
2337 if (!(sva & L2_ADDR_BITS))
2338 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2339 sva += L1_S_SIZE;
2340 pte += arm_btop(L1_S_SIZE);
2341 continue;
2342 }
2343
2344 /* We've found a valid PTE, so this page of PTEs has to go. */
2345 if (pmap_pte_v(pte)) {
2346 /* Update statistics */
2347 --pmap->pm_stats.resident_count;
2348
2349 /*
2350 * Add this page to our cache remove list, if we can.
2351 * If, however the cache remove list is totally full,
2352 * then do a complete cache invalidation taking note
2353 * to backtrack the PTE table beforehand, and ignore
2354 * the lists in future because there's no longer any
2355 * point in bothering with them (we've paid the
2356 * penalty, so will carry on unhindered). Otherwise,
2357 * when we fall out, we just clean the list.
2358 */
2359 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2360 pa = pmap_pte_pa(pte);
2361
2362 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2363 /* Add to the clean list. */
2364 cleanlist[cleanlist_idx].pte = pte;
2365 cleanlist[cleanlist_idx].va = sva;
2366 cleanlist_idx++;
2367 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2368 int cnt;
2369
2370 /* Nuke everything if needed. */
2371 if (pmap_active) {
2372 cpu_idcache_wbinv_all();
2373 cpu_tlb_flushID();
2374 }
2375
2376 /*
2377 * Roll back the previous PTE list,
2378 * and zero out the current PTE.
2379 */
2380 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2381 *cleanlist[cnt].pte = 0;
2382 pmap_pte_delref(pmap, cleanlist[cnt].va);
2383 }
2384 *pte = 0;
2385 pmap_pte_delref(pmap, sva);
2386 cleanlist_idx++;
2387 } else {
2388 /*
2389 * We've already nuked the cache and
2390 * TLB, so just carry on regardless,
2391 * and we won't need to do it again
2392 */
2393 *pte = 0;
2394 pmap_pte_delref(pmap, sva);
2395 }
2396
2397 /*
2398 * Update flags. In a number of circumstances,
2399 * we could cluster a lot of these and do a
2400 * number of sequential pages in one go.
2401 */
2402 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2403 struct pv_entry *pve;
2404 simple_lock(&pg->mdpage.pvh_slock);
2405 pve = pmap_remove_pv(pg, pmap, sva);
2406 pmap_free_pv(pmap, pve);
2407 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2408 simple_unlock(&pg->mdpage.pvh_slock);
2409 }
2410 }
2411 sva += NBPG;
2412 pte++;
2413 }
2414
2415 pmap_unmap_ptes(pmap);
2416 /*
2417 * Now, if we've fallen through down to here, chances are that there
2418 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2419 */
2420 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2421 u_int cnt;
2422
2423 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2424 if (pmap_active) {
2425 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2426 NBPG);
2427 *cleanlist[cnt].pte = 0;
2428 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2429 } else
2430 *cleanlist[cnt].pte = 0;
2431 pmap_pte_delref(pmap, cleanlist[cnt].va);
2432 }
2433 }
2434 PMAP_MAP_TO_HEAD_UNLOCK();
2435 }
2436
2437 /*
2438 * Routine: pmap_remove_all
2439 * Function:
2440 * Removes this physical page from
2441 * all physical maps in which it resides.
2442 * Reflects back modify bits to the pager.
2443 */
2444
2445 static void
2446 pmap_remove_all(struct vm_page *pg)
2447 {
2448 struct pv_entry *pv, *npv;
2449 struct pmap *pmap;
2450 pt_entry_t *pte, *ptes;
2451
2452 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2453
2454 /* set vm_page => pmap locking */
2455 PMAP_HEAD_TO_MAP_LOCK();
2456
2457 simple_lock(&pg->mdpage.pvh_slock);
2458
2459 pv = pg->mdpage.pvh_list;
2460 if (pv == NULL) {
2461 PDEBUG(0, printf("free page\n"));
2462 simple_unlock(&pg->mdpage.pvh_slock);
2463 PMAP_HEAD_TO_MAP_UNLOCK();
2464 return;
2465 }
2466 pmap_clean_page(pv, FALSE);
2467
2468 while (pv) {
2469 pmap = pv->pv_pmap;
2470 ptes = pmap_map_ptes(pmap);
2471 pte = &ptes[arm_btop(pv->pv_va)];
2472
2473 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2474 pv->pv_va, pv->pv_flags));
2475 #ifdef DEBUG
2476 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2477 pmap_pte_v(pte) == 0 ||
2478 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2479 panic("pmap_remove_all: bad mapping");
2480 #endif /* DEBUG */
2481
2482 /*
2483 * Update statistics
2484 */
2485 --pmap->pm_stats.resident_count;
2486
2487 /* Wired bit */
2488 if (pv->pv_flags & PVF_WIRED)
2489 --pmap->pm_stats.wired_count;
2490
2491 /*
2492 * Invalidate the PTEs.
2493 * XXX: should cluster them up and invalidate as many
2494 * as possible at once.
2495 */
2496
2497 #ifdef needednotdone
2498 reduce wiring count on page table pages as references drop
2499 #endif
2500
2501 *pte = 0;
2502 pmap_pte_delref(pmap, pv->pv_va);
2503
2504 npv = pv->pv_next;
2505 pmap_free_pv(pmap, pv);
2506 pv = npv;
2507 pmap_unmap_ptes(pmap);
2508 }
2509 pg->mdpage.pvh_list = NULL;
2510 simple_unlock(&pg->mdpage.pvh_slock);
2511 PMAP_HEAD_TO_MAP_UNLOCK();
2512
2513 PDEBUG(0, printf("done\n"));
2514 cpu_tlb_flushID();
2515 cpu_cpwait();
2516 }
2517
2518
2519 /*
2520 * Set the physical protection on the specified range of this map as requested.
