at91emac.c revision 1.17 1 1.17 ozaki /* $Id: at91emac.c,v 1.17 2016/06/10 13:27:10 ozaki-r Exp $ */
2 1.17 ozaki /* $NetBSD: at91emac.c,v 1.17 2016/06/10 13:27:10 ozaki-r Exp $ */
3 1.2 matt
4 1.2 matt /*
5 1.2 matt * Copyright (c) 2007 Embedtronics Oy
6 1.2 matt * All rights reserved.
7 1.2 matt *
8 1.2 matt * Based on arch/arm/ep93xx/epe.c
9 1.2 matt *
10 1.2 matt * Copyright (c) 2004 Jesse Off
11 1.2 matt * All rights reserved.
12 1.2 matt *
13 1.2 matt * Redistribution and use in source and binary forms, with or without
14 1.2 matt * modification, are permitted provided that the following conditions
15 1.2 matt * are met:
16 1.2 matt * 1. Redistributions of source code must retain the above copyright
17 1.2 matt * notice, this list of conditions and the following disclaimer.
18 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
19 1.2 matt * notice, this list of conditions and the following disclaimer in the
20 1.2 matt * documentation and/or other materials provided with the distribution.
21 1.2 matt *
22 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
33 1.2 matt */
34 1.2 matt
35 1.2 matt #include <sys/cdefs.h>
36 1.17 ozaki __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.17 2016/06/10 13:27:10 ozaki-r Exp $");
37 1.2 matt
38 1.2 matt #include <sys/types.h>
39 1.2 matt #include <sys/param.h>
40 1.2 matt #include <sys/systm.h>
41 1.2 matt #include <sys/ioctl.h>
42 1.2 matt #include <sys/kernel.h>
43 1.2 matt #include <sys/proc.h>
44 1.2 matt #include <sys/malloc.h>
45 1.2 matt #include <sys/time.h>
46 1.2 matt #include <sys/device.h>
47 1.2 matt #include <uvm/uvm_extern.h>
48 1.2 matt
49 1.10 dyoung #include <sys/bus.h>
50 1.2 matt #include <machine/intr.h>
51 1.2 matt
52 1.2 matt #include <arm/cpufunc.h>
53 1.2 matt
54 1.2 matt #include <net/if.h>
55 1.2 matt #include <net/if_dl.h>
56 1.2 matt #include <net/if_types.h>
57 1.2 matt #include <net/if_media.h>
58 1.2 matt #include <net/if_ether.h>
59 1.2 matt
60 1.2 matt #include <dev/mii/mii.h>
61 1.2 matt #include <dev/mii/miivar.h>
62 1.2 matt
63 1.2 matt #ifdef INET
64 1.2 matt #include <netinet/in.h>
65 1.2 matt #include <netinet/in_systm.h>
66 1.2 matt #include <netinet/in_var.h>
67 1.2 matt #include <netinet/ip.h>
68 1.2 matt #include <netinet/if_inarp.h>
69 1.2 matt #endif
70 1.2 matt
71 1.2 matt #include <net/bpf.h>
72 1.2 matt #include <net/bpfdesc.h>
73 1.2 matt
74 1.2 matt #ifdef IPKDB_AT91 // @@@
75 1.2 matt #include <ipkdb/ipkdb.h>
76 1.2 matt #endif
77 1.2 matt
78 1.2 matt #include <arm/at91/at91var.h>
79 1.2 matt #include <arm/at91/at91emacreg.h>
80 1.2 matt #include <arm/at91/at91emacvar.h>
81 1.2 matt
82 1.2 matt #define DEFAULT_MDCDIV 32
83 1.2 matt
84 1.2 matt #ifndef EMAC_FAST
85 1.2 matt #define EMAC_FAST
86 1.2 matt #endif
87 1.2 matt
88 1.2 matt #ifndef EMAC_FAST
89 1.2 matt #define EMAC_READ(x) \
90 1.2 matt bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
91 1.2 matt #define EMAC_WRITE(x, y) \
92 1.2 matt bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
93 1.2 matt #else
94 1.2 matt #define EMAC_READ(x) ETHREG(x)
95 1.2 matt #define EMAC_WRITE(x, y) ETHREG(x) = (y)
96 1.2 matt #endif /* ! EMAC_FAST */
97 1.2 matt
98 1.2 matt static int emac_match(device_t, cfdata_t, void *);
99 1.2 matt static void emac_attach(device_t, device_t, void *);
100 1.2 matt static void emac_init(struct emac_softc *);
