pmap.c revision 1.97.4.5 1 /* $NetBSD: pmap.c,v 1.97.4.5 2002/12/07 20:44:23 he Exp $ */
2
3 /*
4 * Copyright (c) 2002 Wasabi Systems, Inc.
5 * Copyright (c) 2001 Richard Earnshaw
6 * Copyright (c) 2001 Christopher Gilbert
7 * All rights reserved.
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * 3. The name of the company nor the name of the author may be used to
15 * endorse or promote products derived from this software without specific
16 * prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
19 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
22 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
23 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
24 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 */
30
31 /*-
32 * Copyright (c) 1999 The NetBSD Foundation, Inc.
33 * All rights reserved.
34 *
35 * This code is derived from software contributed to The NetBSD Foundation
36 * by Charles M. Hannum.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
55 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
57 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
58 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
59 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
60 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
61 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
62 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
63 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
64 * POSSIBILITY OF SUCH DAMAGE.
65 */
66
67 /*
68 * Copyright (c) 1994-1998 Mark Brinicombe.
69 * Copyright (c) 1994 Brini.
70 * All rights reserved.
71 *
72 * This code is derived from software written for Brini by Mark Brinicombe
73 *
74 * Redistribution and use in source and binary forms, with or without
75 * modification, are permitted provided that the following conditions
76 * are met:
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 * 2. Redistributions in binary form must reproduce the above copyright
80 * notice, this list of conditions and the following disclaimer in the
81 * documentation and/or other materials provided with the distribution.
82 * 3. All advertising materials mentioning features or use of this software
83 * must display the following acknowledgement:
84 * This product includes software developed by Mark Brinicombe.
85 * 4. The name of the author may not be used to endorse or promote products
86 * derived from this software without specific prior written permission.
87 *
88 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
89 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
90 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
91 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
92 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
93 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
94 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
95 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
96 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
97 *
98 * RiscBSD kernel project
99 *
100 * pmap.c
101 *
102 * Machine dependant vm stuff
103 *
104 * Created : 20/09/94
105 */
106
107 /*
108 * Performance improvements, UVM changes, overhauls and part-rewrites
109 * were contributed by Neil A. Carson <neil (at) causality.com>.
110 */
111
112 /*
113 * The dram block info is currently referenced from the bootconfig.
114 * This should be placed in a separate structure.
115 */
116
117 /*
118 * Special compilation symbols
119 * PMAP_DEBUG - Build in pmap_debug_level code
120 */
121
122 /* Include header files */
123
124 #include "opt_pmap_debug.h"
125 #include "opt_ddb.h"
126
127 #include <sys/types.h>
128 #include <sys/param.h>
129 #include <sys/kernel.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/malloc.h>
133 #include <sys/user.h>
134 #include <sys/pool.h>
135 #include <sys/cdefs.h>
136
137 #include <uvm/uvm.h>
138
139 #include <machine/bootconfig.h>
140 #include <machine/bus.h>
141 #include <machine/pmap.h>
142 #include <machine/pcb.h>
143 #include <machine/param.h>
144 #include <arm/arm32/katelib.h>
145
146 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.97.4.5 2002/12/07 20:44:23 he Exp $");
147 #ifdef PMAP_DEBUG
148 #define PDEBUG(_lev_,_stat_) \
149 if (pmap_debug_level >= (_lev_)) \
150 ((_stat_))
151 int pmap_debug_level = -2;
152 void pmap_dump_pvlist(vaddr_t phys, char *m);
153
154 /*
155 * for switching to potentially finer grained debugging
156 */
157 #define PDB_FOLLOW 0x0001
158 #define PDB_INIT 0x0002
159 #define PDB_ENTER 0x0004
160 #define PDB_REMOVE 0x0008
161 #define PDB_CREATE 0x0010
162 #define PDB_PTPAGE 0x0020
163 #define PDB_GROWKERN 0x0040
164 #define PDB_BITS 0x0080
165 #define PDB_COLLECT 0x0100
166 #define PDB_PROTECT 0x0200
167 #define PDB_MAP_L1 0x0400
168 #define PDB_BOOTSTRAP 0x1000
169 #define PDB_PARANOIA 0x2000
170 #define PDB_WIRING 0x4000
171 #define PDB_PVDUMP 0x8000
172
173 int debugmap = 0;
174 int pmapdebug = PDB_PARANOIA | PDB_FOLLOW;
175 #define NPDEBUG(_lev_,_stat_) \
176 if (pmapdebug & (_lev_)) \
177 ((_stat_))
178
179 #else /* PMAP_DEBUG */
180 #define PDEBUG(_lev_,_stat_) /* Nothing */
181 #define NPDEBUG(_lev_,_stat_) /* Nothing */
182 #endif /* PMAP_DEBUG */
183
184 struct pmap kernel_pmap_store;
185
186 /*
187 * linked list of all non-kernel pmaps
188 */
189
190 static LIST_HEAD(, pmap) pmaps;
191
192 /*
193 * pool that pmap structures are allocated from
194 */
195
196 struct pool pmap_pmap_pool;
197
198 /*
199 * pool/cache that PT-PT's are allocated from
200 */
201
202 struct pool pmap_ptpt_pool;
203 struct pool_cache pmap_ptpt_cache;
204 u_int pmap_ptpt_cache_generation;
205
206 static void *pmap_ptpt_page_alloc(struct pool *, int);
207 static void pmap_ptpt_page_free(struct pool *, void *);
208
209 struct pool_allocator pmap_ptpt_allocator = {
210 pmap_ptpt_page_alloc, pmap_ptpt_page_free,
211 };
212
213 static int pmap_ptpt_ctor(void *, void *, int);
214
215 static pt_entry_t *csrc_pte, *cdst_pte;
216 static vaddr_t csrcp, cdstp;
217
218 char *memhook;
219 extern caddr_t msgbufaddr;
220
221 boolean_t pmap_initialized = FALSE; /* Has pmap_init completed? */
222 /*
223 * locking data structures
224 */
225
226 static struct lock pmap_main_lock;
227 static struct simplelock pvalloc_lock;
228 static struct simplelock pmaps_lock;
229 #ifdef LOCKDEBUG
230 #define PMAP_MAP_TO_HEAD_LOCK() \
231 (void) spinlockmgr(&pmap_main_lock, LK_SHARED, NULL)
232 #define PMAP_MAP_TO_HEAD_UNLOCK() \
233 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
234
235 #define PMAP_HEAD_TO_MAP_LOCK() \
236 (void) spinlockmgr(&pmap_main_lock, LK_EXCLUSIVE, NULL)
237 #define PMAP_HEAD_TO_MAP_UNLOCK() \
238 (void) spinlockmgr(&pmap_main_lock, LK_RELEASE, NULL)
239 #else
240 #define PMAP_MAP_TO_HEAD_LOCK() /* nothing */
241 #define PMAP_MAP_TO_HEAD_UNLOCK() /* nothing */
242 #define PMAP_HEAD_TO_MAP_LOCK() /* nothing */
243 #define PMAP_HEAD_TO_MAP_UNLOCK() /* nothing */
244 #endif /* LOCKDEBUG */
245
246 /*
247 * pv_page management structures: locked by pvalloc_lock
248 */
249
250 TAILQ_HEAD(pv_pagelist, pv_page);
251 static struct pv_pagelist pv_freepages; /* list of pv_pages with free entrys */
252 static struct pv_pagelist pv_unusedpgs; /* list of unused pv_pages */
253 static int pv_nfpvents; /* # of free pv entries */
254 static struct pv_page *pv_initpage; /* bootstrap page from kernel_map */
255 static vaddr_t pv_cachedva; /* cached VA for later use */
256
257 #define PVE_LOWAT (PVE_PER_PVPAGE / 2) /* free pv_entry low water mark */
258 #define PVE_HIWAT (PVE_LOWAT + (PVE_PER_PVPAGE * 2))
259 /* high water mark */
260
261 /*
262 * local prototypes
263 */
264
265 static struct pv_entry *pmap_add_pvpage __P((struct pv_page *, boolean_t));
266 static struct pv_entry *pmap_alloc_pv __P((struct pmap *, int)); /* see codes below */
267 #define ALLOCPV_NEED 0 /* need PV now */
268 #define ALLOCPV_TRY 1 /* just try to allocate, don't steal */
269 #define ALLOCPV_NONEED 2 /* don't need PV, just growing cache */
270 static struct pv_entry *pmap_alloc_pvpage __P((struct pmap *, int));
271 static void pmap_enter_pv __P((struct vm_page *,
272 struct pv_entry *, struct pmap *,
273 vaddr_t, struct vm_page *, int));
274 static void pmap_free_pv __P((struct pmap *, struct pv_entry *));
275 static void pmap_free_pvs __P((struct pmap *, struct pv_entry *));
276 static void pmap_free_pv_doit __P((struct pv_entry *));
277 static void pmap_free_pvpage __P((void));
278 static boolean_t pmap_is_curpmap __P((struct pmap *));
279 static struct pv_entry *pmap_remove_pv __P((struct vm_page *, struct pmap *,
280 vaddr_t));
281 #define PMAP_REMOVE_ALL 0 /* remove all mappings */
282 #define PMAP_REMOVE_SKIPWIRED 1 /* skip wired mappings */
283
284 static u_int pmap_modify_pv __P((struct pmap *, vaddr_t, struct vm_page *,
285 u_int, u_int));
286
287 /*
288 * Structure that describes and L1 table.
289 */
290 struct l1pt {
291 SIMPLEQ_ENTRY(l1pt) pt_queue; /* Queue pointers */
292 struct pglist pt_plist; /* Allocated page list */
293 vaddr_t pt_va; /* Allocated virtual address */
294 int pt_flags; /* Flags */
295 };
296 #define PTFLAG_STATIC 0x01 /* Statically allocated */
297 #define PTFLAG_KPT 0x02 /* Kernel pt's are mapped */
298 #define PTFLAG_CLEAN 0x04 /* L1 is clean */
299
300 static void pmap_free_l1pt __P((struct l1pt *));
301 static int pmap_allocpagedir __P((struct pmap *));
302 static int pmap_clean_page __P((struct pv_entry *, boolean_t));
303 static void pmap_remove_all __P((struct vm_page *));
304
305 static struct vm_page *pmap_alloc_ptp __P((struct pmap *, vaddr_t));
306 static struct vm_page *pmap_get_ptp __P((struct pmap *, vaddr_t));
307 __inline static void pmap_clearbit __P((struct vm_page *, unsigned int));
308
309 extern paddr_t physical_start;
310 extern paddr_t physical_freestart;
311 extern paddr_t physical_end;
312 extern paddr_t physical_freeend;
313 extern unsigned int free_pages;
314 extern int max_processes;
315
316 vaddr_t virtual_avail;
317 vaddr_t virtual_end;
318 vaddr_t pmap_curmaxkvaddr;
319
320 vaddr_t avail_start;
321 vaddr_t avail_end;
322
323 extern pv_addr_t systempage;
324
325 /* Variables used by the L1 page table queue code */
326 SIMPLEQ_HEAD(l1pt_queue, l1pt);
327 static struct l1pt_queue l1pt_static_queue; /* head of our static l1 queue */
328 static int l1pt_static_queue_count; /* items in the static l1 queue */
329 static int l1pt_static_create_count; /* static l1 items created */
330 static struct l1pt_queue l1pt_queue; /* head of our l1 queue */
331 static int l1pt_queue_count; /* items in the l1 queue */
332 static int l1pt_create_count; /* stat - L1's create count */
333 static int l1pt_reuse_count; /* stat - L1's reused count */
334
335 /* Local function prototypes (not used outside this file) */
336 void pmap_pinit __P((struct pmap *));
337 void pmap_freepagedir __P((struct pmap *));
338
339 /* Other function prototypes */
340 extern void bzero_page __P((vaddr_t));
341 extern void bcopy_page __P((vaddr_t, vaddr_t));
342
343 struct l1pt *pmap_alloc_l1pt __P((void));
344 static __inline void pmap_map_in_l1 __P((struct pmap *pmap, vaddr_t va,
345 vaddr_t l2pa, boolean_t));
346
347 static pt_entry_t *pmap_map_ptes __P((struct pmap *));
348 static void pmap_unmap_ptes __P((struct pmap *));
349
350 __inline static void pmap_vac_me_harder __P((struct pmap *, struct vm_page *,
351 pt_entry_t *, boolean_t));
352 static void pmap_vac_me_kpmap __P((struct pmap *, struct vm_page *,
353 pt_entry_t *, boolean_t));
354 static void pmap_vac_me_user __P((struct pmap *, struct vm_page *,
355 pt_entry_t *, boolean_t));
356
357 /*
358 * real definition of pv_entry.
359 */
360
361 struct pv_entry {
362 struct pv_entry *pv_next; /* next pv_entry */
363 struct pmap *pv_pmap; /* pmap where mapping lies */
364 vaddr_t pv_va; /* virtual address for mapping */
365 int pv_flags; /* flags */
366 struct vm_page *pv_ptp; /* vm_page for the ptp */
367 };
368
369 /*
370 * pv_entrys are dynamically allocated in chunks from a single page.
371 * we keep track of how many pv_entrys are in use for each page and
372 * we can free pv_entry pages if needed. there is one lock for the
373 * entire allocation system.
374 */
375
376 struct pv_page_info {
377 TAILQ_ENTRY(pv_page) pvpi_list;
378 struct pv_entry *pvpi_pvfree;
379 int pvpi_nfree;
380 };
381
382 /*
383 * number of pv_entry's in a pv_page
384 * (note: won't work on systems where NPBG isn't a constant)
385 */
386
387 #define PVE_PER_PVPAGE ((NBPG - sizeof(struct pv_page_info)) / \
388 sizeof(struct pv_entry))
389
390 /*
391 * a pv_page: where pv_entrys are allocated from
392 */
393
394 struct pv_page {
395 struct pv_page_info pvinfo;
396 struct pv_entry pvents[PVE_PER_PVPAGE];
397 };
398
399 #ifdef MYCROFT_HACK
400 int mycroft_hack = 0;
401 #endif
402
403 /* Function to set the debug level of the pmap code */
404
405 #ifdef PMAP_DEBUG
406 void
407 pmap_debug(int level)
408 {
409 pmap_debug_level = level;
410 printf("pmap_debug: level=%d\n", pmap_debug_level);
411 }
412 #endif /* PMAP_DEBUG */
413
414 __inline static boolean_t
415 pmap_is_curpmap(struct pmap *pmap)
416 {
417
418 if ((curproc && curproc->p_vmspace->vm_map.pmap == pmap) ||
419 pmap == pmap_kernel())
420 return (TRUE);
421
422 return (FALSE);
423 }
424
425 #include "isadma.h"
426
427 #if NISADMA > 0
428 /*
429 * Used to protect memory for ISA DMA bounce buffers. If, when loading
430 * pages into the system, memory intersects with any of these ranges,
431 * the intersecting memory will be loaded into a lower-priority free list.
432 */
433 bus_dma_segment_t *pmap_isa_dma_ranges;
434 int pmap_isa_dma_nranges;
435
436 /*
437 * Check if a memory range intersects with an ISA DMA range, and
438 * return the page-rounded intersection if it does. The intersection
439 * will be placed on a lower-priority free list.
440 */
441 static boolean_t
442 pmap_isa_dma_range_intersect(paddr_t pa, psize_t size, paddr_t *pap,
443 psize_t *sizep)
444 {
445 bus_dma_segment_t *ds;
446 int i;
447
448 if (pmap_isa_dma_ranges == NULL)
449 return (FALSE);
450
451 for (i = 0, ds = pmap_isa_dma_ranges;
452 i < pmap_isa_dma_nranges; i++, ds++) {
453 if (ds->ds_addr <= pa && pa < (ds->ds_addr + ds->ds_len)) {
454 /*
455 * Beginning of region intersects with this range.
456 */
457 *pap = trunc_page(pa);
458 *sizep = round_page(min(pa + size,
459 ds->ds_addr + ds->ds_len) - pa);
460 return (TRUE);
461 }
462 if (pa < ds->ds_addr && ds->ds_addr < (pa + size)) {
463 /*
464 * End of region intersects with this range.
465 */
466 *pap = trunc_page(ds->ds_addr);
467 *sizep = round_page(min((pa + size) - ds->ds_addr,
468 ds->ds_len));
469 return (TRUE);
470 }
471 }
472
473 /*
474 * No intersection found.
475 */
476 return (FALSE);
477 }
478 #endif /* NISADMA > 0 */
479
480 /*
481 * p v _ e n t r y f u n c t i o n s
482 */
483
484 /*
485 * pv_entry allocation functions:
486 * the main pv_entry allocation functions are:
487 * pmap_alloc_pv: allocate a pv_entry structure
488 * pmap_free_pv: free one pv_entry
489 * pmap_free_pvs: free a list of pv_entrys
490 *
491 * the rest are helper functions
492 */
493
494 /*
495 * pmap_alloc_pv: inline function to allocate a pv_entry structure
496 * => we lock pvalloc_lock
497 * => if we fail, we call out to pmap_alloc_pvpage
498 * => 3 modes:
499 * ALLOCPV_NEED = we really need a pv_entry, even if we have to steal it
500 * ALLOCPV_TRY = we want a pv_entry, but not enough to steal
501 * ALLOCPV_NONEED = we are trying to grow our free list, don't really need
502 * one now
503 *
504 * "try" is for optional functions like pmap_copy().
505 */
506
507 __inline static struct pv_entry *
508 pmap_alloc_pv(struct pmap *pmap, int mode)
509 {
510 struct pv_page *pvpage;
511 struct pv_entry *pv;
512
513 simple_lock(&pvalloc_lock);
514
515 pvpage = TAILQ_FIRST(&pv_freepages);
516
517 if (pvpage != NULL) {
518 pvpage->pvinfo.pvpi_nfree--;
519 if (pvpage->pvinfo.pvpi_nfree == 0) {
520 /* nothing left in this one? */
521 TAILQ_REMOVE(&pv_freepages, pvpage, pvinfo.pvpi_list);
522 }
523 pv = pvpage->pvinfo.pvpi_pvfree;
524 KASSERT(pv);
525 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
526 pv_nfpvents--; /* took one from pool */
527 } else {
528 pv = NULL; /* need more of them */
529 }
530
531 /*
532 * if below low water mark or we didn't get a pv_entry we try and
533 * create more pv_entrys ...
534 */
535
536 if (pv_nfpvents < PVE_LOWAT || pv == NULL) {
537 if (pv == NULL)
538 pv = pmap_alloc_pvpage(pmap, (mode == ALLOCPV_TRY) ?