2521 */
2522
2523 void
2524 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2525 {
2526 pt_entry_t *pte = NULL, *ptes;
2527 struct vm_page *pg;
2528 int armprot;
2529 int flush = 0;
2530 paddr_t pa;
2531
2532 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2533 pmap, sva, eva, prot));
2534
2535 if (~prot & VM_PROT_READ) {
2536 /* Just remove the mappings. */
2537 pmap_remove(pmap, sva, eva);
2538 /* pmap_update not needed as it should be called by the caller
2539 * of pmap_protect */
2540 return;
2541 }
2542 if (prot & VM_PROT_WRITE) {
2543 /*
2544 * If this is a read->write transition, just ignore it and let
2545 * uvm_fault() take care of it later.
2546 */
2547 return;
2548 }
2549
2550 /* Need to lock map->head */
2551 PMAP_MAP_TO_HEAD_LOCK();
2552
2553 ptes = pmap_map_ptes(pmap);
2554
2555 /*
2556 * OK, at this point, we know we're doing write-protect operation.
2557 * If the pmap is active, write-back the range.
2558 */
2559 if (pmap_is_curpmap(pmap))
2560 cpu_dcache_wb_range(sva, eva - sva);
2561
2562 /*
2563 * We need to acquire a pointer to a page table page before entering
2564 * the following loop.
2565 */
2566 while (sva < eva) {
2567 if (pmap_pde_page(pmap_pde(pmap, sva)))
2568 break;
2569 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2570 }
2571
2572 pte = &ptes[arm_btop(sva)];
2573
2574 while (sva < eva) {
2575 /* only check once in a while */
2576 if ((sva & L2_ADDR_BITS) == 0) {
2577 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2578 /* We can race ahead here, to the next pde. */
2579 sva += L1_S_SIZE;
2580 pte += arm_btop(L1_S_SIZE);
2581 continue;
2582 }
2583 }
2584
2585 if (!pmap_pte_v(pte))
2586 goto next;
2587
2588 flush = 1;
2589
2590 armprot = 0;
2591 if (sva < VM_MAXUSER_ADDRESS)
2592 armprot |= L2_S_PROT_U;
2593 else if (sva < VM_MAX_ADDRESS)
2594 armprot |= L2_S_PROT_W; /* XXX Ekk what is this ? */
2595 *pte = (*pte & 0xfffff00f) | armprot;
2596
2597 pa = pmap_pte_pa(pte);
2598
2599 /* Get the physical page index */
2600
2601 /* Clear write flag */
2602 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2603 simple_lock(&pg->mdpage.pvh_slock);
2604 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2605 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2606 simple_unlock(&pg->mdpage.pvh_slock);
2607 }
2608
2609 next:
2610 sva += NBPG;
2611 pte++;
2612 }
2613 pmap_unmap_ptes(pmap);
2614 PMAP_MAP_TO_HEAD_UNLOCK();
2615 if (flush)
2616 cpu_tlb_flushID();
2617 }
2618
2619 /*
2620 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2621 * int flags)
2622 *
2623 * Insert the given physical page (p) at
2624 * the specified virtual address (v) in the
2625 * target physical map with the protection requested.
2626 *
2627 * If specified, the page will be wired down, meaning
2628 * that the related pte can not be reclaimed.
2629 *
2630 * NB: This is the only routine which MAY NOT lazy-evaluate
2631 * or lose information. That is, this routine must actually
2632 * insert this page into the given map NOW.
2633 */
2634
2635 int
2636 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2637 int flags)
2638 {
2639 pt_entry_t *ptes, opte, npte;
2640 paddr_t opa;
2641 boolean_t wired = (flags & PMAP_WIRED) != 0;
2642 struct vm_page *pg;
2643 struct pv_entry *pve;
2644 int error, nflags;
2645
2646 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2647 va, pa, pmap, prot, wired));
2648
2649 #ifdef DIAGNOSTIC
2650 /* Valid address ? */
2651 if (va >= (pmap_curmaxkvaddr))
2652 panic("pmap_enter: too big");
2653 if (pmap != pmap_kernel() && va != 0) {
2654 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2655 panic("pmap_enter: kernel page in user map");
2656 } else {
2657 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2658 panic("pmap_enter: user page in kernel map");
2659 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2660 panic("pmap_enter: entering PT page");
2661 }
2662 #endif
2663
2664 KDASSERT(((va | pa) & PGOFSET) == 0);
2665
2666 /*
2667 * Get a pointer to the page. Later on in this function, we
2668 * test for a managed page by checking pg != NULL.
2669 */
2670 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2671
2672 /* get lock */
2673 PMAP_MAP_TO_HEAD_LOCK();
2674
2675 /*
2676 * map the ptes. If there's not already an L2 table for this
2677 * address, allocate one.