101 1.2 matt static int emac_intr(void* arg);
102 1.2 matt static int emac_gctx(struct emac_softc *);
103 1.2 matt static int emac_mediachange(struct ifnet *);
104 1.2 matt static void emac_mediastatus(struct ifnet *, struct ifmediareq *);
105 1.2 matt int emac_mii_readreg (device_t, int, int);
106 1.2 matt void emac_mii_writereg (device_t, int, int, int);
107 1.11 matt void emac_statchg (struct ifnet *);
108 1.2 matt void emac_tick (void *);
109 1.2 matt static int emac_ifioctl (struct ifnet *, u_long, void *);
110 1.2 matt static void emac_ifstart (struct ifnet *);
111 1.2 matt static void emac_ifwatchdog (struct ifnet *);
112 1.2 matt static int emac_ifinit (struct ifnet *);
113 1.2 matt static void emac_ifstop (struct ifnet *, int);
114 1.2 matt static void emac_setaddr (struct ifnet *);
115 1.2 matt
116 1.11 matt CFATTACH_DECL_NEW(at91emac, sizeof(struct emac_softc),
117 1.2 matt emac_match, emac_attach, NULL, NULL);
118 1.2 matt
119 1.2 matt #ifdef EMAC_DEBUG
120 1.2 matt int emac_debug = EMAC_DEBUG;
121 1.2 matt #define DPRINTFN(n,fmt) if (emac_debug >= (n)) printf fmt
122 1.2 matt #else
123 1.2 matt #define DPRINTFN(n,fmt)
124 1.2 matt #endif
125 1.2 matt
126 1.2 matt static int
127 1.2 matt emac_match(device_t parent, cfdata_t match, void *aux)
128 1.2 matt {
129 1.2 matt if (strcmp(match->cf_name, "at91emac") == 0)
130 1.2 matt return 2;
131 1.2 matt return 0;
132 1.2 matt }
133 1.2 matt
134 1.2 matt static void
135 1.2 matt emac_attach(device_t parent, device_t self, void *aux)
136 1.2 matt {
137 1.2 matt struct emac_softc *sc = device_private(self);
138 1.2 matt struct at91bus_attach_args *sa = aux;
139 1.2 matt prop_data_t enaddr;
140 1.2 matt uint32_t u;
141 1.2 matt
142 1.2 matt printf("\n");
143 1.2 matt sc->sc_dev = self;
144 1.2 matt sc->sc_iot = sa->sa_iot;
145 1.2 matt sc->sc_pid = sa->sa_pid;
146 1.2 matt sc->sc_dmat = sa->sa_dmat;
147 1.2 matt
148 1.2 matt if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
149 1.2 matt panic("%s: Cannot map registers", device_xname(self));
150 1.2 matt
151 1.2 matt /* enable peripheral clock */
152 1.2 matt at91_peripheral_clock(sc->sc_pid, 1);
153 1.2 matt
154 1.2 matt /* configure emac: */
155 1.2 matt EMAC_WRITE(ETH_CTL, 0); // disable everything
156 1.2 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
157 1.2 matt EMAC_WRITE(ETH_RBQP, 0); // clear receive
158 1.2 matt EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
159 1.2 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
160 1.2 matt //(void)EMAC_READ(ETH_ISR);
161 1.2 matt u = EMAC_READ(ETH_TSR);
162 1.2 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
163 1.2 matt | ETH_TSR_IDLE | ETH_TSR_RLE
164 1.2 matt | ETH_TSR_COL|ETH_TSR_OVR)));
165 1.2 matt u = EMAC_READ(ETH_RSR);
166 1.2 matt EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
167 1.2 matt
168 1.2 matt /* Fetch the Ethernet address from property if set. */
169 1.8 martin enaddr = prop_dictionary_get(device_properties(self), "mac-address");
170 1.2 matt
171 1.2 matt if (enaddr != NULL) {
172 1.2 matt KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
173 1.2 matt KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
174 1.2 matt memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
175 1.2 matt ETHER_ADDR_LEN);
176 1.2 matt } else {