539 mode : ALLOCPV_NEED);
540 else
541 (void) pmap_alloc_pvpage(pmap, ALLOCPV_NONEED);
542 }
543
544 simple_unlock(&pvalloc_lock);
545 return(pv);
546 }
547
548 /*
549 * pmap_alloc_pvpage: maybe allocate a new pvpage
550 *
551 * if need_entry is false: try and allocate a new pv_page
552 * if need_entry is true: try and allocate a new pv_page and return a
553 * new pv_entry from it. if we are unable to allocate a pv_page
554 * we make a last ditch effort to steal a pv_page from some other
555 * mapping. if that fails, we panic...
556 *
557 * => we assume that the caller holds pvalloc_lock
558 */
559
560 static struct pv_entry *
561 pmap_alloc_pvpage(struct pmap *pmap, int mode)
562 {
563 struct vm_page *pg;
564 struct pv_page *pvpage;
565 struct pv_entry *pv;
566 int s;
567
568 /*
569 * if we need_entry and we've got unused pv_pages, allocate from there
570 */
571
572 pvpage = TAILQ_FIRST(&pv_unusedpgs);
573 if (mode != ALLOCPV_NONEED && pvpage != NULL) {
574
575 /* move it to pv_freepages list */
576 TAILQ_REMOVE(&pv_unusedpgs, pvpage, pvinfo.pvpi_list);
577 TAILQ_INSERT_HEAD(&pv_freepages, pvpage, pvinfo.pvpi_list);
578
579 /* allocate a pv_entry */
580 pvpage->pvinfo.pvpi_nfree--; /* can't go to zero */
581 pv = pvpage->pvinfo.pvpi_pvfree;
582 KASSERT(pv);
583 pvpage->pvinfo.pvpi_pvfree = pv->pv_next;
584
585 pv_nfpvents--; /* took one from pool */
586 return(pv);
587 }
588
589 /*
590 * see if we've got a cached unmapped VA that we can map a page in.
591 * if not, try to allocate one.
592 */
593
594
595 if (pv_cachedva == 0) {
596 s = splvm();
597 pv_cachedva = uvm_km_kmemalloc(kmem_map, NULL,
598 PAGE_SIZE, UVM_KMF_TRYLOCK|UVM_KMF_VALLOC);
599 splx(s);
600 if (pv_cachedva == 0) {
601 return (NULL);
602 }
603 }
604
605 pg = uvm_pagealloc(NULL, pv_cachedva - vm_map_min(kernel_map), NULL,
606 UVM_PGA_USERESERVE);
607
608 if (pg == NULL)
609 return (NULL);
610 pg->flags &= ~PG_BUSY; /* never busy */
611
612 /*
613 * add a mapping for our new pv_page and free its entrys (save one!)
614 *
615 * NOTE: If we are allocating a PV page for the kernel pmap, the
616 * pmap is already locked! (...but entering the mapping is safe...)
617 */
618
619 pmap_kenter_pa(pv_cachedva, VM_PAGE_TO_PHYS(pg),
620 VM_PROT_READ|VM_PROT_WRITE);
621 pmap_update(pmap_kernel());
622 pvpage = (struct pv_page *) pv_cachedva;
623 pv_cachedva = 0;
624 return (pmap_add_pvpage(pvpage, mode != ALLOCPV_NONEED));
625 }
626
627 /*
628 * pmap_add_pvpage: add a pv_page's pv_entrys to the free list
629 *
630 * => caller must hold pvalloc_lock
631 * => if need_entry is true, we allocate and return one pv_entry
632 */
633
634 static struct pv_entry *
635 pmap_add_pvpage(struct pv_page *pvp, boolean_t need_entry)
636 {
637 int tofree, lcv;
638
639 /* do we need to return one? */
640 tofree = (need_entry) ? PVE_PER_PVPAGE - 1 : PVE_PER_PVPAGE;
641
642 pvp->pvinfo.pvpi_pvfree = NULL;
643 pvp->pvinfo.pvpi_nfree = tofree;
644 for (lcv = 0 ; lcv < tofree ; lcv++) {
645 pvp->pvents[lcv].pv_next = pvp->pvinfo.pvpi_pvfree;
646 pvp->pvinfo.pvpi_pvfree = &pvp->pvents[lcv];
647 }
648 if (need_entry)
649 TAILQ_INSERT_TAIL(&pv_freepages, pvp, pvinfo.pvpi_list);
650 else
651 TAILQ_INSERT_TAIL(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
652 pv_nfpvents += tofree;
653 return((need_entry) ? &pvp->pvents[lcv] : NULL);
654 }
655
656 /*
657 * pmap_free_pv_doit: actually free a pv_entry
658 *
659 * => do not call this directly! instead use either
660 * 1. pmap_free_pv ==> free a single pv_entry
661 * 2. pmap_free_pvs => free a list of pv_entrys
662 * => we must be holding pvalloc_lock
663 */
664
665 __inline static void
666 pmap_free_pv_doit(struct pv_entry *pv)
667 {
668 struct pv_page *pvp;
669
670 pvp = (struct pv_page *) arm_trunc_page((vaddr_t)pv);
671 pv_nfpvents++;
672 pvp->pvinfo.pvpi_nfree++;
673
674 /* nfree == 1 => fully allocated page just became partly allocated */
675 if (pvp->pvinfo.pvpi_nfree == 1) {
676 TAILQ_INSERT_HEAD(&pv_freepages, pvp, pvinfo.pvpi_list);
677 }
678
679 /* free it */
680 pv->pv_next = pvp->pvinfo.pvpi_pvfree;
681 pvp->pvinfo.pvpi_pvfree = pv;
682
683 /*
684 * are all pv_page's pv_entry's free? move it to unused queue.
685 */
686
687 if (pvp->pvinfo.pvpi_nfree == PVE_PER_PVPAGE) {
688 TAILQ_REMOVE(&pv_freepages, pvp, pvinfo.pvpi_list);
689 TAILQ_INSERT_HEAD(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
690 }
691 }
692
693 /*
694 * pmap_free_pv: free a single pv_entry
695 *
696 * => we gain the pvalloc_lock
697 */
698
699 __inline static void
700 pmap_free_pv(struct pmap *pmap, struct pv_entry *pv)
701 {
702 simple_lock(&pvalloc_lock);
703 pmap_free_pv_doit(pv);
704
705 /*
706 * Can't free the PV page if the PV entries were associated with
707 * the kernel pmap; the pmap is already locked.
708 */
709 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
710 pmap != pmap_kernel())
711 pmap_free_pvpage();
712
713 simple_unlock(&pvalloc_lock);
714 }
715
716 /*
717 * pmap_free_pvs: free a list of pv_entrys
718 *
719 * => we gain the pvalloc_lock
720 */
721
722 __inline static void
723 pmap_free_pvs(struct pmap *pmap, struct pv_entry *pvs)
724 {
725 struct pv_entry *nextpv;
726
727 simple_lock(&pvalloc_lock);
728
729 for ( /* null */ ; pvs != NULL ; pvs = nextpv) {
730 nextpv = pvs->pv_next;
731 pmap_free_pv_doit(pvs);
732 }
733
734 /*
735 * Can't free the PV page if the PV entries were associated with
736 * the kernel pmap; the pmap is already locked.
737 */
738 if (pv_nfpvents > PVE_HIWAT && TAILQ_FIRST(&pv_unusedpgs) != NULL &&
739 pmap != pmap_kernel())
740 pmap_free_pvpage();
741
742 simple_unlock(&pvalloc_lock);
743 }
744
745
746 /*
747 * pmap_free_pvpage: try and free an unused pv_page structure
748 *
749 * => assume caller is holding the pvalloc_lock and that
750 * there is a page on the pv_unusedpgs list
751 * => if we can't get a lock on the kmem_map we try again later
752 */
753
754 static void
755 pmap_free_pvpage(void)
756 {
757 int s;
758 struct vm_map *map;
759 struct vm_map_entry *dead_entries;
760 struct pv_page *pvp;
761
762 s = splvm(); /* protect kmem_map */
763
764 pvp = TAILQ_FIRST(&pv_unusedpgs);
765
766 /*
767 * note: watch out for pv_initpage which is allocated out of
768 * kernel_map rather than kmem_map.
769 */
770 if (pvp == pv_initpage)
771 map = kernel_map;
772 else
773 map = kmem_map;
774 if (vm_map_lock_try(map)) {
775
776 /* remove pvp from pv_unusedpgs */
777 TAILQ_REMOVE(&pv_unusedpgs, pvp, pvinfo.pvpi_list);
778
779 /* unmap the page */
780 dead_entries = NULL;
781 uvm_unmap_remove(map, (vaddr_t)pvp, ((vaddr_t)pvp) + PAGE_SIZE,
782 &dead_entries);
783 vm_map_unlock(map);
784
785 if (dead_entries != NULL)
786 uvm_unmap_detach(dead_entries, 0);
787
788 pv_nfpvents -= PVE_PER_PVPAGE; /* update free count */
789 }
790 if (pvp == pv_initpage)
791 /* no more initpage, we've freed it */
792 pv_initpage = NULL;
793
794 splx(s);
795 }
796
797 /*
798 * main pv_entry manipulation functions:
799 * pmap_enter_pv: enter a mapping onto a vm_page list
800 * pmap_remove_pv: remove a mappiing from a vm_page list
801 *
802 * NOTE: pmap_enter_pv expects to lock the pvh itself
803 * pmap_remove_pv expects te caller to lock the pvh before calling
804 */
805
806 /*
807 * pmap_enter_pv: enter a mapping onto a vm_page lst
808 *
809 * => caller should hold the proper lock on pmap_main_lock
810 * => caller should have pmap locked
811 * => we will gain the lock on the vm_page and allocate the new pv_entry
812 * => caller should adjust ptp's wire_count before calling
813 * => caller should not adjust pmap's wire_count
814 */
815
816 __inline static void
817 pmap_enter_pv(struct vm_page *pg, struct pv_entry *pve, struct pmap *pmap,
818 vaddr_t va, struct vm_page *ptp, int flags)
819 {
820 pve->pv_pmap = pmap;
821 pve->pv_va = va;
822 pve->pv_ptp = ptp; /* NULL for kernel pmap */
823 pve->pv_flags = flags;
824 simple_lock(&pg->mdpage.pvh_slock); /* lock vm_page */
825 pve->pv_next = pg->mdpage.pvh_list; /* add to ... */
826 pg->mdpage.pvh_list = pve; /* ... locked list */
827 simple_unlock(&pg->mdpage.pvh_slock); /* unlock, done! */
828 if (pve->pv_flags & PVF_WIRED)
829 ++pmap->pm_stats.wired_count;
830 #ifdef PMAP_ALIAS_DEBUG
831 {
832 int s = splhigh();
833 if (pve->pv_flags & PVF_WRITE)
834 pg->mdpage.rw_mappings++;
835 else
836 pg->mdpage.ro_mappings++;
837 if (pg->mdpage.rw_mappings != 0 &&
838 (pg->mdpage.kro_mappings != 0 || pg->mdpage.krw_mappings != 0)) {
839 printf("pmap_enter_pv: rw %u, kro %u, krw %u\n",
840 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
841 pg->mdpage.krw_mappings);
842 }
843 splx(s);
844 }
845 #endif /* PMAP_ALIAS_DEBUG */
846 }
847
848 /*
849 * pmap_remove_pv: try to remove a mapping from a pv_list
850 *
851 * => caller should hold proper lock on pmap_main_lock
852 * => pmap should be locked
853 * => caller should hold lock on vm_page [so that attrs can be adjusted]
854 * => caller should adjust ptp's wire_count and free PTP if needed
855 * => caller should NOT adjust pmap's wire_count
856 * => we return the removed pve
857 */
858
859 __inline static struct pv_entry *
860 pmap_remove_pv(struct vm_page *pg, struct pmap *pmap, vaddr_t va)
861 {
862 struct pv_entry *pve, **prevptr;
863
864 prevptr = &pg->mdpage.pvh_list; /* previous pv_entry pointer */
865 pve = *prevptr;
866 while (pve) {
867 if (pve->pv_pmap == pmap && pve->pv_va == va) { /* match? */
868 *prevptr = pve->pv_next; /* remove it! */
869 if (pve->pv_flags & PVF_WIRED)
870 --pmap->pm_stats.wired_count;
871 #ifdef PMAP_ALIAS_DEBUG
872 {
873 int s = splhigh();
874 if (pve->pv_flags & PVF_WRITE) {
875 KASSERT(pg->mdpage.rw_mappings != 0);
876 pg->mdpage.rw_mappings--;
877 } else {
878 KASSERT(pg->mdpage.ro_mappings != 0);
879 pg->mdpage.ro_mappings--;
880 }
881 splx(s);
882 }
883 #endif /* PMAP_ALIAS_DEBUG */
884 break;
885 }
886 prevptr = &pve->pv_next; /* previous pointer */
887 pve = pve->pv_next; /* advance */
888 }
889 return(pve); /* return removed pve */
890 }
891
892 /*
893 *
894 * pmap_modify_pv: Update pv flags
895 *
896 * => caller should hold lock on vm_page [so that attrs can be adjusted]
897 * => caller should NOT adjust pmap's wire_count
898 * => caller must call pmap_vac_me_harder() if writable status of a page
899 * may have changed.
900 * => we return the old flags
901 *
902 * Modify a physical-virtual mapping in the pv table
903 */
904
905 static /* __inline */ u_int
906 pmap_modify_pv(struct pmap *pmap, vaddr_t va, struct vm_page *pg,
907 u_int bic_mask, u_int eor_mask)
908 {
909 struct pv_entry *npv;
910 u_int flags, oflags;
911
912 /*
913 * There is at least one VA mapping this page.
914 */
915
916 for (npv = pg->mdpage.pvh_list; npv; npv = npv->pv_next) {
917 if (pmap == npv->pv_pmap && va == npv->pv_va) {
918 oflags = npv->pv_flags;
919 npv->pv_flags = flags =
920 ((oflags & ~bic_mask) ^ eor_mask);
921 if ((flags ^ oflags) & PVF_WIRED) {
922 if (flags & PVF_WIRED)
923 ++pmap->pm_stats.wired_count;
924 else
925 --pmap->pm_stats.wired_count;
926 }
927 #ifdef PMAP_ALIAS_DEBUG
928 {
929 int s = splhigh();
930 if ((flags ^ oflags) & PVF_WRITE) {
931 if (flags & PVF_WRITE) {
932 pg->mdpage.rw_mappings++;
933 pg->mdpage.ro_mappings--;
934 if (pg->mdpage.rw_mappings != 0 &&
935 (pg->mdpage.kro_mappings != 0 ||
936 pg->mdpage.krw_mappings != 0)) {
937 printf("pmap_modify_pv: rw %u, "
938 "kro %u, krw %u\n",
939 pg->mdpage.rw_mappings,
940 pg->mdpage.kro_mappings,
941 pg->mdpage.krw_mappings);
942 }
943 } else {
944 KASSERT(pg->mdpage.rw_mappings != 0);
945 pg->mdpage.rw_mappings--;
946 pg->mdpage.ro_mappings++;
947 }
948 }
949 splx(s);
950 }
951 #endif /* PMAP_ALIAS_DEBUG */
952 return (oflags);
953 }
954 }
955 return (0);
956 }
957
958 /*
959 * Map the specified level 2 pagetable into the level 1 page table for
960 * the given pmap to cover a chunk of virtual address space starting from the
961 * address specified.
962 */
963 static __inline void
964 pmap_map_in_l1(struct pmap *pmap, vaddr_t va, paddr_t l2pa, boolean_t selfref)
965 {
966 vaddr_t ptva;
967
968 /* Calculate the index into the L1 page table. */
969 ptva = (va >> L1_S_SHIFT) & ~3;
970
971 /* Map page table into the L1. */
972 pmap->pm_pdir[ptva + 0] = L1_C_PROTO | (l2pa + 0x000);
973 pmap->pm_pdir[ptva + 1] = L1_C_PROTO | (l2pa + 0x400);
974 pmap->pm_pdir[ptva + 2] = L1_C_PROTO | (l2pa + 0x800);
975 pmap->pm_pdir[ptva + 3] = L1_C_PROTO | (l2pa + 0xc00);
976 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
977
978 /* Map the page table into the page table area. */
979 if (selfref)
980 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = L2_S_PROTO | l2pa |
981 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
982 }
983
984 #if 0
985 static __inline void
986 pmap_unmap_in_l1(struct pmap *pmap, vaddr_t va)
987 {
988 vaddr_t ptva;
989
990 /* Calculate the index into the L1 page table. */
991 ptva = (va >> L1_S_SHIFT) & ~3;
992
993 /* Unmap page table from the L1. */
994 pmap->pm_pdir[ptva + 0] = 0;
995 pmap->pm_pdir[ptva + 1] = 0;
996 pmap->pm_pdir[ptva + 2] = 0;
997 pmap->pm_pdir[ptva + 3] = 0;
998 cpu_dcache_wb_range((vaddr_t) &pmap->pm_pdir[ptva + 0], 16);
999
1000 /* Unmap the page table from the page table area. */
1001 *((pt_entry_t *)(pmap->pm_vptpt + ptva)) = 0;
1002 }
1003 #endif
1004
1005 /*
1006 * Used to map a range of physical addresses into kernel
1007 * virtual address space.
1008 *
1009 * For now, VM is already on, we only need to map the
1010 * specified memory.
1011 *
1012 * XXX This routine should eventually go away; it's only used
1013 * XXX by machine-dependent crash dump code.
1014 */
1015 vaddr_t
1016 pmap_map(vaddr_t va, paddr_t spa, paddr_t epa, vm_prot_t prot)
1017 {
1018 pt_entry_t *pte;
1019
1020 while (spa < epa) {
1021 pte = vtopte(va);
1022
1023 *pte = L2_S_PROTO | spa |
1024 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
1025 cpu_tlb_flushID_SE(va);
1026 va += NBPG;
1027 spa += NBPG;
1028 }
1029 pmap_update(pmap_kernel());
1030 return(va);
1031 }
1032
1033
1034 /*
1035 * void pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1036 *
1037 * bootstrap the pmap system. This is called from initarm and allows
1038 * the pmap system to initailise any structures it requires.
1039 *
1040 * Currently this sets up the kernel_pmap that is statically allocated
1041 * and also allocated virtual addresses for certain page hooks.
1042 * Currently the only one page hook is allocated that is used
1043 * to zero physical pages of memory.
1044 * It also initialises the start and end address of the kernel data space.
1045 */
1046 extern paddr_t physical_freestart;
1047 extern paddr_t physical_freeend;
1048
1049 char *boot_head;
1050
1051 void
1052 pmap_bootstrap(pd_entry_t *kernel_l1pt, pv_addr_t kernel_ptpt)
1053 {
1054 pt_entry_t *pte;
1055 int loop;
1056 paddr_t start, end;
1057 #if NISADMA > 0
1058 paddr_t istart;
1059 psize_t isize;
1060 #endif
1061
1062 pmap_kernel()->pm_pdir = kernel_l1pt;
1063 pmap_kernel()->pm_pptpt = kernel_ptpt.pv_pa;
1064 pmap_kernel()->pm_vptpt = kernel_ptpt.pv_va;
1065 simple_lock_init(&pmap_kernel()->pm_lock);
1066 pmap_kernel()->pm_obj.pgops = NULL;
1067 TAILQ_INIT(&(pmap_kernel()->pm_obj.memq));
1068 pmap_kernel()->pm_obj.uo_npages = 0;
1069 pmap_kernel()->pm_obj.uo_refs = 1;
1070
1071 /*
1072 * Initialize PAGE_SIZE-dependent variables.