2678 */
2679 ptes = pmap_map_ptes(pmap); /* locks pmap */
2680 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2681 struct vm_page *ptp;
2682
2683 /* kernel should be pre-grown */
2684 KASSERT(pmap != pmap_kernel());
2685
2686 /* if failure is allowed then don't try too hard */
2687 ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
2688 if (ptp == NULL) {
2689 if (flags & PMAP_CANFAIL) {
2690 error = ENOMEM;
2691 goto out;
2692 }
2693 panic("pmap_enter: get ptp failed");
2694 }
2695 }
2696 opte = ptes[arm_btop(va)];
2697
2698 nflags = 0;
2699 if (prot & VM_PROT_WRITE)
2700 nflags |= PVF_WRITE;
2701 if (wired)
2702 nflags |= PVF_WIRED;
2703
2704 /* Is the pte valid ? If so then this page is already mapped */
2705 if (l2pte_valid(opte)) {
2706 /* Get the physical address of the current page mapped */
2707 opa = l2pte_pa(opte);
2708
2709 /* Are we mapping the same page ? */
2710 if (opa == pa) {
2711 /* Has the wiring changed ? */
2712 if (pg != NULL) {
2713 simple_lock(&pg->mdpage.pvh_slock);
2714 (void) pmap_modify_pv(pmap, va, pg,
2715 PVF_WRITE | PVF_WIRED, nflags);
2716 simple_unlock(&pg->mdpage.pvh_slock);
2717 }
2718 } else {
2719 struct vm_page *opg;
2720
2721 /* We are replacing the page with a new one. */
2722 cpu_idcache_wbinv_range(va, NBPG);
2723
2724 /*
2725 * If it is part of our managed memory then we
2726 * must remove it from the PV list
2727 */
2728 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2729 simple_lock(&opg->mdpage.pvh_slock);
2730 pve = pmap_remove_pv(opg, pmap, va);
2731 simple_unlock(&opg->mdpage.pvh_slock);
2732 } else {
2733 pve = NULL;
2734 }
2735
2736 goto enter;
2737 }
2738 } else {
2739 opa = 0;
2740 pve = NULL;
2741 pmap_pte_addref(pmap, va);
2742
2743 /* pte is not valid so we must be hooking in a new page */
2744 ++pmap->pm_stats.resident_count;
2745
2746 enter:
2747 /*
2748 * Enter on the PV list if part of our managed memory
2749 */
2750 if (pg != NULL) {
2751 if (pve == NULL) {
2752 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2753 if (pve == NULL) {
2754 if (flags & PMAP_CANFAIL) {
2755 error = ENOMEM;
2756 goto out;
2757 }
2758 panic("pmap_enter: no pv entries "
2759 "available");
2760 }
2761 }
2762 /* enter_pv locks pvh when adding */
2763 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2764 } else {
2765 if (pve != NULL)
2766 pmap_free_pv(pmap, pve);
2767 }
2768 }
2769
2770 /* Construct the pte, giving the correct access. */
2771 npte = pa;
2772
2773 /* VA 0 is magic. */
2774 if (pmap != pmap_kernel() && va != vector_page)
2775 npte |= L2_S_PROT_U;
2776
2777 if (pg != NULL) {
2778 #ifdef DIAGNOSTIC
2779 if ((flags & VM_PROT_ALL) & ~prot)
2780 panic("pmap_enter: access_type exceeds prot");
2781 #endif
2782 npte |= pte_l2_s_cache_mode;
2783 if (flags & VM_PROT_WRITE) {
2784 npte |= L2_S_PROTO | L2_S_PROT_W;
2785 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2786 } else if (flags & VM_PROT_ALL) {
2787 npte |= L2_S_PROTO;
2788 pg->mdpage.pvh_attrs |= PVF_REF;
2789 } else
2790 npte |= L2_TYPE_INV;
2791 } else {
2792 if (prot & VM_PROT_WRITE)
2793 npte |= L2_S_PROTO | L2_S_PROT_W;
2794 else if (prot & VM_PROT_ALL)
2795 npte |= L2_S_PROTO;
2796 else
2797 npte |= L2_TYPE_INV;
2798 }
2799
2800 ptes[arm_btop(va)] = npte;
2801
2802 if (pg != NULL) {
2803 simple_lock(&pg->mdpage.pvh_slock);
2804 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2805 simple_unlock(&pg->mdpage.pvh_slock);
2806 }
2807
2808 /* Better flush the TLB ... */
2809 cpu_tlb_flushID_SE(va);
2810 error = 0;
2811 out:
2812 pmap_unmap_ptes(pmap); /* unlocks pmap */
2813 PMAP_MAP_TO_HEAD_UNLOCK();
2814
2815 return error;
2816 }
2817
2818 /*
2819 * pmap_kenter_pa: enter a kernel mapping
2820 *
2821 * => no need to lock anything assume va is already allocated
2822 * => should be faster than normal pmap enter function
2823 */
2824 void
2825 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2826 {
2827 pt_entry_t *pte;
2828
2829 pte = vtopte(va);
2830 KASSERT(!pmap_pte_v(pte));
2831
2832 *pte = L2_S_PROTO | pa |
2833 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2834 }
2835
2836 void
2837 pmap_kremove(vaddr_t va, vsize_t len)
2838 {
2839 pt_entry_t *pte;
2840
2841 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2842
2843 /*
2844 * We assume that we will only be called with small
2845 * regions of memory.
2846 */
2847
2848 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
2849 pte = vtopte(va);
2850 cpu_idcache_wbinv_range(va, PAGE_SIZE);
2851 *pte = 0;
2852 cpu_tlb_flushID_SE(va);
2853 }
2854 }
2855
2856 /*
2857 * pmap_page_protect:
2858 *
2859 * Lower the permission for all mappings to a given page.
2860 */
2861
2862 void
2863 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
2864 {
2865
2866 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
2867 VM_PAGE_TO_PHYS(pg), prot));
2868
2869 switch(prot) {
2870 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
2871 case VM_PROT_READ|VM_PROT_WRITE:
2872 return;
2873
2874 case VM_PROT_READ:
2875 case VM_PROT_READ|VM_PROT_EXECUTE:
2876 pmap_clearbit(pg, PVF_WRITE);
2877 break;
2878
2879 default:
2880 pmap_remove_all(pg);
2881 break;
2882 }
2883 }
2884
2885
2886 /*
2887 * Routine: pmap_unwire
2888 * Function: Clear the wired attribute for a map/virtual-address
2889 * pair.
2890 * In/out conditions:
2891 * The mapping must already exist in the pmap.
