at91emac.c revision 1.1.2.1 1 1.1.2.1 matt /* $Id: at91emac.c,v 1.1.2.1 2007/11/10 02:56:31 matt Exp $ */
2 1.1.2.1 matt /* $NetBSD: at91emac.c,v 1.1.2.1 2007/11/10 02:56:31 matt Exp $ */
3 1.1.2.1 matt
4 1.1.2.1 matt /*
5 1.1.2.1 matt * Copyright (c) 2007 Embedtronics Oy
6 1.1.2.1 matt * All rights reserved.
7 1.1.2.1 matt *
8 1.1.2.1 matt * Based on arch/arm/ep93xx/epe.c
9 1.1.2.1 matt *
10 1.1.2.1 matt * Copyright (c) 2004 Jesse Off
11 1.1.2.1 matt * All rights reserved.
12 1.1.2.1 matt *
13 1.1.2.1 matt * Redistribution and use in source and binary forms, with or without
14 1.1.2.1 matt * modification, are permitted provided that the following conditions
15 1.1.2.1 matt * are met:
16 1.1.2.1 matt * 1. Redistributions of source code must retain the above copyright
17 1.1.2.1 matt * notice, this list of conditions and the following disclaimer.
18 1.1.2.1 matt * 2. Redistributions in binary form must reproduce the above copyright
19 1.1.2.1 matt * notice, this list of conditions and the following disclaimer in the
20 1.1.2.1 matt * documentation and/or other materials provided with the distribution.
21 1.1.2.1 matt * 3. All advertising materials mentioning features or use of this software
22 1.1.2.1 matt * must display the following acknowledgement:
23 1.1.2.1 matt * This product includes software developed by the NetBSD
24 1.1.2.1 matt * Foundation, Inc. and its contributors.
25 1.1.2.1 matt * 4. Neither the name of The NetBSD Foundation nor the names of its
26 1.1.2.1 matt * contributors may be used to endorse or promote products derived
27 1.1.2.1 matt * from this software without specific prior written permission.
28 1.1.2.1 matt *
29 1.1.2.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
30 1.1.2.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
31 1.1.2.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
32 1.1.2.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
33 1.1.2.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
34 1.1.2.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
35 1.1.2.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
36 1.1.2.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
37 1.1.2.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
38 1.1.2.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
39 1.1.2.1 matt * POSSIBILITY OF SUCH DAMAGE.
40 1.1.2.1 matt */
41 1.1.2.1 matt
42 1.1.2.1 matt #include <sys/cdefs.h>
43 1.1.2.1 matt __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.1.2.1 2007/11/10 02:56:31 matt Exp $");
44 1.1.2.1 matt
45 1.1.2.1 matt #include <sys/types.h>
46 1.1.2.1 matt #include <sys/param.h>
47 1.1.2.1 matt #include <sys/systm.h>
48 1.1.2.1 matt #include <sys/ioctl.h>
49 1.1.2.1 matt #include <sys/kernel.h>
50 1.1.2.1 matt #include <sys/proc.h>
51 1.1.2.1 matt #include <sys/malloc.h>
52 1.1.2.1 matt #include <sys/time.h>
53 1.1.2.1 matt #include <sys/device.h>
54 1.1.2.1 matt #include <uvm/uvm_extern.h>
55 1.1.2.1 matt
56 1.1.2.1 matt #include <machine/bus.h>
57 1.1.2.1 matt #include <machine/intr.h>
58 1.1.2.1 matt
59 1.1.2.1 matt #include <arm/cpufunc.h>
60 1.1.2.1 matt
61 1.1.2.1 matt #include <net/if.h>
62 1.1.2.1 matt #include <net/if_dl.h>
63 1.1.2.1 matt #include <net/if_types.h>
64 1.1.2.1 matt #include <net/if_media.h>
65 1.1.2.1 matt #include <net/if_ether.h>
66 1.1.2.1 matt
67 1.1.2.1 matt #include <dev/mii/mii.h>
68 1.1.2.1 matt #include <dev/mii/miivar.h>
69 1.1.2.1 matt
70 1.1.2.1 matt #ifdef INET
71 1.1.2.1 matt #include <netinet/in.h>
72 1.1.2.1 matt #include <netinet/in_systm.h>
73 1.1.2.1 matt #include <netinet/in_var.h>
74 1.1.2.1 matt #include <netinet/ip.h>
75 1.1.2.1 matt #include <netinet/if_inarp.h>
76 1.1.2.1 matt #endif
77 1.1.2.1 matt
78 1.1.2.1 matt #ifdef NS
79 1.1.2.1 matt #include <netns/ns.h>
80 1.1.2.1 matt #include <netns/ns_if.h>
81 1.1.2.1 matt #endif
82 1.1.2.1 matt
83 1.1.2.1 matt #include "bpfilter.h"
84 1.1.2.1 matt #if NBPFILTER > 0
85 1.1.2.1 matt #include <net/bpf.h>
86 1.1.2.1 matt #include <net/bpfdesc.h>
87 1.1.2.1 matt #endif
88 1.1.2.1 matt
89 1.1.2.1 matt #ifdef IPKDB_AT91 // @@@
90 1.1.2.1 matt #include <ipkdb/ipkdb.h>
91 1.1.2.1 matt #endif
92 1.1.2.1 matt
93 1.1.2.1 matt #include <arm/at91/at91var.h>
94 1.1.2.1 matt #include <arm/at91/at91emacreg.h>
95 1.1.2.1 matt #include <arm/at91/at91emacvar.h>
96 1.1.2.1 matt
97 1.1.2.1 matt #define DEFAULT_MDCDIV 32
98 1.1.2.1 matt
99 1.1.2.1 matt #ifndef EMAC_FAST
100 1.1.2.1 matt #define EMAC_FAST
101 1.1.2.1 matt #endif
102 1.1.2.1 matt
103 1.1.2.1 matt #ifndef EMAC_FAST
104 1.1.2.1 matt #define EMAC_READ(x) \
105 1.1.2.1 matt bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
106 1.1.2.1 matt #define EMAC_WRITE(x, y) \
107 1.1.2.1 matt bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
108 1.1.2.1 matt #else
109 1.1.2.1 matt #define EMAC_READ(x) ETHREG(x)
110 1.1.2.1 matt #define EMAC_WRITE(x, y) ETHREG(x) = (y)
111 1.1.2.1 matt #endif /* ! EMAC_FAST */