1073 */
1074 uvm_setpagesize();
1075
1076 loop = 0;
1077 while (loop < bootconfig.dramblocks) {
1078 start = (paddr_t)bootconfig.dram[loop].address;
1079 end = start + (bootconfig.dram[loop].pages * NBPG);
1080 if (start < physical_freestart)
1081 start = physical_freestart;
1082 if (end > physical_freeend)
1083 end = physical_freeend;
1084 #if 0
1085 printf("%d: %lx -> %lx\n", loop, start, end - 1);
1086 #endif
1087 #if NISADMA > 0
1088 if (pmap_isa_dma_range_intersect(start, end - start,
1089 &istart, &isize)) {
1090 /*
1091 * Place the pages that intersect with the
1092 * ISA DMA range onto the ISA DMA free list.
1093 */
1094 #if 0
1095 printf(" ISADMA 0x%lx -> 0x%lx\n", istart,
1096 istart + isize - 1);
1097 #endif
1098 uvm_page_physload(atop(istart),
1099 atop(istart + isize), atop(istart),
1100 atop(istart + isize), VM_FREELIST_ISADMA);
1101
1102 /*
1103 * Load the pieces that come before
1104 * the intersection into the default
1105 * free list.
1106 */
1107 if (start < istart) {
1108 #if 0
1109 printf(" BEFORE 0x%lx -> 0x%lx\n",
1110 start, istart - 1);
1111 #endif
1112 uvm_page_physload(atop(start),
1113 atop(istart), atop(start),
1114 atop(istart), VM_FREELIST_DEFAULT);
1115 }
1116
1117 /*
1118 * Load the pieces that come after
1119 * the intersection into the default
1120 * free list.
1121 */
1122 if ((istart + isize) < end) {
1123 #if 0
1124 printf(" AFTER 0x%lx -> 0x%lx\n",
1125 (istart + isize), end - 1);
1126 #endif
1127 uvm_page_physload(atop(istart + isize),
1128 atop(end), atop(istart + isize),
1129 atop(end), VM_FREELIST_DEFAULT);
1130 }
1131 } else {
1132 uvm_page_physload(atop(start), atop(end),
1133 atop(start), atop(end), VM_FREELIST_DEFAULT);
1134 }
1135 #else /* NISADMA > 0 */
1136 uvm_page_physload(atop(start), atop(end),
1137 atop(start), atop(end), VM_FREELIST_DEFAULT);
1138 #endif /* NISADMA > 0 */
1139 ++loop;
1140 }
1141
1142 virtual_avail = KERNEL_VM_BASE;
1143 virtual_end = KERNEL_VM_BASE + KERNEL_VM_SIZE;
1144
1145 /*
1146 * now we allocate the "special" VAs which are used for tmp mappings
1147 * by the pmap (and other modules). we allocate the VAs by advancing
1148 * virtual_avail (note that there are no pages mapped at these VAs).
1149 * we find the PTE that maps the allocated VA via the linear PTE
1150 * mapping.
1151 */
1152
1153 pte = ((pt_entry_t *) PTE_BASE) + atop(virtual_avail);
1154
1155 csrcp = virtual_avail; csrc_pte = pte;
1156 virtual_avail += PAGE_SIZE; pte++;
1157
1158 cdstp = virtual_avail; cdst_pte = pte;
1159 virtual_avail += PAGE_SIZE; pte++;
1160
1161 memhook = (char *) virtual_avail; /* don't need pte */
1162 virtual_avail += PAGE_SIZE; pte++;
1163
1164 msgbufaddr = (caddr_t) virtual_avail; /* don't need pte */
1165 virtual_avail += round_page(MSGBUFSIZE);
1166 pte += atop(round_page(MSGBUFSIZE));
1167
1168 /*
1169 * init the static-global locks and global lists.
1170 */
1171 spinlockinit(&pmap_main_lock, "pmaplk", 0);
1172 simple_lock_init(&pvalloc_lock);
1173 simple_lock_init(&pmaps_lock);
1174 LIST_INIT(&pmaps);
1175 TAILQ_INIT(&pv_freepages);
1176 TAILQ_INIT(&pv_unusedpgs);
1177
1178 /*
1179 * initialize the pmap pool.
1180 */
1181
1182 pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
1183 &pool_allocator_nointr);
1184
1185 /*
1186 * initialize the PT-PT pool and cache.
1187 */
1188
1189 pool_init(&pmap_ptpt_pool, PAGE_SIZE, 0, 0, 0, "ptptpl",
1190 &pmap_ptpt_allocator);
1191 pool_cache_init(&pmap_ptpt_cache, &pmap_ptpt_pool,
1192 pmap_ptpt_ctor, NULL, NULL);
1193
1194 cpu_dcache_wbinv_all();
1195 }
1196
1197 /*
1198 * void pmap_init(void)
1199 *
1200 * Initialize the pmap module.
1201 * Called by vm_init() in vm/vm_init.c in order to initialise
1202 * any structures that the pmap system needs to map virtual memory.
1203 */
1204
1205 extern int physmem;
1206
1207 void
1208 pmap_init(void)
1209 {
1210
1211 /*
1212 * Set the available memory vars - These do not map to real memory
1213 * addresses and cannot as the physical memory is fragmented.
1214 * They are used by ps for %mem calculations.
1215 * One could argue whether this should be the entire memory or just
1216 * the memory that is useable in a user process.
1217 */
1218 avail_start = 0;
1219 avail_end = physmem * NBPG;
1220
1221 /*
1222 * now we need to free enough pv_entry structures to allow us to get
1223 * the kmem_map/kmem_object allocated and inited (done after this
1224 * function is finished). to do this we allocate one bootstrap page out
1225 * of kernel_map and use it to provide an initial pool of pv_entry
1226 * structures. we never free this page.
1227 */
1228
1229 pv_initpage = (struct pv_page *) uvm_km_alloc(kernel_map, PAGE_SIZE);
1230 if (pv_initpage == NULL)
1231 panic("pmap_init: pv_initpage");
1232 pv_cachedva = 0; /* a VA we have allocated but not used yet */
1233 pv_nfpvents = 0;
1234 (void) pmap_add_pvpage(pv_initpage, FALSE);
1235
1236 pmap_initialized = TRUE;
1237
1238 /* Initialise our L1 page table queues and counters */
1239 SIMPLEQ_INIT(&l1pt_static_queue);
1240 l1pt_static_queue_count = 0;
1241 l1pt_static_create_count = 0;
1242 SIMPLEQ_INIT(&l1pt_queue);
1243 l1pt_queue_count = 0;
1244 l1pt_create_count = 0;
1245 l1pt_reuse_count = 0;
1246 }
1247
1248 /*
1249 * pmap_postinit()
1250 *
1251 * This routine is called after the vm and kmem subsystems have been
1252 * initialised. This allows the pmap code to perform any initialisation
1253 * that can only be done one the memory allocation is in place.
1254 */
1255
1256 void
1257 pmap_postinit(void)
1258 {
1259 int loop;
1260 struct l1pt *pt;
1261
1262 #ifdef PMAP_STATIC_L1S
1263 for (loop = 0; loop < PMAP_STATIC_L1S; ++loop) {
1264 #else /* PMAP_STATIC_L1S */
1265 for (loop = 0; loop < max_processes; ++loop) {
1266 #endif /* PMAP_STATIC_L1S */
1267 /* Allocate a L1 page table */
1268 pt = pmap_alloc_l1pt();
1269 if (!pt)
1270 panic("Cannot allocate static L1 page tables\n");
1271
1272 /* Clean it */
1273 bzero((void *)pt->pt_va, L1_TABLE_SIZE);
1274 pt->pt_flags |= (PTFLAG_STATIC | PTFLAG_CLEAN);
1275 /* Add the page table to the queue */
1276 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue, pt, pt_queue);
1277 ++l1pt_static_queue_count;
1278 ++l1pt_static_create_count;
1279 }
1280 }
1281
1282
1283 /*
1284 * Create and return a physical map.
1285 *
1286 * If the size specified for the map is zero, the map is an actual physical
1287 * map, and may be referenced by the hardware.
1288 *
1289 * If the size specified is non-zero, the map will be used in software only,
1290 * and is bounded by that size.
1291 */
1292
1293 pmap_t
1294 pmap_create(void)
1295 {
1296 struct pmap *pmap;
1297
1298 /*
1299 * Fetch pmap entry from the pool
1300 */
1301
1302 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
1303 /* XXX is this really needed! */
1304 memset(pmap, 0, sizeof(*pmap));
1305
1306 simple_lock_init(&pmap->pm_obj.vmobjlock);
1307 pmap->pm_obj.pgops = NULL; /* currently not a mappable object */
1308 TAILQ_INIT(&pmap->pm_obj.memq);
1309 pmap->pm_obj.uo_npages = 0;
1310 pmap->pm_obj.uo_refs = 1;
1311 pmap->pm_stats.wired_count = 0;
1312 pmap->pm_stats.resident_count = 1;
1313 pmap->pm_ptphint = NULL;
1314
1315 /* Now init the machine part of the pmap */
1316 pmap_pinit(pmap);
1317 return(pmap);
1318 }
1319
1320 /*
1321 * pmap_alloc_l1pt()
1322 *
1323 * This routine allocates physical and virtual memory for a L1 page table
1324 * and wires it.
1325 * A l1pt structure is returned to describe the allocated page table.
1326 *
1327 * This routine is allowed to fail if the required memory cannot be allocated.
1328 * In this case NULL is returned.
1329 */
1330
1331 struct l1pt *
1332 pmap_alloc_l1pt(void)
1333 {
1334 paddr_t pa;
1335 vaddr_t va;
1336 struct l1pt *pt;
1337 int error;
1338 struct vm_page *m;
1339
1340 /* Allocate virtual address space for the L1 page table */
1341 va = uvm_km_valloc(kernel_map, L1_TABLE_SIZE);
1342 if (va == 0) {
1343 #ifdef DIAGNOSTIC
1344 PDEBUG(0,
1345 printf("pmap: Cannot allocate pageable memory for L1\n"));
1346 #endif /* DIAGNOSTIC */
1347 return(NULL);
1348 }
1349
1350 /* Allocate memory for the l1pt structure */
1351 pt = (struct l1pt *)malloc(sizeof(struct l1pt), M_VMPMAP, M_WAITOK);
1352
1353 /*
1354 * Allocate pages from the VM system.
1355 */
1356 TAILQ_INIT(&pt->pt_plist);
1357 error = uvm_pglistalloc(L1_TABLE_SIZE, physical_start, physical_end,
1358 L1_TABLE_SIZE, 0, &pt->pt_plist, 1, M_WAITOK);
1359 if (error) {
1360 #ifdef DIAGNOSTIC
1361 PDEBUG(0,
1362 printf("pmap: Cannot allocate physical mem for L1 (%d)\n",
1363 error));
1364 #endif /* DIAGNOSTIC */
1365 /* Release the resources we already have claimed */
1366 free(pt, M_VMPMAP);
1367 uvm_km_free(kernel_map, va, L1_TABLE_SIZE);
1368 return(NULL);
1369 }
1370
1371 /* Map our physical pages into our virtual space */
1372 pt->pt_va = va;
1373 m = TAILQ_FIRST(&pt->pt_plist);
1374 while (m && va < (pt->pt_va + L1_TABLE_SIZE)) {
1375 pa = VM_PAGE_TO_PHYS(m);
1376
1377 pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE);
1378
1379 va += NBPG;
1380 m = m->pageq.tqe_next;
1381 }
1382
1383 #ifdef DIAGNOSTIC
1384 if (m)
1385 panic("pmap_alloc_l1pt: pglist not empty\n");
1386 #endif /* DIAGNOSTIC */
1387
1388 pt->pt_flags = 0;
1389 return(pt);
1390 }
1391
1392 /*
1393 * Free a L1 page table previously allocated with pmap_alloc_l1pt().
1394 */
1395 static void
1396 pmap_free_l1pt(struct l1pt *pt)
1397 {
1398 /* Separate the physical memory for the virtual space */
1399 pmap_kremove(pt->pt_va, L1_TABLE_SIZE);
1400 pmap_update(pmap_kernel());
1401
1402 /* Return the physical memory */
1403 uvm_pglistfree(&pt->pt_plist);
1404
1405 /* Free the virtual space */
1406 uvm_km_free(kernel_map, pt->pt_va, L1_TABLE_SIZE);
1407
1408 /* Free the l1pt structure */
1409 free(pt, M_VMPMAP);
1410 }
1411
1412 /*
1413 * pmap_ptpt_page_alloc:
1414 *
1415 * Back-end page allocator for the PT-PT pool.
1416 */
1417 static void *
1418 pmap_ptpt_page_alloc(struct pool *pp, int flags)
1419 {
1420 struct vm_page *pg;
1421 pt_entry_t *pte;
1422 vaddr_t va;
1423
1424 /* XXX PR_WAITOK? */
1425 va = uvm_km_valloc(kernel_map, L2_TABLE_SIZE);
1426 if (va == 0)
1427 return (NULL);
1428
1429 for (;;) {
1430 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_ZERO);
1431 if (pg != NULL)
1432 break;
1433 if ((flags & PR_WAITOK) == 0) {
1434 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1435 return (NULL);
1436 }
1437 uvm_wait("pmap_ptpt");
1438 }
1439
1440 pte = vtopte(va);
1441 KDASSERT(pmap_pte_v(pte) == 0);
1442
1443 *pte = L2_S_PROTO | VM_PAGE_TO_PHYS(pg) |
1444 L2_S_PROT(PTE_KERNEL, VM_PROT_READ|VM_PROT_WRITE);
1445 #ifdef PMAP_ALIAS_DEBUG
1446 {
1447 int s = splhigh();
1448 pg->mdpage.krw_mappings++;
1449 splx(s);
1450 }
1451 #endif /* PMAP_ALIAS_DEBUG */
1452
1453 return ((void *) va);
1454 }
1455
1456 /*
1457 * pmap_ptpt_page_free:
1458 *
1459 * Back-end page free'er for the PT-PT pool.
1460 */
1461 static void
1462 pmap_ptpt_page_free(struct pool *pp, void *v)
1463 {
1464 vaddr_t va = (vaddr_t) v;
1465 paddr_t pa;
1466
1467 pa = vtophys(va);
1468
1469 pmap_kremove(va, L2_TABLE_SIZE);
1470 pmap_update(pmap_kernel());
1471
1472 uvm_pagefree(PHYS_TO_VM_PAGE(pa));
1473
1474 uvm_km_free(kernel_map, va, L2_TABLE_SIZE);
1475 }
1476
1477 /*
1478 * pmap_ptpt_ctor:
1479 *
1480 * Constructor for the PT-PT cache.
1481 */
1482 static int
1483 pmap_ptpt_ctor(void *arg, void *object, int flags)
1484 {
1485 caddr_t vptpt = object;
1486
1487 /* Page is already zero'd. */
1488
1489 /*
1490 * Map in kernel PTs.
1491 *
1492 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1493 */
1494 memcpy(vptpt + ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2),
1495 (char *)(PTE_BASE + (PTE_BASE >> (PGSHIFT - 2)) +
1496 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2)),
1497 (KERNEL_PD_SIZE >> 2));
1498
1499 return (0);
1500 }
1501
1502 /*
1503 * Allocate a page directory.
1504 * This routine will either allocate a new page directory from the pool
1505 * of L1 page tables currently held by the kernel or it will allocate
1506 * a new one via pmap_alloc_l1pt().
1507 * It will then initialise the l1 page table for use.
1508 */
1509 static int
1510 pmap_allocpagedir(struct pmap *pmap)
1511 {
1512 vaddr_t vptpt;
1513 paddr_t pa;
1514 struct l1pt *pt;
1515 u_int gen;
1516
1517 PDEBUG(0, printf("pmap_allocpagedir(%p)\n", pmap));
1518
1519 /* Do we have any spare L1's lying around ? */
1520 if (l1pt_static_queue_count) {
1521 --l1pt_static_queue_count;
1522 pt = l1pt_static_queue.sqh_first;
1523 SIMPLEQ_REMOVE_HEAD(&l1pt_static_queue, pt, pt_queue);
1524 } else if (l1pt_queue_count) {
1525 --l1pt_queue_count;
1526 pt = l1pt_queue.sqh_first;
1527 SIMPLEQ_REMOVE_HEAD(&l1pt_queue, pt, pt_queue);
1528 ++l1pt_reuse_count;
1529 } else {
1530 pt = pmap_alloc_l1pt();
1531 if (!pt)
1532 return(ENOMEM);
1533 ++l1pt_create_count;
1534 }
1535
1536 /* Store the pointer to the l1 descriptor in the pmap. */
1537 pmap->pm_l1pt = pt;
1538
1539 /* Get the physical address of the start of the l1 */
1540 pa = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pt->pt_plist));
1541
1542 /* Store the virtual address of the l1 in the pmap. */
1543 pmap->pm_pdir = (pd_entry_t *)pt->pt_va;
1544
1545 /* Clean the L1 if it is dirty */
1546 if (!(pt->pt_flags & PTFLAG_CLEAN)) {
1547 bzero((void *)pmap->pm_pdir, (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1548 cpu_dcache_wb_range((vaddr_t) pmap->pm_pdir,
1549 (L1_TABLE_SIZE - KERNEL_PD_SIZE));
1550 }
1551
1552 /* Allocate a page table to map all the page tables for this pmap */
1553 KASSERT(pmap->pm_vptpt == 0);
1554
1555 try_again:
1556 gen = pmap_ptpt_cache_generation;
1557 vptpt = (vaddr_t) pool_cache_get(&pmap_ptpt_cache, PR_WAITOK);
1558 if (vptpt == NULL) {
1559 PDEBUG(0, printf("pmap_alloc_pagedir: no KVA for PTPT\n"));
1560 pmap_freepagedir(pmap);
1561 return (ENOMEM);
1562 }
1563
1564 /* need to lock this all up for growkernel */
1565 simple_lock(&pmaps_lock);
1566
1567 if (gen != pmap_ptpt_cache_generation) {
1568 simple_unlock(&pmaps_lock);
1569 pool_cache_destruct_object(&pmap_ptpt_cache, (void *) vptpt);
1570 goto try_again;
1571 }
1572
1573 pmap->pm_vptpt = vptpt;
1574 pmap->pm_pptpt = vtophys(vptpt);
1575
1576 /* Duplicate the kernel mappings. */
1577 bcopy((char *)pmap_kernel()->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1578 (char *)pmap->pm_pdir + (L1_TABLE_SIZE - KERNEL_PD_SIZE),
1579 KERNEL_PD_SIZE);
1580 cpu_dcache_wb_range((vaddr_t)pmap->pm_pdir +
1581 (L1_TABLE_SIZE - KERNEL_PD_SIZE), KERNEL_PD_SIZE);
1582
1583 /* Wire in this page table */
1584 pmap_map_in_l1(pmap, PTE_BASE, pmap->pm_pptpt, TRUE);
1585
1586 pt->pt_flags &= ~PTFLAG_CLEAN; /* L1 is dirty now */
1587
1588 LIST_INSERT_HEAD(&pmaps, pmap, pm_list);
1589 simple_unlock(&pmaps_lock);
1590
1591 return(0);
1592 }
1593
1594
1595 /*
1596 * Initialize a preallocated and zeroed pmap structure,
1597 * such as one in a vmspace structure.
