Home | History | Annotate | Line # | Download | only in arm32
pmap.c revision 1.97.4.4
      1 /*	$NetBSD: pmap.c,v 1.97.4.4 2002/12/07 20:43:02 he Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2002 Wasabi Systems, Inc.
      5  * Copyright (c) 2001 Richard Earnshaw
      6  * Copyright (c) 2001 Christopher Gilbert
      7  * All rights reserved.
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  * 2. Redistributions in binary form must reproduce the above copyright
     12  *    notice, this list of conditions and the following disclaimer in the
     13  *    documentation and/or other materials provided with the distribution.
     14  * 3. The name of the company nor the name of the author may be used to
     15  *    endorse or promote products derived from this software without specific
     16  *    prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
     19  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
     20  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
     22  * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
     23  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
     24  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     26  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  */
     30 
     31 /*-
     32  * Copyright (c) 1999 The NetBSD Foundation, Inc.
     33  * All rights reserved.
     34  *
     35  * This code is derived from software contributed to The NetBSD Foundation
     36  * by Charles M. Hannum.
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *        This product includes software developed by the NetBSD
     49  *        Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     55  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     57  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     58  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     59  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     60  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     61  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     62  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     63  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     64  * POSSIBILITY OF SUCH DAMAGE.
     65  */
     66 
     67 /*
     68  * Copyright (c) 1994-1998 Mark Brinicombe.
     69  * Copyright (c) 1994 Brini.
     70  * All rights reserved.
     71  *
     72  * This code is derived from software written for Brini by Mark Brinicombe
     73  *
     74  * Redistribution and use in source and binary forms, with or without
     75  * modification, are permitted provided that the following conditions
     76  * are met:
     77  * 1. Redistributions of source code must retain the above copyright
     78  *    notice, this list of conditions and the following disclaimer.
     79  * 2. Redistributions in binary form must reproduce the above copyright
     80  *    notice, this list of conditions and the following disclaimer in the
     81  *    documentation and/or other materials provided with the distribution.
     82  * 3. All advertising materials mentioning features or use of this software
     83  *    must display the following acknowledgement:
     84  *	This product includes software developed by Mark Brinicombe.
     85  * 4. The name of the author may not be used to endorse or promote products
     86  *    derived from this software without specific prior written permission.
     87  *
     88  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     89  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     90  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     91  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     92  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     93  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     94  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     95  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     96  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     97  *
     98  * RiscBSD kernel project
     99  *
    100  * pmap.c
    101  *
    102  * Machine dependant vm stuff
    103  *
    104  * Created      : 20/09/94
    105  */
    106 
    107 /*
    108  * Performance improvements, UVM changes, overhauls and part-rewrites
    109  * were contributed by Neil A. Carson <neil (at) causality.com>.
    110  */
    111 
    112 /*
    113  * The dram block info is currently referenced from the bootconfig.
    114  * This should be placed in a separate structure.
    115  */
    116 
    117 /*
    118  * Special compilation symbols
    119  * PMAP_DEBUG		- Build in pmap_debug_level code
    120  */
    121 
    122 /* Include header files */
    123 
    124 #include "opt_pmap_debug.h"
    125 #include "opt_ddb.h"
    126 
    127 #include <sys/types.h>
    128 #include <sys/param.h>
    129 #include <sys/kernel.h>
    130 #include <sys/systm.h>
    131 #include <sys/proc.h>
    132 #include <sys/malloc.h>
    133 #include <sys/user.h>
    134 #include <sys/pool.h>
    135 #include <sys/cdefs.h>
    136 
    137 #include <uvm/uvm.h>
    138 
    139 #include <machine/bootconfig.h>
    140 #include <machine/bus.h>
    141 #include <machine/pmap.h>
    142 #include <machine/pcb.h>
    143 #include <machine/param.h>
    144 #include <arm/arm32/katelib.h>
    145 
    146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.97.4.4 2002/12/07 20:43:02 he Exp $");
    147 #ifdef PMAP_DEBUG
    148 #define	PDEBUG(_lev_,_stat_) \
    149 	if (pmap_debug_level >= (_lev_)) \
    150         	((_stat_))
    151 int pmap_debug_level = -2;
    152 void pmap_dump_pvlist(vaddr_t phys, char *m);
    153 
    154 /*
    155  * for switching to potentially finer grained debugging
    156  */
    157 #define	PDB_FOLLOW	0x0001
    158 #define	PDB_INIT	0x0002
    159 #define	PDB_ENTER	0x0004
    160 #define	PDB_REMOVE	0x0008
    161 #define	PDB_CREATE	0x0010
    162 #define	PDB_PTPAGE	0x0020
    163 #define	PDB_GROWKERN	0x0040
    164 #define	PDB_BITS	0x0080
    165 #define	PDB_COLLECT	0x0100
    166 #define	PDB_PROTECT	0x0200
    167 #define	PDB_MAP_L1	0x0400
    168 #define	PDB_BOOTSTRAP	0x1000
    169 #define	PDB_PARANOIA	0x2000
    170 #define	PDB_WIRING	0x4000
    171 #define	PDB_PVDUMP	0x8000
    172 
    173 int debugmap = 0;
    174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
    175 #define	NPDEBUG(_lev_,_stat_) \
    176 	if (pmapdebug & (_lev_)) \
    177         	((_stat_))
    178 
    179 #else	/* PMAP_DEBUG */
    180 #define	PDEBUG(_lev_,_stat_) /* Nothing */
    181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
    182 #endif	/* PMAP_DEBUG */
    183 
    184 struct pmap     kernel_pmap_store;
    185 
    186 /*
    187  * linked list of all non-kernel pmaps
    188  */
    189 
    190 static LIST_HEAD(, pmap) pmaps;
    191 
    192 /*
    193  * pool that pmap structures are allocated from
    194  */
    195 
    196 struct pool pmap_pmap_pool;
    197 
    198 static pt_entry_t *csrc_pte, *cdst_pte;
    199 static vaddr_t csrcp, cdstp;
    200 
    201 char *memhook;
    202 extern caddr_t msgbufaddr;
    203 
    204 boolean_t pmap_initialized = FALSE;	/* Has pmap_init completed? */
    205 /*
    206  * locking data structures
    207  */
    208 
    209 static struct lock pmap_main_lock;
    210 static struct simplelock pvalloc_lock;
    211 static struct simplelock pmaps_lock;
    212 #ifdef LOCKDEBUG
    213 #define PMAP_MAP_TO_HEAD_LOCK() \
    214      (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
    215 #define PMAP_MAP_TO_HEAD_UNLOCK() \
    216      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    217 
    218 #define PMAP_HEAD_TO_MAP_LOCK() \
    219      (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
    220 #define PMAP_HEAD_TO_MAP_UNLOCK() \
    221      (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
    222 #else
    223 #define	PMAP_MAP_TO_HEAD_LOCK()		/* nothing */
    224 #define	PMAP_MAP_TO_HEAD_UNLOCK()	/* nothing */
    225 #define	PMAP_HEAD_TO_MAP_LOCK()		/* nothing */
    226 #define	PMAP_HEAD_TO_MAP_UNLOCK()	/* nothing */
    227 #endif /* LOCKDEBUG */
    228 
    229 /*
    230  * pv_page management structures: locked by pvalloc_lock
    231  */
    232 
    233 TAILQ_HEAD(pv_pagelist, pv_page);
    234 static struct pv_pagelist pv_freepages;	/* list of pv_pages with free entrys */
    235 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
    236 static int pv_nfpvents;			/* # of free pv entries */
    237 static struct pv_page *pv_initpage;	/* bootstrap page from kernel_map */
    238 static vaddr_t pv_cachedva;		/* cached VA for later use */
    239 
    240 #define PVE_LOWAT (PVE_PER_PVPAGE / 2)	/* free pv_entry low water mark */
    241 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
    242 					/* high water mark */
    243 
    244 /*
    245  * local prototypes
    246  */
    247 
    248 static struct pv_entry	*pmap_add_pvpage __P((struct pv_page *, boolean_t));
    249 static struct pv_entry	*pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
    250 #define ALLOCPV_NEED	0	/* need PV now */
    251 #define ALLOCPV_TRY	1	/* just try to allocate, don't steal */
    252 #define ALLOCPV_NONEED	2	/* don't need PV, just growing cache */
    253 static struct pv_entry	*pmap_alloc_pvpage __P((struct pmap *, int));
    254 static void		 pmap_enter_pv __P((struct vm_page *,
    255 					    struct pv_entry *, struct pmap *,
    256 					    vaddr_t, struct vm_page *, int));
    257 static void		 pmap_free_pv __P((struct pmap *, struct pv_entry *));
    258 static void		 pmap_free_pvs __P((struct pmap *, struct pv_entry *));
    259 static void		 pmap_free_pv_doit __P((struct pv_entry *));
    260 static void		 pmap_free_pvpage __P((void));
    261 static boolean_t	 pmap_is_curpmap __P((struct pmap *));
    262 static struct pv_entry	*pmap_remove_pv __P((struct vm_page *, struct pmap *,
    263 			vaddr_t));
    264 #define PMAP_REMOVE_ALL		0	/* remove all mappings */
    265 #define PMAP_REMOVE_SKIPWIRED	1	/* skip wired mappings */
    266 
    267 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
    268 	u_int, u_int));
    269 
    270 /*
    271  * Structure that describes and L1 table.
    272  */
    273 struct l1pt {
    274 	SIMPLEQ_ENTRY(l1pt)	pt_queue;	/* Queue pointers */
    275 	struct pglist		pt_plist;	/* Allocated page list */
    276 	vaddr_t			pt_va;		/* Allocated virtual address */
    277 	int			pt_flags;	/* Flags */
    278 };
    279 #define	PTFLAG_STATIC		0x01		/* Statically allocated */
    280 #define	PTFLAG_KPT		0x02		/* Kernel pt's are mapped */
    281 #define	PTFLAG_CLEAN		0x04		/* L1 is clean */
    282 
    283 static void pmap_free_l1pt __P((struct l1pt *));
    284 static int pmap_allocpagedir __P((struct pmap *));
    285 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
    286 static void pmap_remove_all __P((struct vm_page *));
    287 
    288 static int pmap_alloc_ptpt(struct pmap *);
    289 static void pmap_free_ptpt(struct pmap *);
    290 
    291 static struct vm_page	*pmap_alloc_ptp __P((struct pmap *, vaddr_t));
    292 static struct vm_page	*pmap_get_ptp __P((struct pmap *, vaddr_t));
    293 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
    294 
    295 extern paddr_t physical_start;
    296 extern paddr_t physical_freestart;
    297 extern paddr_t physical_end;
    298 extern paddr_t physical_freeend;
    299 extern unsigned int free_pages;
    300 extern int max_processes;
    301 
    302 vaddr_t virtual_avail;
    303 vaddr_t virtual_end;
    304 vaddr_t pmap_curmaxkvaddr;
    305 
    306 vaddr_t avail_start;
    307 vaddr_t avail_end;
    308 
    309 extern pv_addr_t systempage;
    310 
    311 /* Variables used by the L1 page table queue code */
    312 SIMPLEQ_HEAD(l1pt_queue, l1pt);
    313 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
    314 static int l1pt_static_queue_count;	    /* items in the static l1 queue */
    315 static int l1pt_static_create_count;	    /* static l1 items created */
    316 static struct l1pt_queue l1pt_queue;	    /* head of our l1 queue */
    317 static int l1pt_queue_count;		    /* items in the l1 queue */
    318 static int l1pt_create_count;		    /* stat - L1's create count */
    319 static int l1pt_reuse_count;		    /* stat - L1's reused count */
    320 
    321 /* Local function prototypes (not used outside this file) */
    322 void pmap_pinit __P((struct pmap *));
    323 void pmap_freepagedir __P((struct pmap *));
    324 
    325 /* Other function prototypes */
    326 extern void bzero_page __P((vaddr_t));
    327 extern void bcopy_page __P((vaddr_t, vaddr_t));
    328 
    329 struct l1pt *pmap_alloc_l1pt __P((void));
    330 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
    331      vaddr_t l2pa, boolean_t));
    332 
    333 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
    334 static void pmap_unmap_ptes __P((struct pmap *));
    335 
    336 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
    337     pt_entry_t *, boolean_t));
    338 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
    339     pt_entry_t *, boolean_t));
    340 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
    341     pt_entry_t *, boolean_t));
    342 
    343 /*
    344  * real definition of pv_entry.
    345  */
    346 
    347 struct pv_entry {
    348 	struct pv_entry *pv_next;       /* next pv_entry */
    349 	struct pmap     *pv_pmap;        /* pmap where mapping lies */
    350 	vaddr_t         pv_va;          /* virtual address for mapping */
    351 	int             pv_flags;       /* flags */
    352 	struct vm_page	*pv_ptp;	/* vm_page for the ptp */
    353 };
    354 
    355 /*
    356  * pv_entrys are dynamically allocated in chunks from a single page.
    357  * we keep track of how many pv_entrys are in use for each page and
    358  * we can free pv_entry pages if needed.  there is one lock for the
    359  * entire allocation system.
    360  */
    361 
    362 struct pv_page_info {
    363 	TAILQ_ENTRY(pv_page) pvpi_list;
    364 	struct pv_entry *pvpi_pvfree;
    365 	int pvpi_nfree;
    366 };
    367 
    368 /*
    369  * number of pv_entry's in a pv_page
    370  * (note: won't work on systems where NPBG isn't a constant)
    371  */
    372 
    373 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
    374 			sizeof(struct pv_entry))
    375 
    376 /*
    377  * a pv_page: where pv_entrys are allocated from
    378  */
    379 
    380 struct pv_page {
    381 	struct pv_page_info pvinfo;
    382 	struct pv_entry pvents[PVE_PER_PVPAGE];
    383 };
    384 
    385 #ifdef MYCROFT_HACK
    386 int mycroft_hack = 0;
    387 #endif
    388 
    389 /* Function to set the debug level of the pmap code */
    390 
    391 #ifdef PMAP_DEBUG
    392 void
    393 pmap_debug(int level)
    394 {
    395 	pmap_debug_level = level;
    396 	printf("pmap_debug: level=%d\n", pmap_debug_level);
    397 }
    398 #endif	/* PMAP_DEBUG */
    399 
    400 __inline static boolean_t
    401 pmap_is_curpmap(struct pmap *pmap)
    402 {
    403 
    404 	if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
    405 	    pmap == pmap_kernel())
    406 		return (TRUE);
    407 
    408 	return (FALSE);
    409 }
    410 
    411 #include "isadma.h"
    412 
    413 #if NISADMA > 0
    414 /*
    415  * Used to protect memory for ISA DMA bounce buffers.  If, when loading
    416  * pages into the system, memory intersects with any of these ranges,
    417  * the intersecting memory will be loaded into a lower-priority free list.
    418  */
    419 bus_dma_segment_t *pmap_isa_dma_ranges;
    420 int pmap_isa_dma_nranges;
    421 
    422 /*
    423  * Check if a memory range intersects with an ISA DMA range, and
    424  * return the page-rounded intersection if it does.  The intersection
    425  * will be placed on a lower-priority free list.
    426  */
    427 static boolean_t
    428 pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
    429     psize_t *sizep)
    430 {
    431 	bus_dma_segment_t *ds;
    432 	int i;
    433 
    434 	if (pmap_isa_dma_ranges == NULL)
    435 		return (FALSE);
    436 
    437 	for (i = 0, ds = pmap_isa_dma_ranges;
    438 	     i < pmap_isa_dma_nranges; i++, ds++) {
    439 		if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
    440 			/*
    441 			 * Beginning of region intersects with this range.
    442 			 */
    443 			*pap = trunc_page(pa);
    444 			*sizep = round_page(min(pa + size,
    445 			    ds->ds_addr + ds->ds_len) - pa);
    446 			return (TRUE);
    447 		}
    448 		if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
    449 			/*
    450 			 * End of region intersects with this range.
    451 			 */
    452 			*pap = trunc_page(ds->ds_addr);
    453 			*sizep = round_page(min((pa + size) - ds->ds_addr,
    454 			    ds->ds_len));
    455 			return (TRUE);
    456 		}
    457 	}
    458 
    459 	/*
    460 	 * No intersection found.
    461 	 */
    462 	return (FALSE);
    463 }
    464 #endif /* NISADMA > 0 */
    465 
    466 /*
    467  * p v _ e n t r y   f u n c t i o n s
    468  */
    469 
    470 /*
    471  * pv_entry allocation functions:
    472  *   the main pv_entry allocation functions are:
    473  *     pmap_alloc_pv: allocate a pv_entry structure
    474  *     pmap_free_pv: free one pv_entry
    475  *     pmap_free_pvs: free a list of pv_entrys
    476  *
    477  * the rest are helper functions
    478  */
    479 
    480 /*
    481  * pmap_alloc_pv: inline function to allocate a pv_entry structure
    482  * => we lock pvalloc_lock
    483  * => if we fail, we call out to pmap_alloc_pvpage
    484  * => 3 modes:
    485  *    ALLOCPV_NEED   = we really need a pv_entry, even if we have to steal it
    486  *    ALLOCPV_TRY    = we want a pv_entry, but not enough to steal
    487  *    ALLOCPV_NONEED = we are trying to grow our free list, don't really need
    488  *			one now
    489  *
    490  * "try" is for optional functions like pmap_copy().
    491  */
    492 
    493 __inline static struct pv_entry *
    494 pmap_alloc_pv(struct pmap *pmap, int mode)
    495 {
    496 	struct pv_page *pvpage;
    497 	struct pv_entry *pv;
    498 
    499 	simple_lock(&pvalloc_lock);
    500 
    501 	pvpage = TAILQ_FIRST(&pv_freepages);
    502 
    503 	if (pvpage != NULL) {
    504 		pvpage->pvinfo.pvpi_nfree--;
    505 		if (pvpage->pvinfo.pvpi_nfree == 0) {
    506 			/* nothing left in this one? */
    507 			TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
    508 		}
    509 		pv = pvpage->pvinfo.pvpi_pvfree;
    510 		KASSERT(pv);
    511 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    512 		pv_nfpvents--;  /* took one from pool */
    513 	} else {
    514 		pv = NULL;		/* need more of them */
    515 	}
    516 
    517 	/*
    518 	 * if below low water mark or we didn't get a pv_entry we try and
    519 	 * create more pv_entrys ...