112 1.1.2.1 matt
113 1.1.2.1 matt static int emac_match(struct device *, struct cfdata *, void *);
114 1.1.2.1 matt static void emac_attach(struct device *, struct device *, void *);
115 1.1.2.1 matt static void emac_init(struct emac_softc *);
116 1.1.2.1 matt static int emac_intr(void* arg);
117 1.1.2.1 matt static int emac_gctx(struct emac_softc *);
118 1.1.2.1 matt static int emac_mediachange(struct ifnet *);
119 1.1.2.1 matt static void emac_mediastatus(struct ifnet *, struct ifmediareq *);
120 1.1.2.1 matt int emac_mii_readreg (struct device *, int, int);
121 1.1.2.1 matt void emac_mii_writereg (struct device *, int, int, int);
122 1.1.2.1 matt void emac_statchg (struct device *);
123 1.1.2.1 matt void emac_tick (void *);
124 1.1.2.1 matt static int emac_ifioctl (struct ifnet *, u_long, caddr_t);
125 1.1.2.1 matt static void emac_ifstart (struct ifnet *);
126 1.1.2.1 matt static void emac_ifwatchdog (struct ifnet *);
127 1.1.2.1 matt static int emac_ifinit (struct ifnet *);
128 1.1.2.1 matt static void emac_ifstop (struct ifnet *, int);
129 1.1.2.1 matt static void emac_setaddr (struct ifnet *);
130 1.1.2.1 matt
131 1.1.2.1 matt CFATTACH_DECL(at91emac, sizeof(struct emac_softc),
132 1.1.2.1 matt emac_match, emac_attach, NULL, NULL);
133 1.1.2.1 matt
134 1.1.2.1 matt #ifdef EMAC_DEBUG
135 1.1.2.1 matt int emac_debug = EMAC_DEBUG;
136 1.1.2.1 matt #define DPRINTFN(n,fmt) if (emac_debug >= (n)) printf fmt
137 1.1.2.1 matt #else
138 1.1.2.1 matt #define DPRINTFN(n,fmt)
139 1.1.2.1 matt #endif
140 1.1.2.1 matt
141 1.1.2.1 matt static int
142 1.1.2.1 matt emac_match(struct device *parent, struct cfdata *match, void *aux)
143 1.1.2.1 matt {
144 1.1.2.1 matt if (strcmp(match->cf_name, "at91emac") == 0)
145 1.1.2.1 matt return 2;
146 1.1.2.1 matt return 0;
147 1.1.2.1 matt }
148 1.1.2.1 matt
149 1.1.2.1 matt static void
150 1.1.2.1 matt emac_attach(struct device *parent, struct device *self, void *aux)
151 1.1.2.1 matt {
152 1.1.2.1 matt struct emac_softc *sc;
153 1.1.2.1 matt struct at91bus_attach_args *sa;
154 1.1.2.1 matt prop_data_t enaddr;
155 1.1.2.1 matt uint32_t u;
156 1.1.2.1 matt
157 1.1.2.1 matt printf("\n");
158 1.1.2.1 matt sc = (struct emac_softc*) self;
159 1.1.2.1 matt sa = aux;
160 1.1.2.1 matt sc->sc_iot = sa->sa_iot;
161 1.1.2.1 matt sc->sc_pid = sa->sa_pid;
162 1.1.2.1 matt sc->sc_dmat = sa->sa_dmat;
163 1.1.2.1 matt
164 1.1.2.1 matt if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
165 1.1.2.1 matt 0, &sc->sc_ioh))
166 1.1.2.1 matt panic("%s: Cannot map registers", self->dv_xname);
167 1.1.2.1 matt
168 1.1.2.1 matt /* enable peripheral clock */
169 1.1.2.1 matt at91_peripheral_clock(sc->sc_pid, 1);
170 1.1.2.1 matt
171 1.1.2.1 matt /* configure emac: */
172 1.1.2.1 matt EMAC_WRITE(ETH_CTL, 0); // disable everything
173 1.1.2.1 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
174 1.1.2.1 matt EMAC_WRITE(ETH_RBQP, 0); // clear receive
175 1.1.2.1 matt EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
176 1.1.2.1 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
177 1.1.2.1 matt //(void)EMAC_READ(ETH_ISR);
178 1.1.2.1 matt u = EMAC_READ(ETH_TSR);
179 1.1.2.1 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
180 1.1.2.1 matt | ETH_TSR_IDLE | ETH_TSR_RLE
181 1.1.2.1 matt | ETH_TSR_COL|ETH_TSR_OVR)));
182 1.1.2.1 matt u = EMAC_READ(ETH_RSR);
183 1.1.2.1 matt EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
184 1.1.2.1 matt
185 1.1.2.1 matt /* Fetch the Ethernet address from property if set. */
186 1.1.2.1 matt enaddr = prop_dictionary_get(device_properties(self), "mac-addr");
187 1.1.2.1 matt
188 1.1.2.1 matt if (enaddr != NULL) {
189 1.1.2.1 matt KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
190 1.1.2.1 matt KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
191 1.1.2.1 matt memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
192 1.1.2.1 matt ETHER_ADDR_LEN);
193 1.1.2.1 matt } else {
194 1.1.2.1 matt static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
195 1.1.2.1 matt 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
196 1.1.2.1 matt };
197 1.1.2.1 matt memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
198 1.1.2.1 matt }
199 1.1.2.1 matt
200 1.1.2.1 matt at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr, sc);
201 1.1.2.1 matt emac_init(sc);
202 1.1.2.1 matt }
203 1.1.2.1 matt
204 1.1.2.1 matt static int
205 1.1.2.1 matt emac_gctx(struct emac_softc *sc)
206 1.1.2.1 matt {
207 1.1.2.1 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
208 1.1.2.1 matt u_int32_t tsr;
209 1.1.2.1 matt
210 1.1.2.1 matt tsr = EMAC_READ(ETH_TSR);
211 1.1.2.1 matt if (!(tsr & ETH_TSR_BNQ)) {
212 1.1.2.1 matt // no space left
213 1.1.2.1 matt return 0;
214 1.1.2.1 matt }
215 1.1.2.1 matt
216 1.1.2.1 matt // free sent frames
217 1.1.2.1 matt while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
218 1.1.2.1 matt int i = sc->txqi % TX_QLEN;