1598 */
1599
1600 void
1601 pmap_pinit(struct pmap *pmap)
1602 {
1603 int backoff = 6;
1604 int retry = 10;
1605
1606 PDEBUG(0, printf("pmap_pinit(%p)\n", pmap));
1607
1608 /* Keep looping until we succeed in allocating a page directory */
1609 while (pmap_allocpagedir(pmap) != 0) {
1610 /*
1611 * Ok we failed to allocate a suitable block of memory for an
1612 * L1 page table. This means that either:
1613 * 1. 16KB of virtual address space could not be allocated
1614 * 2. 16KB of physically contiguous memory on a 16KB boundary
1615 * could not be allocated.
1616 *
1617 * Since we cannot fail we will sleep for a while and try
1618 * again.
1619 *
1620 * Searching for a suitable L1 PT is expensive:
1621 * to avoid hogging the system when memory is really
1622 * scarce, use an exponential back-off so that
1623 * eventually we won't retry more than once every 8
1624 * seconds. This should allow other processes to run
1625 * to completion and free up resources.
1626 */
1627 (void) ltsleep(&lbolt, PVM, "l1ptwait", (hz << 3) >> backoff,
1628 NULL);
1629 if (--retry == 0) {
1630 retry = 10;
1631 if (backoff)
1632 --backoff;
1633 }
1634 }
1635
1636 if (vector_page < KERNEL_BASE) {
1637 /*
1638 * Map the vector page. This will also allocate and map
1639 * an L2 table for it.
1640 */
1641 pmap_enter(pmap, vector_page, systempage.pv_pa,
1642 VM_PROT_READ, VM_PROT_READ | PMAP_WIRED);
1643 pmap_update(pmap);
1644 }
1645 }
1646
1647 void
1648 pmap_freepagedir(struct pmap *pmap)
1649 {
1650 /* Free the memory used for the page table mapping */
1651 if (pmap->pm_vptpt != 0) {
1652 /*
1653 * XXX Objects freed to a pool cache must be in constructed
1654 * XXX form when freed, but we don't free page tables as we
1655 * XXX go, so we need to zap the mappings here.
1656 *
1657 * XXX THIS IS CURRENTLY DONE AS UNCACHED MEMORY ACCESS.
1658 */
1659 memset((caddr_t) pmap->pm_vptpt, 0,
1660 ((L1_TABLE_SIZE - KERNEL_PD_SIZE) >> 2));
1661 pool_cache_put(&pmap_ptpt_cache, (void *) pmap->pm_vptpt);
1662 }
1663
1664 /* junk the L1 page table */
1665 if (pmap->pm_l1pt->pt_flags & PTFLAG_STATIC) {
1666 /* Add the page table to the queue */
1667 SIMPLEQ_INSERT_TAIL(&l1pt_static_queue,
1668 pmap->pm_l1pt, pt_queue);
1669 ++l1pt_static_queue_count;
1670 } else if (l1pt_queue_count < 8) {
1671 /* Add the page table to the queue */
1672 SIMPLEQ_INSERT_TAIL(&l1pt_queue, pmap->pm_l1pt, pt_queue);
1673 ++l1pt_queue_count;
1674 } else
1675 pmap_free_l1pt(pmap->pm_l1pt);
1676 }
1677
1678 /*
1679 * Retire the given physical map from service.
1680 * Should only be called if the map contains no valid mappings.
1681 */
1682
1683 void
1684 pmap_destroy(struct pmap *pmap)
1685 {
1686 struct vm_page *page;
1687 int count;
1688
1689 if (pmap == NULL)
1690 return;
1691
1692 PDEBUG(0, printf("pmap_destroy(%p)\n", pmap));
1693
1694 /*
1695 * Drop reference count
1696 */
1697 simple_lock(&pmap->pm_obj.vmobjlock);
1698 count = --pmap->pm_obj.uo_refs;
1699 simple_unlock(&pmap->pm_obj.vmobjlock);
1700 if (count > 0) {
1701 return;
1702 }
1703
1704 /*
1705 * reference count is zero, free pmap resources and then free pmap.
1706 */
1707
1708 /*
1709 * remove it from global list of pmaps
1710 */
1711
1712 simple_lock(&pmaps_lock);
1713 LIST_REMOVE(pmap, pm_list);
1714 simple_unlock(&pmaps_lock);
1715
1716 if (vector_page < KERNEL_BASE) {
1717 /* Remove the vector page mapping */
1718 pmap_remove(pmap, vector_page, vector_page + NBPG);
1719 pmap_update(pmap);
1720 }
1721
1722 /*
1723 * Free any page tables still mapped
1724 * This is only temporay until pmap_enter can count the number
1725 * of mappings made in a page table. Then pmap_remove() can
1726 * reduce the count and free the pagetable when the count
1727 * reaches zero. Note that entries in this list should match the
1728 * contents of the ptpt, however this is faster than walking a 1024
1729 * entries looking for pt's
1730 * taken from i386 pmap.c
1731 */
1732 /*
1733 * vmobjlock must be held while freeing pages
1734 */
1735 simple_lock(&pmap->pm_obj.vmobjlock);
1736 while ((page = TAILQ_FIRST(&pmap->pm_obj.memq)) != NULL) {
1737 KASSERT((page->flags & PG_BUSY) == 0);
1738 page->wire_count = 0;
1739 uvm_pagefree(page);
1740 }
1741 simple_unlock(&pmap->pm_obj.vmobjlock);
1742
1743 /* Free the page dir */
1744 pmap_freepagedir(pmap);
1745
1746 /* return the pmap to the pool */
1747 pool_put(&pmap_pmap_pool, pmap);
1748 }
1749
1750
1751 /*
1752 * void pmap_reference(struct pmap *pmap)
1753 *
1754 * Add a reference to the specified pmap.
1755 */
1756
1757 void
1758 pmap_reference(struct pmap *pmap)
1759 {
1760 if (pmap == NULL)
1761 return;
1762
1763 simple_lock(&pmap->pm_lock);
1764 pmap->pm_obj.uo_refs++;
1765 simple_unlock(&pmap->pm_lock);
1766 }
1767
1768 /*
1769 * void pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1770 *
1771 * Return the start and end addresses of the kernel's virtual space.
1772 * These values are setup in pmap_bootstrap and are updated as pages
1773 * are allocated.
1774 */
1775
1776 void
1777 pmap_virtual_space(vaddr_t *start, vaddr_t *end)
1778 {
1779 *start = virtual_avail;
1780 *end = virtual_end;
1781 }
1782
1783 /*
1784 * Activate the address space for the specified process. If the process
1785 * is the current process, load the new MMU context.
1786 */
1787 void
1788 pmap_activate(struct proc *p)
1789 {
1790 struct pmap *pmap = p->p_vmspace->vm_map.pmap;
1791 struct pcb *pcb = &p->p_addr->u_pcb;
1792
1793 (void) pmap_extract(pmap_kernel(), (vaddr_t)pmap->pm_pdir,
1794 (paddr_t *)&pcb->pcb_pagedir);
1795
1796 PDEBUG(0, printf("pmap_activate: p=%p pmap=%p pcb=%p pdir=%p l1=%p\n",
1797 p, pmap, pcb, pmap->pm_pdir, pcb->pcb_pagedir));
1798
1799 if (p == curproc) {
1800 PDEBUG(0, printf("pmap_activate: setting TTB\n"));
1801 setttb((u_int)pcb->pcb_pagedir);
1802 }
1803 }
1804
1805 /*
1806 * Deactivate the address space of the specified process.
1807 */
1808 void
1809 pmap_deactivate(struct proc *p)
1810 {
1811 }
1812
1813 /*
1814 * Perform any deferred pmap operations.
1815 */
1816 void
1817 pmap_update(struct pmap *pmap)
1818 {
1819
1820 /*
1821 * We haven't deferred any pmap operations, but we do need to
1822 * make sure TLB/cache operations have completed.
1823 */
1824 cpu_cpwait();
1825 }
1826
1827 /*
1828 * pmap_clean_page()
1829 *
1830 * This is a local function used to work out the best strategy to clean
1831 * a single page referenced by its entry in the PV table. It's used by
1832 * pmap_copy_page, pmap_zero page and maybe some others later on.
1833 *
1834 * Its policy is effectively:
1835 * o If there are no mappings, we don't bother doing anything with the cache.
1836 * o If there is one mapping, we clean just that page.
1837 * o If there are multiple mappings, we clean the entire cache.
1838 *
1839 * So that some functions can be further optimised, it returns 0 if it didn't
1840 * clean the entire cache, or 1 if it did.
1841 *
1842 * XXX One bug in this routine is that if the pv_entry has a single page
1843 * mapped at 0x00000000 a whole cache clean will be performed rather than
1844 * just the 1 page. Since this should not occur in everyday use and if it does
1845 * it will just result in not the most efficient clean for the page.
1846 */
1847 static int
1848 pmap_clean_page(struct pv_entry *pv, boolean_t is_src)
1849 {
1850 struct pmap *pmap;
1851 struct pv_entry *npv;
1852 int cache_needs_cleaning = 0;
1853 vaddr_t page_to_clean = 0;
1854
1855 if (pv == NULL)
1856 /* nothing mapped in so nothing to flush */
1857 return (0);
1858
1859 /* Since we flush the cache each time we change curproc, we
1860 * only need to flush the page if it is in the current pmap.
1861 */
1862 if (curproc)
1863 pmap = curproc->p_vmspace->vm_map.pmap;
1864 else
1865 pmap = pmap_kernel();
1866
1867 for (npv = pv; npv; npv = npv->pv_next) {
1868 if (npv->pv_pmap == pmap) {
1869 /* The page is mapped non-cacheable in
1870 * this map. No need to flush the cache.
1871 */
1872 if (npv->pv_flags & PVF_NC) {
1873 #ifdef DIAGNOSTIC
1874 if (cache_needs_cleaning)
1875 panic("pmap_clean_page: "
1876 "cache inconsistency");
1877 #endif
1878 break;
1879 }
1880 #if 0
1881 /*
1882 * XXX Can't do this because pmap_protect doesn't
1883 * XXX clean the page when it does a write-protect.
1884 */
1885 else if (is_src && (npv->pv_flags & PVF_WRITE) == 0)
1886 continue;
1887 #endif
1888 if (cache_needs_cleaning){
1889 page_to_clean = 0;
1890 break;
1891 }
1892 else
1893 page_to_clean = npv->pv_va;
1894 cache_needs_cleaning = 1;
1895 }
1896 }
1897
1898 if (page_to_clean)
1899 cpu_idcache_wbinv_range(page_to_clean, NBPG);
1900 else if (cache_needs_cleaning) {
1901 cpu_idcache_wbinv_all();
1902 return (1);
1903 }
1904 return (0);
1905 }
1906
1907 /*
1908 * pmap_zero_page()
1909 *
1910 * Zero a given physical page by mapping it at a page hook point.
1911 * In doing the zero page op, the page we zero is mapped cachable, as with
1912 * StrongARM accesses to non-cached pages are non-burst making writing
1913 * _any_ bulk data very slow.
1914 */
1915 #if ARM_MMU_GENERIC == 1
1916 void
1917 pmap_zero_page_generic(paddr_t phys)
1918 {
1919 #ifdef DEBUG
1920 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1921
1922 if (pg->mdpage.pvh_list != NULL)
1923 panic("pmap_zero_page: page has mappings");
1924 #endif
1925
1926 KDASSERT((phys & PGOFSET) == 0);
1927
1928 /*
1929 * Hook in the page, zero it, and purge the cache for that
1930 * zeroed page. Invalidate the TLB as needed.
1931 */
1932 *cdst_pte = L2_S_PROTO | phys |
1933 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1934 cpu_tlb_flushD_SE(cdstp);
1935 cpu_cpwait();
1936 bzero_page(cdstp);
1937 cpu_dcache_wbinv_range(cdstp, NBPG);
1938 }
1939 #endif /* ARM_MMU_GENERIC == 1 */
1940
1941 #if ARM_MMU_XSCALE == 1
1942 void
1943 pmap_zero_page_xscale(paddr_t phys)
1944 {
1945 #ifdef DEBUG
1946 struct vm_page *pg = PHYS_TO_VM_PAGE(phys);
1947
1948 if (pg->mdpage.pvh_list != NULL)
1949 panic("pmap_zero_page: page has mappings");
1950 #endif
1951
1952 KDASSERT((phys & PGOFSET) == 0);
1953
1954 /*
1955 * Hook in the page, zero it, and purge the cache for that
1956 * zeroed page. Invalidate the TLB as needed.
1957 */
1958 *cdst_pte = L2_S_PROTO | phys |
1959 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
1960 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
1961 cpu_tlb_flushD_SE(cdstp);
1962 cpu_cpwait();
1963 bzero_page(cdstp);
1964 xscale_cache_clean_minidata();
1965 }
1966 #endif /* ARM_MMU_XSCALE == 1 */
1967
1968 /* pmap_pageidlezero()
1969 *
1970 * The same as above, except that we assume that the page is not
1971 * mapped. This means we never have to flush the cache first. Called
1972 * from the idle loop.
1973 */
1974 boolean_t
1975 pmap_pageidlezero(paddr_t phys)
1976 {
1977 int i, *ptr;
1978 boolean_t rv = TRUE;
1979 #ifdef DEBUG
1980 struct vm_page *pg;
1981
1982 pg = PHYS_TO_VM_PAGE(phys);
1983 if (pg->mdpage.pvh_list != NULL)
1984 panic("pmap_pageidlezero: page has mappings");
1985 #endif
1986
1987 KDASSERT((phys & PGOFSET) == 0);
1988
1989 /*
1990 * Hook in the page, zero it, and purge the cache for that
1991 * zeroed page. Invalidate the TLB as needed.
1992 */
1993 *cdst_pte = L2_S_PROTO | phys |
1994 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
1995 cpu_tlb_flushD_SE(cdstp);
1996 cpu_cpwait();
1997
1998 for (i = 0, ptr = (int *)cdstp;
1999 i < (NBPG / sizeof(int)); i++) {
2000 if (sched_whichqs != 0) {
2001 /*
2002 * A process has become ready. Abort now,
2003 * so we don't keep it waiting while we
2004 * do slow memory access to finish this
2005 * page.
2006 */
2007 rv = FALSE;
2008 break;
2009 }
2010 *ptr++ = 0;
2011 }
2012
2013 if (rv)
2014 /*
2015 * if we aborted we'll rezero this page again later so don't
2016 * purge it unless we finished it
2017 */
2018 cpu_dcache_wbinv_range(cdstp, NBPG);
2019 return (rv);
2020 }
2021
2022 /*
2023 * pmap_copy_page()
2024 *
2025 * Copy one physical page into another, by mapping the pages into
2026 * hook points. The same comment regarding cachability as in
2027 * pmap_zero_page also applies here.
2028 */
2029 #if ARM_MMU_GENERIC == 1
2030 void
2031 pmap_copy_page_generic(paddr_t src, paddr_t dst)
2032 {
2033 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
2034 #ifdef DEBUG
2035 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
2036
2037 if (dst_pg->mdpage.pvh_list != NULL)
2038 panic("pmap_copy_page: dst page has mappings");
2039 #endif
2040
2041 KDASSERT((src & PGOFSET) == 0);
2042 KDASSERT((dst & PGOFSET) == 0);
2043
2044 /*
2045 * Clean the source page. Hold the source page's lock for
2046 * the duration of the copy so that no other mappings can
2047 * be created while we have a potentially aliased mapping.
2048 */
2049 simple_lock(&src_pg->mdpage.pvh_slock);
2050 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
2051
2052 /*
2053 * Map the pages into the page hook points, copy them, and purge
2054 * the cache for the appropriate page. Invalidate the TLB
2055 * as required.
2056 */
2057 *csrc_pte = L2_S_PROTO | src |
2058 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) | pte_l2_s_cache_mode;
2059 *cdst_pte = L2_S_PROTO | dst |
2060 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) | pte_l2_s_cache_mode;
2061 cpu_tlb_flushD_SE(csrcp);
2062 cpu_tlb_flushD_SE(cdstp);
2063 cpu_cpwait();
2064 bcopy_page(csrcp, cdstp);
2065 cpu_dcache_inv_range(csrcp, NBPG);
2066 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
2067 cpu_dcache_wbinv_range(cdstp, NBPG);
2068 }
2069 #endif /* ARM_MMU_GENERIC == 1 */
2070
2071 #if ARM_MMU_XSCALE == 1
2072 void
2073 pmap_copy_page_xscale(paddr_t src, paddr_t dst)
2074 {
2075 struct vm_page *src_pg = PHYS_TO_VM_PAGE(src);
2076 #ifdef DEBUG
2077 struct vm_page *dst_pg = PHYS_TO_VM_PAGE(dst);
2078
2079 if (dst_pg->mdpage.pvh_list != NULL)
2080 panic("pmap_copy_page: dst page has mappings");
2081 #endif
2082
2083 KDASSERT((src & PGOFSET) == 0);
2084 KDASSERT((dst & PGOFSET) == 0);
2085
2086 /*
2087 * Clean the source page. Hold the source page's lock for
2088 * the duration of the copy so that no other mappings can
2089 * be created while we have a potentially aliased mapping.
2090 */
2091 simple_lock(&src_pg->mdpage.pvh_slock);
2092 (void) pmap_clean_page(src_pg->mdpage.pvh_list, TRUE);
2093
2094 /*
2095 * Map the pages into the page hook points, copy them, and purge
2096 * the cache for the appropriate page. Invalidate the TLB
2097 * as required.