2892 */
2893
2894 void
2895 pmap_unwire(struct pmap *pmap, vaddr_t va)
2896 {
2897 pt_entry_t *ptes;
2898 struct vm_page *pg;
2899 paddr_t pa;
2900
2901 PMAP_MAP_TO_HEAD_LOCK();
2902 ptes = pmap_map_ptes(pmap); /* locks pmap */
2903
2904 if (pmap_pde_v(pmap_pde(pmap, va))) {
2905 #ifdef DIAGNOSTIC
2906 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
2907 panic("pmap_unwire: invalid L2 PTE");
2908 #endif
2909 /* Extract the physical address of the page */
2910 pa = l2pte_pa(ptes[arm_btop(va)]);
2911
2912 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
2913 goto out;
2914
2915 /* Update the wired bit in the pv entry for this page. */
2916 simple_lock(&pg->mdpage.pvh_slock);
2917 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
2918 simple_unlock(&pg->mdpage.pvh_slock);
2919 }
2920 #ifdef DIAGNOSTIC
2921 else {
2922 panic("pmap_unwire: invalid L1 PTE");
2923 }
2924 #endif
2925 out:
2926 pmap_unmap_ptes(pmap); /* unlocks pmap */
2927 PMAP_MAP_TO_HEAD_UNLOCK();
2928 }
2929
2930 /*
2931 * Routine: pmap_extract
2932 * Function:
2933 * Extract the physical page address associated
2934 * with the given map/virtual_address pair.
2935 */
2936 boolean_t
2937 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
2938 {
2939 pd_entry_t *pde;
2940 pt_entry_t *pte, *ptes;
2941 paddr_t pa;
2942
2943 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
2944
2945 ptes = pmap_map_ptes(pmap); /* locks pmap */
2946
2947 pde = pmap_pde(pmap, va);
2948 pte = &ptes[arm_btop(va)];
2949
2950 if (pmap_pde_section(pde)) {
2951 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
2952 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
2953 goto out;
2954 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
2955 PDEBUG(5, printf("no mapping\n"));
2956 goto failed;
2957 }
2958
2959 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
2960 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
2961 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
2962 goto out;
2963 }
2964
2965 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
2966 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
2967
2968 out:
2969 if (pap != NULL)
2970 *pap = pa;
2971
2972 pmap_unmap_ptes(pmap); /* unlocks pmap */
2973 return (TRUE);
2974
2975 failed:
2976 pmap_unmap_ptes(pmap); /* unlocks pmap */
2977 return (FALSE);
2978 }
2979
2980
2981 /*
2982 * pmap_copy:
2983 *
2984 * Copy the range specified by src_addr/len from the source map to the
2985 * range dst_addr/len in the destination map.
2986 *
2987 * This routine is only advisory and need not do anything.
2988 */
2989 /* Call deleted in <arm/arm32/pmap.h> */
2990
2991 #if defined(PMAP_DEBUG)
2992 void
2993 pmap_dump_pvlist(phys, m)
2994 vaddr_t phys;
2995 char *m;
2996 {
2997 struct vm_page *pg;
2998 struct pv_entry *pv;
2999
3000 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
3001 printf("INVALID PA\n");
3002 return;
3003 }
3004 simple_lock(&pg->mdpage.pvh_slock);
3005 printf("%s %08lx:", m, phys);
3006 if (pg->mdpage.pvh_list == NULL) {
3007 simple_unlock(&pg->mdpage.pvh_slock);
3008 printf(" no mappings\n");
3009 return;
3010 }
3011
3012 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3013 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3014 pv->pv_va, pv->pv_flags);
3015
3016 printf("\n");
3017 simple_unlock(&pg->mdpage.pvh_slock);
3018 }
3019
3020 #endif /* PMAP_DEBUG */
3021
3022 static pt_entry_t *
3023 pmap_map_ptes(struct pmap *pmap)
3024 {
3025 struct proc *p;
3026
3027 /* the kernel's pmap is always accessible */
3028 if (pmap == pmap_kernel()) {
3029 return (pt_entry_t *)PTE_BASE;
3030 }
3031
3032 if (pmap_is_curpmap(pmap)) {
3033 simple_lock(&pmap->pm_obj.vmobjlock);
3034 return (pt_entry_t *)PTE_BASE;
3035 }
3036
3037 p = curproc;
3038 KDASSERT(p != NULL);
3039
3040 /* need to lock both curpmap and pmap: use ordered locking */
3041 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3042 simple_lock(&pmap->pm_obj.vmobjlock);
3043 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3044 } else {
3045 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3046 simple_lock(&pmap->pm_obj.vmobjlock);
3047 }
3048
3049 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
3050 FALSE);
3051 cpu_tlb_flushD();
3052 cpu_cpwait();
3053 return (pt_entry_t *)APTE_BASE;
3054 }
3055
3056 /*
3057 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3058 */
3059
3060 static void
3061 pmap_unmap_ptes(struct pmap *pmap)
3062 {
3063
3064 if (pmap == pmap_kernel()) {
3065 return;
3066 }
3067 if (pmap_is_curpmap(pmap)) {
3068 simple_unlock(&pmap->pm_obj.vmobjlock);
3069 } else {
3070 KDASSERT(curproc != NULL);
3071 simple_unlock(&pmap->pm_obj.vmobjlock);
3072 simple_unlock(
3073 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3074 }
3075 }
3076
3077 /*
3078 * Modify pte bits for all ptes corresponding to the given physical address.
3079 * We use `maskbits' rather than `clearbits' because we're always passing
3080 * constants and the latter would require an extra inversion at run-time.
3081 */
3082
3083 static void
3084 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3085 {
3086 struct pv_entry *pv;
3087 pt_entry_t *ptes;
3088 vaddr_t va;
3089 int tlbentry;
3090
3091 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3092 VM_PAGE_TO_PHYS(pg), maskbits));
3093
3094 tlbentry = 0;
3095
3096 PMAP_HEAD_TO_MAP_LOCK();
3097 simple_lock(&pg->mdpage.pvh_slock);
3098
3099 /*
3100 * Clear saved attributes (modify, reference)
3101 */
3102 pg->mdpage.pvh_attrs &= ~maskbits;
3103
3104 if (pg->mdpage.pvh_list == NULL) {
3105 simple_unlock(&pg->mdpage.pvh_slock);
3106 PMAP_HEAD_TO_MAP_UNLOCK();
3107 return;
3108 }
3109
3110 /*
3111 * Loop over all current mappings setting/clearing as appropos
3112 */
3113 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3114 va = pv->pv_va;
3115 pv->pv_flags &= ~maskbits;
3116 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3117 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3118 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3119 if ((pv->pv_flags & PVF_NC)) {
3120 /*
3121 * Entry is not cacheable: reenable
3122 * the cache, nothing to flush
3123 *
3124 * Don't turn caching on again if this
3125 * is a modified emulation. This
3126 * would be inconsitent with the
3127 * settings created by
3128 * pmap_vac_me_harder().