219 1.1.2.1 matt bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
220 1.1.2.1 matt sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
221 1.1.2.1 matt bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
222 1.1.2.1 matt m_freem(sc->txq[i].m);
223 1.1.2.1 matt DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", __FUNCTION__, i, sc->txq[i].m, sc->txqc));
224 1.1.2.1 matt sc->txq[i].m = NULL;
225 1.1.2.1 matt sc->txqi = (i + 1) % TX_QLEN;
226 1.1.2.1 matt sc->txqc--;
227 1.1.2.1 matt }
228 1.1.2.1 matt
229 1.1.2.1 matt // mark we're free
230 1.1.2.1 matt if (ifp->if_flags & IFF_OACTIVE) {
231 1.1.2.1 matt ifp->if_flags &= ~IFF_OACTIVE;
232 1.1.2.1 matt /* Disable transmit-buffer-free interrupt */
233 1.1.2.1 matt /*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
234 1.1.2.1 matt }
235 1.1.2.1 matt
236 1.1.2.1 matt return 1;
237 1.1.2.1 matt }
238 1.1.2.1 matt
239 1.1.2.1 matt static int
240 1.1.2.1 matt emac_intr(void *arg)
241 1.1.2.1 matt {
242 1.1.2.1 matt struct emac_softc *sc = (struct emac_softc *)arg;
243 1.1.2.1 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
244 1.1.2.1 matt u_int32_t imr, isr, rsr, ctl;
245 1.1.2.1 matt int bi;
246 1.1.2.1 matt
247 1.1.2.1 matt imr = ~EMAC_READ(ETH_IMR);
248 1.1.2.1 matt if (!(imr & (ETH_ISR_RCOM|ETH_ISR_TBRE|ETH_ISR_TIDLE|ETH_ISR_RBNA|ETH_ISR_ROVR))) {
249 1.1.2.1 matt // interrupt not enabled, can't be us
250 1.1.2.1 matt return 0;
251 1.1.2.1 matt }
252 1.1.2.1 matt
253 1.1.2.1 matt isr = EMAC_READ(ETH_ISR) & imr;
254 1.1.2.1 matt rsr = EMAC_READ(ETH_RSR); // get receive status register
255 1.1.2.1 matt
256 1.1.2.1 matt DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
257 1.1.2.1 matt
258 1.1.2.1 matt if (isr & ETH_ISR_RBNA) { // out of receive buffers
259 1.1.2.1 matt EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
260 1.1.2.1 matt ctl = EMAC_READ(ETH_CTL); // get current control register value
261 1.1.2.1 matt EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
262 1.1.2.1 matt EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
263 1.1.2.1 matt EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
264 1.1.2.1 matt ifp->if_ierrors++;
265 1.1.2.1 matt ifp->if_ipackets++;
266 1.1.2.1 matt DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
267 1.1.2.1 matt }
268 1.1.2.1 matt if (isr & ETH_ISR_ROVR) {
269 1.1.2.1 matt EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
270 1.1.2.1 matt ifp->if_ierrors++;
271 1.1.2.1 matt ifp->if_ipackets++;
272 1.1.2.1 matt DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
273 1.1.2.1 matt }
274 1.1.2.1 matt
275 1.1.2.1 matt if (isr & ETH_ISR_RCOM) { // packet has been received!
276 1.1.2.1 matt uint32_t nfo;
277 1.1.2.1 matt // @@@ if memory is NOT coherent, then we're in trouble @@@@
278 1.1.2.1 matt // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
279 1.1.2.1 matt // printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
280 1.1.2.1 matt DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
281 1.1.2.1 matt while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
282 1.1.2.1 matt int fl;
283 1.1.2.1 matt struct mbuf *m;
284 1.1.2.1 matt
285 1.1.2.1 matt nfo = sc->RDSC[bi].Info;
286 1.1.2.1 matt fl = (nfo & ETH_RDSC_I_LEN) - 4;
287 1.1.2.1 matt DPRINTFN(2,("## nfo=0x%08X\n", nfo));
288 1.1.2.1 matt
289 1.1.2.1 matt MGETHDR(m, M_DONTWAIT, MT_DATA);
290 1.1.2.1 matt if (m != NULL) MCLGET(m, M_DONTWAIT);
291 1.1.2.1 matt if (m != NULL && (m->m_flags & M_EXT)) {
292 1.1.2.1 matt bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
293 1.1.2.1 matt MCLBYTES, BUS_DMASYNC_POSTREAD);
294 1.1.2.1 matt bus_dmamap_unload(sc->sc_dmat,
295 1.1.2.1 matt sc->rxq[bi].m_dmamap);
296 1.1.2.1 matt sc->rxq[bi].m->m_pkthdr.rcvif = ifp;
297 1.1.2.1 matt sc->rxq[bi].m->m_pkthdr.len =
298 1.1.2.1 matt sc->rxq[bi].m->m_len = fl;
299 1.1.2.1 matt #if NBPFILTER > 0
300 1.1.2.1 matt if (ifp->if_bpf)
301 1.1.2.1 matt bpf_mtap(ifp->if_bpf, sc->rxq[bi].m);
302 1.1.2.1 matt #endif /* NBPFILTER > 0 */
303 1.1.2.1 matt DPRINTFN(2,("received %u bytes packet\n", fl));
304 1.1.2.1 matt (*ifp->if_input)(ifp, sc->rxq[bi].m);
305 1.1.2.1 matt if (mtod(m, intptr_t) & 3) {
306 1.1.2.1 matt m_adj(m, mtod(m, intptr_t) & 3);
307 1.1.2.1 matt }
308 1.1.2.1 matt sc->rxq[bi].m = m;
309 1.1.2.1 matt bus_dmamap_load(sc->sc_dmat,
310 1.1.2.1 matt sc->rxq[bi].m_dmamap,
311 1.1.2.1 matt m->m_ext.ext_buf, MCLBYTES,
312 1.1.2.1 matt NULL, BUS_DMA_NOWAIT);
313 1.1.2.1 matt bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
314 1.1.2.1 matt MCLBYTES, BUS_DMASYNC_PREREAD);
315 1.1.2.1 matt sc->RDSC[bi].Info = 0;
316 1.1.2.1 matt sc->RDSC[bi].Addr =
317 1.1.2.1 matt sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
318 1.1.2.1 matt | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
319 1.1.2.1 matt } else {
320 1.1.2.1 matt /* Drop packets until we can get replacement
321 1.1.2.1 matt * empty mbufs for the RXDQ.