2098 */
2099 *csrc_pte = L2_S_PROTO | src |
2100 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
2101 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2102 *cdst_pte = L2_S_PROTO | dst |
2103 L2_S_PROT(PTE_KERNEL, VM_PROT_WRITE) |
2104 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X); /* mini-data */
2105 cpu_tlb_flushD_SE(csrcp);
2106 cpu_tlb_flushD_SE(cdstp);
2107 cpu_cpwait();
2108 bcopy_page(csrcp, cdstp);
2109 simple_unlock(&src_pg->mdpage.pvh_slock); /* cache is safe again */
2110 xscale_cache_clean_minidata();
2111 }
2112 #endif /* ARM_MMU_XSCALE == 1 */
2113
2114 #if 0
2115 void
2116 pmap_pte_addref(struct pmap *pmap, vaddr_t va)
2117 {
2118 pd_entry_t *pde;
2119 paddr_t pa;
2120 struct vm_page *m;
2121
2122 if (pmap == pmap_kernel())
2123 return;
2124
2125 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
2126 pa = pmap_pte_pa(pde);
2127 m = PHYS_TO_VM_PAGE(pa);
2128 ++m->wire_count;
2129 #ifdef MYCROFT_HACK
2130 printf("addref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2131 pmap, va, pde, pa, m, m->wire_count);
2132 #endif
2133 }
2134
2135 void
2136 pmap_pte_delref(struct pmap *pmap, vaddr_t va)
2137 {
2138 pd_entry_t *pde;
2139 paddr_t pa;
2140 struct vm_page *m;
2141
2142 if (pmap == pmap_kernel())
2143 return;
2144
2145 pde = pmap_pde(pmap, va & ~(3 << L1_S_SHIFT));
2146 pa = pmap_pte_pa(pde);
2147 m = PHYS_TO_VM_PAGE(pa);
2148 --m->wire_count;
2149 #ifdef MYCROFT_HACK
2150 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p wire=%d\n",
2151 pmap, va, pde, pa, m, m->wire_count);
2152 #endif
2153 if (m->wire_count == 0) {
2154 #ifdef MYCROFT_HACK
2155 printf("delref pmap=%p va=%08lx pde=%p pa=%08lx m=%p\n",
2156 pmap, va, pde, pa, m);
2157 #endif
2158 pmap_unmap_in_l1(pmap, va);
2159 uvm_pagefree(m);
2160 --pmap->pm_stats.resident_count;
2161 }
2162 }
2163 #else
2164 #define pmap_pte_addref(pmap, va)
2165 #define pmap_pte_delref(pmap, va)
2166 #endif
2167
2168 /*
2169 * Since we have a virtually indexed cache, we may need to inhibit caching if
2170 * there is more than one mapping and at least one of them is writable.
2171 * Since we purge the cache on every context switch, we only need to check for
2172 * other mappings within the same pmap, or kernel_pmap.
2173 * This function is also called when a page is unmapped, to possibly reenable
2174 * caching on any remaining mappings.
2175 *
2176 * The code implements the following logic, where:
2177 *
2178 * KW = # of kernel read/write pages
2179 * KR = # of kernel read only pages
2180 * UW = # of user read/write pages
2181 * UR = # of user read only pages
2182 * OW = # of user read/write pages in another pmap, then
2183 *
2184 * KC = kernel mapping is cacheable
2185 * UC = user mapping is cacheable
2186 *
2187 * KW=0,KR=0 KW=0,KR>0 KW=1,KR=0 KW>1,KR>=0
2188 * +---------------------------------------------
2189 * UW=0,UR=0,OW=0 | --- KC=1 KC=1 KC=0
2190 * UW=0,UR>0,OW=0 | UC=1 KC=1,UC=1 KC=0,UC=0 KC=0,UC=0
2191 * UW=0,UR>0,OW>0 | UC=1 KC=0,UC=1 KC=0,UC=0 KC=0,UC=0
2192 * UW=1,UR=0,OW=0 | UC=1 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2193 * UW>1,UR>=0,OW>=0 | UC=0 KC=0,UC=0 KC=0,UC=0 KC=0,UC=0
2194 *
2195 * Note that the pmap must have it's ptes mapped in, and passed with ptes.
2196 */
2197 __inline static void
2198 pmap_vac_me_harder(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2199 boolean_t clear_cache)
2200 {
2201 if (pmap == pmap_kernel())
2202 pmap_vac_me_kpmap(pmap, pg, ptes, clear_cache);
2203 else
2204 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2205 }
2206
2207 static void
2208 pmap_vac_me_kpmap(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2209 boolean_t clear_cache)
2210 {
2211 int user_entries = 0;
2212 int user_writable = 0;
2213 int user_cacheable = 0;
2214 int kernel_entries = 0;
2215 int kernel_writable = 0;
2216 int kernel_cacheable = 0;
2217 struct pv_entry *pv;
2218 struct pmap *last_pmap = pmap;
2219
2220 #ifdef DIAGNOSTIC
2221 if (pmap != pmap_kernel())
2222 panic("pmap_vac_me_kpmap: pmap != pmap_kernel()");
2223 #endif
2224
2225 /*
2226 * Pass one, see if there are both kernel and user pmaps for
2227 * this page. Calculate whether there are user-writable or
2228 * kernel-writable pages.
2229 */
2230 for (pv = pg->mdpage.pvh_list; pv != NULL; pv = pv->pv_next) {
2231 if (pv->pv_pmap != pmap) {
2232 user_entries++;
2233 if (pv->pv_flags & PVF_WRITE)
2234 user_writable++;
2235 if ((pv->pv_flags & PVF_NC) == 0)
2236 user_cacheable++;
2237 } else {
2238 kernel_entries++;
2239 if (pv->pv_flags & PVF_WRITE)
2240 kernel_writable++;
2241 if ((pv->pv_flags & PVF_NC) == 0)
2242 kernel_cacheable++;
2243 }
2244 }
2245
2246 /*
2247 * We know we have just been updating a kernel entry, so if
2248 * all user pages are already cacheable, then there is nothing
2249 * further to do.
2250 */
2251 if (kernel_entries == 0 &&
2252 user_cacheable == user_entries)
2253 return;
2254
2255 if (user_entries) {
2256 /*
2257 * Scan over the list again, for each entry, if it
2258 * might not be set correctly, call pmap_vac_me_user
2259 * to recalculate the settings.
2260 */
2261 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
2262 /*
2263 * We know kernel mappings will get set
2264 * correctly in other calls. We also know
2265 * that if the pmap is the same as last_pmap
2266 * then we've just handled this entry.
2267 */
2268 if (pv->pv_pmap == pmap || pv->pv_pmap == last_pmap)
2269 continue;
2270 /*
2271 * If there are kernel entries and this page
2272 * is writable but non-cacheable, then we can
2273 * skip this entry also.
2274 */
2275 if (kernel_entries > 0 &&
2276 (pv->pv_flags & (PVF_NC | PVF_WRITE)) ==
2277 (PVF_NC | PVF_WRITE))
2278 continue;
2279 /*
2280 * Similarly if there are no kernel-writable
2281 * entries and the page is already
2282 * read-only/cacheable.
2283 */
2284 if (kernel_writable == 0 &&
2285 (pv->pv_flags & (PVF_NC | PVF_WRITE)) == 0)
2286 continue;
2287 /*
2288 * For some of the remaining cases, we know
2289 * that we must recalculate, but for others we
2290 * can't tell if they are correct or not, so
2291 * we recalculate anyway.
2292 */
2293 pmap_unmap_ptes(last_pmap);
2294 last_pmap = pv->pv_pmap;
2295 ptes = pmap_map_ptes(last_pmap);
2296 pmap_vac_me_user(last_pmap, pg, ptes,
2297 pmap_is_curpmap(last_pmap));
2298 }
2299 /* Restore the pte mapping that was passed to us. */
2300 if (last_pmap != pmap) {
2301 pmap_unmap_ptes(last_pmap);
2302 ptes = pmap_map_ptes(pmap);
2303 }
2304 if (kernel_entries == 0)
2305 return;
2306 }
2307
2308 pmap_vac_me_user(pmap, pg, ptes, clear_cache);
2309 return;
2310 }
2311
2312 static void
2313 pmap_vac_me_user(struct pmap *pmap, struct vm_page *pg, pt_entry_t *ptes,
2314 boolean_t clear_cache)
2315 {
2316 struct pmap *kpmap = pmap_kernel();
2317 struct pv_entry *pv, *npv;
2318 int entries = 0;
2319 int writable = 0;
2320 int cacheable_entries = 0;
2321 int kern_cacheable = 0;
2322 int other_writable = 0;
2323
2324 pv = pg->mdpage.pvh_list;
2325 KASSERT(ptes != NULL);
2326
2327 /*
2328 * Count mappings and writable mappings in this pmap.
2329 * Include kernel mappings as part of our own.
2330 * Keep a pointer to the first one.
2331 */
2332 for (npv = pv; npv; npv = npv->pv_next) {
2333 /* Count mappings in the same pmap */
2334 if (pmap == npv->pv_pmap ||
2335 kpmap == npv->pv_pmap) {
2336 if (entries++ == 0)
2337 pv = npv;
2338 /* Cacheable mappings */
2339 if ((npv->pv_flags & PVF_NC) == 0) {
2340 cacheable_entries++;
2341 if (kpmap == npv->pv_pmap)
2342 kern_cacheable++;
2343 }
2344 /* Writable mappings */
2345 if (npv->pv_flags & PVF_WRITE)
2346 ++writable;
2347 } else if (npv->pv_flags & PVF_WRITE)
2348 other_writable = 1;
2349 }
2350
2351 PDEBUG(3,printf("pmap_vac_me_harder: pmap %p Entries %d, "
2352 "writable %d cacheable %d %s\n", pmap, entries, writable,
2353 cacheable_entries, clear_cache ? "clean" : "no clean"));
2354
2355 /*
2356 * Enable or disable caching as necessary.
2357 * Note: the first entry might be part of the kernel pmap,
2358 * so we can't assume this is indicative of the state of the
2359 * other (maybe non-kpmap) entries.
2360 */
2361 if ((entries > 1 && writable) ||
2362 (entries > 0 && pmap == kpmap && other_writable)) {
2363 if (cacheable_entries == 0)
2364 return;
2365 for (npv = pv; npv; npv = npv->pv_next) {
2366 if ((pmap == npv->pv_pmap
2367 || kpmap == npv->pv_pmap) &&
2368 (npv->pv_flags & PVF_NC) == 0) {
2369 ptes[arm_btop(npv->pv_va)] &= ~L2_S_CACHE_MASK;
2370 npv->pv_flags |= PVF_NC;
2371 /*
2372 * If this page needs flushing from the
2373 * cache, and we aren't going to do it
2374 * below, do it now.
2375 */
2376 if ((cacheable_entries < 4 &&
2377 (clear_cache || npv->pv_pmap == kpmap)) ||
2378 (npv->pv_pmap == kpmap &&
2379 !clear_cache && kern_cacheable < 4)) {
2380 cpu_idcache_wbinv_range(npv->pv_va,
2381 NBPG);
2382 cpu_tlb_flushID_SE(npv->pv_va);
2383 }
2384 }
2385 }
2386 if ((clear_cache && cacheable_entries >= 4) ||
2387 kern_cacheable >= 4) {
2388 cpu_idcache_wbinv_all();
2389 cpu_tlb_flushID();
2390 }
2391 cpu_cpwait();
2392 } else if (entries > 0) {
2393 /*
2394 * Turn cacheing back on for some pages. If it is a kernel
2395 * page, only do so if there are no other writable pages.
2396 */
2397 for (npv = pv; npv; npv = npv->pv_next) {
2398 if ((pmap == npv->pv_pmap ||
2399 (kpmap == npv->pv_pmap && other_writable == 0)) &&
2400 (npv->pv_flags & PVF_NC)) {
2401 ptes[arm_btop(npv->pv_va)] |=
2402 pte_l2_s_cache_mode;
2403 npv->pv_flags &= ~PVF_NC;
2404 }
2405 }
2406 }
2407 }
2408
2409 /*
2410 * pmap_remove()
2411 *
2412 * pmap_remove is responsible for nuking a number of mappings for a range
2413 * of virtual address space in the current pmap. To do this efficiently
2414 * is interesting, because in a number of cases a wide virtual address
2415 * range may be supplied that contains few actual mappings. So, the
2416 * optimisations are:
2417 * 1. Try and skip over hunks of address space for which an L1 entry
2418 * does not exist.
2419 * 2. Build up a list of pages we've hit, up to a maximum, so we can
2420 * maybe do just a partial cache clean. This path of execution is
2421 * complicated by the fact that the cache must be flushed _before_
2422 * the PTE is nuked, being a VAC :-)
2423 * 3. Maybe later fast-case a single page, but I don't think this is
2424 * going to make _that_ much difference overall.
2425 */
2426
2427 #define PMAP_REMOVE_CLEAN_LIST_SIZE 3
2428
2429 void
2430 pmap_remove(struct pmap *pmap, vaddr_t sva, vaddr_t eva)
2431 {
2432 int cleanlist_idx = 0;
2433 struct pagelist {
2434 vaddr_t va;
2435 pt_entry_t *pte;
2436 } cleanlist[PMAP_REMOVE_CLEAN_LIST_SIZE];
2437 pt_entry_t *pte = 0, *ptes;
2438 paddr_t pa;
2439 int pmap_active;
2440 struct vm_page *pg;
2441
2442 /* Exit quick if there is no pmap */
2443 if (!pmap)
2444 return;
2445
2446 PDEBUG(0, printf("pmap_remove: pmap=%p sva=%08lx eva=%08lx\n",
2447 pmap, sva, eva));
2448
2449 /*
2450 * we lock in the pmap => vm_page direction
2451 */
2452 PMAP_MAP_TO_HEAD_LOCK();
2453
2454 ptes = pmap_map_ptes(pmap);
2455 /* Get a page table pointer */
2456 while (sva < eva) {
2457 if (pmap_pde_page(pmap_pde(pmap, sva)))
2458 break;
2459 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2460 }
2461
2462 pte = &ptes[arm_btop(sva)];
2463 /* Note if the pmap is active thus require cache and tlb cleans */
2464 pmap_active = pmap_is_curpmap(pmap);
2465
2466 /* Now loop along */
2467 while (sva < eva) {
2468 /* Check if we can move to the next PDE (l1 chunk) */
2469 if (!(sva & L2_ADDR_BITS))
2470 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2471 sva += L1_S_SIZE;
2472 pte += arm_btop(L1_S_SIZE);
2473 continue;
2474 }
2475
2476 /* We've found a valid PTE, so this page of PTEs has to go. */
2477 if (pmap_pte_v(pte)) {
2478 /* Update statistics */
2479 --pmap->pm_stats.resident_count;
2480
2481 /*
2482 * Add this page to our cache remove list, if we can.
2483 * If, however the cache remove list is totally full,
2484 * then do a complete cache invalidation taking note
2485 * to backtrack the PTE table beforehand, and ignore
2486 * the lists in future because there's no longer any
2487 * point in bothering with them (we've paid the
2488 * penalty, so will carry on unhindered). Otherwise,
2489 * when we fall out, we just clean the list.
2490 */
2491 PDEBUG(10, printf("remove: inv pte at %p(%x) ", pte, *pte));
2492 pa = pmap_pte_pa(pte);
2493
2494 if (cleanlist_idx < PMAP_REMOVE_CLEAN_LIST_SIZE) {
2495 /* Add to the clean list. */
2496 cleanlist[cleanlist_idx].pte = pte;
2497 cleanlist[cleanlist_idx].va = sva;
2498 cleanlist_idx++;
2499 } else if (cleanlist_idx == PMAP_REMOVE_CLEAN_LIST_SIZE) {
2500 int cnt;
2501
2502 /* Nuke everything if needed. */
2503 if (pmap_active) {
2504 cpu_idcache_wbinv_all();
2505 cpu_tlb_flushID();
2506 }
2507
2508 /*
2509 * Roll back the previous PTE list,
2510 * and zero out the current PTE.
2511 */
2512 for (cnt = 0; cnt < PMAP_REMOVE_CLEAN_LIST_SIZE; cnt++) {
2513 *cleanlist[cnt].pte = 0;
2514 pmap_pte_delref(pmap, cleanlist[cnt].va);
2515 }
2516 *pte = 0;
2517 pmap_pte_delref(pmap, sva);
2518 cleanlist_idx++;
2519 } else {
2520 /*
2521 * We've already nuked the cache and
2522 * TLB, so just carry on regardless,
2523 * and we won't need to do it again
2524 */
2525 *pte = 0;
2526 pmap_pte_delref(pmap, sva);
2527 }
2528
2529 /*
2530 * Update flags. In a number of circumstances,
2531 * we could cluster a lot of these and do a
2532 * number of sequential pages in one go.
2533 */
2534 if ((pg = PHYS_TO_VM_PAGE(pa)) != NULL) {
2535 struct pv_entry *pve;
2536 simple_lock(&pg->mdpage.pvh_slock);
2537 pve = pmap_remove_pv(pg, pmap, sva);
2538 pmap_free_pv(pmap, pve);
2539 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2540 simple_unlock(&pg->mdpage.pvh_slock);
2541 }
2542 }
2543 sva += NBPG;
2544 pte++;
2545 }
2546
2547 pmap_unmap_ptes(pmap);
2548 /*
2549 * Now, if we've fallen through down to here, chances are that there
2550 * are less than PMAP_REMOVE_CLEAN_LIST_SIZE mappings left.
2551 */
2552 if (cleanlist_idx <= PMAP_REMOVE_CLEAN_LIST_SIZE) {
2553 u_int cnt;
2554
2555 for (cnt = 0; cnt < cleanlist_idx; cnt++) {
2556 if (pmap_active) {
2557 cpu_idcache_wbinv_range(cleanlist[cnt].va,
2558 NBPG);
2559 *cleanlist[cnt].pte = 0;
2560 cpu_tlb_flushID_SE(cleanlist[cnt].va);
2561 } else
2562 *cleanlist[cnt].pte = 0;
2563 pmap_pte_delref(pmap, cleanlist[cnt].va);
2564 }
2565 }
2566 PMAP_MAP_TO_HEAD_UNLOCK();
2567 }
2568
2569 /*
2570 * Routine: pmap_remove_all
2571 * Function:
2572 * Removes this physical page from
2573 * all physical maps in which it resides.
2574 * Reflects back modify bits to the pager.