    520 	 */
    521 
    522 	if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
    523 		if (pv == NULL)
    524 			pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
    525 					       mode : ALLOCPV_NEED);
    526 		else
    527 			(void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
    528 	}
    529 
    530 	simple_unlock(&pvalloc_lock);
    531 	return(pv);
    532 }
    533 
    534 /*
    535  * pmap_alloc_pvpage: maybe allocate a new pvpage
    536  *
    537  * if need_entry is false: try and allocate a new pv_page
    538  * if need_entry is true: try and allocate a new pv_page and return a
    539  *	new pv_entry from it.   if we are unable to allocate a pv_page
    540  *	we make a last ditch effort to steal a pv_page from some other
    541  *	mapping.    if that fails, we panic...
    542  *
    543  * => we assume that the caller holds pvalloc_lock
    544  */
    545 
    546 static struct pv_entry *
    547 pmap_alloc_pvpage(struct pmap *pmap, int mode)
    548 {
    549 	struct vm_page *pg;
    550 	struct pv_page *pvpage;
    551 	struct pv_entry *pv;
    552 	int s;
    553 
    554 	/*
    555 	 * if we need_entry and we've got unused pv_pages, allocate from there
    556 	 */
    557 
    558 	pvpage = TAILQ_FIRST(&pv_unusedpgs);
    559 	if (mode != ALLOCPV_NONEED && pvpage != NULL) {
    560 
    561 		/* move it to pv_freepages list */
    562 		TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
    563 		TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
    564 
    565 		/* allocate a pv_entry */
    566 		pvpage->pvinfo.pvpi_nfree--;	/* can't go to zero */
    567 		pv = pvpage->pvinfo.pvpi_pvfree;
    568 		KASSERT(pv);
    569 		pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
    570 
    571 		pv_nfpvents--;  /* took one from pool */
    572 		return(pv);
    573 	}
    574 
    575 	/*
    576 	 *  see if we've got a cached unmapped VA that we can map a page in.
    577 	 * if not, try to allocate one.
    578 	 */
    579 
    580 
    581 	if (pv_cachedva == 0) {
    582 		s = splvm();
    583 		pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
    584 		    PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
    585 		splx(s);
    586 		if (pv_cachedva == 0) {
    587 			return (NULL);
    588 		}
    589 	}
    590 
    591 	pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
    592 	    UVM_PGA_USERESERVE);
    593 
    594 	if (pg == NULL)
    595 		return (NULL);
    596 	pg->flags &= ~PG_BUSY;	/* never busy */
    597 
    598 	/*
    599 	 * add a mapping for our new pv_page and free its entrys (save one!)
    600 	 *
    601 	 * NOTE: If we are allocating a PV page for the kernel pmap, the
    602 	 * pmap is already locked!  (...but entering the mapping is safe...)
    603 	 */
    604 
    605 	pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
    606 		VM_PROT_READ|VM_PROT_WRITE);
    607 	pmap_update(pmap_kernel());
    608 	pvpage = (struct pv_page *) pv_cachedva;
    609 	pv_cachedva = 0;
    610 	return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
    611 }
    612 
    613 /*
    614  * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
    615  *
    616  * => caller must hold pvalloc_lock
    617  * => if need_entry is true, we allocate and return one pv_entry
    618  */
    619 
    620 static struct pv_entry *
    621 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
    622 {
    623 	int tofree, lcv;
    624 
    625 	/* do we need to return one? */
    626 	tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
    627 
    628 	pvp->pvinfo.pvpi_pvfree = NULL;
    629 	pvp->pvinfo.pvpi_nfree = tofree;
    630 	for (lcv = 0 ; lcv < tofree ; lcv++) {
    631 		pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
    632 		pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
    633 	}
    634 	if (need_entry)
    635 		TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
    636 	else
    637 		TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    638 	pv_nfpvents += tofree;
    639 	return((need_entry) ? &pvp->pvents[lcv] : NULL);
    640 }
    641 
    642 /*
    643  * pmap_free_pv_doit: actually free a pv_entry
    644  *
    645  * => do not call this directly!  instead use either
    646  *    1. pmap_free_pv ==> free a single pv_entry
    647  *    2. pmap_free_pvs => free a list of pv_entrys
    648  * => we must be holding pvalloc_lock
    649  */
    650 
    651 __inline static void
    652 pmap_free_pv_doit(struct pv_entry *pv)
    653 {
    654 	struct pv_page *pvp;
    655 
    656 	pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
    657 	pv_nfpvents++;
    658 	pvp->pvinfo.pvpi_nfree++;
    659 
    660 	/* nfree == 1 => fully allocated page just became partly allocated */
    661 	if (pvp->pvinfo.pvpi_nfree == 1) {
    662 		TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
    663 	}
    664 
    665 	/* free it */
    666 	pv->pv_next = pvp->pvinfo.pvpi_pvfree;
    667 	pvp->pvinfo.pvpi_pvfree = pv;
    668 
    669 	/*
    670 	 * are all pv_page's pv_entry's free?  move it to unused queue.
    671 	 */
    672 
    673 	if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
    674 		TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
    675 		TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    676 	}
    677 }
    678 
    679 /*
    680  * pmap_free_pv: free a single pv_entry
    681  *
    682  * => we gain the pvalloc_lock
    683  */
    684 
    685 __inline static void
    686 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
    687 {
    688 	simple_lock(&pvalloc_lock);
    689 	pmap_free_pv_doit(pv);
    690 
    691 	/*
    692 	 * Can't free the PV page if the PV entries were associated with
    693 	 * the kernel pmap; the pmap is already locked.
    694 	 */
    695 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    696 	    pmap != pmap_kernel())
    697 		pmap_free_pvpage();
    698 
    699 	simple_unlock(&pvalloc_lock);
    700 }
    701 
    702 /*
    703  * pmap_free_pvs: free a list of pv_entrys
    704  *
    705  * => we gain the pvalloc_lock
    706  */
    707 
    708 __inline static void
    709 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
    710 {
    711 	struct pv_entry *nextpv;
    712 
    713 	simple_lock(&pvalloc_lock);
    714 
    715 	for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
    716 		nextpv = pvs->pv_next;
    717 		pmap_free_pv_doit(pvs);
    718 	}
    719 
    720 	/*
    721 	 * Can't free the PV page if the PV entries were associated with
    722 	 * the kernel pmap; the pmap is already locked.
    723 	 */
    724 	if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
    725 	    pmap != pmap_kernel())
    726 		pmap_free_pvpage();
    727 
    728 	simple_unlock(&pvalloc_lock);
    729 }
    730 
    731 
    732 /*
    733  * pmap_free_pvpage: try and free an unused pv_page structure
    734  *
    735  * => assume caller is holding the pvalloc_lock and that
    736  *	there is a page on the pv_unusedpgs list
    737  * => if we can't get a lock on the kmem_map we try again later
    738  */
    739 
    740 static void
    741 pmap_free_pvpage(void)
    742 {
    743 	int s;
    744 	struct vm_map *map;
    745 	struct vm_map_entry *dead_entries;
    746 	struct pv_page *pvp;
    747 
    748 	s = splvm(); /* protect kmem_map */
    749 
    750 	pvp = TAILQ_FIRST(&pv_unusedpgs);
    751 
    752 	/*
    753 	 * note: watch out for pv_initpage which is allocated out of
    754 	 * kernel_map rather than kmem_map.
    755 	 */
    756 	if (pvp == pv_initpage)
    757 		map = kernel_map;
    758 	else
    759 		map = kmem_map;
    760 	if (vm_map_lock_try(map)) {
    761 
    762 		/* remove pvp from pv_unusedpgs */
    763 		TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
    764 
    765 		/* unmap the page */
    766 		dead_entries = NULL;
    767 		uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
    768 		    &dead_entries);
    769 		vm_map_unlock(map);
    770 
    771 		if (dead_entries != NULL)
    772 			uvm_unmap_detach(dead_entries, 0);
    773 
    774 		pv_nfpvents -= PVE_PER_PVPAGE;  /* update free count */
    775 	}
    776 	if (pvp == pv_initpage)
    777 		/* no more initpage, we've freed it */
    778 		pv_initpage = NULL;
    779 
    780 	splx(s);
    781 }
    782 
    783 /*
    784  * main pv_entry manipulation functions:
    785  *   pmap_enter_pv: enter a mapping onto a vm_page list
    786  *   pmap_remove_pv: remove a mappiing from a vm_page list
    787  *
    788  * NOTE: pmap_enter_pv expects to lock the pvh itself
    789  *       pmap_remove_pv expects te caller to lock the pvh before calling
    790  */
    791 
    792 /*
    793  * pmap_enter_pv: enter a mapping onto a vm_page lst
    794  *
    795  * => caller should hold the proper lock on pmap_main_lock
    796  * => caller should have pmap locked
    797  * => we will gain the lock on the vm_page and allocate the new pv_entry
    798  * => caller should adjust ptp's wire_count before calling
    799  * => caller should not adjust pmap's wire_count
    800  */
    801 
    802 __inline static void
    803 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
    804     vaddr_t va, struct vm_page *ptp, int flags)
    805 {
    806 	pve->pv_pmap = pmap;
    807 	pve->pv_va = va;
    808 	pve->pv_ptp = ptp;			/* NULL for kernel pmap */
    809 	pve->pv_flags = flags;
    810 	simple_lock(&pg->mdpage.pvh_slock);	/* lock vm_page */
    811 	pve->pv_next = pg->mdpage.pvh_list;	/* add to ... */
    812 	pg->mdpage.pvh_list = pve;		/* ... locked list */
    813 	simple_unlock(&pg->mdpage.pvh_slock);	/* unlock, done! */
    814 	if (pve->pv_flags & PVF_WIRED)
    815 		++pmap->pm_stats.wired_count;
    816 #ifdef PMAP_ALIAS_DEBUG
    817     {
    818 	int s = splhigh();
    819 	if (pve->pv_flags & PVF_WRITE)
    820 		pg->mdpage.rw_mappings++;
    821 	else
    822 		pg->mdpage.ro_mappings++;
    823 	if (pg->mdpage.rw_mappings != 0 &&
    824 	    (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
    825 		printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
    826 		    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
    827 		    pg->mdpage.krw_mappings);
    828 	}
    829 	splx(s);
    830     }
    831 #endif /* PMAP_ALIAS_DEBUG */
    832 }
    833 
    834 /*
    835  * pmap_remove_pv: try to remove a mapping from a pv_list
    836  *
    837  * => caller should hold proper lock on pmap_main_lock
    838  * => pmap should be locked
    839  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    840  * => caller should adjust ptp's wire_count and free PTP if needed
    841  * => caller should NOT adjust pmap's wire_count
    842  * => we return the removed pve
    843  */
    844 
    845 __inline static struct pv_entry *
    846 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
    847 {
    848 	struct pv_entry *pve, **prevptr;
    849 
    850 	prevptr = &pg->mdpage.pvh_list;		/* previous pv_entry pointer */
    851 	pve = *prevptr;
    852 	while (pve) {
    853 		if (pve->pv_pmap == pmap && pve->pv_va == va) {	/* match? */
    854 			*prevptr = pve->pv_next;		/* remove it! */
    855 			if (pve->pv_flags & PVF_WIRED)
    856 			    --pmap->pm_stats.wired_count;
    857 #ifdef PMAP_ALIAS_DEBUG
    858     {
    859 			int s = splhigh();
    860 			if (pve->pv_flags & PVF_WRITE) {
    861 				KASSERT(pg->mdpage.rw_mappings != 0);
    862 				pg->mdpage.rw_mappings--;
    863 			} else {
    864 				KASSERT(pg->mdpage.ro_mappings != 0);
    865 				pg->mdpage.ro_mappings--;
    866 			}
    867 			splx(s);
    868     }
    869 #endif /* PMAP_ALIAS_DEBUG */
    870 			break;
    871 		}
    872 		prevptr = &pve->pv_next;		/* previous pointer */
    873 		pve = pve->pv_next;			/* advance */
    874 	}
    875 	return(pve);				/* return removed pve */
    876 }
    877 
    878 /*
    879  *
    880  * pmap_modify_pv: Update pv flags
    881  *
    882  * => caller should hold lock on vm_page [so that attrs can be adjusted]
    883  * => caller should NOT adjust pmap's wire_count
    884  * => caller must call pmap_vac_me_harder() if writable status of a page
    885  *    may have changed.
    886  * => we return the old flags
    887  *
    888  * Modify a physical-virtual mapping in the pv table
    889  */
    890 
    891 static /* __inline */ u_int
    892 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
    893     u_int bic_mask, u_int eor_mask)
    894 {
    895 	struct pv_entry *npv;
    896 	u_int flags, oflags;
    897 
    898 	/*
    899 	 * There is at least one VA mapping this page.
    900 	 */
    901 
    902 	for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
    903 		if (pmap == npv->pv_pmap && va == npv->pv_va) {
    904 			oflags = npv->pv_flags;
    905 			npv->pv_flags = flags =
    906 			    ((oflags & ~bic_mask) ^ eor_mask);
    907 			if ((flags ^ oflags) & PVF_WIRED) {
    908 				if (flags & PVF_WIRED)
    909 					++pmap->pm_stats.wired_count;
    910 				else
    911 					--pmap->pm_stats.wired_count;
    912 			}
    913 #ifdef PMAP_ALIAS_DEBUG
    914     {
    915 			int s = splhigh();
    916 			if ((flags ^ oflags) & PVF_WRITE) {
    917 				if (flags & PVF_WRITE) {
    918 					pg->mdpage.rw_mappings++;
    919 					pg->mdpage.ro_mappings--;
    920 					if (pg->mdpage.rw_mappings != 0 &&
    921 					    (pg->mdpage.kro_mappings != 0 ||
    922 					     pg->mdpage.krw_mappings != 0)) {
    923 						printf("pmap_modify_pv: rw %u, "
    924 						    "kro %u, krw %u\n",
    925 						    pg->mdpage.rw_mappings,
    926 						    pg->mdpage.kro_mappings,
    927 						    pg->mdpage.krw_mappings);
    928 					}
    929 				} else {
    930 					KASSERT(pg->mdpage.rw_mappings != 0);
    931 					pg->mdpage.rw_mappings--;
    932 					pg->mdpage.ro_mappings++;
    933 				}
    934 			}
    935 			splx(s);
    936     }
    937 #endif /* PMAP_ALIAS_DEBUG */
    938 			return (oflags);
    939 		}
    940 	}
    941 	return (0);
    942 }
    943 
    944 /*
    945  * Map the specified level 2 pagetable into the level 1 page table for
    946  * the given pmap to cover a chunk of virtual address space starting from the
    947  * address specified.
    948  */
    949 static __inline void
    950 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
    951 {
    952 	vaddr_t ptva;
    953 
    954 	/* Calculate the index into the L1 page table. */
    955 	ptva = (va >> L1_S_SHIFT) & ~3;
    956 
    957 	/* Map page table into the L1. */
    958 	pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
    959 	pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
    960 	pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
    961 	pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
    962 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
    963 
    964 	/* Map the page table into the page table area. */
    965 	if (selfref)
    966 		*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
    967 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
    968 }
    969 
    970 #if 0
    971 static __inline void
    972 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
    973 {
    974 	vaddr_t ptva;
    975 
    976 	/* Calculate the index into the L1 page table. */
    977 	ptva = (va >> L1_S_SHIFT) & ~3;
    978 
    979 	/* Unmap page table from the L1. */
    980 	pmap->pm_pdir[ptva + 0] = 0;
    981 	pmap->pm_pdir[ptva + 1] = 0;
    982 	pmap->pm_pdir[ptva + 2] = 0;
    983 	pmap->pm_pdir[ptva + 3] = 0;
    984 	cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
    985 
    986 	/* Unmap the page table from the page table area. */
    987 	*((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
    988 }
    989 #endif
    990 
    991 /*
    992  *	Used to map a range of physical addresses into kernel
    993  *	virtual address space.
    994  *
    995  *	For now, VM is already on, we only need to map the
    996  *	specified memory.
    997  *
    998  *	XXX This routine should eventually go away; it's only used
    999  *	XXX by machine-dependent crash dump code.
   1000  */
   1001 vaddr_t
   1002 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
   1003 {
   1004 	pt_entry_t *pte;
   1005 
   1006 	while (spa < epa) {
   1007 		pte = vtopte(va);
   1008 
   1009 		*pte = L2_S_PROTO | spa |
   1010 		    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
   1011 		cpu_tlb_flushID_SE(va);
   1012 		va += NBPG;
   1013 		spa += NBPG;
   1014 	}
   1015 	pmap_update(pmap_kernel());
   1016 	return(va);
   1017 }
   1018 
   1019 
   1020 /*
   1021  * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
   1022  *
   1023  * bootstrap the pmap system. This is called from initarm and allows
   1024  * the pmap system to initailise any structures it requires.
   1025  *
   1026  * Currently this sets up the kernel_pmap that is statically allocated
   1027  * and also allocated virtual addresses for certain page hooks.
   1028  * Currently the only one page hook is allocated that is used
   1029  * to zero physical pages of memory.
   1030  * It also initialises the start and end address of the kernel data space.
   1031  */
   1032 extern paddr_t physical_freestart;
   1033 extern paddr_t physical_freeend;
   1034 
   1035 char *boot_head;
   1036 
   1037 void
   1038 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
   1039 {
   1040 	pt_entry_t *pte;
   1041 	int loop;
   1042 	paddr_t start, end;
   1043 #if NISADMA > 0
   1044 	paddr_t istart;
   1045 	psize_t isize;
   1046 #endif
   1047 
   1048 	pmap_kernel()->pm_pdir = kernel_l1pt;
   1049 	pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
   1050 	pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
   1051 	simple_lock_init(&pmap_kernel()->pm_lock);
   1052 	pmap_kernel()->pm_obj.pgops = NULL;
   1053 	TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
   1054 	pmap_kernel()->pm_obj.uo_npages = 0;
   1055 	pmap_kernel()->pm_obj.uo_refs = 1;
   1056 
   1057 	/*
   1058 	 * Initialize PAGE_SIZE-dependent variables.