322 1.1.2.1 matt */
323 1.1.2.1 matt if (m != NULL) {
324 1.1.2.1 matt m_freem(m);
325 1.1.2.1 matt }
326 1.1.2.1 matt ifp->if_ierrors++;
327 1.1.2.1 matt }
328 1.1.2.1 matt sc->rxqi++;
329 1.1.2.1 matt }
330 1.1.2.1 matt // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
331 1.1.2.1 matt }
332 1.1.2.1 matt
333 1.1.2.1 matt if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
334 1.1.2.1 matt emac_ifstart(ifp);
335 1.1.2.1 matt }
336 1.1.2.1 matt #if 0 // reloop
337 1.1.2.1 matt irq = EMAC_READ(IntStsC);
338 1.1.2.1 matt if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
339 1.1.2.1 matt goto begin;
340 1.1.2.1 matt #endif
341 1.1.2.1 matt
342 1.1.2.1 matt return (1);
343 1.1.2.1 matt }
344 1.1.2.1 matt
345 1.1.2.1 matt
346 1.1.2.1 matt static void
347 1.1.2.1 matt emac_init(struct emac_softc *sc)
348 1.1.2.1 matt {
349 1.1.2.1 matt bus_dma_segment_t segs;
350 1.1.2.1 matt caddr_t addr;
351 1.1.2.1 matt int rsegs, err, i;
352 1.1.2.1 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
353 1.1.2.1 matt uint32_t u;
354 1.1.2.1 matt #if 0
355 1.1.2.1 matt int mdcdiv = DEFAULT_MDCDIV;
356 1.1.2.1 matt #endif
357 1.1.2.1 matt
358 1.1.2.1 matt callout_init(&sc->emac_tick_ch);
359 1.1.2.1 matt
360 1.1.2.1 matt // ok...
361 1.1.2.1 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
362 1.1.2.1 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
363 1.1.2.1 matt EMAC_WRITE(ETH_RBQP, 0); // clear receive
364 1.1.2.1 matt EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
365 1.1.2.1 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
366 1.1.2.1 matt // (void)EMAC_READ(ETH_ISR);
367 1.1.2.1 matt u = EMAC_READ(ETH_TSR);
368 1.1.2.1 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
369 1.1.2.1 matt | ETH_TSR_IDLE | ETH_TSR_RLE
370 1.1.2.1 matt | ETH_TSR_COL|ETH_TSR_OVR)));
371 1.1.2.1 matt u = EMAC_READ(ETH_RSR);
372 1.1.2.1 matt EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
373 1.1.2.1 matt
374 1.1.2.1 matt /* configure EMAC */
375 1.1.2.1 matt EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
376 1.1.2.1 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
377 1.1.2.1 matt #if 0
378 1.1.2.1 matt if (device_cfdata(&sc->sc_dev)->cf_flags)
379 1.1.2.1 matt mdcdiv = device_cfdata(&sc->sc_dev)->cf_flags;
380 1.1.2.1 matt #endif
381 1.1.2.1 matt /* set ethernet address */
382 1.1.2.1 matt EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
383 1.1.2.1 matt | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
384 1.1.2.1 matt | (sc->sc_enaddr[0]));
385 1.1.2.1 matt EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
386 1.1.2.1 matt | (sc->sc_enaddr[4]));
387 1.1.2.1 matt EMAC_WRITE(ETH_SA2L, 0);
388 1.1.2.1 matt EMAC_WRITE(ETH_SA2H, 0);
389 1.1.2.1 matt EMAC_WRITE(ETH_SA3L, 0);
390 1.1.2.1 matt EMAC_WRITE(ETH_SA3H, 0);
391 1.1.2.1 matt EMAC_WRITE(ETH_SA4L, 0);
392 1.1.2.1 matt EMAC_WRITE(ETH_SA4H, 0);
393 1.1.2.1 matt
394 1.1.2.1 matt /* Allocate a page of memory for receive queue descriptors */
395 1.1.2.1 matt sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
396 1.1.2.1 matt sc->rbqlen *= PAGE_SIZE;
397 1.1.2.1 matt DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
398 1.1.2.1 matt
399 1.1.2.1 matt err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
400 1.1.2.1 matt MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
401 1.1.2.1 matt &segs, 1, &rsegs, BUS_DMA_WAITOK);
402 1.1.2.1 matt if (err == 0) {
403 1.1.2.1 matt DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
404 1.1.2.1 matt err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
405 1.1.2.1 matt &sc->rbqpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
406 1.1.2.1 matt }
407 1.1.2.1 matt if (err == 0) {
408 1.1.2.1 matt DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
409 1.1.2.1 matt err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
410 1.1.2.1 matt sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
411 1.1.2.1 matt &sc->rbqpage_dmamap);
412 1.1.2.1 matt }
413 1.1.2.1 matt if (err == 0) {
414 1.1.2.1 matt DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
415 1.1.2.1 matt err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
416 1.1.2.1 matt sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
417 1.1.2.1 matt }
418 1.1.2.1 matt if (err != 0) {
419 1.1.2.1 matt panic("%s: Cannot get DMA memory", sc->sc_dev.dv_xname);
420 1.1.2.1 matt }
421 1.1.2.1 matt sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
422 1.1.2.1 matt
423 1.1.2.1 matt bzero(sc->rbqpage, sc->rbqlen);
424 1.1.2.1 matt
425 1.1.2.1 matt /* Set up pointers to start of each queue in kernel addr space.
426 1.1.2.1 matt * Each descriptor queue or status queue entry uses 2 words
427 1.1.2.1 matt */
428 1.1.2.1 matt sc->RDSC = (void*)sc->rbqpage;
429 1.1.2.1 matt
430 1.1.2.1 matt /* Populate the RXQ with mbufs */
431 1.1.2.1 matt sc->rxqi = 0;
432 1.1.2.1 matt for(i = 0; i < RX_QLEN; i++) {
433 1.1.2.1 matt struct mbuf *m;
434 1.1.2.1 matt
435 1.1.2.1 matt err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
436 1.1.2.1 matt BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
437 1.1.2.1 matt if (err) {
438 1.1.2.1 matt panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
439 1.1.2.1 matt }
440 1.1.2.1 matt MGETHDR(m, M_WAIT, MT_DATA);
441 1.1.2.1 matt MCLGET(m, M_WAIT);
442 1.1.2.1 matt sc->rxq[i].m = m;
443 1.1.2.1 matt if (mtod(m, intptr_t) & 3) {
444 1.1.2.1 matt m_adj(m, mtod(m, intptr_t) & 3);
445 1.1.2.1 matt }
446 1.1.2.1 matt err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
447 1.1.2.1 matt m->m_ext.ext_buf, MCLBYTES, NULL,
448 1.1.2.1 matt BUS_DMA_WAITOK);
449 1.1.2.1 matt if (err) {
450 1.1.2.1 matt panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
451 1.1.2.1 matt }
452 1.1.2.1 matt sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
453 1.1.2.1 matt | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
454 1.1.2.1 matt sc->RDSC[i].Info = 0;
455 1.1.2.1 matt bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
456 1.1.2.1 matt MCLBYTES, BUS_DMASYNC_PREREAD);
457 1.1.2.1 matt }
458 1.1.2.1 matt
459 1.1.2.1 matt /* prepare transmit queue */
460 1.1.2.1 matt for (i = 0; i < TX_QLEN; i++) {
461 1.1.2.1 matt err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
462 1.1.2.1 matt (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
463 1.1.2.1 matt &sc->txq[i].m_dmamap);
464 1.1.2.1 matt if (err)
465 1.1.2.1 matt panic("ARGH #1");
466 1.1.2.1 matt sc->txq[i].m = NULL;
467 1.1.2.1 matt }
468 1.1.2.1 matt
469 1.1.2.1 matt /* Program each queue's start addr, cur addr, and len registers
470 1.1.2.1 matt * with the physical addresses.