177 1.2 matt static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
178 1.2 matt 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
179 1.2 matt };
180 1.2 matt memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
181 1.2 matt }
182 1.2 matt
183 1.2 matt at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr, sc);
184 1.2 matt emac_init(sc);
185 1.2 matt }
186 1.2 matt
187 1.2 matt static int
188 1.2 matt emac_gctx(struct emac_softc *sc)
189 1.2 matt {
190 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
191 1.13 skrll uint32_t tsr;
192 1.2 matt
193 1.2 matt tsr = EMAC_READ(ETH_TSR);
194 1.2 matt if (!(tsr & ETH_TSR_BNQ)) {
195 1.2 matt // no space left
196 1.2 matt return 0;
197 1.2 matt }
198 1.2 matt
199 1.2 matt // free sent frames
200 1.2 matt while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
201 1.2 matt int i = sc->txqi % TX_QLEN;
202 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
203 1.2 matt sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
204 1.2 matt bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
205 1.2 matt m_freem(sc->txq[i].m);
206 1.2 matt DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", __FUNCTION__, i, sc->txq[i].m, sc->txqc));
207 1.2 matt sc->txq[i].m = NULL;
208 1.2 matt sc->txqi = (i + 1) % TX_QLEN;
209 1.2 matt sc->txqc--;
210 1.2 matt }
211 1.2 matt
212 1.2 matt // mark we're free
213 1.2 matt if (ifp->if_flags & IFF_OACTIVE) {
214 1.2 matt ifp->if_flags &= ~IFF_OACTIVE;
215 1.2 matt /* Disable transmit-buffer-free interrupt */
216 1.2 matt /*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
217 1.2 matt }
218 1.2 matt
219 1.2 matt return 1;
220 1.2 matt }
221 1.2 matt
222 1.2 matt static int
223 1.2 matt emac_intr(void *arg)
224 1.2 matt {
225 1.2 matt struct emac_softc *sc = (struct emac_softc *)arg;
226 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
227 1.15 skrll uint32_t imr, isr, ctl;
228 1.2 matt int bi;
229 1.2 matt
230 1.2 matt imr = ~EMAC_READ(ETH_IMR);
231 1.2 matt if (!(imr & (ETH_ISR_RCOM|ETH_ISR_TBRE|ETH_ISR_TIDLE|ETH_ISR_RBNA|ETH_ISR_ROVR))) {
232 1.2 matt // interrupt not enabled, can't be us
233 1.2 matt return 0;
234 1.2 matt }
235 1.2 matt
236 1.2 matt isr = EMAC_READ(ETH_ISR) & imr;
237 1.15 skrll #ifdef EMAC_DEBUG
238 1.15 skrll uint32_t rsr =
239 1.15 skrll #endif
240 1.15 skrll EMAC_READ(ETH_RSR); // get receive status register
241 1.2 matt
242 1.2 matt DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
243 1.2 matt
244 1.2 matt if (isr & ETH_ISR_RBNA) { // out of receive buffers
245 1.2 matt EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
246 1.2 matt ctl = EMAC_READ(ETH_CTL); // get current control register value
247 1.2 matt EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
248 1.2 matt EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
249 1.2 matt EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
250 1.2 matt ifp->if_ierrors++;
251 1.2 matt ifp->if_ipackets++;
252 1.2 matt DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
253 1.2 matt }
254 1.2 matt if (isr & ETH_ISR_ROVR) {
255 1.2 matt EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
256 1.2 matt ifp->if_ierrors++;
257 1.2 matt ifp->if_ipackets++;
258 1.2 matt DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
259 1.2 matt }
260 1.2 matt
261 1.2 matt if (isr & ETH_ISR_RCOM) { // packet has been received!