   1059 	 */
   1060 	uvm_setpagesize();
   1061 
   1062 	loop = 0;
   1063 	while (loop < bootconfig.dramblocks) {
   1064 		start = (paddr_t)bootconfig.dram[loop].address;
   1065 		end = start + (bootconfig.dram[loop].pages * NBPG);
   1066 		if (start < physical_freestart)
   1067 			start = physical_freestart;
   1068 		if (end > physical_freeend)
   1069 			end = physical_freeend;
   1070 #if 0
   1071 		printf("%d: %lx -> %lx\n", loop, start, end - 1);
   1072 #endif
   1073 #if NISADMA > 0
   1074 		if (pmap_isa_dma_range_intersect(start, end - start,
   1075 		    &istart, &isize)) {
   1076 			/*
   1077 			 * Place the pages that intersect with the
   1078 			 * ISA DMA range onto the ISA DMA free list.
   1079 			 */
   1080 #if 0
   1081 			printf("    ISADMA 0x%lx -> 0x%lx\n", istart,
   1082 			    istart + isize - 1);
   1083 #endif
   1084 			uvm_page_physload(atop(istart),
   1085 			    atop(istart + isize), atop(istart),
   1086 			    atop(istart + isize), VM_FREELIST_ISADMA);
   1087 
   1088 			/*
   1089 			 * Load the pieces that come before
   1090 			 * the intersection into the default
   1091 			 * free list.
   1092 			 */
   1093 			if (start < istart) {
   1094 #if 0
   1095 				printf("    BEFORE 0x%lx -> 0x%lx\n",
   1096 				    start, istart - 1);
   1097 #endif
   1098 				uvm_page_physload(atop(start),
   1099 				    atop(istart), atop(start),
   1100 				    atop(istart), VM_FREELIST_DEFAULT);
   1101 			}
   1102 
   1103 			/*
   1104 			 * Load the pieces that come after
   1105 			 * the intersection into the default
   1106 			 * free list.
   1107 			 */
   1108 			if ((istart + isize) < end) {
   1109 #if 0
   1110 				printf("     AFTER 0x%lx -> 0x%lx\n",
   1111 				    (istart + isize), end - 1);
   1112 #endif
   1113 				uvm_page_physload(atop(istart + isize),
   1114 				    atop(end), atop(istart + isize),
   1115 				    atop(end), VM_FREELIST_DEFAULT);
   1116 			}
   1117 		} else {
   1118 			uvm_page_physload(atop(start), atop(end),
   1119 			    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1120 		}
   1121 #else	/* NISADMA > 0 */
   1122 		uvm_page_physload(atop(start), atop(end),
   1123 		    atop(start), atop(end), VM_FREELIST_DEFAULT);
   1124 #endif /* NISADMA > 0 */
   1125 		++loop;
   1126 	}
   1127 
   1128 	virtual_avail = KERNEL_VM_BASE;
   1129 	virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
   1130 
   1131 	/*
   1132 	 * now we allocate the "special" VAs which are used for tmp mappings
   1133 	 * by the pmap (and other modules).  we allocate the VAs by advancing
   1134 	 * virtual_avail (note that there are no pages mapped at these VAs).
   1135 	 * we find the PTE that maps the allocated VA via the linear PTE
   1136 	 * mapping.
   1137 	 */
   1138 
   1139 	pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
   1140 
   1141 	csrcp = virtual_avail; csrc_pte = pte;
   1142 	virtual_avail += PAGE_SIZE; pte++;
   1143 
   1144 	cdstp = virtual_avail; cdst_pte = pte;
   1145 	virtual_avail += PAGE_SIZE; pte++;
   1146 
   1147 	memhook = (char *) virtual_avail;	/* don't need pte */
   1148 	virtual_avail += PAGE_SIZE; pte++;
   1149 
   1150 	msgbufaddr = (caddr_t) virtual_avail;	/* don't need pte */
   1151 	virtual_avail += round_page(MSGBUFSIZE);
   1152 	pte += atop(round_page(MSGBUFSIZE));
   1153 
   1154 	/*
   1155 	 * init the static-global locks and global lists.
   1156 	 */
   1157 	spinlockinit(&pmap_main_lock, "pmaplk", 0);
   1158 	simple_lock_init(&pvalloc_lock);
   1159 	simple_lock_init(&pmaps_lock);
   1160 	LIST_INIT(&pmaps);
   1161 	TAILQ_INIT(&pv_freepages);
   1162 	TAILQ_INIT(&pv_unusedpgs);
   1163 
   1164 	/*
   1165 	 * initialize the pmap pool.
   1166 	 */
   1167 
   1168 	pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
   1169 		  &pool_allocator_nointr);
   1170 
   1171 	cpu_dcache_wbinv_all();
   1172 }
   1173 
   1174 /*
   1175  * void pmap_init(void)
   1176  *
   1177  * Initialize the pmap module.
   1178  * Called by vm_init() in vm/vm_init.c in order to initialise
   1179  * any structures that the pmap system needs to map virtual memory.
   1180  */
   1181 
   1182 extern int physmem;
   1183 
   1184 void
   1185 pmap_init(void)
   1186 {
   1187 
   1188 	/*
   1189 	 * Set the available memory vars - These do not map to real memory
   1190 	 * addresses and cannot as the physical memory is fragmented.
   1191 	 * They are used by ps for %mem calculations.
   1192 	 * One could argue whether this should be the entire memory or just
   1193 	 * the memory that is useable in a user process.
   1194 	 */
   1195 	avail_start = 0;
   1196 	avail_end = physmem * NBPG;
   1197 
   1198 	/*
   1199 	 * now we need to free enough pv_entry structures to allow us to get
   1200 	 * the kmem_map/kmem_object allocated and inited (done after this
   1201 	 * function is finished).  to do this we allocate one bootstrap page out
   1202 	 * of kernel_map and use it to provide an initial pool of pv_entry
   1203 	 * structures.   we never free this page.
   1204 	 */
   1205 
   1206 	pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
   1207 	if (pv_initpage == NULL)
   1208 		panic("pmap_init: pv_initpage");
   1209 	pv_cachedva = 0;   /* a VA we have allocated but not used yet */
   1210 	pv_nfpvents = 0;
   1211 	(void) pmap_add_pvpage(pv_initpage, FALSE);
   1212 
   1213 	pmap_initialized = TRUE;
   1214 
   1215 	/* Initialise our L1 page table queues and counters */
   1216 	SIMPLEQ_INIT(&l1pt_static_queue);
   1217 	l1pt_static_queue_count = 0;
   1218 	l1pt_static_create_count = 0;
   1219 	SIMPLEQ_INIT(&l1pt_queue);
   1220 	l1pt_queue_count = 0;
   1221 	l1pt_create_count = 0;
   1222 	l1pt_reuse_count = 0;
   1223 }
   1224 
   1225 /*
   1226  * pmap_postinit()
   1227  *
   1228  * This routine is called after the vm and kmem subsystems have been
   1229  * initialised. This allows the pmap code to perform any initialisation
   1230  * that can only be done one the memory allocation is in place.
   1231  */
   1232 
   1233 void
   1234 pmap_postinit(void)
   1235 {
   1236 	int loop;
   1237 	struct l1pt *pt;
   1238 
   1239 #ifdef PMAP_STATIC_L1S
   1240 	for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
   1241 #else	/* PMAP_STATIC_L1S */
   1242 	for (loop = 0; loop < max_processes; ++loop) {
   1243 #endif	/* PMAP_STATIC_L1S */
   1244 		/* Allocate a L1 page table */
   1245 		pt = pmap_alloc_l1pt();
   1246 		if (!pt)
   1247 			panic("Cannot allocate static L1 page tables\n");
   1248 
   1249 		/* Clean it */
   1250 		bzero((void *)pt->pt_va, L1_TABLE_SIZE);
   1251 		pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
   1252 		/* Add the page table to the queue */
   1253 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
   1254 		++l1pt_static_queue_count;
   1255 		++l1pt_static_create_count;
   1256 	}
   1257 }
   1258 
   1259 
   1260 /*
   1261  * Create and return a physical map.
   1262  *
   1263  * If the size specified for the map is zero, the map is an actual physical
   1264  * map, and may be referenced by the hardware.
   1265  *
   1266  * If the size specified is non-zero, the map will be used in software only,
   1267  * and is bounded by that size.
   1268  */
   1269 
   1270 pmap_t
   1271 pmap_create(void)
   1272 {
   1273 	struct pmap *pmap;
   1274 
   1275 	/*
   1276 	 * Fetch pmap entry from the pool
   1277 	 */
   1278 
   1279 	pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
   1280 	/* XXX is this really needed! */
   1281 	memset(pmap, 0, sizeof(*pmap));
   1282 
   1283 	simple_lock_init(&pmap->pm_obj.vmobjlock);
   1284 	pmap->pm_obj.pgops = NULL;	/* currently not a mappable object */
   1285 	TAILQ_INIT(&pmap->pm_obj.memq);
   1286 	pmap->pm_obj.uo_npages = 0;
   1287 	pmap->pm_obj.uo_refs = 1;
   1288 	pmap->pm_stats.wired_count = 0;
   1289 	pmap->pm_stats.resident_count = 1;
   1290 	pmap->pm_ptphint = NULL;
   1291 
   1292 	/* Now init the machine part of the pmap */
   1293 	pmap_pinit(pmap);
   1294 	return(pmap);
   1295 }
   1296 
   1297 /*
   1298  * pmap_alloc_l1pt()
   1299  *
   1300  * This routine allocates physical and virtual memory for a L1 page table
   1301  * and wires it.
   1302  * A l1pt structure is returned to describe the allocated page table.
   1303  *
   1304  * This routine is allowed to fail if the required memory cannot be allocated.
   1305  * In this case NULL is returned.
   1306  */
   1307 
   1308 struct l1pt *
   1309 pmap_alloc_l1pt(void)
   1310 {
   1311 	paddr_t pa;
   1312 	vaddr_t va;
   1313 	struct l1pt *pt;
   1314 	int error;
   1315 	struct vm_page *m;
   1316 
   1317 	/* Allocate virtual address space for the L1 page table */
   1318 	va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
   1319 	if (va == 0) {
   1320 #ifdef DIAGNOSTIC
   1321 		PDEBUG(0,
   1322 		    printf("pmap: Cannot allocate pageable memory for L1\n"));
   1323 #endif	/* DIAGNOSTIC */
   1324 		return(NULL);
   1325 	}
   1326 
   1327 	/* Allocate memory for the l1pt structure */
   1328 	pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
   1329 
   1330 	/*
   1331 	 * Allocate pages from the VM system.
   1332 	 */
   1333 	TAILQ_INIT(&pt->pt_plist);
   1334 	error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
   1335 	    L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
   1336 	if (error) {
   1337 #ifdef DIAGNOSTIC
   1338 		PDEBUG(0,
   1339 		    printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
   1340 		    error));
   1341 #endif	/* DIAGNOSTIC */
   1342 		/* Release the resources we already have claimed */
   1343 		free(pt, M_VMPMAP);
   1344 		uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
   1345 		return(NULL);
   1346 	}
   1347 
   1348 	/* Map our physical pages into our virtual space */
   1349 	pt->pt_va = va;
   1350 	m = TAILQ_FIRST(&pt->pt_plist);
   1351 	while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
   1352 		pa = VM_PAGE_TO_PHYS(m);
   1353 
   1354 		pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
   1355 
   1356 		va += NBPG;
   1357 		m = m->pageq.tqe_next;
   1358 	}
   1359 
   1360 #ifdef DIAGNOSTIC
   1361 	if (m)
   1362 		panic("pmap_alloc_l1pt: pglist not empty\n");
   1363 #endif	/* DIAGNOSTIC */
   1364 
   1365 	pt->pt_flags = 0;
   1366 	return(pt);
   1367 }
   1368 
   1369 /*
   1370  * Free a L1 page table previously allocated with pmap_alloc_l1pt().
   1371  */
   1372 static void
   1373 pmap_free_l1pt(struct l1pt *pt)
   1374 {
   1375 	/* Separate the physical memory for the virtual space */
   1376 	pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
   1377 	pmap_update(pmap_kernel());
   1378 
   1379 	/* Return the physical memory */
   1380 	uvm_pglistfree(&pt->pt_plist);
   1381 
   1382 	/* Free the virtual space */
   1383 	uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
   1384 
   1385 	/* Free the l1pt structure */
   1386 	free(pt, M_VMPMAP);
   1387 }
   1388 
   1389 /*
   1390  * pmap_alloc_ptpt:
   1391  *
   1392  *	Allocate the page table that maps the PTE array.
   1393  */
   1394 static int
   1395 pmap_alloc_ptpt(struct pmap *pmap)
   1396 {
   1397 	struct vm_page *pg;
   1398 	pt_entry_t *pte;
   1399 
   1400 	KASSERT(pmap->pm_vptpt == 0);
   1401 
   1402 	pmap->pm_vptpt = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
   1403 	if (pmap->pm_vptpt == 0) {
   1404 		PDEBUG(0,
   1405 		    printf("pmap_alloc_ptpt: no KVA for PTPT\n"));
   1406 		return (ENOMEM);
   1407 	}
   1408 
   1409 	for (;;) {
   1410 		pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
   1411 		if (pg != NULL)
   1412 			break;
   1413 		uvm_wait("pmap_ptpt");
   1414 	}
   1415 
   1416 	pmap->pm_pptpt = VM_PAGE_TO_PHYS(pg);
   1417 
   1418 	pte = vtopte(pmap->pm_vptpt);
   1419 
   1420 	KDASSERT(pmap_pte_v(pte) == 0);
   1421 
   1422 	*pte = L2_S_PROTO | pmap->pm_pptpt |
   1423 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
   1424 #ifdef PMAP_ALIAS_DEBUG
   1425     {
   1426 	int s = splhigh();
   1427 	pg->mdpage.krw_mappings++;
   1428 	splx(s);
   1429     }
   1430 #endif /* PMAP_ALIAS_DEBUG */
   1431 
   1432 	return (0);
   1433 }
   1434 
   1435 /*
   1436  * pmap_free_ptpt:
   1437  *
   1438  *	Free the page table that maps the PTE array.
   1439  */
   1440 static void
   1441 pmap_free_ptpt(struct pmap *pmap)
   1442 {
   1443 
   1444 	pmap_kremove(pmap->pm_vptpt, L2_TABLE_SIZE);
   1445 	pmap_update(pmap_kernel());
   1446 
   1447 	uvm_pagefree(PHYS_TO_VM_PAGE(pmap->pm_pptpt));
   1448 
   1449 	uvm_km_free(kernel_map, pmap->pm_vptpt, L2_TABLE_SIZE);
   1450 }
   1451 
   1452 /*
   1453  * Allocate a page directory.
   1454  * This routine will either allocate a new page directory from the pool
   1455  * of L1 page tables currently held by the kernel or it will allocate
   1456  * a new one via pmap_alloc_l1pt().
   1457  * It will then initialise the l1 page table for use.
   1458  */
   1459 static int
   1460 pmap_allocpagedir(struct pmap *pmap)
   1461 {
   1462 	paddr_t pa;
   1463 	struct l1pt *pt;
   1464 	int error;
   1465 
   1466 	PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
   1467 
   1468 	/* Do we have any spare L1's lying around ? */
   1469 	if (l1pt_static_queue_count) {
   1470 		--l1pt_static_queue_count;
   1471 		pt = l1pt_static_queue.sqh_first;
   1472 		SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
   1473 	} else if (l1pt_queue_count) {
   1474 		--l1pt_queue_count;
   1475 		pt = l1pt_queue.sqh_first;
   1476 		SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
   1477 		++l1pt_reuse_count;
   1478 	} else {
   1479 		pt = pmap_alloc_l1pt();
   1480 		if (!pt)
   1481 			return(ENOMEM);
   1482 		++l1pt_create_count;
   1483 	}
   1484 
   1485 	/* Store the pointer to the l1 descriptor in the pmap. */
   1486 	pmap->pm_l1pt = pt;
   1487 
   1488 	/* Get the physical address of the start of the l1 */
   1489 	pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
   1490 
   1491 	/* Store the virtual address of the l1 in the pmap. */
   1492 	pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
   1493 
   1494 	/* Clean the L1 if it is dirty */
   1495 	if (!(pt->pt_flags & PTFLAG_CLEAN)) {
   1496 		bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
   1497 		cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
   1498 		    (L1_TABLE_SIZE - KERNEL_PD_SIZE));
   1499 	}
   1500 
   1501 	/* Allocate a page table to map all the page tables for this pmap */
   1502 	if ((error = pmap_alloc_ptpt(pmap)) != 0) {
   1503 		pmap_freepagedir(pmap);
   1504 		return (error);
   1505 	}
   1506 
   1507 	/* need to lock this all up for growkernel */
   1508 	simple_lock(&pmaps_lock);
   1509 
   1510 	/* Duplicate the kernel mappings. */
   1511 	bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1512 		(char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
   1513 		KERNEL_PD_SIZE);
   1514 	cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
   1515 	    (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
   1516 
   1517 	/* Wire in this page table */
   1518 	pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
   1519 
   1520 	pt->pt_flags &= ~PTFLAG_CLEAN;	/* L1 is dirty now */
   1521 
   1522 	/*
   1523 	 * Map the kernel page tables into the new PT map.