2575 */
2576
2577 static void
2578 pmap_remove_all(struct vm_page *pg)
2579 {
2580 struct pv_entry *pv, *npv;
2581 struct pmap *pmap;
2582 pt_entry_t *pte, *ptes;
2583
2584 PDEBUG(0, printf("pmap_remove_all: pa=%lx ", VM_PAGE_TO_PHYS(pg)));
2585
2586 /* set vm_page => pmap locking */
2587 PMAP_HEAD_TO_MAP_LOCK();
2588
2589 simple_lock(&pg->mdpage.pvh_slock);
2590
2591 pv = pg->mdpage.pvh_list;
2592 if (pv == NULL) {
2593 PDEBUG(0, printf("free page\n"));
2594 simple_unlock(&pg->mdpage.pvh_slock);
2595 PMAP_HEAD_TO_MAP_UNLOCK();
2596 return;
2597 }
2598 pmap_clean_page(pv, FALSE);
2599
2600 while (pv) {
2601 pmap = pv->pv_pmap;
2602 ptes = pmap_map_ptes(pmap);
2603 pte = &ptes[arm_btop(pv->pv_va)];
2604
2605 PDEBUG(0, printf("[%p,%08x,%08lx,%08x] ", pmap, *pte,
2606 pv->pv_va, pv->pv_flags));
2607 #ifdef DEBUG
2608 if (pmap_pde_page(pmap_pde(pmap, pv->pv_va)) == 0 ||
2609 pmap_pte_v(pte) == 0 ||
2610 pmap_pte_pa(pte) != VM_PAGE_TO_PHYS(pg))
2611 panic("pmap_remove_all: bad mapping");
2612 #endif /* DEBUG */
2613
2614 /*
2615 * Update statistics
2616 */
2617 --pmap->pm_stats.resident_count;
2618
2619 /* Wired bit */
2620 if (pv->pv_flags & PVF_WIRED)
2621 --pmap->pm_stats.wired_count;
2622
2623 /*
2624 * Invalidate the PTEs.
2625 * XXX: should cluster them up and invalidate as many
2626 * as possible at once.
2627 */
2628
2629 #ifdef needednotdone
2630 reduce wiring count on page table pages as references drop
2631 #endif
2632
2633 *pte = 0;
2634 pmap_pte_delref(pmap, pv->pv_va);
2635
2636 npv = pv->pv_next;
2637 pmap_free_pv(pmap, pv);
2638 pv = npv;
2639 pmap_unmap_ptes(pmap);
2640 }
2641 pg->mdpage.pvh_list = NULL;
2642 simple_unlock(&pg->mdpage.pvh_slock);
2643 PMAP_HEAD_TO_MAP_UNLOCK();
2644
2645 PDEBUG(0, printf("done\n"));
2646 cpu_tlb_flushID();
2647 cpu_cpwait();
2648 }
2649
2650
2651 /*
2652 * Set the physical protection on the specified range of this map as requested.
2653 */
2654
2655 void
2656 pmap_protect(struct pmap *pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
2657 {
2658 pt_entry_t *pte = NULL, *ptes;
2659 struct vm_page *pg;
2660 int flush = 0;
2661
2662 PDEBUG(0, printf("pmap_protect: pmap=%p %08lx->%08lx %x\n",
2663 pmap, sva, eva, prot));
2664
2665 if (~prot & VM_PROT_READ) {
2666 /*
2667 * Just remove the mappings. pmap_update() is not required
2668 * here since the caller should do it.
2669 */
2670 pmap_remove(pmap, sva, eva);
2671 return;
2672 }
2673 if (prot & VM_PROT_WRITE) {
2674 /*
2675 * If this is a read->write transition, just ignore it and let
2676 * uvm_fault() take care of it later.
2677 */
2678 return;
2679 }
2680
2681 /* Need to lock map->head */
2682 PMAP_MAP_TO_HEAD_LOCK();
2683
2684 ptes = pmap_map_ptes(pmap);
2685
2686 /*
2687 * OK, at this point, we know we're doing write-protect operation.
2688 * If the pmap is active, write-back the range.
2689 */
2690 if (pmap_is_curpmap(pmap))
2691 cpu_dcache_wb_range(sva, eva - sva);
2692
2693 /*
2694 * We need to acquire a pointer to a page table page before entering
2695 * the following loop.
2696 */
2697 while (sva < eva) {
2698 if (pmap_pde_page(pmap_pde(pmap, sva)))
2699 break;
2700 sva = (sva & L1_S_FRAME) + L1_S_SIZE;
2701 }
2702
2703 pte = &ptes[arm_btop(sva)];
2704
2705 while (sva < eva) {
2706 /* only check once in a while */
2707 if ((sva & L2_ADDR_BITS) == 0) {
2708 if (!pmap_pde_page(pmap_pde(pmap, sva))) {
2709 /* We can race ahead here, to the next pde. */
2710 sva += L1_S_SIZE;
2711 pte += arm_btop(L1_S_SIZE);
2712 continue;
2713 }
2714 }
2715
2716 if (!pmap_pte_v(pte))
2717 goto next;
2718
2719 flush = 1;
2720
2721 *pte &= ~L2_S_PROT_W; /* clear write bit */
2722
2723 /* Clear write flag */
2724 if ((pg = PHYS_TO_VM_PAGE(pmap_pte_pa(pte))) != NULL) {
2725 simple_lock(&pg->mdpage.pvh_slock);
2726 (void) pmap_modify_pv(pmap, sva, pg, PVF_WRITE, 0);
2727 pmap_vac_me_harder(pmap, pg, ptes, FALSE);
2728 simple_unlock(&pg->mdpage.pvh_slock);
2729 }
2730
2731 next:
2732 sva += NBPG;
2733 pte++;
2734 }
2735 pmap_unmap_ptes(pmap);
2736 PMAP_MAP_TO_HEAD_UNLOCK();
2737 if (flush)
2738 cpu_tlb_flushID();
2739 }
2740
2741 /*
2742 * void pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2743 * int flags)
2744 *
2745 * Insert the given physical page (p) at
2746 * the specified virtual address (v) in the
2747 * target physical map with the protection requested.
2748 *
2749 * If specified, the page will be wired down, meaning
2750 * that the related pte can not be reclaimed.
2751 *
2752 * NB: This is the only routine which MAY NOT lazy-evaluate
2753 * or lose information. That is, this routine must actually
2754 * insert this page into the given map NOW.
2755 */
2756
2757 int
2758 pmap_enter(struct pmap *pmap, vaddr_t va, paddr_t pa, vm_prot_t prot,
2759 int flags)
2760 {
2761 pt_entry_t *ptes, opte, npte;
2762 paddr_t opa;
2763 boolean_t wired = (flags & PMAP_WIRED) != 0;
2764 struct vm_page *pg;
2765 struct pv_entry *pve;
2766 int error, nflags;
2767
2768 PDEBUG(5, printf("pmap_enter: V%08lx P%08lx in pmap %p prot=%08x, wired = %d\n",
2769 va, pa, pmap, prot, wired));
2770
2771 #ifdef DIAGNOSTIC
2772 /* Valid address ? */
2773 if (va >= (pmap_curmaxkvaddr))
2774 panic("pmap_enter: too big");
2775 if (pmap != pmap_kernel() && va != 0) {
2776 if (va < VM_MIN_ADDRESS || va >= VM_MAXUSER_ADDRESS)
2777 panic("pmap_enter: kernel page in user map");
2778 } else {
2779 if (va >= VM_MIN_ADDRESS && va < VM_MAXUSER_ADDRESS)
2780 panic("pmap_enter: user page in kernel map");
2781 if (va >= VM_MAXUSER_ADDRESS && va < VM_MAX_ADDRESS)
2782 panic("pmap_enter: entering PT page");
2783 }
2784 #endif
2785
2786 KDASSERT(((va | pa) & PGOFSET) == 0);
2787
2788 /*
2789 * Get a pointer to the page. Later on in this function, we
2790 * test for a managed page by checking pg != NULL.
2791 */
2792 pg = pmap_initialized ? PHYS_TO_VM_PAGE(pa) : NULL;
2793
2794 /* get lock */
2795 PMAP_MAP_TO_HEAD_LOCK();
2796
2797 /*
2798 * map the ptes. If there's not already an L2 table for this
2799 * address, allocate one.
2800 */
2801 ptes = pmap_map_ptes(pmap); /* locks pmap */
2802 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
2803 struct vm_page *ptp;
2804
2805 /* kernel should be pre-grown */
2806 KASSERT(pmap != pmap_kernel());
2807
2808 /* if failure is allowed then don't try too hard */
2809 ptp = pmap_get_ptp(pmap, va & L1_S_FRAME);
2810 if (ptp == NULL) {
2811 if (flags & PMAP_CANFAIL) {
2812 error = ENOMEM;
2813 goto out;
2814 }
2815 panic("pmap_enter: get ptp failed");
2816 }
2817 }
2818 opte = ptes[arm_btop(va)];
2819
2820 nflags = 0;
2821 if (prot & VM_PROT_WRITE)
2822 nflags |= PVF_WRITE;
2823 if (wired)
2824 nflags |= PVF_WIRED;
2825
2826 /* Is the pte valid ? If so then this page is already mapped */
2827 if (l2pte_valid(opte)) {
2828 /* Get the physical address of the current page mapped */
2829 opa = l2pte_pa(opte);
2830
2831 /* Are we mapping the same page ? */
2832 if (opa == pa) {
2833 /* Has the wiring changed ? */
2834 if (pg != NULL) {
2835 simple_lock(&pg->mdpage.pvh_slock);
2836 (void) pmap_modify_pv(pmap, va, pg,
2837 PVF_WRITE | PVF_WIRED, nflags);
2838 simple_unlock(&pg->mdpage.pvh_slock);
2839 }
2840 } else {
2841 struct vm_page *opg;
2842
2843 /* We are replacing the page with a new one. */
2844 cpu_idcache_wbinv_range(va, NBPG);
2845
2846 /*
2847 * If it is part of our managed memory then we
2848 * must remove it from the PV list
2849 */
2850 if ((opg = PHYS_TO_VM_PAGE(opa)) != NULL) {
2851 simple_lock(&opg->mdpage.pvh_slock);
2852 pve = pmap_remove_pv(opg, pmap, va);
2853 simple_unlock(&opg->mdpage.pvh_slock);
2854 } else {
2855 pve = NULL;
2856 }
2857
2858 goto enter;
2859 }
2860 } else {
2861 opa = 0;
2862 pve = NULL;
2863 pmap_pte_addref(pmap, va);
2864
2865 /* pte is not valid so we must be hooking in a new page */
2866 ++pmap->pm_stats.resident_count;
2867
2868 enter:
2869 /*
2870 * Enter on the PV list if part of our managed memory
2871 */
2872 if (pg != NULL) {
2873 if (pve == NULL) {
2874 pve = pmap_alloc_pv(pmap, ALLOCPV_NEED);
2875 if (pve == NULL) {
2876 if (flags & PMAP_CANFAIL) {
2877 error = ENOMEM;
2878 goto out;
2879 }
2880 panic("pmap_enter: no pv entries "
2881 "available");
2882 }
2883 }
2884 /* enter_pv locks pvh when adding */
2885 pmap_enter_pv(pg, pve, pmap, va, NULL, nflags);
2886 } else {
2887 if (pve != NULL)
2888 pmap_free_pv(pmap, pve);
2889 }
2890 }
2891
2892 /* Construct the pte, giving the correct access. */
2893 npte = pa;
2894
2895 /* VA 0 is magic. */
2896 if (pmap != pmap_kernel() && va != vector_page)
2897 npte |= L2_S_PROT_U;
2898
2899 if (pg != NULL) {
2900 #ifdef DIAGNOSTIC
2901 if ((flags & VM_PROT_ALL) & ~prot)
2902 panic("pmap_enter: access_type exceeds prot");
2903 #endif
2904 npte |= pte_l2_s_cache_mode;
2905 if (flags & VM_PROT_WRITE) {
2906 npte |= L2_S_PROTO | L2_S_PROT_W;
2907 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
2908 } else if (flags & VM_PROT_ALL) {
2909 npte |= L2_S_PROTO;
2910 pg->mdpage.pvh_attrs |= PVF_REF;
2911 } else
2912 npte |= L2_TYPE_INV;
2913 } else {
2914 if (prot & VM_PROT_WRITE)
2915 npte |= L2_S_PROTO | L2_S_PROT_W;
2916 else if (prot & VM_PROT_ALL)
2917 npte |= L2_S_PROTO;
2918 else
2919 npte |= L2_TYPE_INV;
2920 }
2921
2922 ptes[arm_btop(va)] = npte;
2923
2924 if (pg != NULL) {
2925 simple_lock(&pg->mdpage.pvh_slock);
2926 pmap_vac_me_harder(pmap, pg, ptes, pmap_is_curpmap(pmap));
2927 simple_unlock(&pg->mdpage.pvh_slock);
2928 }
2929
2930 /* Better flush the TLB ... */
2931 cpu_tlb_flushID_SE(va);
2932 error = 0;
2933 out:
2934 pmap_unmap_ptes(pmap); /* unlocks pmap */
2935 PMAP_MAP_TO_HEAD_UNLOCK();
2936
2937 return error;
2938 }
2939
2940 /*
2941 * pmap_kenter_pa: enter a kernel mapping
2942 *
2943 * => no need to lock anything assume va is already allocated
2944 * => should be faster than normal pmap enter function
2945 */
2946 void
2947 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot)
2948 {
2949 pt_entry_t *pte;
2950
2951 pte = vtopte(va);
2952 KASSERT(!pmap_pte_v(pte));
2953
2954 #ifdef PMAP_ALIAS_DEBUG
2955 {
2956 struct vm_page *pg;
2957 int s;
2958
2959 pg = PHYS_TO_VM_PAGE(pa);
2960 if (pg != NULL) {
2961 s = splhigh();
2962 if (pg->mdpage.ro_mappings == 0 &&
2963 pg->mdpage.rw_mappings == 0 &&
2964 pg->mdpage.kro_mappings == 0 &&
2965 pg->mdpage.krw_mappings == 0) {
2966 /* This case is okay. */
2967 } else if (pg->mdpage.rw_mappings == 0 &&
2968 pg->mdpage.krw_mappings == 0 &&
2969 (prot & VM_PROT_WRITE) == 0) {
2970 /* This case is okay. */
2971 } else {
2972 /* Something is awry. */
2973 printf("pmap_kenter_pa: ro %u, rw %u, kro %u, krw %u "
2974 "prot 0x%x\n", pg->mdpage.ro_mappings,
2975 pg->mdpage.rw_mappings, pg->mdpage.kro_mappings,
2976 pg->mdpage.krw_mappings, prot);
2977 Debugger();
2978 }
2979 if (prot & VM_PROT_WRITE)
2980 pg->mdpage.krw_mappings++;
2981 else
2982 pg->mdpage.kro_mappings++;
2983 splx(s);
2984 }
2985 }
2986 #endif /* PMAP_ALIAS_DEBUG */
2987
2988 *pte = L2_S_PROTO | pa |
2989 L2_S_PROT(PTE_KERNEL, prot) | pte_l2_s_cache_mode;
2990 }
2991
2992 void
2993 pmap_kremove(vaddr_t va, vsize_t len)
2994 {
2995 pt_entry_t *pte;
2996
2997 for (len >>= PAGE_SHIFT; len > 0; len--, va += PAGE_SIZE) {
2998
2999 /*
3000 * We assume that we will only be called with small
3001 * regions of memory.
3002 */
3003
3004 KASSERT(pmap_pde_page(pmap_pde(pmap_kernel(), va)));
3005 pte = vtopte(va);
3006 #ifdef PMAP_ALIAS_DEBUG
3007 {
3008 struct vm_page *pg;
3009 int s;
3010
3011 if ((*pte & L2_TYPE_MASK) != L2_TYPE_INV &&
3012 (pg = PHYS_TO_VM_PAGE(*pte & L2_S_FRAME)) != NULL) {
3013 s = splhigh();
3014 if (*pte & L2_S_PROT_W) {
3015 KASSERT(pg->mdpage.krw_mappings != 0);
3016 pg->mdpage.krw_mappings--;
3017 } else {
3018 KASSERT(pg->mdpage.kro_mappings != 0);
3019 pg->mdpage.kro_mappings--;
3020 }
3021 splx(s);
3022 }
3023 }
3024 #endif /* PMAP_ALIAS_DEBUG */
3025 cpu_idcache_wbinv_range(va, PAGE_SIZE);
3026 *pte = 0;
3027 cpu_tlb_flushID_SE(va);
3028 }
3029 }
3030
3031 /*
3032 * pmap_page_protect:
3033 *
3034 * Lower the permission for all mappings to a given page.
3035 */
3036
3037 void
3038 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
3039 {
3040
3041 PDEBUG(0, printf("pmap_page_protect(pa=%lx, prot=%d)\n",
3042 VM_PAGE_TO_PHYS(pg), prot));
3043
3044 switch(prot) {
3045 case VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE:
3046 case VM_PROT_READ|VM_PROT_WRITE:
3047 return;
3048
3049 case VM_PROT_READ:
3050 case VM_PROT_READ|VM_PROT_EXECUTE:
3051 pmap_clearbit(pg, PVF_WRITE);
3052 break;
3053
3054 default:
3055 pmap_remove_all(pg);
3056 break;
3057 }
3058 }
3059
3060
3061 /*
3062 * Routine: pmap_unwire
3063 * Function: Clear the wired attribute for a map/virtual-address
3064 * pair.
3065 * In/out conditions:
3066 * The mapping must already exist in the pmap.
3067 */
3068
3069 void
3070 pmap_unwire(struct pmap *pmap, vaddr_t va)
3071 {
3072 pt_entry_t *ptes;
3073 struct vm_page *pg;
3074 paddr_t pa;
3075
3076 PMAP_MAP_TO_HEAD_LOCK();
3077 ptes = pmap_map_ptes(pmap); /* locks pmap */
3078
3079 if (pmap_pde_v(pmap_pde(pmap, va))) {
3080 #ifdef DIAGNOSTIC
3081 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3082 panic("pmap_unwire: invalid L2 PTE");
3083 #endif
3084 /* Extract the physical address of the page */
3085 pa = l2pte_pa(ptes[arm_btop(va)]);
3086
3087 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3088 goto out;
3089
3090 /* Update the wired bit in the pv entry for this page. */
3091 simple_lock(&pg->mdpage.pvh_slock);
3092 (void) pmap_modify_pv(pmap, va, pg, PVF_WIRED, 0);
3093 simple_unlock(&pg->mdpage.pvh_slock);
3094 }
3095 #ifdef DIAGNOSTIC
3096 else {
3097 panic("pmap_unwire: invalid L1 PTE");
3098 }
3099 #endif
3100 out:
3101 pmap_unmap_ptes(pmap); /* unlocks pmap */
3102 PMAP_MAP_TO_HEAD_UNLOCK();
3103 }
3104
3105 /*
3106 * Routine: pmap_extract
3107 * Function:
3108 * Extract the physical page address associated
3109 * with the given map/virtual_address pair.