3129 *
3130 * There's no need to call
3131 * pmap_vac_me_harder() here: all
3132 * pages are loosing their write
3133 * permission.
3134 *
3135 */
3136 if (maskbits & PVF_WRITE) {
3137 ptes[arm_btop(va)] |=
3138 pte_l2_s_cache_mode;
3139 pv->pv_flags &= ~PVF_NC;
3140 }
3141 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3142 /*
3143 * Entry is cacheable: check if pmap is
3144 * current if it is flush it,
3145 * otherwise it won't be in the cache
3146 */
3147 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3148 }
3149
3150 /* make the pte read only */
3151 ptes[arm_btop(va)] &= ~L2_S_PROT_W;
3152 }
3153
3154 if (maskbits & PVF_REF)
3155 ptes[arm_btop(va)] =
3156 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_TYPE_INV;
3157
3158 if (pmap_is_curpmap(pv->pv_pmap)) {
3159 /*
3160 * if we had cacheable pte's we'd clean the
3161 * pte out to memory here
3162 *
3163 * flush tlb entry as it's in the current pmap
3164 */
3165 cpu_tlb_flushID_SE(pv->pv_va);
3166 }
3167 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3168 }
3169 cpu_cpwait();
3170
3171 simple_unlock(&pg->mdpage.pvh_slock);
3172 PMAP_HEAD_TO_MAP_UNLOCK();
3173 }
3174
3175 /*
3176 * pmap_clear_modify:
3177 *
3178 * Clear the "modified" attribute for a page.
3179 */
3180 boolean_t
3181 pmap_clear_modify(struct vm_page *pg)
3182 {
3183 boolean_t rv;
3184
3185 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3186 rv = TRUE;
3187 pmap_clearbit(pg, PVF_MOD);
3188 } else
3189 rv = FALSE;
3190
3191 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3192 VM_PAGE_TO_PHYS(pg), rv));
3193
3194 return (rv);
3195 }
3196
3197 /*
3198 * pmap_clear_reference:
3199 *
3200 * Clear the "referenced" attribute for a page.
3201 */
3202 boolean_t
3203 pmap_clear_reference(struct vm_page *pg)
3204 {
3205 boolean_t rv;
3206
3207 if (pg->mdpage.pvh_attrs & PVF_REF) {
3208 rv = TRUE;
3209 pmap_clearbit(pg, PVF_REF);
3210 } else
3211 rv = FALSE;
3212
3213 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3214 VM_PAGE_TO_PHYS(pg), rv));
3215
3216 return (rv);
3217 }
3218
3219 /*
3220 * pmap_is_modified:
3221 *
3222 * Test if a page has the "modified" attribute.
3223 */
3224 /* See <arm/arm32/pmap.h> */
3225
3226 /*
3227 * pmap_is_referenced:
3228 *
3229 * Test if a page has the "referenced" attribute.
3230 */
3231 /* See <arm/arm32/pmap.h> */
3232
3233 int
3234 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3235 {
3236 pt_entry_t *ptes;
3237 struct vm_page *pg;
3238 paddr_t pa;
3239 u_int flags;
3240 int rv = 0;
3241
3242 PDEBUG(2, printf("pmap_modified_emulation\n"));
3243
3244 PMAP_MAP_TO_HEAD_LOCK();
3245 ptes = pmap_map_ptes(pmap); /* locks pmap */
3246
3247 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3248 PDEBUG(2, printf("L1 PTE invalid\n"));
3249 goto out;
3250 }
3251
3252 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3253
3254 /* Check for a invalid pte */
3255 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3256 goto out;
3257
3258 /* This can happen if user code tries to access kernel memory. */
3259 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3260 goto out;
3261
3262 /* Extract the physical address of the page */
3263 pa = l2pte_pa(ptes[arm_btop(va)]);
3264 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3265 goto out;
3266
3267 /* Get the current flags for this page. */
3268 simple_lock(&pg->mdpage.pvh_slock);
3269
3270 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3271 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3272
3273 /*
3274 * Do the flags say this page is writable ? If not then it is a
3275 * genuine write fault. If yes then the write fault is our fault
3276 * as we did not reflect the write access in the PTE. Now we know
3277 * a write has occurred we can correct this and also set the
3278 * modified bit
3279 */
3280 if (~flags & PVF_WRITE) {
3281 simple_unlock(&pg->mdpage.pvh_slock);
3282 goto out;
3283 }
3284
3285 PDEBUG(0,
3286 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3287 va, ptes[arm_btop(va)]));
3288 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3289
3290 /*
3291 * Re-enable write permissions for the page. No need to call
3292 * pmap_vac_me_harder(), since this is just a
3293 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3294 * We've already set the cacheable bits based on the assumption
3295 * that we can write to this page.