   1524 	 */
   1525 	bcopy((char *)(PTE_BASE
   1526 	    + (PTE_BASE >> (PGSHIFT - 2))
   1527 	    + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
   1528 	    (char *)pmap->pm_vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
   1529 	    (KERNEL_PD_SIZE >> 2));
   1530 
   1531 	LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
   1532 	simple_unlock(&pmaps_lock);
   1533 
   1534 	return(0);
   1535 }
   1536 
   1537 
   1538 /*
   1539  * Initialize a preallocated and zeroed pmap structure,
   1540  * such as one in a vmspace structure.
   1541  */
   1542 
   1543 void
   1544 pmap_pinit(struct pmap *pmap)
   1545 {
   1546 	int backoff = 6;
   1547 	int retry = 10;
   1548 
   1549 	PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
   1550 
   1551 	/* Keep looping until we succeed in allocating a page directory */
   1552 	while (pmap_allocpagedir(pmap) != 0) {
   1553 		/*
   1554 		 * Ok we failed to allocate a suitable block of memory for an
   1555 		 * L1 page table. This means that either:
   1556 		 * 1. 16KB of virtual address space could not be allocated
   1557 		 * 2. 16KB of physically contiguous memory on a 16KB boundary
   1558 		 *    could not be allocated.
   1559 		 *
   1560 		 * Since we cannot fail we will sleep for a while and try
   1561 		 * again.
   1562 		 *
   1563 		 * Searching for a suitable L1 PT is expensive:
   1564 		 * to avoid hogging the system when memory is really
   1565 		 * scarce, use an exponential back-off so that
   1566 		 * eventually we won't retry more than once every 8
   1567 		 * seconds.  This should allow other processes to run
   1568 		 * to completion and free up resources.
   1569 		 */
   1570 		(void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
   1571 		    NULL);
   1572 		if (--retry == 0) {
   1573 			retry = 10;
   1574 			if (backoff)
   1575 				--backoff;
   1576 		}
   1577 	}
   1578 
   1579 	if (vector_page < KERNEL_BASE) {
   1580 		/*
   1581 		 * Map the vector page.  This will also allocate and map
   1582 		 * an L2 table for it.
   1583 		 */
   1584 		pmap_enter(pmap, vector_page, systempage.pv_pa,
   1585 		    VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
   1586 		pmap_update(pmap);
   1587 	}
   1588 }
   1589 
   1590 
   1591 void
   1592 pmap_freepagedir(struct pmap *pmap)
   1593 {
   1594 	/* Free the memory used for the page table mapping */
   1595 	if (pmap->pm_vptpt != 0)
   1596 		pmap_free_ptpt(pmap);
   1597 
   1598 	/* junk the L1 page table */
   1599 	if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
   1600 		/* Add the page table to the queue */
   1601 		SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pmap->pm_l1pt, pt_queue);
   1602 		++l1pt_static_queue_count;
   1603 	} else if (l1pt_queue_count < 8) {
   1604 		/* Add the page table to the queue */
   1605 		SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
   1606 		++l1pt_queue_count;
   1607 	} else
   1608 		pmap_free_l1pt(pmap->pm_l1pt);
   1609 }
   1610 
   1611 
   1612 /*
   1613  * Retire the given physical map from service.
   1614  * Should only be called if the map contains no valid mappings.
   1615  */
   1616 
   1617 void
   1618 pmap_destroy(struct pmap *pmap)
   1619 {
   1620 	struct vm_page *page;
   1621 	int count;
   1622 
   1623 	if (pmap == NULL)
   1624 		return;
   1625 
   1626 	PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
   1627 
   1628 	/*
   1629 	 * Drop reference count
   1630 	 */
   1631 	simple_lock(&pmap->pm_obj.vmobjlock);
   1632 	count = --pmap->pm_obj.uo_refs;
   1633 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1634 	if (count > 0) {
   1635 		return;
   1636 	}
   1637 
   1638 	/*
   1639 	 * reference count is zero, free pmap resources and then free pmap.
   1640 	 */
   1641 
   1642 	/*
   1643 	 * remove it from global list of pmaps
   1644 	 */
   1645 
   1646 	simple_lock(&pmaps_lock);
   1647 	LIST_REMOVE(pmap, pm_list);
   1648 	simple_unlock(&pmaps_lock);
   1649 
   1650 	if (vector_page < KERNEL_BASE) {
   1651 		/* Remove the vector page mapping */
   1652 		pmap_remove(pmap, vector_page, vector_page + NBPG);
   1653 		pmap_update(pmap);
   1654 	}
   1655 
   1656 	/*
   1657 	 * Free any page tables still mapped
   1658 	 * This is only temporay until pmap_enter can count the number
   1659 	 * of mappings made in a page table. Then pmap_remove() can
   1660 	 * reduce the count and free the pagetable when the count
   1661 	 * reaches zero.  Note that entries in this list should match the
   1662 	 * contents of the ptpt, however this is faster than walking a 1024
   1663 	 * entries looking for pt's
   1664 	 * taken from i386 pmap.c
   1665 	 */
   1666 	/*
   1667 	 * vmobjlock must be held while freeing pages
   1668 	 */
   1669 	simple_lock(&pmap->pm_obj.vmobjlock);
   1670 	while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
   1671 		KASSERT((page->flags & PG_BUSY) == 0);
   1672 		page->wire_count = 0;
   1673 		uvm_pagefree(page);
   1674 	}
   1675 	simple_unlock(&pmap->pm_obj.vmobjlock);
   1676 
   1677 	/* Free the page dir */
   1678 	pmap_freepagedir(pmap);
   1679 
   1680 	/* return the pmap to the pool */
   1681 	pool_put(&pmap_pmap_pool, pmap);
   1682 }
   1683 
   1684 
   1685 /*
   1686  * void pmap_reference(struct pmap *pmap)
   1687  *
   1688  * Add a reference to the specified pmap.
   1689  */
   1690 
   1691 void
   1692 pmap_reference(struct pmap *pmap)
   1693 {
   1694 	if (pmap == NULL)
   1695 		return;
   1696 
   1697 	simple_lock(&pmap->pm_lock);
   1698 	pmap->pm_obj.uo_refs++;
   1699 	simple_unlock(&pmap->pm_lock);
   1700 }
   1701 
   1702 /*
   1703  * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1704  *
   1705  * Return the start and end addresses of the kernel's virtual space.
   1706  * These values are setup in pmap_bootstrap and are updated as pages
   1707  * are allocated.
   1708  */
   1709 
   1710 void
   1711 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
   1712 {
   1713 	*start = virtual_avail;
   1714 	*end = virtual_end;
   1715 }
   1716 
   1717 /*
   1718  * Activate the address space for the specified process.  If the process
   1719  * is the current process, load the new MMU context.
   1720  */
   1721 void
   1722 pmap_activate(struct proc *p)
   1723 {
   1724 	struct pmap *pmap = p->p_vmspace->vm_map.pmap;
   1725 	struct pcb *pcb = &p->p_addr->u_pcb;
   1726 
   1727 	(void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
   1728 	    (paddr_t *)&pcb->pcb_pagedir);
   1729 
   1730 	PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
   1731 	    p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
   1732 
   1733 	if (p == curproc) {
   1734 		PDEBUG(0, printf("pmap_activate: setting TTB\n"));
   1735 		setttb((u_int)pcb->pcb_pagedir);
   1736 	}
   1737 }
   1738 
   1739 /*
   1740  * Deactivate the address space of the specified process.
   1741  */
   1742 void
   1743 pmap_deactivate(struct proc *p)
   1744 {
   1745 }
   1746 
   1747 /*
   1748  * Perform any deferred pmap operations.
   1749  */
   1750 void
   1751 pmap_update(struct pmap *pmap)
   1752 {
   1753 
   1754 	/*
   1755 	 * We haven't deferred any pmap operations, but we do need to
   1756 	 * make sure TLB/cache operations have completed.
   1757 	 */
   1758 	cpu_cpwait();
   1759 }
   1760 
   1761 /*
   1762  * pmap_clean_page()
   1763  *
   1764  * This is a local function used to work out the best strategy to clean
   1765  * a single page referenced by its entry in the PV table. It's used by
   1766  * pmap_copy_page, pmap_zero page and maybe some others later on.
   1767  *
   1768  * Its policy is effectively:
   1769  *  o If there are no mappings, we don't bother doing anything with the cache.
   1770  *  o If there is one mapping, we clean just that page.
   1771  *  o If there are multiple mappings, we clean the entire cache.
   1772  *
   1773  * So that some functions can be further optimised, it returns 0 if it didn't
   1774  * clean the entire cache, or 1 if it did.
   1775  *
   1776  * XXX One bug in this routine is that if the pv_entry has a single page
   1777  * mapped at 0x00000000 a whole cache clean will be performed rather than
   1778  * just the 1 page. Since this should not occur in everyday use and if it does
   1779  * it will just result in not the most efficient clean for the page.
   1780  */
   1781 static int
   1782 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
   1783 {
   1784 	struct pmap *pmap;
   1785 	struct pv_entry *npv;
   1786 	int cache_needs_cleaning = 0;
   1787 	vaddr_t page_to_clean = 0;
   1788 
   1789 	if (pv == NULL)
   1790 		/* nothing mapped in so nothing to flush */
   1791 		return (0);
   1792 
   1793 	/* Since we flush the cache each time we change curproc, we
   1794 	 * only need to flush the page if it is in the current pmap.
   1795 	 */
   1796 	if (curproc)
   1797 		pmap = curproc->p_vmspace->vm_map.pmap;
   1798 	else
   1799 		pmap = pmap_kernel();
   1800 
   1801 	for (npv = pv; npv; npv = npv->pv_next) {
   1802 		if (npv->pv_pmap == pmap) {
   1803 			/* The page is mapped non-cacheable in
   1804 			 * this map.  No need to flush the cache.
   1805 			 */
   1806 			if (npv->pv_flags & PVF_NC) {
   1807 #ifdef DIAGNOSTIC
   1808 				if (cache_needs_cleaning)
   1809 					panic("pmap_clean_page: "
   1810 							"cache inconsistency");
   1811 #endif
   1812 				break;
   1813 			}
   1814 #if 0
   1815 			/*
   1816 			 * XXX Can't do this because pmap_protect doesn't
   1817 			 * XXX clean the page when it does a write-protect.
   1818 			 */
   1819 			else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
   1820 				continue;
   1821 #endif
   1822 			if (cache_needs_cleaning){
   1823 				page_to_clean = 0;
   1824 				break;
   1825 			}
   1826 			else
   1827 				page_to_clean = npv->pv_va;
   1828 			cache_needs_cleaning = 1;
   1829 		}
   1830 	}
   1831 
   1832 	if (page_to_clean)
   1833 		cpu_idcache_wbinv_range(page_to_clean, NBPG);
   1834 	else if (cache_needs_cleaning) {
   1835 		cpu_idcache_wbinv_all();
   1836 		return (1);
   1837 	}
   1838 	return (0);
   1839 }
   1840 
   1841 /*
   1842  * pmap_zero_page()
   1843  *
   1844  * Zero a given physical page by mapping it at a page hook point.
   1845  * In doing the zero page op, the page we zero is mapped cachable, as with
   1846  * StrongARM accesses to non-cached pages are non-burst making writing
   1847  * _any_ bulk data very slow.
   1848  */
   1849 #if ARM_MMU_GENERIC == 1
   1850 void
   1851 pmap_zero_page_generic(paddr_t phys)
   1852 {
   1853 #ifdef DEBUG
   1854 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1855 
   1856 	if (pg->mdpage.pvh_list != NULL)
   1857 		panic("pmap_zero_page: page has mappings");
   1858 #endif
   1859 
   1860 	KDASSERT((phys & PGOFSET) == 0);
   1861 
   1862 	/*
   1863 	 * Hook in the page, zero it, and purge the cache for that
   1864 	 * zeroed page. Invalidate the TLB as needed.
   1865 	 */
   1866 	*cdst_pte = L2_S_PROTO | phys |
   1867 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1868 	cpu_tlb_flushD_SE(cdstp);
   1869 	cpu_cpwait();
   1870 	bzero_page(cdstp);
   1871 	cpu_dcache_wbinv_range(cdstp, NBPG);
   1872 }
   1873 #endif /* ARM_MMU_GENERIC == 1 */
   1874 
   1875 #if ARM_MMU_XSCALE == 1
   1876 void
   1877 pmap_zero_page_xscale(paddr_t phys)
   1878 {
   1879 #ifdef DEBUG
   1880 	struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
   1881 
   1882 	if (pg->mdpage.pvh_list != NULL)
   1883 		panic("pmap_zero_page: page has mappings");
   1884 #endif
   1885 
   1886 	KDASSERT((phys & PGOFSET) == 0);
   1887 
   1888 	/*
   1889 	 * Hook in the page, zero it, and purge the cache for that
   1890 	 * zeroed page. Invalidate the TLB as needed.
   1891 	 */
   1892 	*cdst_pte = L2_S_PROTO | phys |
   1893 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   1894 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   1895 	cpu_tlb_flushD_SE(cdstp);
   1896 	cpu_cpwait();
   1897 	bzero_page(cdstp);
   1898 	xscale_cache_clean_minidata();
   1899 }
   1900 #endif /* ARM_MMU_XSCALE == 1 */
   1901 
   1902 /* pmap_pageidlezero()
   1903  *
   1904  * The same as above, except that we assume that the page is not
   1905  * mapped.  This means we never have to flush the cache first.  Called
   1906  * from the idle loop.
   1907  */
   1908 boolean_t
   1909 pmap_pageidlezero(paddr_t phys)
   1910 {
   1911 	int i, *ptr;
   1912 	boolean_t rv = TRUE;
   1913 #ifdef DEBUG
   1914 	struct vm_page *pg;
   1915 
   1916 	pg = PHYS_TO_VM_PAGE(phys);
   1917 	if (pg->mdpage.pvh_list != NULL)
   1918 		panic("pmap_pageidlezero: page has mappings");
   1919 #endif
   1920 
   1921 	KDASSERT((phys & PGOFSET) == 0);
   1922 
   1923 	/*
   1924 	 * Hook in the page, zero it, and purge the cache for that
   1925 	 * zeroed page. Invalidate the TLB as needed.
   1926 	 */
   1927 	*cdst_pte = L2_S_PROTO | phys |
   1928 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1929 	cpu_tlb_flushD_SE(cdstp);
   1930 	cpu_cpwait();
   1931 
   1932 	for (i = 0, ptr = (int *)cdstp;
   1933 			i < (NBPG / sizeof(int)); i++) {
   1934 		if (sched_whichqs != 0) {
   1935 			/*
   1936 			 * A process has become ready.  Abort now,
   1937 			 * so we don't keep it waiting while we
   1938 			 * do slow memory access to finish this
   1939 			 * page.
   1940 			 */
   1941 			rv = FALSE;
   1942 			break;
   1943 		}
   1944 		*ptr++ = 0;
   1945 	}
   1946 
   1947 	if (rv)
   1948 		/*
   1949 		 * if we aborted we'll rezero this page again later so don't
   1950 		 * purge it unless we finished it
   1951 		 */
   1952 		cpu_dcache_wbinv_range(cdstp, NBPG);
   1953 	return (rv);
   1954 }
   1955 
   1956 /*
   1957  * pmap_copy_page()
   1958  *
   1959  * Copy one physical page into another, by mapping the pages into
   1960  * hook points. The same comment regarding cachability as in
   1961  * pmap_zero_page also applies here.
   1962  */
   1963 #if ARM_MMU_GENERIC == 1
   1964 void
   1965 pmap_copy_page_generic(paddr_t src, paddr_t dst)
   1966 {
   1967 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   1968 #ifdef DEBUG
   1969 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   1970 
   1971 	if (dst_pg->mdpage.pvh_list != NULL)
   1972 		panic("pmap_copy_page: dst page has mappings");
   1973 #endif
   1974 
   1975 	KDASSERT((src & PGOFSET) == 0);
   1976 	KDASSERT((dst & PGOFSET) == 0);
   1977 
   1978 	/*
   1979 	 * Clean the source page.  Hold the source page's lock for
   1980 	 * the duration of the copy so that no other mappings can
   1981 	 * be created while we have a potentially aliased mapping.
   1982 	 */
   1983 	simple_lock(&src_pg->mdpage.pvh_slock);
   1984 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   1985 
   1986 	/*
   1987 	 * Map the pages into the page hook points, copy them, and purge
   1988 	 * the cache for the appropriate page. Invalidate the TLB
   1989 	 * as required.
   1990 	 */
   1991 	*csrc_pte = L2_S_PROTO | src |
   1992 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
   1993 	*cdst_pte = L2_S_PROTO | dst |
   1994 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
   1995 	cpu_tlb_flushD_SE(csrcp);
   1996 	cpu_tlb_flushD_SE(cdstp);
   1997 	cpu_cpwait();
   1998 	bcopy_page(csrcp, cdstp);
   1999 	cpu_dcache_inv_range(csrcp, NBPG);
   2000 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   2001 	cpu_dcache_wbinv_range(cdstp, NBPG);
   2002 }
   2003 #endif /* ARM_MMU_GENERIC == 1 */
   2004 
   2005 #if ARM_MMU_XSCALE == 1
   2006 void
   2007 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
   2008 {
   2009 	struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
   2010 #ifdef DEBUG
   2011 	struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
   2012 
   2013 	if (dst_pg->mdpage.pvh_list != NULL)
   2014 		panic("pmap_copy_page: dst page has mappings");
   2015 #endif
   2016 
   2017 	KDASSERT((src & PGOFSET) == 0);
   2018 	KDASSERT((dst & PGOFSET) == 0);
   2019 
   2020 	/*
   2021 	 * Clean the source page.  Hold the source page's lock for
   2022 	 * the duration of the copy so that no other mappings can
   2023 	 * be created while we have a potentially aliased mapping.
   2024 	 */
   2025 	simple_lock(&src_pg->mdpage.pvh_slock);
   2026 	(void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
   2027 
   2028 	/*
   2029 	 * Map the pages into the page hook points, copy them, and purge
   2030 	 * the cache for the appropriate page. Invalidate the TLB
   2031 	 * as required.