262 1.2 matt uint32_t nfo;
263 1.2 matt // @@@ if memory is NOT coherent, then we're in trouble @@@@
264 1.2 matt // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
265 1.2 matt // printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
266 1.2 matt DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
267 1.2 matt while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
268 1.2 matt int fl;
269 1.2 matt struct mbuf *m;
270 1.2 matt
271 1.2 matt nfo = sc->RDSC[bi].Info;
272 1.2 matt fl = (nfo & ETH_RDSC_I_LEN) - 4;
273 1.2 matt DPRINTFN(2,("## nfo=0x%08X\n", nfo));
274 1.2 matt
275 1.2 matt MGETHDR(m, M_DONTWAIT, MT_DATA);
276 1.2 matt if (m != NULL) MCLGET(m, M_DONTWAIT);
277 1.2 matt if (m != NULL && (m->m_flags & M_EXT)) {
278 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
279 1.2 matt MCLBYTES, BUS_DMASYNC_POSTREAD);
280 1.2 matt bus_dmamap_unload(sc->sc_dmat,
281 1.2 matt sc->rxq[bi].m_dmamap);
282 1.17 ozaki m_set_rcvif(sc->rxq[bi].m, ifp);
283 1.2 matt sc->rxq[bi].m->m_pkthdr.len =
284 1.2 matt sc->rxq[bi].m->m_len = fl;
285 1.9 joerg bpf_mtap(ifp, sc->rxq[bi].m);
286 1.2 matt DPRINTFN(2,("received %u bytes packet\n", fl));
287 1.16 ozaki if_percpuq_enqueue(ifp->if_percpuq, sc->rxq[bi].m);
288 1.2 matt if (mtod(m, intptr_t) & 3) {
289 1.2 matt m_adj(m, mtod(m, intptr_t) & 3);
290 1.2 matt }
291 1.2 matt sc->rxq[bi].m = m;
292 1.2 matt bus_dmamap_load(sc->sc_dmat,
293 1.2 matt sc->rxq[bi].m_dmamap,
294 1.2 matt m->m_ext.ext_buf, MCLBYTES,
295 1.2 matt NULL, BUS_DMA_NOWAIT);
296 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
297 1.2 matt MCLBYTES, BUS_DMASYNC_PREREAD);
298 1.2 matt sc->RDSC[bi].Info = 0;
299 1.2 matt sc->RDSC[bi].Addr =
300 1.2 matt sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
301 1.2 matt | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
302 1.2 matt } else {
303 1.2 matt /* Drop packets until we can get replacement
304 1.2 matt * empty mbufs for the RXDQ.
305 1.2 matt */
306 1.2 matt if (m != NULL) {
307 1.2 matt m_freem(m);
308 1.2 matt }
309 1.2 matt ifp->if_ierrors++;
310 1.2 matt }
311 1.2 matt sc->rxqi++;
312 1.2 matt }
313 1.2 matt // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
314 1.2 matt }
315 1.2 matt
316 1.2 matt if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
317 1.2 matt emac_ifstart(ifp);
318 1.2 matt }
319 1.2 matt #if 0 // reloop
320 1.2 matt irq = EMAC_READ(IntStsC);
321 1.2 matt if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
322 1.2 matt goto begin;
323 1.2 matt #endif
324 1.2 matt
325 1.2 matt return (1);
326 1.2 matt }
327 1.2 matt
328 1.2 matt
329 1.2 matt static void
330 1.2 matt emac_init(struct emac_softc *sc)
331 1.2 matt {
332 1.2 matt bus_dma_segment_t segs;
333 1.2 matt void *addr;
334 1.2 matt int rsegs, err, i;
335 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
336 1.2 matt uint32_t u;
337 1.2 matt #if 0
338 1.2 matt int mdcdiv = DEFAULT_MDCDIV;
339 1.2 matt #endif
340 1.2 matt
341 1.2 matt callout_init(&sc->emac_tick_ch, 0);
342 1.2 matt
343 1.2 matt // ok...