3296 */
3297 ptes[arm_btop(va)] =
3298 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3299 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3300
3301 simple_unlock(&pg->mdpage.pvh_slock);
3302
3303 cpu_tlb_flushID_SE(va);
3304 cpu_cpwait();
3305 rv = 1;
3306 out:
3307 pmap_unmap_ptes(pmap); /* unlocks pmap */
3308 PMAP_MAP_TO_HEAD_UNLOCK();
3309 return (rv);
3310 }
3311
3312 int
3313 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3314 {
3315 pt_entry_t *ptes;
3316 struct vm_page *pg;
3317 paddr_t pa;
3318 int rv = 0;
3319
3320 PDEBUG(2, printf("pmap_handled_emulation\n"));
3321
3322 PMAP_MAP_TO_HEAD_LOCK();
3323 ptes = pmap_map_ptes(pmap); /* locks pmap */
3324
3325 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3326 PDEBUG(2, printf("L1 PTE invalid\n"));
3327 goto out;
3328 }
3329
3330 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3331
3332 /* Check for invalid pte */
3333 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3334 goto out;
3335
3336 /* This can happen if user code tries to access kernel memory. */
3337 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3338 goto out;
3339
3340 /* Extract the physical address of the page */
3341 pa = l2pte_pa(ptes[arm_btop(va)]);
3342 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3343 goto out;
3344
3345 simple_lock(&pg->mdpage.pvh_slock);
3346
3347 /*
3348 * Ok we just enable the pte and mark the attibs as handled
3349 * XXX Should we traverse the PV list and enable all PTEs?
3350 */
3351 PDEBUG(0,
3352 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3353 va, ptes[arm_btop(va)]));
3354 pg->mdpage.pvh_attrs |= PVF_REF;
3355
3356 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3357 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3358
3359 simple_unlock(&pg->mdpage.pvh_slock);
3360
3361 cpu_tlb_flushID_SE(va);
3362 cpu_cpwait();
3363 rv = 1;
3364 out:
3365 pmap_unmap_ptes(pmap); /* unlocks pmap */
3366 PMAP_MAP_TO_HEAD_UNLOCK();
3367 return (rv);
3368 }
3369
3370 /*
3371 * pmap_collect: free resources held by a pmap
3372 *
3373 * => optional function.
3374 * => called when a process is swapped out to free memory.
3375 */
3376
3377 void
3378 pmap_collect(struct pmap *pmap)
3379 {
3380 }
3381
3382 /*
3383 * Routine: pmap_procwr
3384 *
3385 * Function:
3386 * Synchronize caches corresponding to [addr, addr+len) in p.
3387 *
3388 */
3389 void
3390 pmap_procwr(struct proc *p, vaddr_t va, int len)
3391 {
3392 /* We only need to do anything if it is the current process. */
3393 if (p == curproc)
3394 cpu_icache_sync_range(va, len);
3395 }
3396 /*
3397 * PTP functions
3398 */
3399
3400 /*
3401 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3402 *
3403 * => pmap should NOT be pmap_kernel()
3404 * => pmap should be locked
3405 */
3406
3407 static struct vm_page *
3408 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3409 {
3410 struct vm_page *ptp;
3411
3412 if (pmap_pde_page(pmap_pde(pmap, va))) {
3413
3414 /* valid... check hint (saves us a PA->PG lookup) */
3415 if (pmap->pm_ptphint &&
3416 (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
3417 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3418 return (pmap->pm_ptphint);
3419 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3420 #ifdef DIAGNOSTIC
3421 if (ptp == NULL)
3422 panic("pmap_get_ptp: unmanaged user PTP");
3423 #endif
3424 pmap->pm_ptphint = ptp;
3425 return(ptp);
3426 }
3427
3428 /* allocate a new PTP (updates ptphint) */
3429 return(pmap_alloc_ptp(pmap, va));
3430 }
3431
3432 /*
3433 * pmap_alloc_ptp: allocate a PTP for a PMAP
3434 *
3435 * => pmap should already be locked by caller
3436 * => we use the ptp's wire_count to count the number of active mappings
3437 * in the PTP (we start it at one to prevent any chance this PTP
3438 * will ever leak onto the active/inactive queues)
3439 */
3440
3441 /*__inline */ static struct vm_page *
3442 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3443 {
3444 struct vm_page *ptp;
3445
3446 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3447 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3448 if (ptp == NULL)
3449 return (NULL);
3450
3451 /* got one! */
3452 ptp->flags &= ~PG_BUSY; /* never busy */
3453 ptp->wire_count = 1; /* no mappings yet */
3454 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3455 pmap->pm_stats.resident_count++; /* count PTP as resident */
3456 pmap->pm_ptphint = ptp;
3457 return (ptp);
3458 }
3459
3460 vaddr_t
3461 pmap_growkernel(vaddr_t maxkvaddr)
3462 {
3463 struct pmap *kpm = pmap_kernel(), *pm;
3464 int s;
3465 paddr_t ptaddr;
3466 struct vm_page *ptp;
3467
3468 if (maxkvaddr <= pmap_curmaxkvaddr)
3469 goto out; /* we are OK */
3470 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3471 pmap_curmaxkvaddr, maxkvaddr));
3472
3473 /*
3474 * whoops! we need to add kernel PTPs
3475 */
3476
3477 s = splhigh(); /* to be safe */
3478 simple_lock(&kpm->pm_obj.vmobjlock);
3479 /* due to the way the arm pmap works we map 4MB at a time */
3480 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3481 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3482
3483 if (uvm.page_init_done == FALSE) {
3484
3485 /*
3486 * we're growing the kernel pmap early (from
3487 * uvm_pageboot_alloc()). this case must be
3488 * handled a little differently.
3489 */
3490
3491 if (uvm_page_physget(&ptaddr) == FALSE)
3492 panic("pmap_growkernel: out of memory");
3493 pmap_zero_page(ptaddr);
3494
3495 /* map this page in */
3496 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
3497
3498 /* count PTP as resident */
3499 kpm->pm_stats.resident_count++;
3500 continue;
3501 }
3502
3503 /*
3504 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3505 * pmap_initialized == FALSE CASE! WE MAY BE
3506 * INVOKED WHILE pmap_init() IS RUNNING!