   2032 	 */
   2033 	*csrc_pte = L2_S_PROTO | src |
   2034 	    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   2035 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   2036 	*cdst_pte = L2_S_PROTO | dst |
   2037 	    L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
   2038 	    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);	/* mini-data */
   2039 	cpu_tlb_flushD_SE(csrcp);
   2040 	cpu_tlb_flushD_SE(cdstp);
   2041 	cpu_cpwait();
   2042 	bcopy_page(csrcp, cdstp);
   2043 	simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
   2044 	xscale_cache_clean_minidata();
   2045 }
   2046 #endif /* ARM_MMU_XSCALE == 1 */
   2047 
   2048 #if 0
   2049 void
   2050 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
   2051 {
   2052 	pd_entry_t *pde;
   2053 	paddr_t pa;
   2054 	struct vm_page *m;
   2055 
   2056 	if (pmap == pmap_kernel())
   2057 		return;
   2058 
   2059 	pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
   2060 	pa = pmap_pte_pa(pde);
   2061 	m = PHYS_TO_VM_PAGE(pa);
   2062 	++m->wire_count;
   2063 #ifdef MYCROFT_HACK
   2064 	printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2065 	    pmap, va, pde, pa, m, m->wire_count);
   2066 #endif
   2067 }
   2068 
   2069 void
   2070 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
   2071 {
   2072 	pd_entry_t *pde;
   2073 	paddr_t pa;
   2074 	struct vm_page *m;
   2075 
   2076 	if (pmap == pmap_kernel())
   2077 		return;
   2078 
   2079 	pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
   2080 	pa = pmap_pte_pa(pde);
   2081 	m = PHYS_TO_VM_PAGE(pa);
   2082 	--m->wire_count;
   2083 #ifdef MYCROFT_HACK
   2084 	printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
   2085 	    pmap, va, pde, pa, m, m->wire_count);
   2086 #endif
   2087 	if (m->wire_count == 0) {
   2088 #ifdef MYCROFT_HACK
   2089 		printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
   2090 		    pmap, va, pde, pa, m);
   2091 #endif
   2092 		pmap_unmap_in_l1(pmap, va);
   2093 		uvm_pagefree(m);
   2094 		--pmap->pm_stats.resident_count;
   2095 	}
   2096 }
   2097 #else
   2098 #define	pmap_pte_addref(pmap, va)
   2099 #define	pmap_pte_delref(pmap, va)
   2100 #endif
   2101 
   2102 /*
   2103  * Since we have a virtually indexed cache, we may need to inhibit caching if
   2104  * there is more than one mapping and at least one of them is writable.
   2105  * Since we purge the cache on every context switch, we only need to check for
   2106  * other mappings within the same pmap, or kernel_pmap.
   2107  * This function is also called when a page is unmapped, to possibly reenable
   2108  * caching on any remaining mappings.
   2109  *
   2110  * The code implements the following logic, where:
   2111  *
   2112  * KW = # of kernel read/write pages
   2113  * KR = # of kernel read only pages
   2114  * UW = # of user read/write pages
   2115  * UR = # of user read only pages
   2116  * OW = # of user read/write pages in another pmap, then
   2117  *
   2118  * KC = kernel mapping is cacheable
   2119  * UC = user mapping is cacheable
   2120  *
   2121  *                     KW=0,KR=0  KW=0,KR>0  KW=1,KR=0  KW>1,KR>=0
   2122  *                   +---------------------------------------------
   2123  * UW=0,UR=0,OW=0    | ---        KC=1       KC=1       KC=0
   2124  * UW=0,UR>0,OW=0    | UC=1       KC=1,UC=1  KC=0,UC=0  KC=0,UC=0
   2125  * UW=0,UR>0,OW>0    | UC=1       KC=0,UC=1  KC=0,UC=0  KC=0,UC=0
   2126  * UW=1,UR=0,OW=0    | UC=1       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2127  * UW>1,UR>=0,OW>=0  | UC=0       KC=0,UC=0  KC=0,UC=0  KC=0,UC=0
   2128  *
   2129  * Note that the pmap must have it's ptes mapped in, and passed with ptes.
   2130  */
   2131 __inline static void
   2132 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2133 	boolean_t clear_cache)
   2134 {
   2135 	if (pmap == pmap_kernel())
   2136 		pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
   2137 	else
   2138 		pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2139 }
   2140 
   2141 static void
   2142 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2143 	boolean_t clear_cache)
   2144 {
   2145 	int user_entries = 0;
   2146 	int user_writable = 0;
   2147 	int user_cacheable = 0;
   2148 	int kernel_entries = 0;
   2149 	int kernel_writable = 0;
   2150 	int kernel_cacheable = 0;
   2151 	struct pv_entry *pv;
   2152 	struct pmap *last_pmap = pmap;
   2153 
   2154 #ifdef DIAGNOSTIC
   2155 	if (pmap != pmap_kernel())
   2156 		panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
   2157 #endif
   2158 
   2159 	/*
   2160 	 * Pass one, see if there are both kernel and user pmaps for
   2161 	 * this page.  Calculate whether there are user-writable or
   2162 	 * kernel-writable pages.
   2163 	 */
   2164 	for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
   2165 		if (pv->pv_pmap != pmap) {
   2166 			user_entries++;
   2167 			if (pv->pv_flags & PVF_WRITE)
   2168 				user_writable++;
   2169 			if ((pv->pv_flags & PVF_NC) == 0)
   2170 				user_cacheable++;
   2171 		} else {
   2172 			kernel_entries++;
   2173 			if (pv->pv_flags & PVF_WRITE)
   2174 				kernel_writable++;
   2175 			if ((pv->pv_flags & PVF_NC) == 0)
   2176 				kernel_cacheable++;
   2177 		}
   2178 	}
   2179 
   2180 	/*
   2181 	 * We know we have just been updating a kernel entry, so if
   2182 	 * all user pages are already cacheable, then there is nothing
   2183 	 * further to do.
   2184 	 */
   2185 	if (kernel_entries == 0 &&
   2186 	    user_cacheable == user_entries)
   2187 		return;
   2188 
   2189 	if (user_entries) {
   2190 		/*
   2191 		 * Scan over the list again, for each entry, if it
   2192 		 * might not be set correctly, call pmap_vac_me_user
   2193 		 * to recalculate the settings.
   2194 		 */
   2195 		for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   2196 			/*
   2197 			 * We know kernel mappings will get set
   2198 			 * correctly in other calls.  We also know
   2199 			 * that if the pmap is the same as last_pmap
   2200 			 * then we've just handled this entry.
   2201 			 */
   2202 			if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
   2203 				continue;
   2204 			/*
   2205 			 * If there are kernel entries and this page
   2206 			 * is writable but non-cacheable, then we can
   2207 			 * skip this entry also.
   2208 			 */
   2209 			if (kernel_entries > 0 &&
   2210 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
   2211 			    (PVF_NC | PVF_WRITE))
   2212 				continue;
   2213 			/*
   2214 			 * Similarly if there are no kernel-writable
   2215 			 * entries and the page is already
   2216 			 * read-only/cacheable.
   2217 			 */
   2218 			if (kernel_writable == 0 &&
   2219 			    (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
   2220 				continue;
   2221 			/*
   2222 			 * For some of the remaining cases, we know
   2223 			 * that we must recalculate, but for others we
   2224 			 * can't tell if they are correct or not, so
   2225 			 * we recalculate anyway.
   2226 			 */
   2227 			pmap_unmap_ptes(last_pmap);
   2228 			last_pmap = pv->pv_pmap;
   2229 			ptes = pmap_map_ptes(last_pmap);
   2230 			pmap_vac_me_user(last_pmap, pg, ptes,
   2231 			    pmap_is_curpmap(last_pmap));
   2232 		}
   2233 		/* Restore the pte mapping that was passed to us.  */
   2234 		if (last_pmap != pmap) {
   2235 			pmap_unmap_ptes(last_pmap);
   2236 			ptes = pmap_map_ptes(pmap);
   2237 		}
   2238 		if (kernel_entries == 0)
   2239 			return;
   2240 	}
   2241 
   2242 	pmap_vac_me_user(pmap, pg, ptes, clear_cache);
   2243 	return;
   2244 }
   2245 
   2246 static void
   2247 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
   2248 	boolean_t clear_cache)
   2249 {
   2250 	struct pmap *kpmap = pmap_kernel();
   2251 	struct pv_entry *pv, *npv;
   2252 	int entries = 0;
   2253 	int writable = 0;
   2254 	int cacheable_entries = 0;
   2255 	int kern_cacheable = 0;
   2256 	int other_writable = 0;
   2257 
   2258 	pv = pg->mdpage.pvh_list;
   2259 	KASSERT(ptes != NULL);
   2260 
   2261 	/*
   2262 	 * Count mappings and writable mappings in this pmap.
   2263 	 * Include kernel mappings as part of our own.
   2264 	 * Keep a pointer to the first one.
   2265 	 */
   2266 	for (npv = pv; npv; npv = npv->pv_next) {
   2267 		/* Count mappings in the same pmap */
   2268 		if (pmap == npv->pv_pmap ||
   2269 		    kpmap == npv->pv_pmap) {
   2270 			if (entries++ == 0)
   2271 				pv = npv;
   2272 			/* Cacheable mappings */
   2273 			if ((npv->pv_flags & PVF_NC) == 0) {
   2274 				cacheable_entries++;
   2275 				if (kpmap == npv->pv_pmap)
   2276 					kern_cacheable++;
   2277 			}
   2278 			/* Writable mappings */
   2279 			if (npv->pv_flags & PVF_WRITE)
   2280 				++writable;
   2281 		} else if (npv->pv_flags & PVF_WRITE)
   2282 			other_writable = 1;
   2283 	}
   2284 
   2285 	PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
   2286 		"writable %d cacheable %d %s\n", pmap, entries, writable,
   2287 	    	cacheable_entries, clear_cache ? "clean" : "no clean"));
   2288 
   2289 	/*
   2290 	 * Enable or disable caching as necessary.
   2291 	 * Note: the first entry might be part of the kernel pmap,
   2292 	 * so we can't assume this is indicative of the state of the
   2293 	 * other (maybe non-kpmap) entries.
   2294 	 */
   2295 	if ((entries > 1 && writable) ||
   2296 	    (entries > 0 && pmap == kpmap && other_writable)) {
   2297 		if (cacheable_entries == 0)
   2298 		    return;
   2299 		for (npv = pv; npv; npv = npv->pv_next) {
   2300 			if ((pmap == npv->pv_pmap
   2301 			    || kpmap == npv->pv_pmap) &&
   2302 			    (npv->pv_flags & PVF_NC) == 0) {
   2303 				ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
   2304  				npv->pv_flags |= PVF_NC;
   2305 				/*
   2306 				 * If this page needs flushing from the
   2307 				 * cache, and we aren't going to do it
   2308 				 * below, do it now.
   2309 				 */
   2310 				if ((cacheable_entries < 4 &&
   2311 				    (clear_cache || npv->pv_pmap == kpmap)) ||
   2312 				    (npv->pv_pmap == kpmap &&
   2313 				    !clear_cache && kern_cacheable < 4)) {
   2314 					cpu_idcache_wbinv_range(npv->pv_va,
   2315 					    NBPG);
   2316 					cpu_tlb_flushID_SE(npv->pv_va);
   2317 				}
   2318 			}
   2319 		}
   2320 		if ((clear_cache && cacheable_entries >= 4) ||
   2321 		    kern_cacheable >= 4) {
   2322 			cpu_idcache_wbinv_all();
   2323 			cpu_tlb_flushID();
   2324 		}
   2325 		cpu_cpwait();
   2326 	} else if (entries > 0) {
   2327 		/*
   2328 		 * Turn cacheing back on for some pages.  If it is a kernel
   2329 		 * page, only do so if there are no other writable pages.
   2330 		 */
   2331 		for (npv = pv; npv; npv = npv->pv_next) {
   2332 			if ((pmap == npv->pv_pmap ||
   2333 			    (kpmap == npv->pv_pmap && other_writable == 0)) &&
   2334 			    (npv->pv_flags & PVF_NC)) {
   2335 				ptes[arm_btop(npv->pv_va)] |=
   2336 				    pte_l2_s_cache_mode;
   2337 				npv->pv_flags &= ~PVF_NC;
   2338 			}
   2339 		}
   2340 	}
   2341 }
   2342 
   2343 /*
   2344  * pmap_remove()
   2345  *
   2346  * pmap_remove is responsible for nuking a number of mappings for a range
   2347  * of virtual address space in the current pmap. To do this efficiently
   2348  * is interesting, because in a number of cases a wide virtual address
   2349  * range may be supplied that contains few actual mappings. So, the
   2350  * optimisations are:
   2351  *  1. Try and skip over hunks of address space for which an L1 entry
   2352  *     does not exist.
   2353  *  2. Build up a list of pages we've hit, up to a maximum, so we can
   2354  *     maybe do just a partial cache clean. This path of execution is
   2355  *     complicated by the fact that the cache must be flushed _before_
   2356  *     the PTE is nuked, being a VAC :-)
   2357  *  3. Maybe later fast-case a single page, but I don't think this is
   2358  *     going to make _that_ much difference overall.
   2359  */
   2360 
   2361 #define PMAP_REMOVE_CLEAN_LIST_SIZE	3
   2362 
   2363 void
   2364 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
   2365 {
   2366 	int cleanlist_idx = 0;
   2367 	struct pagelist {
   2368 		vaddr_t va;
   2369 		pt_entry_t *pte;
   2370 	} cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
   2371 	pt_entry_t *pte = 0, *ptes;
   2372 	paddr_t pa;
   2373 	int pmap_active;
   2374 	struct vm_page *pg;
   2375 
   2376 	/* Exit quick if there is no pmap */
   2377 	if (!pmap)
   2378 		return;
   2379 
   2380 	PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
   2381 	    pmap, sva, eva));
   2382 
   2383 	/*
   2384 	 * we lock in the pmap => vm_page direction
   2385 	 */
   2386 	PMAP_MAP_TO_HEAD_LOCK();
   2387 
   2388 	ptes = pmap_map_ptes(pmap);
   2389 	/* Get a page table pointer */
   2390 	while (sva < eva) {
   2391 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2392 			break;
   2393 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2394 	}
   2395 
   2396 	pte = &ptes[arm_btop(sva)];
   2397 	/* Note if the pmap is active thus require cache and tlb cleans */
   2398 	pmap_active = pmap_is_curpmap(pmap);
   2399 
   2400 	/* Now loop along */
   2401 	while (sva < eva) {
   2402 		/* Check if we can move to the next PDE (l1 chunk) */
   2403 		if (!(sva & L2_ADDR_BITS))
   2404 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2405 				sva += L1_S_SIZE;
   2406 				pte += arm_btop(L1_S_SIZE);
   2407 				continue;
   2408 			}
   2409 
   2410 		/* We've found a valid PTE, so this page of PTEs has to go. */
   2411 		if (pmap_pte_v(pte)) {
   2412 			/* Update statistics */
   2413 			--pmap->pm_stats.resident_count;
   2414 
   2415 			/*
   2416 			 * Add this page to our cache remove list, if we can.
   2417 			 * If, however the cache remove list is totally full,
   2418 			 * then do a complete cache invalidation taking note
   2419 			 * to backtrack the PTE table beforehand, and ignore
   2420 			 * the lists in future because there's no longer any
   2421 			 * point in bothering with them (we've paid the
   2422 			 * penalty, so will carry on unhindered). Otherwise,
   2423 			 * when we fall out, we just clean the list.
   2424 			 */
   2425 			PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
   2426 			pa = pmap_pte_pa(pte);
   2427 
   2428 			if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2429 				/* Add to the clean list. */
   2430 				cleanlist[cleanlist_idx].pte = pte;
   2431 				cleanlist[cleanlist_idx].va = sva;
   2432 				cleanlist_idx++;
   2433 			} else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2434 				int cnt;
   2435 
   2436 				/* Nuke everything if needed. */
   2437 				if (pmap_active) {
   2438 					cpu_idcache_wbinv_all();
   2439 					cpu_tlb_flushID();
   2440 				}
   2441 
   2442 				/*
   2443 				 * Roll back the previous PTE list,
   2444 				 * and zero out the current PTE.
   2445 				 */
   2446 				for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
   2447 					*cleanlist[cnt].pte = 0;
   2448 					pmap_pte_delref(pmap, cleanlist[cnt].va);
   2449 				}
   2450 				*pte = 0;
   2451 				pmap_pte_delref(pmap, sva);
   2452 				cleanlist_idx++;
   2453 			} else {
   2454 				/*
   2455 				 * We've already nuked the cache and
   2456 				 * TLB, so just carry on regardless,
   2457 				 * and we won't need to do it again
   2458 				 */
   2459 				*pte = 0;
   2460 				pmap_pte_delref(pmap, sva);
   2461 			}
   2462 
   2463 			/*
   2464 			 * Update flags. In a number of circumstances,
   2465 			 * we could cluster a lot of these and do a
   2466 			 * number of sequential pages in one go.
   2467 			 */
   2468 			if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
   2469 				struct pv_entry *pve;
   2470 				simple_lock(&pg->mdpage.pvh_slock);
   2471 				pve = pmap_remove_pv(pg, pmap, sva);
   2472 				pmap_free_pv(pmap, pve);
   2473 				pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2474 				simple_unlock(&pg->mdpage.pvh_slock);
   2475 			}
   2476 		}
   2477 		sva += NBPG;
   2478 		pte++;
   2479 	}
   2480 
   2481 	pmap_unmap_ptes(pmap);
   2482 	/*
   2483 	 * Now, if we've fallen through down to here, chances are that there
   2484 	 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
   2485 	 */
   2486 	if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
   2487 		u_int cnt;
   2488 
   2489 		for (cnt = 0; cnt < cleanlist_idx; cnt++) {
   2490 			if (pmap_active) {
   2491 				cpu_idcache_wbinv_range(cleanlist[cnt].va,
   2492 				    NBPG);
   2493 				*cleanlist[cnt].pte = 0;
   2494 				cpu_tlb_flushID_SE(cleanlist[cnt].va);
   2495 			} else
   2496 				*cleanlist[cnt].pte = 0;
   2497 			pmap_pte_delref(pmap, cleanlist[cnt].va);
   2498 		}
   2499 	}
   2500 	PMAP_MAP_TO_HEAD_UNLOCK();
   2501 }
   2502 
   2503 /*
   2504  * Routine:	pmap_remove_all
   2505  * Function:
   2506  *		Removes this physical page from
   2507  *		all physical maps in which it resides.