471 1.1.2.1 matt */
472 1.1.2.1 matt bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
473 1.1.2.1 matt BUS_DMASYNC_PREREAD);
474 1.1.2.1 matt addr = (caddr_t)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
475 1.1.2.1 matt EMAC_WRITE(ETH_RBQP, (u_int32_t)addr);
476 1.1.2.1 matt
477 1.1.2.1 matt /* Divide HCLK by 32 for MDC clock */
478 1.1.2.1 matt sc->sc_mii.mii_ifp = ifp;
479 1.1.2.1 matt sc->sc_mii.mii_readreg = emac_mii_readreg;
480 1.1.2.1 matt sc->sc_mii.mii_writereg = emac_mii_writereg;
481 1.1.2.1 matt sc->sc_mii.mii_statchg = emac_statchg;
482 1.1.2.1 matt ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, emac_mediachange,
483 1.1.2.1 matt emac_mediastatus);
484 1.1.2.1 matt mii_attach((struct device *)sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
485 1.1.2.1 matt MII_OFFSET_ANY, 0);
486 1.1.2.1 matt ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
487 1.1.2.1 matt
488 1.1.2.1 matt // enable / disable interrupts
489 1.1.2.1 matt
490 1.1.2.1 matt #if 0
491 1.1.2.1 matt // enable / disable interrupts
492 1.1.2.1 matt EMAC_WRITE(ETH_IDR, -1);
493 1.1.2.1 matt EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
494 1.1.2.1 matt | ETH_ISR_RBNA | ETH_ISR_ROVR);
495 1.1.2.1 matt // (void)EMAC_READ(ETH_ISR); // why
496 1.1.2.1 matt
497 1.1.2.1 matt // enable transmitter / receiver
498 1.1.2.1 matt EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
499 1.1.2.1 matt | ETH_CTL_CSR | ETH_CTL_MPE);
500 1.1.2.1 matt #endif
501 1.1.2.1 matt /*
502 1.1.2.1 matt * We can support 802.1Q VLAN-sized frames.
503 1.1.2.1 matt */
504 1.1.2.1 matt sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
505 1.1.2.1 matt
506 1.1.2.1 matt strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
507 1.1.2.1 matt ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
508 1.1.2.1 matt ifp->if_ioctl = emac_ifioctl;
509 1.1.2.1 matt ifp->if_start = emac_ifstart;
510 1.1.2.1 matt ifp->if_watchdog = emac_ifwatchdog;
511 1.1.2.1 matt ifp->if_init = emac_ifinit;
512 1.1.2.1 matt ifp->if_stop = emac_ifstop;
513 1.1.2.1 matt ifp->if_timer = 0;
514 1.1.2.1 matt ifp->if_softc = sc;
515 1.1.2.1 matt IFQ_SET_READY(&ifp->if_snd);
516 1.1.2.1 matt if_attach(ifp);
517 1.1.2.1 matt ether_ifattach(ifp, (sc)->sc_enaddr);
518 1.1.2.1 matt }
519 1.1.2.1 matt
520 1.1.2.1 matt static int
521 1.1.2.1 matt emac_mediachange(ifp)
522 1.1.2.1 matt struct ifnet *ifp;
523 1.1.2.1 matt {
524 1.1.2.1 matt if (ifp->if_flags & IFF_UP)
525 1.1.2.1 matt emac_ifinit(ifp);
526 1.1.2.1 matt return (0);
527 1.1.2.1 matt }
528 1.1.2.1 matt
529 1.1.2.1 matt static void
530 1.1.2.1 matt emac_mediastatus(ifp, ifmr)
531 1.1.2.1 matt struct ifnet *ifp;
532 1.1.2.1 matt struct ifmediareq *ifmr;
533 1.1.2.1 matt {
534 1.1.2.1 matt struct emac_softc *sc = ifp->if_softc;
535 1.1.2.1 matt
536 1.1.2.1 matt mii_pollstat(&sc->sc_mii);
537 1.1.2.1 matt ifmr->ifm_active = sc->sc_mii.mii_media_active;
538 1.1.2.1 matt ifmr->ifm_status = sc->sc_mii.mii_media_status;
539 1.1.2.1 matt }
540 1.1.2.1 matt
541 1.1.2.1 matt
542 1.1.2.1 matt int
543 1.1.2.1 matt emac_mii_readreg(self, phy, reg)
544 1.1.2.1 matt struct device *self;
545 1.1.2.1 matt int phy, reg;
546 1.1.2.1 matt {
547 1.1.2.1 matt struct emac_softc *sc;
548 1.1.2.1 matt
549 1.1.2.1 matt sc = (struct emac_softc *)self;
550 1.1.2.1 matt EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
551 1.1.2.1 matt | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
552 1.1.2.1 matt | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
553 1.1.2.1 matt | ETH_MAN_CODE_IEEE802_3));
554 1.1.2.1 matt while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
555 1.1.2.1 matt return (EMAC_READ(ETH_MAN) & ETH_MAN_DATA);
556 1.1.2.1 matt }
557 1.1.2.1 matt
558 1.1.2.1 matt void
559 1.1.2.1 matt emac_mii_writereg(self, phy, reg, val)
560 1.1.2.1 matt struct device *self;
561 1.1.2.1 matt int phy, reg, val;
562 1.1.2.1 matt {
563 1.1.2.1 matt struct emac_softc *sc;
564 1.1.2.1 matt sc = (struct emac_softc *)self;
565 1.1.2.1 matt EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
566 1.1.2.1 matt | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
567 1.1.2.1 matt | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
568 1.1.2.1 matt | ETH_MAN_CODE_IEEE802_3
569 1.1.2.1 matt | (val & ETH_MAN_DATA)));
570 1.1.2.1 matt while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
571 1.1.2.1 matt }
572 1.1.2.1 matt
573 1.1.2.1 matt
574 1.1.2.1 matt void
575 1.1.2.1 matt emac_statchg(self)
576 1.1.2.1 matt struct device *self;
577 1.1.2.1 matt {
578 1.1.2.1 matt struct emac_softc *sc = (struct emac_softc *)self;
579 1.1.2.1 matt u_int32_t reg;
580 1.1.2.1 matt
581 1.1.2.1 matt /*
582 1.1.2.1 matt * We must keep the MAC and the PHY in sync as
583 1.1.2.1 matt * to the status of full-duplex!