3507 */
3508
3509 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3510 panic("pmap_growkernel: alloc ptp failed");
3511
3512 /* distribute new kernel PTP to all active pmaps */
3513 simple_lock(&pmaps_lock);
3514 LIST_FOREACH(pm, &pmaps, pm_list) {
3515 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3516 VM_PAGE_TO_PHYS(ptp), TRUE);
3517 }
3518
3519 simple_unlock(&pmaps_lock);
3520 }
3521
3522 /*
3523 * flush out the cache, expensive but growkernel will happen so
3524 * rarely
3525 */
3526 cpu_tlb_flushD();
3527 cpu_cpwait();
3528
3529 simple_unlock(&kpm->pm_obj.vmobjlock);
3530 splx(s);
3531
3532 out:
3533 return (pmap_curmaxkvaddr);
3534 }
3535
3536 /************************ Utility routines ****************************/
3537
3538 /*
3539 * vector_page_setprot:
3540 *
3541 * Manipulate the protection of the vector page.
3542 */
3543 void
3544 vector_page_setprot(int prot)
3545 {
3546 pt_entry_t *pte;
3547
3548 pte = vtopte(vector_page);
3549
3550 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3551 cpu_tlb_flushD_SE(vector_page);
3552 cpu_cpwait();
3553 }
3554
3555 /************************ Bootstrapping routines ****************************/
3556
3557 /*
3558 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3559 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3560 * find them as necessary.
3561 *
3562 * Note that the data on this list is not valid after initarm() returns.
3563 */
3564 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3565
3566 static vaddr_t
3567 kernel_pt_lookup(paddr_t pa)
3568 {
3569 pv_addr_t *pv;
3570
3571 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3572 if (pv->pv_pa == pa)
3573 return (pv->pv_va);
3574 }
3575 return (0);
3576 }
3577
3578 /*
3579 * pmap_map_section:
3580 *
3581 * Create a single section mapping.
3582 */
3583 void
3584 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3585 {
3586 pd_entry_t *pde = (pd_entry_t *) l1pt;
3587 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3588
3589 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3590
3591 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3592 L1_S_PROT(PTE_KERNEL, prot) | fl;
3593 }
3594
3595 /*
3596 * pmap_map_entry:
3597 *
3598 * Create a single page mapping.
3599 */
3600 void
3601 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3602 {
3603 pd_entry_t *pde = (pd_entry_t *) l1pt;
3604 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3605 pt_entry_t *pte;
3606
3607 KASSERT(((va | pa) & PGOFSET) == 0);
3608
3609 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3610 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3611
3612 pte = (pt_entry_t *)
3613 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3614 if (pte == NULL)
3615 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3616
3617 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3618 L2_S_PROT(PTE_KERNEL, prot) | fl;
3619 }
3620
3621 /*
3622 * pmap_link_l2pt:
3623 *
3624 * Link the L2 page table specified by "pa" into the L1
3625 * page table at the slot for "va".
3626 */
3627 void
3628 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3629 {
3630 pd_entry_t *pde = (pd_entry_t *) l1pt;
3631 u_int slot = va >> L1_S_SHIFT;
3632
3633 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3634
3635 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3636 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3637 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3638 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3639
3640 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3641 }
3642
3643 /*
3644 * pmap_map_chunk:
3645 *
3646 * Map a chunk of memory using the most efficient mappings
3647 * possible (section, large page, small page) into the
3648 * provided L1 and L2 tables at the specified virtual address.
3649 */
3650 vsize_t
3651 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3652 int prot, int cache)
3653 {
3654 pd_entry_t *pde = (pd_entry_t *) l1pt;
3655 pt_entry_t *pte, fl;
3656 vsize_t resid;
3657 int i;
3658
3659 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3660
3661 if (l1pt == 0)
3662 panic("pmap_map_chunk: no L1 table provided");
3663
3664 #ifdef VERBOSE_INIT_ARM
3665 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3666 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3667 #endif
3668
3669 size = resid;
3670
3671 while (resid > 0) {
3672 /* See if we can use a section mapping. */
3673 if (((pa | va) & L1_S_OFFSET) == 0 &&
3674 resid >= L1_S_SIZE) {
3675 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3676 #ifdef VERBOSE_INIT_ARM
3677 printf("S");
3678 #endif
3679 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3680 L1_S_PROT(PTE_KERNEL, prot) | fl;
3681 va += L1_S_SIZE;
3682 pa += L1_S_SIZE;
3683 resid -= L1_S_SIZE;
3684 continue;
3685 }
3686
3687 /*
3688 * Ok, we're going to use an L2 table. Make sure
3689 * one is actually in the corresponding L1 slot
3690 * for the current VA.
3691 */
3692 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3693 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3694
3695 pte = (pt_entry_t *)
3696 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3697 if (pte == NULL)
3698 panic("pmap_map_chunk: can't find L2 table for VA"
3699 "0x%08lx", va);
3700
3701 /* See if we can use a L2 large page mapping. */
3702 if (((pa | va) & L2_L_OFFSET) == 0 &&
3703 resid >= L2_L_SIZE) {
3704 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3705 #ifdef VERBOSE_INIT_ARM
3706 printf("L");
3707 #endif
3708 for (i = 0; i < 16; i++) {
3709 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3710 L2_L_PROTO | pa |
3711 L2_L_PROT(PTE_KERNEL, prot) | fl;
3712 }
3713 va += L2_L_SIZE;
3714 pa += L2_L_SIZE;
3715 resid -= L2_L_SIZE;
3716 continue;
3717 }
3718
3719 /* Use a small page mapping. */
3720 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3721 #ifdef VERBOSE_INIT_ARM
3722 printf("P");
3723 #endif
3724 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3725 L2_S_PROT(PTE_KERNEL, prot) | fl;
3726 va += NBPG;
3727 pa += NBPG;
3728 resid -= NBPG;
3729 }
3730 #ifdef VERBOSE_INIT_ARM
3731 printf("\n");
3732 #endif
3733 return (size);
3734 }
3735
3736 /********************** PTE initialization routines **************************/
3737
3738 /*
3739 * These routines are called when the CPU type is identified to set up
3740 * the PTE prototypes, cache modes, etc.