   2508  *		Reflects back modify bits to the pager.
   2509  */
   2510 
   2511 static void
   2512 pmap_remove_all(struct vm_page *pg)
   2513 {
   2514 	struct pv_entry *pv, *npv;
   2515 	struct pmap *pmap;
   2516 	pt_entry_t *pte, *ptes;
   2517 
   2518 	PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
   2519 
   2520 	/* set vm_page => pmap locking */
   2521 	PMAP_HEAD_TO_MAP_LOCK();
   2522 
   2523 	simple_lock(&pg->mdpage.pvh_slock);
   2524 
   2525 	pv = pg->mdpage.pvh_list;
   2526 	if (pv == NULL) {
   2527 		PDEBUG(0, printf("free page\n"));
   2528 		simple_unlock(&pg->mdpage.pvh_slock);
   2529 		PMAP_HEAD_TO_MAP_UNLOCK();
   2530 		return;
   2531 	}
   2532 	pmap_clean_page(pv, FALSE);
   2533 
   2534 	while (pv) {
   2535 		pmap = pv->pv_pmap;
   2536 		ptes = pmap_map_ptes(pmap);
   2537 		pte = &ptes[arm_btop(pv->pv_va)];
   2538 
   2539 		PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
   2540 		    pv->pv_va, pv->pv_flags));
   2541 #ifdef DEBUG
   2542 		if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
   2543 		    pmap_pte_v(pte) == 0 ||
   2544 		    pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
   2545 			panic("pmap_remove_all: bad mapping");
   2546 #endif	/* DEBUG */
   2547 
   2548 		/*
   2549 		 * Update statistics
   2550 		 */
   2551 		--pmap->pm_stats.resident_count;
   2552 
   2553 		/* Wired bit */
   2554 		if (pv->pv_flags & PVF_WIRED)
   2555 			--pmap->pm_stats.wired_count;
   2556 
   2557 		/*
   2558 		 * Invalidate the PTEs.
   2559 		 * XXX: should cluster them up and invalidate as many
   2560 		 * as possible at once.
   2561 		 */
   2562 
   2563 #ifdef needednotdone
   2564 reduce wiring count on page table pages as references drop
   2565 #endif
   2566 
   2567 		*pte = 0;
   2568 		pmap_pte_delref(pmap, pv->pv_va);
   2569 
   2570 		npv = pv->pv_next;
   2571 		pmap_free_pv(pmap, pv);
   2572 		pv = npv;
   2573 		pmap_unmap_ptes(pmap);
   2574 	}
   2575 	pg->mdpage.pvh_list = NULL;
   2576 	simple_unlock(&pg->mdpage.pvh_slock);
   2577 	PMAP_HEAD_TO_MAP_UNLOCK();
   2578 
   2579 	PDEBUG(0, printf("done\n"));
   2580 	cpu_tlb_flushID();
   2581 	cpu_cpwait();
   2582 }
   2583 
   2584 
   2585 /*
   2586  * Set the physical protection on the specified range of this map as requested.
   2587  */
   2588 
   2589 void
   2590 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   2591 {
   2592 	pt_entry_t *pte = NULL, *ptes;
   2593 	struct vm_page *pg;
   2594 	int flush = 0;
   2595 
   2596 	PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
   2597 	    pmap, sva, eva, prot));
   2598 
   2599 	if (~prot & VM_PROT_READ) {
   2600 		/*
   2601 		 * Just remove the mappings.  pmap_update() is not required
   2602 		 * here since the caller should do it.
   2603 		 */
   2604 		pmap_remove(pmap, sva, eva);
   2605 		return;
   2606 	}
   2607 	if (prot & VM_PROT_WRITE) {
   2608 		/*
   2609 		 * If this is a read->write transition, just ignore it and let
   2610 		 * uvm_fault() take care of it later.
   2611 		 */
   2612 		return;
   2613 	}
   2614 
   2615 	/* Need to lock map->head */
   2616 	PMAP_MAP_TO_HEAD_LOCK();
   2617 
   2618 	ptes = pmap_map_ptes(pmap);
   2619 
   2620 	/*
   2621 	 * OK, at this point, we know we're doing write-protect operation.
   2622 	 * If the pmap is active, write-back the range.
   2623 	 */
   2624 	if (pmap_is_curpmap(pmap))
   2625 		cpu_dcache_wb_range(sva, eva - sva);
   2626 
   2627 	/*
   2628 	 * We need to acquire a pointer to a page table page before entering
   2629 	 * the following loop.
   2630 	 */
   2631 	while (sva < eva) {
   2632 		if (pmap_pde_page(pmap_pde(pmap, sva)))
   2633 			break;
   2634 		sva = (sva & L1_S_FRAME) + L1_S_SIZE;
   2635 	}
   2636 
   2637 	pte = &ptes[arm_btop(sva)];
   2638 
   2639 	while (sva < eva) {
   2640 		/* only check once in a while */
   2641 		if ((sva & L2_ADDR_BITS) == 0) {
   2642 			if (!pmap_pde_page(pmap_pde(pmap, sva))) {
   2643 				/* We can race ahead here, to the next pde. */
   2644 				sva += L1_S_SIZE;
   2645 				pte += arm_btop(L1_S_SIZE);
   2646 				continue;
   2647 			}
   2648 		}
   2649 
   2650 		if (!pmap_pte_v(pte))
   2651 			goto next;
   2652 
   2653 		flush = 1;
   2654 
   2655 		*pte &= ~L2_S_PROT_W;		/* clear write bit */
   2656 
   2657 		/* Clear write flag */
   2658 		if ((pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte))) != NULL) {
   2659 			simple_lock(&pg->mdpage.pvh_slock);
   2660 			(void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
   2661 			pmap_vac_me_harder(pmap, pg, ptes, FALSE);
   2662 			simple_unlock(&pg->mdpage.pvh_slock);
   2663 		}
   2664 
   2665  next:
   2666 		sva += NBPG;
   2667 		pte++;
   2668 	}
   2669 	pmap_unmap_ptes(pmap);
   2670 	PMAP_MAP_TO_HEAD_UNLOCK();
   2671 	if (flush)
   2672 		cpu_tlb_flushID();
   2673 }
   2674 
   2675 /*
   2676  * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2677  * int flags)
   2678  *
   2679  *      Insert the given physical page (p) at
   2680  *      the specified virtual address (v) in the
   2681  *      target physical map with the protection requested.
   2682  *
   2683  *      If specified, the page will be wired down, meaning
   2684  *      that the related pte can not be reclaimed.
   2685  *
   2686  *      NB:  This is the only routine which MAY NOT lazy-evaluate
   2687  *      or lose information.  That is, this routine must actually
   2688  *      insert this page into the given map NOW.
   2689  */
   2690 
   2691 int
   2692 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
   2693     int flags)
   2694 {
   2695 	pt_entry_t *ptes, opte, npte;
   2696 	paddr_t opa;
   2697 	boolean_t wired = (flags & PMAP_WIRED) != 0;
   2698 	struct vm_page *pg;
   2699 	struct pv_entry *pve;
   2700 	int error, nflags;
   2701 
   2702 	PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
   2703 	    va, pa, pmap, prot, wired));
   2704 
   2705 #ifdef DIAGNOSTIC
   2706 	/* Valid address ? */
   2707 	if (va >= (pmap_curmaxkvaddr))
   2708 		panic("pmap_enter: too big");
   2709 	if (pmap != pmap_kernel() && va != 0) {
   2710 		if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
   2711 			panic("pmap_enter: kernel page in user map");
   2712 	} else {
   2713 		if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
   2714 			panic("pmap_enter: user page in kernel map");
   2715 		if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
   2716 			panic("pmap_enter: entering PT page");
   2717 	}
   2718 #endif
   2719 
   2720 	KDASSERT(((va | pa) & PGOFSET) == 0);
   2721 
   2722 	/*
   2723 	 * Get a pointer to the page.  Later on in this function, we
   2724 	 * test for a managed page by checking pg != NULL.
   2725 	 */
   2726 	pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
   2727 
   2728 	/* get lock */
   2729 	PMAP_MAP_TO_HEAD_LOCK();
   2730 
   2731 	/*
   2732 	 * map the ptes.  If there's not already an L2 table for this
   2733 	 * address, allocate one.
   2734 	 */
   2735 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   2736 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   2737 		struct vm_page *ptp;
   2738 
   2739 		/* kernel should be pre-grown */
   2740 		KASSERT(pmap != pmap_kernel());
   2741 
   2742 		/* if failure is allowed then don't try too hard */
   2743 		ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
   2744 		if (ptp == NULL) {
   2745 			if (flags & PMAP_CANFAIL) {
   2746 				error = ENOMEM;
   2747 				goto out;
   2748 			}
   2749 			panic("pmap_enter: get ptp failed");
   2750 		}
   2751 	}
   2752 	opte = ptes[arm_btop(va)];
   2753 
   2754 	nflags = 0;
   2755 	if (prot & VM_PROT_WRITE)
   2756 		nflags |= PVF_WRITE;
   2757 	if (wired)
   2758 		nflags |= PVF_WIRED;
   2759 
   2760 	/* Is the pte valid ? If so then this page is already mapped */
   2761 	if (l2pte_valid(opte)) {
   2762 		/* Get the physical address of the current page mapped */
   2763 		opa = l2pte_pa(opte);
   2764 
   2765 		/* Are we mapping the same page ? */
   2766 		if (opa == pa) {
   2767 			/* Has the wiring changed ? */
   2768 			if (pg != NULL) {
   2769 				simple_lock(&pg->mdpage.pvh_slock);
   2770 				(void) pmap_modify_pv(pmap, va, pg,
   2771 				    PVF_WRITE | PVF_WIRED, nflags);
   2772 				simple_unlock(&pg->mdpage.pvh_slock);
   2773  			}
   2774 		} else {
   2775 			struct vm_page *opg;
   2776 
   2777 			/* We are replacing the page with a new one. */
   2778 			cpu_idcache_wbinv_range(va, NBPG);
   2779 
   2780 			/*
   2781 			 * If it is part of our managed memory then we
   2782 			 * must remove it from the PV list
   2783 			 */
   2784 			if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
   2785 				simple_lock(&opg->mdpage.pvh_slock);
   2786 				pve = pmap_remove_pv(opg, pmap, va);
   2787 				simple_unlock(&opg->mdpage.pvh_slock);
   2788 			} else {
   2789 				pve = NULL;
   2790 			}
   2791 
   2792 			goto enter;
   2793 		}
   2794 	} else {
   2795 		opa = 0;
   2796 		pve = NULL;
   2797 		pmap_pte_addref(pmap, va);
   2798 
   2799 		/* pte is not valid so we must be hooking in a new page */
   2800 		++pmap->pm_stats.resident_count;
   2801 
   2802 	enter:
   2803 		/*
   2804 		 * Enter on the PV list if part of our managed memory
   2805 		 */
   2806 		if (pg != NULL) {
   2807 			if (pve == NULL) {
   2808 				pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
   2809 				if (pve == NULL) {
   2810 					if (flags & PMAP_CANFAIL) {
   2811 						error = ENOMEM;
   2812 						goto out;
   2813 					}
   2814 					panic("pmap_enter: no pv entries "
   2815 					    "available");
   2816 				}
   2817 			}
   2818 			/* enter_pv locks pvh when adding */
   2819 			pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
   2820 		} else {
   2821 			if (pve != NULL)
   2822 				pmap_free_pv(pmap, pve);
   2823 		}
   2824 	}
   2825 
   2826 	/* Construct the pte, giving the correct access. */
   2827 	npte = pa;
   2828 
   2829 	/* VA 0 is magic. */
   2830 	if (pmap != pmap_kernel() && va != vector_page)
   2831 		npte |= L2_S_PROT_U;
   2832 
   2833 	if (pg != NULL) {
   2834 #ifdef DIAGNOSTIC
   2835 		if ((flags & VM_PROT_ALL) & ~prot)
   2836 			panic("pmap_enter: access_type exceeds prot");
   2837 #endif
   2838 		npte |= pte_l2_s_cache_mode;
   2839 		if (flags & VM_PROT_WRITE) {
   2840 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2841 			pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   2842 		} else if (flags & VM_PROT_ALL) {
   2843 			npte |= L2_S_PROTO;
   2844 			pg->mdpage.pvh_attrs |= PVF_REF;
   2845 		} else
   2846 			npte |= L2_TYPE_INV;
   2847 	} else {
   2848 		if (prot & VM_PROT_WRITE)
   2849 			npte |= L2_S_PROTO | L2_S_PROT_W;
   2850 		else if (prot & VM_PROT_ALL)
   2851 			npte |= L2_S_PROTO;
   2852 		else
   2853 			npte |= L2_TYPE_INV;
   2854 	}
   2855 
   2856 	ptes[arm_btop(va)] = npte;
   2857 
   2858 	if (pg != NULL) {
   2859 		simple_lock(&pg->mdpage.pvh_slock);
   2860  		pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
   2861 		simple_unlock(&pg->mdpage.pvh_slock);
   2862 	}
   2863 
   2864 	/* Better flush the TLB ... */
   2865 	cpu_tlb_flushID_SE(va);
   2866 	error = 0;
   2867 out:
   2868 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   2869 	PMAP_MAP_TO_HEAD_UNLOCK();
   2870 
   2871 	return error;
   2872 }
   2873 
   2874 /*
   2875  * pmap_kenter_pa: enter a kernel mapping
   2876  *
   2877  * => no need to lock anything assume va is already allocated
   2878  * => should be faster than normal pmap enter function
   2879  */
   2880 void
   2881 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
   2882 {
   2883 	pt_entry_t *pte;
   2884 
   2885 	pte = vtopte(va);
   2886 	KASSERT(!pmap_pte_v(pte));
   2887 
   2888 #ifdef PMAP_ALIAS_DEBUG
   2889     {
   2890 	struct vm_page *pg;
   2891 	int s;
   2892 
   2893 	pg = PHYS_TO_VM_PAGE(pa);
   2894 	if (pg != NULL) {
   2895 		s = splhigh();
   2896 		if (pg->mdpage.ro_mappings == 0 &&
   2897 		    pg->mdpage.rw_mappings == 0 &&
   2898 		    pg->mdpage.kro_mappings == 0 &&
   2899 		    pg->mdpage.krw_mappings == 0) {
   2900 			/* This case is okay. */
   2901 		} else if (pg->mdpage.rw_mappings == 0 &&
   2902 			   pg->mdpage.krw_mappings == 0 &&
   2903 			   (prot & VM_PROT_WRITE) == 0) {
   2904 			/* This case is okay. */
   2905 		} else {
   2906 			/* Something is awry. */
   2907 			printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
   2908 			    "prot 0x%x\n", pg->mdpage.ro_mappings,
   2909 			    pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
   2910 			    pg->mdpage.krw_mappings, prot);
   2911 			Debugger();
   2912 		}
   2913 		if (prot & VM_PROT_WRITE)
   2914 			pg->mdpage.krw_mappings++;
   2915 		else
   2916 			pg->mdpage.kro_mappings++;
   2917 		splx(s);
   2918 	}
   2919     }
   2920 #endif /* PMAP_ALIAS_DEBUG */
   2921 
   2922 	*pte = L2_S_PROTO | pa |
   2923 	    L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
   2924 }
   2925 
   2926 void
   2927 pmap_kremove(vaddr_t va, vsize_t len)
   2928 {
   2929 	pt_entry_t *pte;
   2930 
   2931 	for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
   2932 
   2933 		/*
   2934 		 * We assume that we will only be called with small
   2935 		 * regions of memory.
   2936 		 */
   2937 
   2938 		KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
   2939 		pte = vtopte(va);
   2940 #ifdef PMAP_ALIAS_DEBUG
   2941     {
   2942 		struct vm_page *pg;
   2943 		int s;
   2944 
   2945 		if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
   2946 		    (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
   2947 			s = splhigh();
   2948 			if (*pte & L2_S_PROT_W) {
   2949 				KASSERT(pg->mdpage.krw_mappings != 0);
   2950 				pg->mdpage.krw_mappings--;
   2951 			} else {
   2952 				KASSERT(pg->mdpage.kro_mappings != 0);
   2953 				pg->mdpage.kro_mappings--;
   2954 			}
   2955 			splx(s);
   2956 		}
   2957     }
   2958 #endif /* PMAP_ALIAS_DEBUG */
   2959 		cpu_idcache_wbinv_range(va, PAGE_SIZE);
   2960 		*pte = 0;
   2961 		cpu_tlb_flushID_SE(va);
   2962 	}
   2963 }
   2964 
   2965 /*
   2966  * pmap_page_protect:
   2967  *
   2968  * Lower the permission for all mappings to a given page.
   2969  */
   2970 
   2971 void
   2972 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   2973 {
   2974 
   2975 	PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
   2976 	    VM_PAGE_TO_PHYS(pg), prot));
   2977 
   2978 	switch(prot) {
   2979 	case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
   2980 	case VM_PROT_READ|VM_PROT_WRITE:
   2981 		return;
   2982 
   2983 	case VM_PROT_READ:
   2984 	case VM_PROT_READ|VM_PROT_EXECUTE:
   2985 		pmap_clearbit(pg, PVF_WRITE);
   2986 		break;
   2987 
   2988 	default:
   2989 		pmap_remove_all(pg);
   2990 		break;
   2991 	}
   2992 }
   2993 
   2994 
   2995 /*
   2996  * Routine:	pmap_unwire
   2997  * Function:	Clear the wired attribute for a map/virtual-address
   2998  *		pair.