584 1.1.2.1 matt */
585 1.1.2.1 matt reg = EMAC_READ(ETH_CFG);
586 1.1.2.1 matt if (sc->sc_mii.mii_media_active & IFM_FDX)
587 1.1.2.1 matt reg |= ETH_CFG_FD;
588 1.1.2.1 matt else
589 1.1.2.1 matt reg &= ~ETH_CFG_FD;
590 1.1.2.1 matt EMAC_WRITE(ETH_CFG, reg);
591 1.1.2.1 matt }
592 1.1.2.1 matt
593 1.1.2.1 matt void
594 1.1.2.1 matt emac_tick(arg)
595 1.1.2.1 matt void *arg;
596 1.1.2.1 matt {
597 1.1.2.1 matt struct emac_softc* sc = (struct emac_softc *)arg;
598 1.1.2.1 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
599 1.1.2.1 matt int s;
600 1.1.2.1 matt u_int32_t misses;
601 1.1.2.1 matt
602 1.1.2.1 matt ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL);
603 1.1.2.1 matt /* These misses are ok, they will happen if the RAM/CPU can't keep up */
604 1.1.2.1 matt misses = EMAC_READ(ETH_DRFC);
605 1.1.2.1 matt if (misses > 0)
606 1.1.2.1 matt printf("%s: %d rx misses\n", sc->sc_dev.dv_xname, misses);
607 1.1.2.1 matt
608 1.1.2.1 matt s = splnet();
609 1.1.2.1 matt if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
610 1.1.2.1 matt emac_ifstart(ifp);
611 1.1.2.1 matt }
612 1.1.2.1 matt splx(s);
613 1.1.2.1 matt
614 1.1.2.1 matt mii_tick(&sc->sc_mii);
615 1.1.2.1 matt callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
616 1.1.2.1 matt }
617 1.1.2.1 matt
618 1.1.2.1 matt
619 1.1.2.1 matt static int
620 1.1.2.1 matt emac_ifioctl(ifp, cmd, data)
621 1.1.2.1 matt struct ifnet *ifp;
622 1.1.2.1 matt u_long cmd;
623 1.1.2.1 matt caddr_t data;
624 1.1.2.1 matt {
625 1.1.2.1 matt struct emac_softc *sc = ifp->if_softc;
626 1.1.2.1 matt struct ifreq *ifr = (struct ifreq *)data;
627 1.1.2.1 matt int s, error;
628 1.1.2.1 matt
629 1.1.2.1 matt s = splnet();
630 1.1.2.1 matt switch(cmd) {
631 1.1.2.1 matt case SIOCSIFMEDIA:
632 1.1.2.1 matt case SIOCGIFMEDIA:
633 1.1.2.1 matt error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
634 1.1.2.1 matt break;
635 1.1.2.1 matt default:
636 1.1.2.1 matt error = ether_ioctl(ifp, cmd, data);
637 1.1.2.1 matt if (error == ENETRESET) {
638 1.1.2.1 matt if (ifp->if_flags & IFF_RUNNING)
639 1.1.2.1 matt emac_setaddr(ifp);
640 1.1.2.1 matt error = 0;
641 1.1.2.1 matt }
642 1.1.2.1 matt }
643 1.1.2.1 matt splx(s);
644 1.1.2.1 matt return error;
645 1.1.2.1 matt }
646 1.1.2.1 matt
647 1.1.2.1 matt static void
648 1.1.2.1 matt emac_ifstart(ifp)
649 1.1.2.1 matt struct ifnet *ifp;
650 1.1.2.1 matt {
651 1.1.2.1 matt struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
652 1.1.2.1 matt struct mbuf *m;
653 1.1.2.1 matt bus_dma_segment_t *segs;
654 1.1.2.1 matt int s, bi, err, nsegs;
655 1.1.2.1 matt
656 1.1.2.1 matt s = splnet();
657 1.1.2.1 matt start:
658 1.1.2.1 matt if (emac_gctx(sc) == 0) {
659 1.1.2.1 matt /* Enable transmit-buffer-free interrupt */
660 1.1.2.1 matt EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
661 1.1.2.1 matt ifp->if_flags |= IFF_OACTIVE;
662 1.1.2.1 matt ifp->if_timer = 10;
663 1.1.2.1 matt splx(s);
664 1.1.2.1 matt return;
665 1.1.2.1 matt }
666 1.1.2.1 matt
667 1.1.2.1 matt ifp->if_timer = 0;
668 1.1.2.1 matt
669 1.1.2.1 matt IFQ_POLL(&ifp->if_snd, m);
670 1.1.2.1 matt if (m == NULL) {
671 1.1.2.1 matt splx(s);
672 1.1.2.1 matt return;
673 1.1.2.1 matt }
674 1.1.2.1 matt //more:
675 1.1.2.1 matt bi = (sc->txqi + sc->txqc) % TX_QLEN;
676 1.1.2.1 matt if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
677 1.1.2.1 matt BUS_DMA_NOWAIT)) ||
678 1.1.2.1 matt sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
679 1.1.2.1 matt sc->txq[bi].m_dmamap->dm_nsegs > 1) {
680 1.1.2.1 matt /* Copy entire mbuf chain to new single */
681 1.1.2.1 matt struct mbuf *mn;
682 1.1.2.1 matt
683 1.1.2.1 matt if (err == 0)
684 1.1.2.1 matt bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
685 1.1.2.1 matt
686 1.1.2.1 matt MGETHDR(mn, M_DONTWAIT, MT_DATA);
687 1.1.2.1 matt if (mn == NULL) goto stop;
688 1.1.2.1 matt if (m->m_pkthdr.len > MHLEN) {
689 1.1.2.1 matt MCLGET(mn, M_DONTWAIT);
690 1.1.2.1 matt if ((mn->m_flags & M_EXT) == 0) {
691 1.1.2.1 matt m_freem(mn);
692 1.1.2.1 matt goto stop;
693 1.1.2.1 matt }
694 1.1.2.1 matt }
695 1.1.2.1 matt m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, caddr_t));
696 1.1.2.1 matt mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
697 1.1.2.1 matt IFQ_DEQUEUE(&ifp->if_snd, m);
698 1.1.2.1 matt m_freem(m);
699 1.1.2.1 matt m = mn;
700 1.1.2.1 matt bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
701 1.1.2.1 matt BUS_DMA_NOWAIT);
702 1.1.2.1 matt } else {
703 1.1.2.1 matt IFQ_DEQUEUE(&ifp->if_snd, m);
704 1.1.2.1 matt }
705 1.1.2.1 matt
706 1.1.2.1 matt #if NBPFILTER > 0
707 1.1.2.1 matt if (ifp->if_bpf)
708 1.1.2.1 matt bpf_mtap(ifp->if_bpf, m);
709 1.1.2.1 matt #endif /* NBPFILTER > 0 */
710 1.1.2.1 matt
711 1.1.2.1 matt nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
712 1.1.2.1 matt segs = sc->txq[bi].m_dmamap->dm_segs;
713 1.1.2.1 matt if (nsegs > 1) {