3110 */
3111 boolean_t
3112 pmap_extract(struct pmap *pmap, vaddr_t va, paddr_t *pap)
3113 {
3114 pd_entry_t *pde;
3115 pt_entry_t *pte, *ptes;
3116 paddr_t pa;
3117
3118 PDEBUG(5, printf("pmap_extract: pmap=%p, va=0x%08lx -> ", pmap, va));
3119
3120 ptes = pmap_map_ptes(pmap); /* locks pmap */
3121
3122 pde = pmap_pde(pmap, va);
3123 pte = &ptes[arm_btop(va)];
3124
3125 if (pmap_pde_section(pde)) {
3126 pa = (*pde & L1_S_FRAME) | (va & L1_S_OFFSET);
3127 PDEBUG(5, printf("section pa=0x%08lx\n", pa));
3128 goto out;
3129 } else if (pmap_pde_page(pde) == 0 || pmap_pte_v(pte) == 0) {
3130 PDEBUG(5, printf("no mapping\n"));
3131 goto failed;
3132 }
3133
3134 if ((*pte & L2_TYPE_MASK) == L2_TYPE_L) {
3135 pa = (*pte & L2_L_FRAME) | (va & L2_L_OFFSET);
3136 PDEBUG(5, printf("large page pa=0x%08lx\n", pa));
3137 goto out;
3138 }
3139
3140 pa = (*pte & L2_S_FRAME) | (va & L2_S_OFFSET);
3141 PDEBUG(5, printf("small page pa=0x%08lx\n", pa));
3142
3143 out:
3144 if (pap != NULL)
3145 *pap = pa;
3146
3147 pmap_unmap_ptes(pmap); /* unlocks pmap */
3148 return (TRUE);
3149
3150 failed:
3151 pmap_unmap_ptes(pmap); /* unlocks pmap */
3152 return (FALSE);
3153 }
3154
3155
3156 /*
3157 * pmap_copy:
3158 *
3159 * Copy the range specified by src_addr/len from the source map to the
3160 * range dst_addr/len in the destination map.
3161 *
3162 * This routine is only advisory and need not do anything.
3163 */
3164 /* Call deleted in <arm/arm32/pmap.h> */
3165
3166 #if defined(PMAP_DEBUG)
3167 void
3168 pmap_dump_pvlist(phys, m)
3169 vaddr_t phys;
3170 char *m;
3171 {
3172 struct vm_page *pg;
3173 struct pv_entry *pv;
3174
3175 if ((pg = PHYS_TO_VM_PAGE(phys)) == NULL) {
3176 printf("INVALID PA\n");
3177 return;
3178 }
3179 simple_lock(&pg->mdpage.pvh_slock);
3180 printf("%s %08lx:", m, phys);
3181 if (pg->mdpage.pvh_list == NULL) {
3182 simple_unlock(&pg->mdpage.pvh_slock);
3183 printf(" no mappings\n");
3184 return;
3185 }
3186
3187 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next)
3188 printf(" pmap %p va %08lx flags %08x", pv->pv_pmap,
3189 pv->pv_va, pv->pv_flags);
3190
3191 printf("\n");
3192 simple_unlock(&pg->mdpage.pvh_slock);
3193 }
3194
3195 #endif /* PMAP_DEBUG */
3196
3197 static pt_entry_t *
3198 pmap_map_ptes(struct pmap *pmap)
3199 {
3200 struct proc *p;
3201
3202 /* the kernel's pmap is always accessible */
3203 if (pmap == pmap_kernel()) {
3204 return (pt_entry_t *)PTE_BASE;
3205 }
3206
3207 if (pmap_is_curpmap(pmap)) {
3208 simple_lock(&pmap->pm_obj.vmobjlock);
3209 return (pt_entry_t *)PTE_BASE;
3210 }
3211
3212 p = curproc;
3213 KDASSERT(p != NULL);
3214
3215 /* need to lock both curpmap and pmap: use ordered locking */
3216 if ((vaddr_t) pmap < (vaddr_t) p->p_vmspace->vm_map.pmap) {
3217 simple_lock(&pmap->pm_obj.vmobjlock);
3218 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3219 } else {
3220 simple_lock(&p->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3221 simple_lock(&pmap->pm_obj.vmobjlock);
3222 }
3223
3224 pmap_map_in_l1(p->p_vmspace->vm_map.pmap, APTE_BASE, pmap->pm_pptpt,
3225 FALSE);
3226 cpu_tlb_flushD();
3227 cpu_cpwait();
3228 return (pt_entry_t *)APTE_BASE;
3229 }
3230
3231 /*
3232 * pmap_unmap_ptes: unlock the PTE mapping of "pmap"
3233 */
3234
3235 static void
3236 pmap_unmap_ptes(struct pmap *pmap)
3237 {
3238
3239 if (pmap == pmap_kernel()) {
3240 return;
3241 }
3242 if (pmap_is_curpmap(pmap)) {
3243 simple_unlock(&pmap->pm_obj.vmobjlock);
3244 } else {
3245 KDASSERT(curproc != NULL);
3246 simple_unlock(&pmap->pm_obj.vmobjlock);
3247 simple_unlock(
3248 &curproc->p_vmspace->vm_map.pmap->pm_obj.vmobjlock);
3249 }
3250 }
3251
3252 /*
3253 * Modify pte bits for all ptes corresponding to the given physical address.
3254 * We use `maskbits' rather than `clearbits' because we're always passing
3255 * constants and the latter would require an extra inversion at run-time.
3256 */
3257
3258 static void
3259 pmap_clearbit(struct vm_page *pg, u_int maskbits)
3260 {
3261 struct pv_entry *pv;
3262 pt_entry_t *ptes;
3263 vaddr_t va;
3264 int tlbentry;
3265
3266 PDEBUG(1, printf("pmap_clearbit: pa=%08lx mask=%08x\n",
3267 VM_PAGE_TO_PHYS(pg), maskbits));
3268
3269 tlbentry = 0;
3270
3271 PMAP_HEAD_TO_MAP_LOCK();
3272 simple_lock(&pg->mdpage.pvh_slock);
3273
3274 /*
3275 * Clear saved attributes (modify, reference)
3276 */
3277 pg->mdpage.pvh_attrs &= ~maskbits;
3278
3279 if (pg->mdpage.pvh_list == NULL) {
3280 simple_unlock(&pg->mdpage.pvh_slock);
3281 PMAP_HEAD_TO_MAP_UNLOCK();
3282 return;
3283 }
3284
3285 /*
3286 * Loop over all current mappings setting/clearing as appropos
3287 */
3288 for (pv = pg->mdpage.pvh_list; pv; pv = pv->pv_next) {
3289 #ifdef PMAP_ALIAS_DEBUG
3290 {
3291 int s = splhigh();
3292 if ((maskbits & PVF_WRITE) != 0 &&
3293 (pv->pv_flags & PVF_WRITE) != 0) {
3294 KASSERT(pg->mdpage.rw_mappings != 0);
3295 pg->mdpage.rw_mappings--;
3296 pg->mdpage.ro_mappings++;
3297 }
3298 splx(s);
3299 }
3300 #endif /* PMAP_ALIAS_DEBUG */
3301 va = pv->pv_va;
3302 pv->pv_flags &= ~maskbits;
3303 ptes = pmap_map_ptes(pv->pv_pmap); /* locks pmap */
3304 KASSERT(pmap_pde_v(pmap_pde(pv->pv_pmap, va)));
3305 if (maskbits & (PVF_WRITE|PVF_MOD)) {
3306 if ((pv->pv_flags & PVF_NC)) {
3307 /*
3308 * Entry is not cacheable: reenable
3309 * the cache, nothing to flush
3310 *
3311 * Don't turn caching on again if this
3312 * is a modified emulation. This
3313 * would be inconsitent with the
3314 * settings created by
3315 * pmap_vac_me_harder().
3316 *
3317 * There's no need to call
3318 * pmap_vac_me_harder() here: all
3319 * pages are loosing their write
3320 * permission.
3321 *
3322 */
3323 if (maskbits & PVF_WRITE) {
3324 ptes[arm_btop(va)] |=
3325 pte_l2_s_cache_mode;
3326 pv->pv_flags &= ~PVF_NC;
3327 }
3328 } else if (pmap_is_curpmap(pv->pv_pmap)) {
3329 /*
3330 * Entry is cacheable: check if pmap is
3331 * current if it is flush it,
3332 * otherwise it won't be in the cache
3333 */
3334 cpu_idcache_wbinv_range(pv->pv_va, NBPG);
3335 }
3336
3337 /* make the pte read only */
3338 ptes[arm_btop(va)] &= ~L2_S_PROT_W;
3339 }
3340
3341 if (maskbits & PVF_REF)
3342 ptes[arm_btop(va)] =
3343 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_TYPE_INV;
3344
3345 if (pmap_is_curpmap(pv->pv_pmap)) {
3346 /*
3347 * if we had cacheable pte's we'd clean the
3348 * pte out to memory here
3349 *
3350 * flush tlb entry as it's in the current pmap
3351 */
3352 cpu_tlb_flushID_SE(pv->pv_va);
3353 }
3354 pmap_unmap_ptes(pv->pv_pmap); /* unlocks pmap */
3355 }
3356 cpu_cpwait();
3357
3358 simple_unlock(&pg->mdpage.pvh_slock);
3359 PMAP_HEAD_TO_MAP_UNLOCK();
3360 }
3361
3362 /*
3363 * pmap_clear_modify:
3364 *
3365 * Clear the "modified" attribute for a page.
3366 */
3367 boolean_t
3368 pmap_clear_modify(struct vm_page *pg)
3369 {
3370 boolean_t rv;
3371
3372 if (pg->mdpage.pvh_attrs & PVF_MOD) {
3373 rv = TRUE;
3374 pmap_clearbit(pg, PVF_MOD);
3375 } else
3376 rv = FALSE;
3377
3378 PDEBUG(0, printf("pmap_clear_modify pa=%08lx -> %d\n",
3379 VM_PAGE_TO_PHYS(pg), rv));
3380
3381 return (rv);
3382 }
3383
3384 /*
3385 * pmap_clear_reference:
3386 *
3387 * Clear the "referenced" attribute for a page.
3388 */
3389 boolean_t
3390 pmap_clear_reference(struct vm_page *pg)
3391 {
3392 boolean_t rv;
3393
3394 if (pg->mdpage.pvh_attrs & PVF_REF) {
3395 rv = TRUE;
3396 pmap_clearbit(pg, PVF_REF);
3397 } else
3398 rv = FALSE;
3399
3400 PDEBUG(0, printf("pmap_clear_reference pa=%08lx -> %d\n",
3401 VM_PAGE_TO_PHYS(pg), rv));
3402
3403 return (rv);
3404 }
3405
3406 /*
3407 * pmap_is_modified:
3408 *
3409 * Test if a page has the "modified" attribute.
3410 */
3411 /* See <arm/arm32/pmap.h> */
3412
3413 /*
3414 * pmap_is_referenced:
3415 *
3416 * Test if a page has the "referenced" attribute.
3417 */
3418 /* See <arm/arm32/pmap.h> */
3419
3420 int
3421 pmap_modified_emulation(struct pmap *pmap, vaddr_t va)
3422 {
3423 pt_entry_t *ptes;
3424 struct vm_page *pg;
3425 paddr_t pa;
3426 u_int flags;
3427 int rv = 0;
3428
3429 PDEBUG(2, printf("pmap_modified_emulation\n"));
3430
3431 PMAP_MAP_TO_HEAD_LOCK();
3432 ptes = pmap_map_ptes(pmap); /* locks pmap */
3433
3434 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3435 PDEBUG(2, printf("L1 PTE invalid\n"));
3436 goto out;
3437 }
3438
3439 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3440
3441 /* Check for a invalid pte */
3442 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3443 goto out;
3444
3445 /* This can happen if user code tries to access kernel memory. */
3446 if ((ptes[arm_btop(va)] & L2_S_PROT_W) != 0)
3447 goto out;
3448
3449 /* Extract the physical address of the page */
3450 pa = l2pte_pa(ptes[arm_btop(va)]);
3451 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3452 goto out;
3453
3454 /* Get the current flags for this page. */
3455 simple_lock(&pg->mdpage.pvh_slock);
3456
3457 flags = pmap_modify_pv(pmap, va, pg, 0, 0);
3458 PDEBUG(2, printf("pmap_modified_emulation: flags = %08x\n", flags));
3459
3460 /*
3461 * Do the flags say this page is writable ? If not then it is a
3462 * genuine write fault. If yes then the write fault is our fault
3463 * as we did not reflect the write access in the PTE. Now we know
3464 * a write has occurred we can correct this and also set the
3465 * modified bit
3466 */
3467 if (~flags & PVF_WRITE) {
3468 simple_unlock(&pg->mdpage.pvh_slock);
3469 goto out;
3470 }
3471
3472 PDEBUG(0,
3473 printf("pmap_modified_emulation: Got a hit va=%08lx, pte = %08x\n",
3474 va, ptes[arm_btop(va)]));
3475 pg->mdpage.pvh_attrs |= PVF_REF | PVF_MOD;
3476
3477 /*
3478 * Re-enable write permissions for the page. No need to call
3479 * pmap_vac_me_harder(), since this is just a
3480 * modified-emulation fault, and the PVF_WRITE bit isn't changing.
3481 * We've already set the cacheable bits based on the assumption
3482 * that we can write to this page.
3483 */
3484 ptes[arm_btop(va)] =
3485 (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO | L2_S_PROT_W;
3486 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3487
3488 simple_unlock(&pg->mdpage.pvh_slock);
3489
3490 cpu_tlb_flushID_SE(va);
3491 cpu_cpwait();
3492 rv = 1;
3493 out:
3494 pmap_unmap_ptes(pmap); /* unlocks pmap */
3495 PMAP_MAP_TO_HEAD_UNLOCK();
3496 return (rv);
3497 }
3498
3499 int
3500 pmap_handled_emulation(struct pmap *pmap, vaddr_t va)
3501 {
3502 pt_entry_t *ptes;
3503 struct vm_page *pg;
3504 paddr_t pa;
3505 int rv = 0;
3506
3507 PDEBUG(2, printf("pmap_handled_emulation\n"));
3508
3509 PMAP_MAP_TO_HEAD_LOCK();
3510 ptes = pmap_map_ptes(pmap); /* locks pmap */
3511
3512 if (pmap_pde_v(pmap_pde(pmap, va)) == 0) {
3513 PDEBUG(2, printf("L1 PTE invalid\n"));
3514 goto out;
3515 }
3516
3517 PDEBUG(1, printf("pte=%08x\n", ptes[arm_btop(va)]));
3518
3519 /* Check for invalid pte */
3520 if (l2pte_valid(ptes[arm_btop(va)]) == 0)
3521 goto out;
3522
3523 /* This can happen if user code tries to access kernel memory. */
3524 if ((ptes[arm_btop(va)] & L2_TYPE_MASK) != L2_TYPE_INV)
3525 goto out;
3526
3527 /* Extract the physical address of the page */
3528 pa = l2pte_pa(ptes[arm_btop(va)]);
3529 if ((pg = PHYS_TO_VM_PAGE(pa)) == NULL)
3530 goto out;
3531
3532 simple_lock(&pg->mdpage.pvh_slock);
3533
3534 /*
3535 * Ok we just enable the pte and mark the attibs as handled
3536 * XXX Should we traverse the PV list and enable all PTEs?
3537 */
3538 PDEBUG(0,
3539 printf("pmap_handled_emulation: Got a hit va=%08lx pte = %08x\n",
3540 va, ptes[arm_btop(va)]));
3541 pg->mdpage.pvh_attrs |= PVF_REF;
3542
3543 ptes[arm_btop(va)] = (ptes[arm_btop(va)] & ~L2_TYPE_MASK) | L2_S_PROTO;
3544 PDEBUG(0, printf("->(%08x)\n", ptes[arm_btop(va)]));
3545
3546 simple_unlock(&pg->mdpage.pvh_slock);
3547
3548 cpu_tlb_flushID_SE(va);
3549 cpu_cpwait();
3550 rv = 1;
3551 out:
3552 pmap_unmap_ptes(pmap); /* unlocks pmap */
3553 PMAP_MAP_TO_HEAD_UNLOCK();
3554 return (rv);
3555 }
3556
3557 /*
3558 * pmap_collect: free resources held by a pmap
3559 *
3560 * => optional function.
3561 * => called when a process is swapped out to free memory.
3562 */
3563
3564 void
3565 pmap_collect(struct pmap *pmap)
3566 {
3567 }
3568
3569 /*
3570 * Routine: pmap_procwr
3571 *
3572 * Function:
3573 * Synchronize caches corresponding to [addr, addr+len) in p.
3574 *
3575 */
3576 void
3577 pmap_procwr(struct proc *p, vaddr_t va, int len)
3578 {
3579 /* We only need to do anything if it is the current process. */
3580 if (p == curproc)
3581 cpu_icache_sync_range(va, len);
3582 }
3583 /*
3584 * PTP functions
3585 */
3586
3587 /*
3588 * pmap_get_ptp: get a PTP (if there isn't one, allocate a new one)
3589 *
3590 * => pmap should NOT be pmap_kernel()
3591 * => pmap should be locked
3592 */
3593
3594 static struct vm_page *
3595 pmap_get_ptp(struct pmap *pmap, vaddr_t va)
3596 {
3597 struct vm_page *ptp;
3598
3599 if (pmap_pde_page(pmap_pde(pmap, va))) {
3600
3601 /* valid... check hint (saves us a PA->PG lookup) */
3602 if (pmap->pm_ptphint &&
3603 (pmap->pm_pdir[pmap_pdei(va)] & L2_S_FRAME) ==
3604 VM_PAGE_TO_PHYS(pmap->pm_ptphint))
3605 return (pmap->pm_ptphint);
3606 ptp = uvm_pagelookup(&pmap->pm_obj, va);
3607 #ifdef DIAGNOSTIC
3608 if (ptp == NULL)
3609 panic("pmap_get_ptp: unmanaged user PTP");
3610 #endif
3611 pmap->pm_ptphint = ptp;
3612 return(ptp);
3613 }
3614
3615 /* allocate a new PTP (updates ptphint) */
3616 return(pmap_alloc_ptp(pmap, va));
3617 }
3618
3619 /*
3620 * pmap_alloc_ptp: allocate a PTP for a PMAP
3621 *
3622 * => pmap should already be locked by caller
3623 * => we use the ptp's wire_count to count the number of active mappings
3624 * in the PTP (we start it at one to prevent any chance this PTP
3625 * will ever leak onto the active/inactive queues)
3626 */
3627
3628 /*__inline */ static struct vm_page *
3629 pmap_alloc_ptp(struct pmap *pmap, vaddr_t va)
3630 {
3631 struct vm_page *ptp;
3632
3633 ptp = uvm_pagealloc(&pmap->pm_obj, va, NULL,
3634 UVM_PGA_USERESERVE|UVM_PGA_ZERO);
3635 if (ptp == NULL)
3636 return (NULL);
3637
3638 /* got one! */
3639 ptp->flags &= ~PG_BUSY; /* never busy */
3640 ptp->wire_count = 1; /* no mappings yet */
3641 pmap_map_in_l1(pmap, va, VM_PAGE_TO_PHYS(ptp), TRUE);
3642 pmap->pm_stats.resident_count++; /* count PTP as resident */
3643 pmap->pm_ptphint = ptp;
3644 return (ptp);
3645 }
3646
3647 vaddr_t
3648 pmap_growkernel(vaddr_t maxkvaddr)
3649 {
3650 struct pmap *kpm = pmap_kernel(), *pm;
3651 int s;
3652 paddr_t ptaddr;
3653 struct vm_page *ptp;
3654
3655 if (maxkvaddr <= pmap_curmaxkvaddr)
3656 goto out; /* we are OK */
3657 NPDEBUG(PDB_GROWKERN, printf("pmap_growkernel: growing kernel from %lx to %lx\n",
3658 pmap_curmaxkvaddr, maxkvaddr));
3659
3660 /*
3661 * whoops! we need to add kernel PTPs
3662 */
3663
3664 s = splhigh(); /* to be safe */
3665 simple_lock(&kpm->pm_obj.vmobjlock);
3666 /* due to the way the arm pmap works we map 4MB at a time */
3667 for (/*null*/ ; pmap_curmaxkvaddr < maxkvaddr;
3668 pmap_curmaxkvaddr += 4 * L1_S_SIZE) {
3669
3670 if (uvm.page_init_done == FALSE) {
3671
3672 /*
3673 * we're growing the kernel pmap early (from
3674 * uvm_pageboot_alloc()). this case must be
3675 * handled a little differently.