   2999  * In/out conditions:
   3000  *		The mapping must already exist in the pmap.
   3001  */
   3002 
   3003 void
   3004 pmap_unwire(struct pmap *pmap, vaddr_t va)
   3005 {
   3006 	pt_entry_t *ptes;
   3007 	struct vm_page *pg;
   3008 	paddr_t pa;
   3009 
   3010 	PMAP_MAP_TO_HEAD_LOCK();
   3011 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3012 
   3013 	if (pmap_pde_v(pmap_pde(pmap, va))) {
   3014 #ifdef DIAGNOSTIC
   3015 		if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3016 			panic("pmap_unwire: invalid L2 PTE");
   3017 #endif
   3018 		/* Extract the physical address of the page */
   3019 		pa = l2pte_pa(ptes[arm_btop(va)]);
   3020 
   3021 		if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3022 			goto out;
   3023 
   3024 		/* Update the wired bit in the pv entry for this page. */
   3025 		simple_lock(&pg->mdpage.pvh_slock);
   3026 		(void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
   3027 		simple_unlock(&pg->mdpage.pvh_slock);
   3028 	}
   3029 #ifdef DIAGNOSTIC
   3030 	else {
   3031 		panic("pmap_unwire: invalid L1 PTE");
   3032 	}
   3033 #endif
   3034  out:
   3035 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3036 	PMAP_MAP_TO_HEAD_UNLOCK();
   3037 }
   3038 
   3039 /*
   3040  * Routine:  pmap_extract
   3041  * Function:
   3042  *           Extract the physical page address associated
   3043  *           with the given map/virtual_address pair.
   3044  */
   3045 boolean_t
   3046 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
   3047 {
   3048 	pd_entry_t *pde;
   3049 	pt_entry_t *pte, *ptes;
   3050 	paddr_t pa;
   3051 
   3052 	PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
   3053 
   3054 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3055 
   3056 	pde = pmap_pde(pmap, va);
   3057 	pte = &ptes[arm_btop(va)];
   3058 
   3059 	if (pmap_pde_section(pde)) {
   3060 		pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
   3061 		PDEBUG(5, printf("section pa=0x%08lx\n", pa));
   3062 		goto out;
   3063 	} else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
   3064 		PDEBUG(5, printf("no mapping\n"));
   3065 		goto failed;
   3066 	}
   3067 
   3068 	if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
   3069 		pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
   3070 		PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
   3071 		goto out;
   3072 	}
   3073 
   3074 	pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
   3075 	PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
   3076 
   3077  out:
   3078 	if (pap != NULL)
   3079 		*pap = pa;
   3080 
   3081 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3082 	return (TRUE);
   3083 
   3084  failed:
   3085 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3086 	return (FALSE);
   3087 }
   3088 
   3089 
   3090 /*
   3091  * pmap_copy:
   3092  *
   3093  *	Copy the range specified by src_addr/len from the source map to the
   3094  *	range dst_addr/len in the destination map.
   3095  *
   3096  *	This routine is only advisory and need not do anything.
   3097  */
   3098 /* Call deleted in <arm/arm32/pmap.h> */
   3099 
   3100 #if defined(PMAP_DEBUG)
   3101 void
   3102 pmap_dump_pvlist(phys, m)
   3103 	vaddr_t phys;
   3104 	char *m;
   3105 {
   3106 	struct vm_page *pg;
   3107 	struct pv_entry *pv;
   3108 
   3109 	if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
   3110 		printf("INVALID PA\n");
   3111 		return;
   3112 	}
   3113 	simple_lock(&pg->mdpage.pvh_slock);
   3114 	printf("%s %08lx:", m, phys);
   3115 	if (pg->mdpage.pvh_list == NULL) {
   3116 		simple_unlock(&pg->mdpage.pvh_slock);
   3117 		printf(" no mappings\n");
   3118 		return;
   3119 	}
   3120 
   3121 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
   3122 		printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
   3123 		    pv->pv_va, pv->pv_flags);
   3124 
   3125 	printf("\n");
   3126 	simple_unlock(&pg->mdpage.pvh_slock);
   3127 }
   3128 
   3129 #endif	/* PMAP_DEBUG */
   3130 
   3131 static pt_entry_t *
   3132 pmap_map_ptes(struct pmap *pmap)
   3133 {
   3134 	struct proc *p;
   3135 
   3136     	/* the kernel's pmap is always accessible */
   3137 	if (pmap == pmap_kernel()) {
   3138 		return (pt_entry_t *)PTE_BASE;
   3139 	}
   3140 
   3141 	if (pmap_is_curpmap(pmap)) {
   3142 		simple_lock(&pmap->pm_obj.vmobjlock);
   3143 		return (pt_entry_t *)PTE_BASE;
   3144 	}
   3145 
   3146 	p = curproc;
   3147 	KDASSERT(p != NULL);
   3148 
   3149 	/* need to lock both curpmap and pmap: use ordered locking */
   3150 	if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
   3151 		simple_lock(&pmap->pm_obj.vmobjlock);
   3152 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3153 	} else {
   3154 		simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3155 		simple_lock(&pmap->pm_obj.vmobjlock);
   3156 	}
   3157 
   3158 	pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
   3159 	    FALSE);
   3160 	cpu_tlb_flushD();
   3161 	cpu_cpwait();
   3162 	return (pt_entry_t *)APTE_BASE;
   3163 }
   3164 
   3165 /*
   3166  * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
   3167  */
   3168 
   3169 static void
   3170 pmap_unmap_ptes(struct pmap *pmap)
   3171 {
   3172 
   3173 	if (pmap == pmap_kernel()) {
   3174 		return;
   3175 	}
   3176 	if (pmap_is_curpmap(pmap)) {
   3177 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3178 	} else {
   3179 		KDASSERT(curproc != NULL);
   3180 		simple_unlock(&pmap->pm_obj.vmobjlock);
   3181 		simple_unlock(
   3182 		    &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
   3183 	}
   3184 }
   3185 
   3186 /*
   3187  * Modify pte bits for all ptes corresponding to the given physical address.
   3188  * We use `maskbits' rather than `clearbits' because we're always passing
   3189  * constants and the latter would require an extra inversion at run-time.
   3190  */
   3191 
   3192 static void
   3193 pmap_clearbit(struct vm_page *pg, u_int maskbits)
   3194 {
   3195 	struct pv_entry *pv;
   3196 	pt_entry_t *ptes;
   3197 	vaddr_t va;
   3198 	int tlbentry;
   3199 
   3200 	PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
   3201 	    VM_PAGE_TO_PHYS(pg), maskbits));
   3202 
   3203 	tlbentry = 0;
   3204 
   3205 	PMAP_HEAD_TO_MAP_LOCK();
   3206 	simple_lock(&pg->mdpage.pvh_slock);
   3207 
   3208 	/*
   3209 	 * Clear saved attributes (modify, reference)
   3210 	 */
   3211 	pg->mdpage.pvh_attrs &= ~maskbits;
   3212 
   3213 	if (pg->mdpage.pvh_list == NULL) {
   3214 		simple_unlock(&pg->mdpage.pvh_slock);
   3215 		PMAP_HEAD_TO_MAP_UNLOCK();
   3216 		return;
   3217 	}
   3218 
   3219 	/*
   3220 	 * Loop over all current mappings setting/clearing as appropos
   3221 	 */
   3222 	for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
   3223 #ifdef PMAP_ALIAS_DEBUG
   3224     {
   3225 		int s = splhigh();
   3226 		if ((maskbits & PVF_WRITE) != 0 &&
   3227 		    (pv->pv_flags & PVF_WRITE) != 0) {
   3228 			KASSERT(pg->mdpage.rw_mappings != 0);
   3229 			pg->mdpage.rw_mappings--;
   3230 			pg->mdpage.ro_mappings++;
   3231 		}
   3232 		splx(s);
   3233     }
   3234 #endif /* PMAP_ALIAS_DEBUG */
   3235 		va = pv->pv_va;
   3236 		pv->pv_flags &= ~maskbits;
   3237 		ptes = pmap_map_ptes(pv->pv_pmap);	/* locks pmap */
   3238 		KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
   3239 		if (maskbits & (PVF_WRITE|PVF_MOD)) {
   3240 			if ((pv->pv_flags & PVF_NC)) {
   3241 				/*
   3242 				 * Entry is not cacheable: reenable
   3243 				 * the cache, nothing to flush
   3244 				 *
   3245 				 * Don't turn caching on again if this
   3246 				 * is a modified emulation.  This
   3247 				 * would be inconsitent with the
   3248 				 * settings created by
   3249 				 * pmap_vac_me_harder().
   3250 				 *
   3251 				 * There's no need to call
   3252 				 * pmap_vac_me_harder() here: all
   3253 				 * pages are loosing their write
   3254 				 * permission.
   3255 				 *
   3256 				 */
   3257 				if (maskbits & PVF_WRITE) {
   3258 					ptes[arm_btop(va)] |=
   3259 					    pte_l2_s_cache_mode;
   3260 					pv->pv_flags &= ~PVF_NC;
   3261 				}
   3262 			} else if (pmap_is_curpmap(pv->pv_pmap)) {
   3263 				/*
   3264 				 * Entry is cacheable: check if pmap is
   3265 				 * current if it is flush it,
   3266 				 * otherwise it won't be in the cache
   3267 				 */
   3268 				cpu_idcache_wbinv_range(pv->pv_va, NBPG);
   3269 			}
   3270 
   3271 			/* make the pte read only */
   3272 			ptes[arm_btop(va)] &= ~L2_S_PROT_W;
   3273 		}
   3274 
   3275 		if (maskbits & PVF_REF)
   3276 			ptes[arm_btop(va)] =
   3277 			    (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_TYPE_INV;
   3278 
   3279 		if (pmap_is_curpmap(pv->pv_pmap)) {
   3280 			/*
   3281 			 * if we had cacheable pte's we'd clean the
   3282 			 * pte out to memory here
   3283 			 *
   3284 			 * flush tlb entry as it's in the current pmap
   3285 			 */
   3286 			cpu_tlb_flushID_SE(pv->pv_va);
   3287 		}
   3288 		pmap_unmap_ptes(pv->pv_pmap);		/* unlocks pmap */
   3289 	}
   3290 	cpu_cpwait();
   3291 
   3292 	simple_unlock(&pg->mdpage.pvh_slock);
   3293 	PMAP_HEAD_TO_MAP_UNLOCK();
   3294 }
   3295 
   3296 /*
   3297  * pmap_clear_modify:
   3298  *
   3299  *	Clear the "modified" attribute for a page.
   3300  */
   3301 boolean_t
   3302 pmap_clear_modify(struct vm_page *pg)
   3303 {
   3304 	boolean_t rv;
   3305 
   3306 	if (pg->mdpage.pvh_attrs & PVF_MOD) {
   3307 		rv = TRUE;
   3308 		pmap_clearbit(pg, PVF_MOD);
   3309 	} else
   3310 		rv = FALSE;
   3311 
   3312 	PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
   3313 	    VM_PAGE_TO_PHYS(pg), rv));
   3314 
   3315 	return (rv);
   3316 }
   3317 
   3318 /*
   3319  * pmap_clear_reference:
   3320  *
   3321  *	Clear the "referenced" attribute for a page.
   3322  */
   3323 boolean_t
   3324 pmap_clear_reference(struct vm_page *pg)
   3325 {
   3326 	boolean_t rv;
   3327 
   3328 	if (pg->mdpage.pvh_attrs & PVF_REF) {
   3329 		rv = TRUE;
   3330 		pmap_clearbit(pg, PVF_REF);
   3331 	} else
   3332 		rv = FALSE;
   3333 
   3334 	PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
   3335 	    VM_PAGE_TO_PHYS(pg), rv));
   3336 
   3337 	return (rv);
   3338 }
   3339 
   3340 /*
   3341  * pmap_is_modified:
   3342  *
   3343  *	Test if a page has the "modified" attribute.
   3344  */
   3345 /* See <arm/arm32/pmap.h> */
   3346 
   3347 /*
   3348  * pmap_is_referenced:
   3349  *
   3350  *	Test if a page has the "referenced" attribute.
   3351  */
   3352 /* See <arm/arm32/pmap.h> */
   3353 
   3354 int
   3355 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
   3356 {
   3357 	pt_entry_t *ptes;
   3358 	struct vm_page *pg;
   3359 	paddr_t pa;
   3360 	u_int flags;
   3361 	int rv = 0;
   3362 
   3363 	PDEBUG(2, printf("pmap_modified_emulation\n"));
   3364 
   3365 	PMAP_MAP_TO_HEAD_LOCK();
   3366 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3367 
   3368 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3369 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3370 		goto out;
   3371 	}
   3372 
   3373 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3374 
   3375 	/* Check for a invalid pte */
   3376 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3377 		goto out;
   3378 
   3379 	/* This can happen if user code tries to access kernel memory. */
   3380 	if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
   3381 		goto out;
   3382 
   3383 	/* Extract the physical address of the page */
   3384 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3385 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3386 		goto out;
   3387 
   3388 	/* Get the current flags for this page. */
   3389 	simple_lock(&pg->mdpage.pvh_slock);
   3390 
   3391 	flags = pmap_modify_pv(pmap, va, pg, 0, 0);
   3392 	PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
   3393 
   3394 	/*
   3395 	 * Do the flags say this page is writable ? If not then it is a
   3396 	 * genuine write fault. If yes then the write fault is our fault
   3397 	 * as we did not reflect the write access in the PTE. Now we know
   3398 	 * a write has occurred we can correct this and also set the
   3399 	 * modified bit
   3400 	 */
   3401 	if (~flags & PVF_WRITE) {
   3402 	    	simple_unlock(&pg->mdpage.pvh_slock);
   3403 		goto out;
   3404 	}
   3405 
   3406 	PDEBUG(0,
   3407 	    printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
   3408 	    va, ptes[arm_btop(va)]));
   3409 	pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
   3410 
   3411 	/*
   3412 	 * Re-enable write permissions for the page.  No need to call
   3413 	 * pmap_vac_me_harder(), since this is just a
   3414 	 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
   3415 	 * We've already set the cacheable bits based on the assumption
   3416 	 * that we can write to this page.
   3417 	 */
   3418 	ptes[arm_btop(va)] =
   3419 	    (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
   3420 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3421 
   3422 	simple_unlock(&pg->mdpage.pvh_slock);
   3423 
   3424 	cpu_tlb_flushID_SE(va);
   3425 	cpu_cpwait();
   3426 	rv = 1;
   3427  out:
   3428 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3429 	PMAP_MAP_TO_HEAD_UNLOCK();
   3430 	return (rv);
   3431 }
   3432 
   3433 int
   3434 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
   3435 {
   3436 	pt_entry_t *ptes;
   3437 	struct vm_page *pg;
   3438 	paddr_t pa;
   3439 	int rv = 0;
   3440 
   3441 	PDEBUG(2, printf("pmap_handled_emulation\n"));
   3442 
   3443 	PMAP_MAP_TO_HEAD_LOCK();
   3444 	ptes = pmap_map_ptes(pmap);		/* locks pmap */
   3445 
   3446 	if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
   3447 		PDEBUG(2, printf("L1 PTE invalid\n"));
   3448 		goto out;
   3449 	}
   3450 
   3451 	PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
   3452 
   3453 	/* Check for invalid pte */
   3454 	if (l2pte_valid(ptes[arm_btop(va)]) == 0)
   3455 		goto out;
   3456 
   3457 	/* This can happen if user code tries to access kernel memory. */
   3458 	if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
   3459 		goto out;
   3460 
   3461 	/* Extract the physical address of the page */
   3462 	pa = l2pte_pa(ptes[arm_btop(va)]);
   3463 	if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
   3464 		goto out;
   3465 
   3466 	simple_lock(&pg->mdpage.pvh_slock);
   3467 
   3468 	/*
   3469 	 * Ok we just enable the pte and mark the attibs as handled
   3470 	 * XXX Should we traverse the PV list and enable all PTEs?
   3471 	 */
   3472 	PDEBUG(0,
   3473 	    printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
   3474 	    va, ptes[arm_btop(va)]));
   3475 	pg->mdpage.pvh_attrs |= PVF_REF;
   3476 
   3477 	ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
   3478 	PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
   3479 
   3480 	simple_unlock(&pg->mdpage.pvh_slock);
   3481 
   3482 	cpu_tlb_flushID_SE(va);
   3483 	cpu_cpwait();
   3484 	rv = 1;
   3485  out:
   3486 	pmap_unmap_ptes(pmap);			/* unlocks pmap */
   3487 	PMAP_MAP_TO_HEAD_UNLOCK();
   3488 	return (rv);
   3489 }
   3490 
   3491 /*
   3492  * pmap_collect: free resources held by a pmap
   3493  *
   3494  * => optional function.
   3495  * => called when a process is swapped out to free memory.
   3496  */
   3497 
   3498 void
   3499 pmap_collect(struct pmap *pmap)
   3500 {
   3501 }
   3502 
   3503 /*
   3504  * Routine:	pmap_procwr
   3505  *
   3506  * Function:
   3507  *	Synchronize caches corresponding to [addr, addr+len) in p.