714 1.1.2.1 matt panic("#### ARGH #2");
715 1.1.2.1 matt }
716 1.1.2.1 matt
717 1.1.2.1 matt sc->txq[bi].m = m;
718 1.1.2.1 matt sc->txqc++;
719 1.1.2.1 matt
720 1.1.2.1 matt DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
721 1.1.2.1 matt (unsigned)m->m_pkthdr.len));
722 1.1.2.1 matt #ifdef DIAGNOSTIC
723 1.1.2.1 matt if (sc->txqc > TX_QLEN) {
724 1.1.2.1 matt panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
725 1.1.2.1 matt }
726 1.1.2.1 matt #endif
727 1.1.2.1 matt
728 1.1.2.1 matt bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
729 1.1.2.1 matt sc->txq[bi].m_dmamap->dm_mapsize,
730 1.1.2.1 matt BUS_DMASYNC_PREWRITE);
731 1.1.2.1 matt
732 1.1.2.1 matt EMAC_WRITE(ETH_TAR, segs->ds_addr);
733 1.1.2.1 matt EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
734 1.1.2.1 matt if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
735 1.1.2.1 matt goto start;
736 1.1.2.1 matt stop:
737 1.1.2.1 matt
738 1.1.2.1 matt splx(s);
739 1.1.2.1 matt return;
740 1.1.2.1 matt }
741 1.1.2.1 matt
742 1.1.2.1 matt static void
743 1.1.2.1 matt emac_ifwatchdog(ifp)
744 1.1.2.1 matt struct ifnet *ifp;
745 1.1.2.1 matt {
746 1.1.2.1 matt struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
747 1.1.2.1 matt
748 1.1.2.1 matt if ((ifp->if_flags & IFF_RUNNING) == 0)
749 1.1.2.1 matt return;
750 1.1.2.1 matt printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
751 1.1.2.1 matt sc->sc_dev.dv_xname, EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
752 1.1.2.1 matt }
753 1.1.2.1 matt
754 1.1.2.1 matt static int
755 1.1.2.1 matt emac_ifinit(ifp)
756 1.1.2.1 matt struct ifnet *ifp;
757 1.1.2.1 matt {
758 1.1.2.1 matt struct emac_softc *sc = ifp->if_softc;
759 1.1.2.1 matt int s = splnet();
760 1.1.2.1 matt
761 1.1.2.1 matt callout_stop(&sc->emac_tick_ch);
762 1.1.2.1 matt
763 1.1.2.1 matt // enable interrupts
764 1.1.2.1 matt EMAC_WRITE(ETH_IDR, -1);
765 1.1.2.1 matt EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
766 1.1.2.1 matt | ETH_ISR_RBNA | ETH_ISR_ROVR);
767 1.1.2.1 matt
768 1.1.2.1 matt // enable transmitter / receiver
769 1.1.2.1 matt EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
770 1.1.2.1 matt | ETH_CTL_CSR | ETH_CTL_MPE);
771 1.1.2.1 matt
772 1.1.2.1 matt mii_mediachg(&sc->sc_mii);
773 1.1.2.1 matt callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
774 1.1.2.1 matt ifp->if_flags |= IFF_RUNNING;
775 1.1.2.1 matt splx(s);
776 1.1.2.1 matt return 0;
777 1.1.2.1 matt }
778 1.1.2.1 matt
779 1.1.2.1 matt static void
780 1.1.2.1 matt emac_ifstop(ifp, disable)
781 1.1.2.1 matt struct ifnet *ifp;
782 1.1.2.1 matt int disable;
783 1.1.2.1 matt {
784 1.1.2.1 matt // u_int32_t u;
785 1.1.2.1 matt struct emac_softc *sc = ifp->if_softc;
786 1.1.2.1 matt
787 1.1.2.1 matt #if 0
788 1.1.2.1 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
789 1.1.2.1 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
790 1.1.2.1 matt // EMAC_WRITE(ETH_RBQP, 0); // clear receive
791 1.1.2.1 matt EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
792 1.1.2.1 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
793 1.1.2.1 matt // (void)EMAC_READ(ETH_ISR);
794 1.1.2.1 matt u = EMAC_READ(ETH_TSR);
795 1.1.2.1 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
796 1.1.2.1 matt | ETH_TSR_IDLE | ETH_TSR_RLE
797 1.1.2.1 matt | ETH_TSR_COL|ETH_TSR_OVR)));
798 1.1.2.1 matt u = EMAC_READ(ETH_RSR);
799 1.1.2.1 matt EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
800 1.1.2.1 matt #endif
801 1.1.2.1 matt callout_stop(&sc->emac_tick_ch);
802 1.1.2.1 matt
803 1.1.2.1 matt /* Down the MII. */
804 1.1.2.1 matt mii_down(&sc->sc_mii);
805 1.1.2.1 matt
806 1.1.2.1 matt ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
807 1.1.2.1 matt ifp->if_timer = 0;
808 1.1.2.1 matt sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
809 1.1.2.1 matt }
810 1.1.2.1 matt
811 1.1.2.1 matt static void
812 1.1.2.1 matt emac_setaddr(ifp)
813 1.1.2.1 matt struct ifnet *ifp;
814 1.1.2.1 matt {
815 1.1.2.1 matt struct emac_softc *sc = ifp->if_softc;
816 1.1.2.1 matt struct ethercom *ac = &sc->sc_ec;
817 1.1.2.1 matt struct ether_multi *enm;
818 1.1.2.1 matt struct ether_multistep step;
819 1.1.2.1 matt u_int8_t ias[3][ETHER_ADDR_LEN];
820 1.1.2.1 matt u_int32_t h, nma = 0, hashes[2] = { 0, 0 };
821 1.1.2.1 matt u_int32_t ctl = EMAC_READ(ETH_CTL);
822 1.1.2.1 matt u_int32_t cfg = EMAC_READ(ETH_CFG);
823 1.1.2.1 matt
824 1.1.2.1 matt /* disable receiver temporarily */
825 1.1.2.1 matt EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
826 1.1.2.1 matt
827 1.1.2.1 matt cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
828 1.1.2.1 matt
829 1.1.2.1 matt if (ifp->if_flags & IFF_PROMISC) {
830 1.1.2.1 matt cfg |= ETH_CFG_CAF;
831 1.1.2.1 matt } else {
832 1.1.2.1 matt cfg &= ~ETH_CFG_CAF;
833 1.1.2.1 matt }
834 1.1.2.1 matt
835 1.1.2.1 matt // ETH_CFG_BIG?