3741 *
3742 * The variables are always here, just in case LKMs need to reference
3743 * them (though, they shouldn't).
3744 */
3745
3746 pt_entry_t pte_l1_s_cache_mode;
3747 pt_entry_t pte_l1_s_cache_mask;
3748
3749 pt_entry_t pte_l2_l_cache_mode;
3750 pt_entry_t pte_l2_l_cache_mask;
3751
3752 pt_entry_t pte_l2_s_cache_mode;
3753 pt_entry_t pte_l2_s_cache_mask;
3754
3755 pt_entry_t pte_l2_s_prot_u;
3756 pt_entry_t pte_l2_s_prot_w;
3757 pt_entry_t pte_l2_s_prot_mask;
3758
3759 pt_entry_t pte_l1_s_proto;
3760 pt_entry_t pte_l1_c_proto;
3761 pt_entry_t pte_l2_s_proto;
3762
3763 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3764 void (*pmap_zero_page_func)(paddr_t);
3765
3766 #if ARM_MMU_GENERIC == 1
3767 void
3768 pmap_pte_init_generic(void)
3769 {
3770
3771 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3772 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3773
3774 pte_l2_l_cache_mode = L2_B|L2_C;
3775 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3776
3777 pte_l2_s_cache_mode = L2_B|L2_C;
3778 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3779
3780 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3781 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3782 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3783
3784 pte_l1_s_proto = L1_S_PROTO_generic;
3785 pte_l1_c_proto = L1_C_PROTO_generic;
3786 pte_l2_s_proto = L2_S_PROTO_generic;
3787
3788 pmap_copy_page_func = pmap_copy_page_generic;
3789 pmap_zero_page_func = pmap_zero_page_generic;
3790 }
3791
3792 #if defined(CPU_ARM9)
3793 void
3794 pmap_pte_init_arm9(void)
3795 {
3796
3797 /*
3798 * ARM9 is compatible with generic, but we want to use
3799 * write-through caching for now.
3800 */
3801 pmap_pte_init_generic();
3802
3803 pte_l1_s_cache_mode = L1_S_C;
3804 pte_l2_l_cache_mode = L2_C;
3805 pte_l2_s_cache_mode = L2_C;
3806 }
3807 #endif /* CPU_ARM9 */
3808 #endif /* ARM_MMU_GENERIC == 1 */
3809
3810 #if ARM_MMU_XSCALE == 1
3811 void
3812 pmap_pte_init_xscale(void)
3813 {
3814 uint32_t auxctl;
3815
3816 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3817 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
3818
3819 pte_l2_l_cache_mode = L2_B|L2_C;
3820 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
3821
3822 pte_l2_s_cache_mode = L2_B|L2_C;
3823 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
3824
3825 #ifdef XSCALE_CACHE_WRITE_THROUGH
3826 /*
3827 * Some versions of the XScale core have various bugs in
3828 * their cache units, the work-around for which is to run
3829 * the cache in write-through mode. Unfortunately, this
3830 * has a major (negative) impact on performance. So, we
3831 * go ahead and run fast-and-loose, in the hopes that we
3832 * don't line up the planets in a way that will trip the
3833 * bugs.
3834 *
3835 * However, we give you the option to be slow-but-correct.
3836 */
3837 pte_l1_s_cache_mode = L1_S_C;
3838 pte_l2_l_cache_mode = L2_C;
3839 pte_l2_s_cache_mode = L2_C;
3840 #endif /* XSCALE_CACHE_WRITE_THROUGH */
3841
3842 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
3843 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
3844 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
3845
3846 pte_l1_s_proto = L1_S_PROTO_xscale;
3847 pte_l1_c_proto = L1_C_PROTO_xscale;
3848 pte_l2_s_proto = L2_S_PROTO_xscale;
3849
3850 pmap_copy_page_func = pmap_copy_page_xscale;
3851 pmap_zero_page_func = pmap_zero_page_xscale;
3852
3853 /*
3854 * Disable ECC protection of page table access, for now.
3855 */
3856 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
3857 : "=r" (auxctl));
3858 auxctl &= ~XSCALE_AUXCTL_P;
3859 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
3860 :
3861 : "r" (auxctl));
3862 }
3863
3864 /*
3865 * xscale_setup_minidata:
3866 *
3867 * Set up the mini-data cache clean area. We require the
3868 * caller to allocate the right amount of physically and
3869 * virtually contiguous space.
3870 */
3871 void
3872 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
3873 {
3874 extern vaddr_t xscale_minidata_clean_addr;
3875 extern vsize_t xscale_minidata_clean_size; /* already initialized */
3876 pd_entry_t *pde = (pd_entry_t *) l1pt;
3877 pt_entry_t *pte;
3878 vsize_t size;
3879 uint32_t auxctl;
3880
3881 xscale_minidata_clean_addr = va;
3882
3883 /* Round it to page size. */
3884 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
3885
3886 for (; size != 0;
3887 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
3888 pte = (pt_entry_t *)
3889 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3890 if (pte == NULL)
3891 panic("xscale_setup_minidata: can't find L2 table for "
3892 "VA 0x%08lx", va);
3893 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3894 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
3895 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
3896 }
3897
3898 /*
3899 * Configure the mini-data cache for write-back with
3900 * read/write-allocate.
3901 *
3902 * NOTE: In order to reconfigure the mini-data cache, we must
3903 * make sure it contains no valid data! In order to do that,
3904 * we must issue a global data cache invalidate command!
3905 *
3906 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
3907 * THIS IS VERY IMPORTANT!
3908 */
3909
3910 /* Invalidate data and mini-data. */
3911 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
3912 :
3913 : "r" (auxctl));
3914
3915
3916 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
3917 : "=r" (auxctl));
3918 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
3919 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
3920 :
3921 : "r" (auxctl));
3922 }
3923 #endif /* ARM_MMU_XSCALE == 1 */
3924