   3508  *
   3509  */
   3510 void
   3511 pmap_procwr(struct proc *p, vaddr_t va, int len)
   3512 {
   3513 	/* We only need to do anything if it is the current process. */
   3514 	if (p == curproc)
   3515 		cpu_icache_sync_range(va, len);
   3516 }
   3517 /*
   3518  * PTP functions
   3519  */
   3520 
   3521 /*
   3522  * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
   3523  *
   3524  * => pmap should NOT be pmap_kernel()
   3525  * => pmap should be locked
   3526  */
   3527 
   3528 static struct vm_page *
   3529 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
   3530 {
   3531 	struct vm_page *ptp;
   3532 
   3533 	if (pmap_pde_page(pmap_pde(pmap, va))) {
   3534 
   3535 		/* valid... check hint (saves us a PA->PG lookup) */
   3536 		if (pmap->pm_ptphint &&
   3537 		    (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
   3538 		    VM_PAGE_TO_PHYS(pmap->pm_ptphint))
   3539 			return (pmap->pm_ptphint);
   3540 		ptp = uvm_pagelookup(&pmap->pm_obj, va);
   3541 #ifdef DIAGNOSTIC
   3542 		if (ptp == NULL)
   3543 			panic("pmap_get_ptp: unmanaged user PTP");
   3544 #endif
   3545 		pmap->pm_ptphint = ptp;
   3546 		return(ptp);
   3547 	}
   3548 
   3549 	/* allocate a new PTP (updates ptphint) */
   3550 	return(pmap_alloc_ptp(pmap, va));
   3551 }
   3552 
   3553 /*
   3554  * pmap_alloc_ptp: allocate a PTP for a PMAP
   3555  *
   3556  * => pmap should already be locked by caller
   3557  * => we use the ptp's wire_count to count the number of active mappings
   3558  *	in the PTP (we start it at one to prevent any chance this PTP
   3559  *	will ever leak onto the active/inactive queues)
   3560  */
   3561 
   3562 /*__inline */ static struct vm_page *
   3563 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
   3564 {
   3565 	struct vm_page *ptp;
   3566 
   3567 	ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
   3568 		UVM_PGA_USERESERVE|UVM_PGA_ZERO);
   3569 	if (ptp == NULL)
   3570 		return (NULL);
   3571 
   3572 	/* got one! */
   3573 	ptp->flags &= ~PG_BUSY;	/* never busy */
   3574 	ptp->wire_count = 1;	/* no mappings yet */
   3575 	pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
   3576 	pmap->pm_stats.resident_count++;	/* count PTP as resident */
   3577 	pmap->pm_ptphint = ptp;
   3578 	return (ptp);
   3579 }
   3580 
   3581 vaddr_t
   3582 pmap_growkernel(vaddr_t maxkvaddr)
   3583 {
   3584 	struct pmap *kpm = pmap_kernel(), *pm;
   3585 	int s;
   3586 	paddr_t ptaddr;
   3587 	struct vm_page *ptp;
   3588 
   3589 	if (maxkvaddr <= pmap_curmaxkvaddr)
   3590 		goto out;		/* we are OK */
   3591 	NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
   3592 		    pmap_curmaxkvaddr, maxkvaddr));
   3593 
   3594 	/*
   3595 	 * whoops!   we need to add kernel PTPs
   3596 	 */
   3597 
   3598 	s = splhigh();	/* to be safe */
   3599 	simple_lock(&kpm->pm_obj.vmobjlock);
   3600 	/* due to the way the arm pmap works we map 4MB at a time */
   3601 	for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
   3602 	     pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
   3603 
   3604 		if (uvm.page_init_done == FALSE) {
   3605 
   3606 			/*
   3607 			 * we're growing the kernel pmap early (from
   3608 			 * uvm_pageboot_alloc()).  this case must be
   3609 			 * handled a little differently.
   3610 			 */
   3611 
   3612 			if (uvm_page_physget(&ptaddr) == FALSE)
   3613 				panic("pmap_growkernel: out of memory");
   3614 			pmap_zero_page(ptaddr);
   3615 
   3616 			/* map this page in */
   3617 			pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
   3618 
   3619 			/* count PTP as resident */
   3620 			kpm->pm_stats.resident_count++;
   3621 			continue;
   3622 		}
   3623 
   3624 		/*
   3625 		 * THIS *MUST* BE CODED SO AS TO WORK IN THE
   3626 		 * pmap_initialized == FALSE CASE!  WE MAY BE
   3627 		 * INVOKED WHILE pmap_init() IS RUNNING!
   3628 		 */
   3629 
   3630 		if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
   3631 			panic("pmap_growkernel: alloc ptp failed");
   3632 
   3633 		/* distribute new kernel PTP to all active pmaps */
   3634 		simple_lock(&pmaps_lock);
   3635 		LIST_FOREACH(pm, &pmaps, pm_list) {
   3636 			pmap_map_in_l1(pm, pmap_curmaxkvaddr,
   3637 			    VM_PAGE_TO_PHYS(ptp), TRUE);
   3638 		}
   3639 
   3640 		simple_unlock(&pmaps_lock);
   3641 	}
   3642 
   3643 	/*
   3644 	 * flush out the cache, expensive but growkernel will happen so
   3645 	 * rarely
   3646 	 */
   3647 	cpu_tlb_flushD();
   3648 	cpu_cpwait();
   3649 
   3650 	simple_unlock(&kpm->pm_obj.vmobjlock);
   3651 	splx(s);
   3652 
   3653 out:
   3654 	return (pmap_curmaxkvaddr);
   3655 }
   3656 
   3657 /************************ Utility routines ****************************/
   3658 
   3659 /*
   3660  * vector_page_setprot:
   3661  *
   3662  *	Manipulate the protection of the vector page.
   3663  */
   3664 void
   3665 vector_page_setprot(int prot)
   3666 {
   3667 	pt_entry_t *pte;
   3668 
   3669 	pte = vtopte(vector_page);
   3670 
   3671 	*pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
   3672 	cpu_tlb_flushD_SE(vector_page);
   3673 	cpu_cpwait();
   3674 }
   3675 
   3676 /************************ Bootstrapping routines ****************************/
   3677 
   3678 /*
   3679  * This list exists for the benefit of pmap_map_chunk().  It keeps track
   3680  * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
   3681  * find them as necessary.
   3682  *
   3683  * Note that the data on this list is not valid after initarm() returns.
   3684  */
   3685 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
   3686 
   3687 static vaddr_t
   3688 kernel_pt_lookup(paddr_t pa)
   3689 {
   3690 	pv_addr_t *pv;
   3691 
   3692 	SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
   3693 		if (pv->pv_pa == pa)
   3694 			return (pv->pv_va);
   3695 	}
   3696 	return (0);
   3697 }
   3698 
   3699 /*
   3700  * pmap_map_section:
   3701  *
   3702  *	Create a single section mapping.
   3703  */
   3704 void
   3705 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3706 {
   3707 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3708 	pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3709 
   3710 	KASSERT(((va | pa) & L1_S_OFFSET) == 0);
   3711 
   3712 	pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3713 	    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3714 }
   3715 
   3716 /*
   3717  * pmap_map_entry:
   3718  *
   3719  *	Create a single page mapping.
   3720  */
   3721 void
   3722 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
   3723 {
   3724 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3725 	pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3726 	pt_entry_t *pte;
   3727 
   3728 	KASSERT(((va | pa) & PGOFSET) == 0);
   3729 
   3730 	if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3731 		panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
   3732 
   3733 	pte = (pt_entry_t *)
   3734 	    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3735 	if (pte == NULL)
   3736 		panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
   3737 
   3738 	pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3739 	    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3740 }
   3741 
   3742 /*
   3743  * pmap_link_l2pt:
   3744  *
   3745  *	Link the L2 page table specified by "pa" into the L1
   3746  *	page table at the slot for "va".
   3747  */
   3748 void
   3749 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
   3750 {
   3751 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3752 	u_int slot = va >> L1_S_SHIFT;
   3753 
   3754 	KASSERT((l2pv->pv_pa & PGOFSET) == 0);
   3755 
   3756 	pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
   3757 	pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
   3758 	pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
   3759 	pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
   3760 
   3761 	SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
   3762 }
   3763 
   3764 /*
   3765  * pmap_map_chunk:
   3766  *
   3767  *	Map a chunk of memory using the most efficient mappings
   3768  *	possible (section, large page, small page) into the
   3769  *	provided L1 and L2 tables at the specified virtual address.
   3770  */
   3771 vsize_t
   3772 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
   3773     int prot, int cache)
   3774 {
   3775 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3776 	pt_entry_t *pte, fl;
   3777 	vsize_t resid;
   3778 	int i;
   3779 
   3780 	resid = (size + (NBPG - 1)) & ~(NBPG - 1);
   3781 
   3782 	if (l1pt == 0)
   3783 		panic("pmap_map_chunk: no L1 table provided");
   3784 
   3785 #ifdef VERBOSE_INIT_ARM
   3786 	printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
   3787 	    "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
   3788 #endif
   3789 
   3790 	size = resid;
   3791 
   3792 	while (resid > 0) {
   3793 		/* See if we can use a section mapping. */
   3794 		if (((pa | va) & L1_S_OFFSET) == 0 &&
   3795 		    resid >= L1_S_SIZE) {
   3796 			fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
   3797 #ifdef VERBOSE_INIT_ARM
   3798 			printf("S");
   3799 #endif
   3800 			pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
   3801 			    L1_S_PROT(PTE_KERNEL, prot) | fl;
   3802 			va += L1_S_SIZE;
   3803 			pa += L1_S_SIZE;
   3804 			resid -= L1_S_SIZE;
   3805 			continue;
   3806 		}
   3807 
   3808 		/*
   3809 		 * Ok, we're going to use an L2 table.  Make sure
   3810 		 * one is actually in the corresponding L1 slot
   3811 		 * for the current VA.
   3812 		 */
   3813 		if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
   3814 			panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
   3815 
   3816 		pte = (pt_entry_t *)
   3817 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   3818 		if (pte == NULL)
   3819 			panic("pmap_map_chunk: can't find L2 table for VA"
   3820 			    "0x%08lx", va);
   3821 
   3822 		/* See if we can use a L2 large page mapping. */
   3823 		if (((pa | va) & L2_L_OFFSET) == 0 &&
   3824 		    resid >= L2_L_SIZE) {
   3825 			fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
   3826 #ifdef VERBOSE_INIT_ARM
   3827 			printf("L");
   3828 #endif
   3829 			for (i = 0; i < 16; i++) {
   3830 				pte[((va >> PGSHIFT) & 0x3f0) + i] =
   3831 				    L2_L_PROTO | pa |
   3832 				    L2_L_PROT(PTE_KERNEL, prot) | fl;
   3833 			}
   3834 			va += L2_L_SIZE;
   3835 			pa += L2_L_SIZE;
   3836 			resid -= L2_L_SIZE;
   3837 			continue;
   3838 		}
   3839 
   3840 		/* Use a small page mapping. */
   3841 		fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
   3842 #ifdef VERBOSE_INIT_ARM
   3843 		printf("P");
   3844 #endif
   3845 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   3846 		    L2_S_PROT(PTE_KERNEL, prot) | fl;
   3847 		va += NBPG;
   3848 		pa += NBPG;
   3849 		resid -= NBPG;
   3850 	}
   3851 #ifdef VERBOSE_INIT_ARM
   3852 	printf("\n");
   3853 #endif
   3854 	return (size);
   3855 }
   3856 
   3857 /********************** PTE initialization routines **************************/
   3858 
   3859 /*
   3860  * These routines are called when the CPU type is identified to set up
   3861  * the PTE prototypes, cache modes, etc.
   3862  *
   3863  * The variables are always here, just in case LKMs need to reference
   3864  * them (though, they shouldn't).
   3865  */
   3866 
   3867 pt_entry_t	pte_l1_s_cache_mode;
   3868 pt_entry_t	pte_l1_s_cache_mask;
   3869 
   3870 pt_entry_t	pte_l2_l_cache_mode;
   3871 pt_entry_t	pte_l2_l_cache_mask;
   3872 
   3873 pt_entry_t	pte_l2_s_cache_mode;
   3874 pt_entry_t	pte_l2_s_cache_mask;
   3875 
   3876 pt_entry_t	pte_l2_s_prot_u;
   3877 pt_entry_t	pte_l2_s_prot_w;
   3878 pt_entry_t	pte_l2_s_prot_mask;
   3879 
   3880 pt_entry_t	pte_l1_s_proto;
   3881 pt_entry_t	pte_l1_c_proto;
   3882 pt_entry_t	pte_l2_s_proto;
   3883 
   3884 void		(*pmap_copy_page_func)(paddr_t, paddr_t);
   3885 void		(*pmap_zero_page_func)(paddr_t);
   3886 
   3887 #if ARM_MMU_GENERIC == 1
   3888 void
   3889 pmap_pte_init_generic(void)
   3890 {
   3891 
   3892 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   3893 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
   3894 
   3895 	pte_l2_l_cache_mode = L2_B|L2_C;
   3896 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
   3897 
   3898 	pte_l2_s_cache_mode = L2_B|L2_C;
   3899 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
   3900 
   3901 	pte_l2_s_prot_u = L2_S_PROT_U_generic;
   3902 	pte_l2_s_prot_w = L2_S_PROT_W_generic;
   3903 	pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
   3904 
   3905 	pte_l1_s_proto = L1_S_PROTO_generic;
   3906 	pte_l1_c_proto = L1_C_PROTO_generic;
   3907 	pte_l2_s_proto = L2_S_PROTO_generic;
   3908 
   3909 	pmap_copy_page_func = pmap_copy_page_generic;
   3910 	pmap_zero_page_func = pmap_zero_page_generic;
   3911 }
   3912 
   3913 #if defined(CPU_ARM9)
   3914 void
   3915 pmap_pte_init_arm9(void)
   3916 {
   3917 
   3918 	/*
   3919 	 * ARM9 is compatible with generic, but we want to use
   3920 	 * write-through caching for now.
   3921 	 */
   3922 	pmap_pte_init_generic();
   3923 
   3924 	pte_l1_s_cache_mode = L1_S_C;
   3925 	pte_l2_l_cache_mode = L2_C;
   3926 	pte_l2_s_cache_mode = L2_C;
   3927 }
   3928 #endif /* CPU_ARM9 */
   3929 #endif /* ARM_MMU_GENERIC == 1 */
   3930 
   3931 #if ARM_MMU_XSCALE == 1
   3932 void
   3933 pmap_pte_init_xscale(void)
   3934 {
   3935 	uint32_t auxctl;
   3936 
   3937 	pte_l1_s_cache_mode = L1_S_B|L1_S_C;
   3938 	pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
   3939 
   3940 	pte_l2_l_cache_mode = L2_B|L2_C;
   3941 	pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
   3942 
   3943 	pte_l2_s_cache_mode = L2_B|L2_C;
   3944 	pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
   3945 
   3946 #ifdef XSCALE_CACHE_WRITE_THROUGH
   3947 	/*
   3948 	 * Some versions of the XScale core have various bugs in
   3949 	 * their cache units, the work-around for which is to run
   3950 	 * the cache in write-through mode.  Unfortunately, this
   3951 	 * has a major (negative) impact on performance.  So, we
   3952 	 * go ahead and run fast-and-loose, in the hopes that we
   3953 	 * don't line up the planets in a way that will trip the
   3954 	 * bugs.
   3955 	 *
   3956 	 * However, we give you the option to be slow-but-correct.
   3957 	 */
   3958 	pte_l1_s_cache_mode = L1_S_C;
   3959 	pte_l2_l_cache_mode = L2_C;
   3960 	pte_l2_s_cache_mode = L2_C;
   3961 #endif /* XSCALE_CACHE_WRITE_THROUGH */
   3962 
   3963 	pte_l2_s_prot_u = L2_S_PROT_U_xscale;
   3964 	pte_l2_s_prot_w = L2_S_PROT_W_xscale;
   3965 	pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
   3966 
   3967 	pte_l1_s_proto = L1_S_PROTO_xscale;
   3968 	pte_l1_c_proto = L1_C_PROTO_xscale;
   3969 	pte_l2_s_proto = L2_S_PROTO_xscale;
   3970 
   3971 	pmap_copy_page_func = pmap_copy_page_xscale;
   3972 	pmap_zero_page_func = pmap_zero_page_xscale;
   3973 
   3974 	/*
   3975 	 * Disable ECC protection of page table access, for now.
   3976 	 */
   3977 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
   3978 		: "=r" (auxctl));
   3979 	auxctl &= ~XSCALE_AUXCTL_P;
   3980 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
   3981 		:
   3982 		: "r" (auxctl));
   3983 }
   3984 
   3985 /*
   3986  * xscale_setup_minidata:
   3987  *
   3988  *	Set up the mini-data cache clean area.  We require the
   3989  *	caller to allocate the right amount of physically and
   3990  *	virtually contiguous space.
   3991  */
   3992 void
   3993 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
   3994 {
   3995 	extern vaddr_t xscale_minidata_clean_addr;
   3996 	extern vsize_t xscale_minidata_clean_size; /* already initialized */
   3997 	pd_entry_t *pde = (pd_entry_t *) l1pt;
   3998 	pt_entry_t *pte;
   3999 	vsize_t size;
   4000 	uint32_t auxctl;
   4001 
   4002 	xscale_minidata_clean_addr = va;
   4003 
   4004 	/* Round it to page size. */
   4005 	size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
   4006 
   4007 	for (; size != 0;
   4008 	     va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
   4009 		pte = (pt_entry_t *)
   4010 		    kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
   4011 		if (pte == NULL)
   4012 			panic("xscale_setup_minidata: can't find L2 table for "
   4013 			    "VA 0x%08lx", va);
   4014 		pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
   4015 		    L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
   4016 		    L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
   4017 	}
   4018 
   4019 	/*
   4020 	 * Configure the mini-data cache for write-back with
   4021 	 * read/write-allocate.
   4022 	 *
   4023 	 * NOTE: In order to reconfigure the mini-data cache, we must
   4024 	 * make sure it contains no valid data!  In order to do that,
   4025 	 * we must issue a global data cache invalidate command!
   4026 	 *
   4027 	 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
   4028 	 * THIS IS VERY IMPORTANT!
   4029 	 */
   4030 
   4031 	/* Invalidate data and mini-data. */
   4032 	__asm __volatile("mcr p15, 0, %0, c7, c6, 0"
   4033 		:
   4034 		: "r" (auxctl));
   4035 
   4036 
   4037 	__asm __volatile("mrc p15, 0, %0, c1, c0, 1"
   4038 		: "=r" (auxctl));
   4039 	auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
   4040 	__asm __volatile("mcr p15, 0, %0, c1, c0, 1"
   4041 		:
   4042 		: "r" (auxctl));
   4043 }
   4044 #endif /* ARM_MMU_XSCALE == 1 */
   4045