836 1.1.2.1 matt
837 1.1.2.1 matt ifp->if_flags &= ~IFF_ALLMULTI;
838 1.1.2.1 matt
839 1.1.2.1 matt ETHER_FIRST_MULTI(step, ac, enm);
840 1.1.2.1 matt while (enm != NULL) {
841 1.1.2.1 matt if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
842 1.1.2.1 matt /*
843 1.1.2.1 matt * We must listen to a range of multicast addresses.
844 1.1.2.1 matt * For now, just accept all multicasts, rather than
845 1.1.2.1 matt * trying to set only those filter bits needed to match
846 1.1.2.1 matt * the range. (At this time, the only use of address
847 1.1.2.1 matt * ranges is for IP multicast routing, for which the
848 1.1.2.1 matt * range is big enough to require all bits set.)
849 1.1.2.1 matt */
850 1.1.2.1 matt cfg |= ETH_CFG_CAF;
851 1.1.2.1 matt hashes[0] = 0xffffffffUL;
852 1.1.2.1 matt hashes[1] = 0xffffffffUL;
853 1.1.2.1 matt ifp->if_flags |= IFF_ALLMULTI;
854 1.1.2.1 matt nma = 0;
855 1.1.2.1 matt break;
856 1.1.2.1 matt }
857 1.1.2.1 matt
858 1.1.2.1 matt if (nma < 3) {
859 1.1.2.1 matt /* We can program 3 perfect address filters for mcast */
860 1.1.2.1 matt memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
861 1.1.2.1 matt } else {
862 1.1.2.1 matt /*
863 1.1.2.1 matt * XXX: Datasheet is not very clear here, I'm not sure
864 1.1.2.1 matt * if I'm doing this right. --joff
865 1.1.2.1 matt */
866 1.1.2.1 matt h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
867 1.1.2.1 matt
868 1.1.2.1 matt /* Just want the 6 most-significant bits. */
869 1.1.2.1 matt h = h >> 26;
870 1.1.2.1 matt
871 1.1.2.1 matt hashes[ h / 32 ] |= (1 << (h % 32));
872 1.1.2.1 matt cfg |= ETH_CFG_MTI;
873 1.1.2.1 matt }
874 1.1.2.1 matt ETHER_NEXT_MULTI(step, enm);
875 1.1.2.1 matt nma++;
876 1.1.2.1 matt }
877 1.1.2.1 matt
878 1.1.2.1 matt // program...
879 1.1.2.1 matt DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
880 1.1.2.1 matt sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
881 1.1.2.1 matt sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
882 1.1.2.1 matt EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
883 1.1.2.1 matt | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
884 1.1.2.1 matt | (sc->sc_enaddr[0]));
885 1.1.2.1 matt EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
886 1.1.2.1 matt | (sc->sc_enaddr[4]));
887 1.1.2.1 matt if (nma > 1) {
888 1.1.2.1 matt DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
889 1.1.2.1 matt ias[0][0], ias[0][1], ias[0][2],
890 1.1.2.1 matt ias[0][3], ias[0][4], ias[0][5]));
891 1.1.2.1 matt EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
892 1.1.2.1 matt | (ias[0][2] << 16) | (ias[0][1] << 8)
893 1.1.2.1 matt | (ias[0][0]));
894 1.1.2.1 matt EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
895 1.1.2.1 matt | (ias[0][5]));
896 1.1.2.1 matt }
897 1.1.2.1 matt if (nma > 2) {
898 1.1.2.1 matt DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
899 1.1.2.1 matt ias[1][0], ias[1][1], ias[1][2],
900 1.1.2.1 matt ias[1][3], ias[1][4], ias[1][5]));
901 1.1.2.1 matt EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
902 1.1.2.1 matt | (ias[1][2] << 16) | (ias[1][1] << 8)
903 1.1.2.1 matt | (ias[1][0]));
904 1.1.2.1 matt EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
905 1.1.2.1 matt | (ias[1][5]));
906 1.1.2.1 matt }
907 1.1.2.1 matt if (nma > 3) {
908 1.1.2.1 matt DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
909 1.1.2.1 matt ias[2][0], ias[2][1], ias[2][2],
910 1.1.2.1 matt ias[2][3], ias[2][4], ias[2][5]));
911 1.1.2.1 matt EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
912 1.1.2.1 matt | (ias[2][2] << 16) | (ias[2][1] << 8)
913 1.1.2.1 matt | (ias[2][0]));
914 1.1.2.1 matt EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
915 1.1.2.1 matt | (ias[2][5]));
916 1.1.2.1 matt }
917 1.1.2.1 matt EMAC_WRITE(ETH_HSH, hashes[0]);
918 1.1.2.1 matt EMAC_WRITE(ETH_HSL, hashes[1]);
919 1.1.2.1 matt EMAC_WRITE(ETH_CFG, cfg);
920 1.1.2.1 matt EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
921 1.1.2.1 matt }
922