3676 */
3677
3678 if (uvm_page_physget(&ptaddr) == FALSE)
3679 panic("pmap_growkernel: out of memory");
3680 pmap_zero_page(ptaddr);
3681
3682 /* map this page in */
3683 pmap_map_in_l1(kpm, pmap_curmaxkvaddr, ptaddr, TRUE);
3684
3685 /* count PTP as resident */
3686 kpm->pm_stats.resident_count++;
3687 continue;
3688 }
3689
3690 /*
3691 * THIS *MUST* BE CODED SO AS TO WORK IN THE
3692 * pmap_initialized == FALSE CASE! WE MAY BE
3693 * INVOKED WHILE pmap_init() IS RUNNING!
3694 */
3695
3696 if ((ptp = pmap_alloc_ptp(kpm, pmap_curmaxkvaddr)) == NULL)
3697 panic("pmap_growkernel: alloc ptp failed");
3698
3699 /* distribute new kernel PTP to all active pmaps */
3700 simple_lock(&pmaps_lock);
3701 LIST_FOREACH(pm, &pmaps, pm_list) {
3702 pmap_map_in_l1(pm, pmap_curmaxkvaddr,
3703 VM_PAGE_TO_PHYS(ptp), TRUE);
3704 }
3705
3706 /* Invalidate the PTPT cache. */
3707 pool_cache_invalidate(&pmap_ptpt_cache);
3708 pmap_ptpt_cache_generation++;
3709
3710 simple_unlock(&pmaps_lock);
3711 }
3712
3713 /*
3714 * flush out the cache, expensive but growkernel will happen so
3715 * rarely
3716 */
3717 cpu_tlb_flushD();
3718 cpu_cpwait();
3719
3720 simple_unlock(&kpm->pm_obj.vmobjlock);
3721 splx(s);
3722
3723 out:
3724 return (pmap_curmaxkvaddr);
3725 }
3726
3727 /************************ Utility routines ****************************/
3728
3729 /*
3730 * vector_page_setprot:
3731 *
3732 * Manipulate the protection of the vector page.
3733 */
3734 void
3735 vector_page_setprot(int prot)
3736 {
3737 pt_entry_t *pte;
3738
3739 pte = vtopte(vector_page);
3740
3741 *pte = (*pte & ~L1_S_PROT_MASK) | L2_S_PROT(PTE_KERNEL, prot);
3742 cpu_tlb_flushD_SE(vector_page);
3743 cpu_cpwait();
3744 }
3745
3746 /************************ Bootstrapping routines ****************************/
3747
3748 /*
3749 * This list exists for the benefit of pmap_map_chunk(). It keeps track
3750 * of the kernel L2 tables during bootstrap, so that pmap_map_chunk() can
3751 * find them as necessary.
3752 *
3753 * Note that the data on this list is not valid after initarm() returns.
3754 */
3755 SLIST_HEAD(, pv_addr) kernel_pt_list = SLIST_HEAD_INITIALIZER(kernel_pt_list);
3756
3757 static vaddr_t
3758 kernel_pt_lookup(paddr_t pa)
3759 {
3760 pv_addr_t *pv;
3761
3762 SLIST_FOREACH(pv, &kernel_pt_list, pv_list) {
3763 if (pv->pv_pa == pa)
3764 return (pv->pv_va);
3765 }
3766 return (0);
3767 }
3768
3769 /*
3770 * pmap_map_section:
3771 *
3772 * Create a single section mapping.
3773 */
3774 void
3775 pmap_map_section(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3776 {
3777 pd_entry_t *pde = (pd_entry_t *) l1pt;
3778 pd_entry_t fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3779
3780 KASSERT(((va | pa) & L1_S_OFFSET) == 0);
3781
3782 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3783 L1_S_PROT(PTE_KERNEL, prot) | fl;
3784 }
3785
3786 /*
3787 * pmap_map_entry:
3788 *
3789 * Create a single page mapping.
3790 */
3791 void
3792 pmap_map_entry(vaddr_t l1pt, vaddr_t va, paddr_t pa, int prot, int cache)
3793 {
3794 pd_entry_t *pde = (pd_entry_t *) l1pt;
3795 pt_entry_t fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3796 pt_entry_t *pte;
3797
3798 KASSERT(((va | pa) & PGOFSET) == 0);
3799
3800 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3801 panic("pmap_map_entry: no L2 table for VA 0x%08lx", va);
3802
3803 pte = (pt_entry_t *)
3804 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3805 if (pte == NULL)
3806 panic("pmap_map_entry: can't find L2 table for VA 0x%08lx", va);
3807
3808 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3809 L2_S_PROT(PTE_KERNEL, prot) | fl;
3810 }
3811
3812 /*
3813 * pmap_link_l2pt:
3814 *
3815 * Link the L2 page table specified by "pa" into the L1
3816 * page table at the slot for "va".
3817 */
3818 void
3819 pmap_link_l2pt(vaddr_t l1pt, vaddr_t va, pv_addr_t *l2pv)
3820 {
3821 pd_entry_t *pde = (pd_entry_t *) l1pt;
3822 u_int slot = va >> L1_S_SHIFT;
3823
3824 KASSERT((l2pv->pv_pa & PGOFSET) == 0);
3825
3826 pde[slot + 0] = L1_C_PROTO | (l2pv->pv_pa + 0x000);
3827 pde[slot + 1] = L1_C_PROTO | (l2pv->pv_pa + 0x400);
3828 pde[slot + 2] = L1_C_PROTO | (l2pv->pv_pa + 0x800);
3829 pde[slot + 3] = L1_C_PROTO | (l2pv->pv_pa + 0xc00);
3830
3831 SLIST_INSERT_HEAD(&kernel_pt_list, l2pv, pv_list);
3832 }
3833
3834 /*
3835 * pmap_map_chunk:
3836 *
3837 * Map a chunk of memory using the most efficient mappings
3838 * possible (section, large page, small page) into the
3839 * provided L1 and L2 tables at the specified virtual address.
3840 */
3841 vsize_t
3842 pmap_map_chunk(vaddr_t l1pt, vaddr_t va, paddr_t pa, vsize_t size,
3843 int prot, int cache)
3844 {
3845 pd_entry_t *pde = (pd_entry_t *) l1pt;
3846 pt_entry_t *pte, fl;
3847 vsize_t resid;
3848 int i;
3849
3850 resid = (size + (NBPG - 1)) & ~(NBPG - 1);
3851
3852 if (l1pt == 0)
3853 panic("pmap_map_chunk: no L1 table provided");
3854
3855 #ifdef VERBOSE_INIT_ARM
3856 printf("pmap_map_chunk: pa=0x%lx va=0x%lx size=0x%lx resid=0x%lx "
3857 "prot=0x%x cache=%d\n", pa, va, size, resid, prot, cache);
3858 #endif
3859
3860 size = resid;
3861
3862 while (resid > 0) {
3863 /* See if we can use a section mapping. */
3864 if (((pa | va) & L1_S_OFFSET) == 0 &&
3865 resid >= L1_S_SIZE) {
3866 fl = (cache == PTE_CACHE) ? pte_l1_s_cache_mode : 0;
3867 #ifdef VERBOSE_INIT_ARM
3868 printf("S");
3869 #endif
3870 pde[va >> L1_S_SHIFT] = L1_S_PROTO | pa |
3871 L1_S_PROT(PTE_KERNEL, prot) | fl;
3872 va += L1_S_SIZE;
3873 pa += L1_S_SIZE;
3874 resid -= L1_S_SIZE;
3875 continue;
3876 }
3877
3878 /*
3879 * Ok, we're going to use an L2 table. Make sure
3880 * one is actually in the corresponding L1 slot
3881 * for the current VA.
3882 */
3883 if ((pde[va >> L1_S_SHIFT] & L1_TYPE_MASK) != L1_TYPE_C)
3884 panic("pmap_map_chunk: no L2 table for VA 0x%08lx", va);
3885
3886 pte = (pt_entry_t *)
3887 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
3888 if (pte == NULL)
3889 panic("pmap_map_chunk: can't find L2 table for VA"
3890 "0x%08lx", va);
3891
3892 /* See if we can use a L2 large page mapping. */
3893 if (((pa | va) & L2_L_OFFSET) == 0 &&
3894 resid >= L2_L_SIZE) {
3895 fl = (cache == PTE_CACHE) ? pte_l2_l_cache_mode : 0;
3896 #ifdef VERBOSE_INIT_ARM
3897 printf("L");
3898 #endif
3899 for (i = 0; i < 16; i++) {
3900 pte[((va >> PGSHIFT) & 0x3f0) + i] =
3901 L2_L_PROTO | pa |
3902 L2_L_PROT(PTE_KERNEL, prot) | fl;
3903 }
3904 va += L2_L_SIZE;
3905 pa += L2_L_SIZE;
3906 resid -= L2_L_SIZE;
3907 continue;
3908 }
3909
3910 /* Use a small page mapping. */
3911 fl = (cache == PTE_CACHE) ? pte_l2_s_cache_mode : 0;
3912 #ifdef VERBOSE_INIT_ARM
3913 printf("P");
3914 #endif
3915 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
3916 L2_S_PROT(PTE_KERNEL, prot) | fl;
3917 va += NBPG;
3918 pa += NBPG;
3919 resid -= NBPG;
3920 }
3921 #ifdef VERBOSE_INIT_ARM
3922 printf("\n");
3923 #endif
3924 return (size);
3925 }
3926
3927 /********************** PTE initialization routines **************************/
3928
3929 /*
3930 * These routines are called when the CPU type is identified to set up
3931 * the PTE prototypes, cache modes, etc.
3932 *
3933 * The variables are always here, just in case LKMs need to reference
3934 * them (though, they shouldn't).
3935 */
3936
3937 pt_entry_t pte_l1_s_cache_mode;
3938 pt_entry_t pte_l1_s_cache_mask;
3939
3940 pt_entry_t pte_l2_l_cache_mode;
3941 pt_entry_t pte_l2_l_cache_mask;
3942
3943 pt_entry_t pte_l2_s_cache_mode;
3944 pt_entry_t pte_l2_s_cache_mask;
3945
3946 pt_entry_t pte_l2_s_prot_u;
3947 pt_entry_t pte_l2_s_prot_w;
3948 pt_entry_t pte_l2_s_prot_mask;
3949
3950 pt_entry_t pte_l1_s_proto;
3951 pt_entry_t pte_l1_c_proto;
3952 pt_entry_t pte_l2_s_proto;
3953
3954 void (*pmap_copy_page_func)(paddr_t, paddr_t);
3955 void (*pmap_zero_page_func)(paddr_t);
3956
3957 #if ARM_MMU_GENERIC == 1
3958 void
3959 pmap_pte_init_generic(void)
3960 {
3961
3962 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
3963 pte_l1_s_cache_mask = L1_S_CACHE_MASK_generic;
3964
3965 pte_l2_l_cache_mode = L2_B|L2_C;
3966 pte_l2_l_cache_mask = L2_L_CACHE_MASK_generic;
3967
3968 pte_l2_s_cache_mode = L2_B|L2_C;
3969 pte_l2_s_cache_mask = L2_S_CACHE_MASK_generic;
3970
3971 pte_l2_s_prot_u = L2_S_PROT_U_generic;
3972 pte_l2_s_prot_w = L2_S_PROT_W_generic;
3973 pte_l2_s_prot_mask = L2_S_PROT_MASK_generic;
3974
3975 pte_l1_s_proto = L1_S_PROTO_generic;
3976 pte_l1_c_proto = L1_C_PROTO_generic;
3977 pte_l2_s_proto = L2_S_PROTO_generic;
3978
3979 pmap_copy_page_func = pmap_copy_page_generic;
3980 pmap_zero_page_func = pmap_zero_page_generic;
3981 }
3982
3983 #if defined(CPU_ARM9)
3984 void
3985 pmap_pte_init_arm9(void)
3986 {
3987
3988 /*
3989 * ARM9 is compatible with generic, but we want to use
3990 * write-through caching for now.
3991 */
3992 pmap_pte_init_generic();
3993
3994 pte_l1_s_cache_mode = L1_S_C;
3995 pte_l2_l_cache_mode = L2_C;
3996 pte_l2_s_cache_mode = L2_C;
3997 }
3998 #endif /* CPU_ARM9 */
3999 #endif /* ARM_MMU_GENERIC == 1 */
4000
4001 #if ARM_MMU_XSCALE == 1
4002 void
4003 pmap_pte_init_xscale(void)
4004 {
4005 uint32_t auxctl;
4006
4007 pte_l1_s_cache_mode = L1_S_B|L1_S_C;
4008 pte_l1_s_cache_mask = L1_S_CACHE_MASK_xscale;
4009
4010 pte_l2_l_cache_mode = L2_B|L2_C;
4011 pte_l2_l_cache_mask = L2_L_CACHE_MASK_xscale;
4012
4013 pte_l2_s_cache_mode = L2_B|L2_C;
4014 pte_l2_s_cache_mask = L2_S_CACHE_MASK_xscale;
4015
4016 #ifdef XSCALE_CACHE_WRITE_THROUGH
4017 /*
4018 * Some versions of the XScale core have various bugs in
4019 * their cache units, the work-around for which is to run
4020 * the cache in write-through mode. Unfortunately, this
4021 * has a major (negative) impact on performance. So, we
4022 * go ahead and run fast-and-loose, in the hopes that we
4023 * don't line up the planets in a way that will trip the
4024 * bugs.
4025 *
4026 * However, we give you the option to be slow-but-correct.
4027 */
4028 pte_l1_s_cache_mode = L1_S_C;
4029 pte_l2_l_cache_mode = L2_C;
4030 pte_l2_s_cache_mode = L2_C;
4031 #endif /* XSCALE_CACHE_WRITE_THROUGH */
4032
4033 pte_l2_s_prot_u = L2_S_PROT_U_xscale;
4034 pte_l2_s_prot_w = L2_S_PROT_W_xscale;
4035 pte_l2_s_prot_mask = L2_S_PROT_MASK_xscale;
4036
4037 pte_l1_s_proto = L1_S_PROTO_xscale;
4038 pte_l1_c_proto = L1_C_PROTO_xscale;
4039 pte_l2_s_proto = L2_S_PROTO_xscale;
4040
4041 pmap_copy_page_func = pmap_copy_page_xscale;
4042 pmap_zero_page_func = pmap_zero_page_xscale;
4043
4044 /*
4045 * Disable ECC protection of page table access, for now.
4046 */
4047 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4048 : "=r" (auxctl));
4049 auxctl &= ~XSCALE_AUXCTL_P;
4050 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4051 :
4052 : "r" (auxctl));
4053 }
4054
4055 /*
4056 * xscale_setup_minidata:
4057 *
4058 * Set up the mini-data cache clean area. We require the
4059 * caller to allocate the right amount of physically and
4060 * virtually contiguous space.
4061 */
4062 void
4063 xscale_setup_minidata(vaddr_t l1pt, vaddr_t va, paddr_t pa)
4064 {
4065 extern vaddr_t xscale_minidata_clean_addr;
4066 extern vsize_t xscale_minidata_clean_size; /* already initialized */
4067 pd_entry_t *pde = (pd_entry_t *) l1pt;
4068 pt_entry_t *pte;
4069 vsize_t size;
4070 uint32_t auxctl;
4071
4072 xscale_minidata_clean_addr = va;
4073
4074 /* Round it to page size. */
4075 size = (xscale_minidata_clean_size + L2_S_OFFSET) & L2_S_FRAME;
4076
4077 for (; size != 0;
4078 va += L2_S_SIZE, pa += L2_S_SIZE, size -= L2_S_SIZE) {
4079 pte = (pt_entry_t *)
4080 kernel_pt_lookup(pde[va >> L1_S_SHIFT] & L2_S_FRAME);
4081 if (pte == NULL)
4082 panic("xscale_setup_minidata: can't find L2 table for "
4083 "VA 0x%08lx", va);
4084 pte[(va >> PGSHIFT) & 0x3ff] = L2_S_PROTO | pa |
4085 L2_S_PROT(PTE_KERNEL, VM_PROT_READ) |
4086 L2_C | L2_XSCALE_T_TEX(TEX_XSCALE_X);
4087 }
4088
4089 /*
4090 * Configure the mini-data cache for write-back with
4091 * read/write-allocate.
4092 *
4093 * NOTE: In order to reconfigure the mini-data cache, we must
4094 * make sure it contains no valid data! In order to do that,
4095 * we must issue a global data cache invalidate command!
4096 *
4097 * WE ASSUME WE ARE RUNNING UN-CACHED WHEN THIS ROUTINE IS CALLED!
4098 * THIS IS VERY IMPORTANT!
4099 */
4100
4101 /* Invalidate data and mini-data. */
4102 __asm __volatile("mcr p15, 0, %0, c7, c6, 0"
4103 :
4104 : "r" (auxctl));
4105
4106
4107 __asm __volatile("mrc p15, 0, %0, c1, c0, 1"
4108 : "=r" (auxctl));
4109 auxctl = (auxctl & ~XSCALE_AUXCTL_MD_MASK) | XSCALE_AUXCTL_MD_WB_RWA;
4110 __asm __volatile("mcr p15, 0, %0, c1, c0, 1"
4111 :
4112 : "r" (auxctl));
4113 }
4114 #endif /* ARM_MMU_XSCALE == 1 */
4115