344 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
345 1.2 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
346 1.2 matt EMAC_WRITE(ETH_RBQP, 0); // clear receive
347 1.2 matt EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
348 1.2 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
349 1.2 matt // (void)EMAC_READ(ETH_ISR);
350 1.2 matt u = EMAC_READ(ETH_TSR);
351 1.2 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
352 1.2 matt | ETH_TSR_IDLE | ETH_TSR_RLE
353 1.2 matt | ETH_TSR_COL|ETH_TSR_OVR)));
354 1.2 matt u = EMAC_READ(ETH_RSR);
355 1.2 matt EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
356 1.2 matt
357 1.2 matt /* configure EMAC */
358 1.2 matt EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
359 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
360 1.2 matt #if 0
361 1.12 chs if (device_cfdata(sc->sc_dev)->cf_flags)
362 1.12 chs mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
363 1.2 matt #endif
364 1.2 matt /* set ethernet address */
365 1.2 matt EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
366 1.2 matt | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
367 1.2 matt | (sc->sc_enaddr[0]));
368 1.2 matt EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
369 1.2 matt | (sc->sc_enaddr[4]));
370 1.2 matt EMAC_WRITE(ETH_SA2L, 0);
371 1.2 matt EMAC_WRITE(ETH_SA2H, 0);
372 1.2 matt EMAC_WRITE(ETH_SA3L, 0);
373 1.2 matt EMAC_WRITE(ETH_SA3H, 0);
374 1.2 matt EMAC_WRITE(ETH_SA4L, 0);
375 1.2 matt EMAC_WRITE(ETH_SA4H, 0);
376 1.2 matt
377 1.2 matt /* Allocate a page of memory for receive queue descriptors */
378 1.2 matt sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
379 1.2 matt sc->rbqlen *= PAGE_SIZE;
380 1.2 matt DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
381 1.2 matt
382 1.2 matt err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
383 1.2 matt MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
384 1.2 matt &segs, 1, &rsegs, BUS_DMA_WAITOK);
385 1.2 matt if (err == 0) {
386 1.2 matt DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
387 1.2 matt err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
388 1.2 matt &sc->rbqpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
389 1.2 matt }
390 1.2 matt if (err == 0) {
391 1.2 matt DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
392 1.2 matt err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
393 1.2 matt sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
394 1.2 matt &sc->rbqpage_dmamap);
395 1.2 matt }
396 1.2 matt if (err == 0) {
397 1.2 matt DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
398 1.2 matt err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
399 1.2 matt sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
400 1.2 matt }
401 1.2 matt if (err != 0) {
402 1.2 matt panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
403 1.2 matt }
404 1.2 matt sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
405 1.2 matt
406 1.5 cegger memset(sc->rbqpage, 0, sc->rbqlen);
407 1.2 matt
408 1.2 matt /* Set up pointers to start of each queue in kernel addr space.
409 1.2 matt * Each descriptor queue or status queue entry uses 2 words
410 1.2 matt */
411 1.2 matt sc->RDSC = (void*)sc->rbqpage;
412 1.2 matt
413 1.2 matt /* Populate the RXQ with mbufs */
414 1.2 matt sc->rxqi = 0;
415 1.2 matt for(i = 0; i < RX_QLEN; i++) {
416 1.2 matt struct mbuf *m;
417 1.2 matt
418 1.2 matt err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
419 1.2 matt BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
420 1.2 matt if (err) {
421 1.2 matt panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
422 1.2 matt }
423 1.2 matt MGETHDR(m, M_WAIT, MT_DATA);
424 1.2 matt MCLGET(m, M_WAIT);
425 1.2 matt sc->rxq[i].m = m;
426 1.2 matt if (mtod(m, intptr_t) & 3) {
427 1.2 matt m_adj(m, mtod(m, intptr_t) & 3);
428 1.2 matt }
429 1.2 matt err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
430 1.2 matt m->m_ext.ext_buf, MCLBYTES, NULL,
431 1.2 matt BUS_DMA_WAITOK);
432 1.2 matt if (err) {
433 1.2 matt panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
434 1.2 matt }
435 1.2 matt sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
436 1.2 matt | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
437 1.2 matt sc->RDSC[i].Info = 0;
438 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
439 1.2 matt MCLBYTES, BUS_DMASYNC_PREREAD);
440 1.2 matt }
441 1.2 matt
442 1.2 matt /* prepare transmit queue */
443 1.2 matt for (i = 0; i < TX_QLEN; i++) {
444 1.2 matt err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
445 1.2 matt (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
446 1.2 matt &sc->txq[i].m_dmamap);
447 1.2 matt if (err)
448 1.2 matt panic("ARGH #1");
449 1.2 matt sc->txq[i].m = NULL;
450 1.2 matt }
451 1.2 matt
452 1.2 matt /* Program each queue's start addr, cur addr, and len registers
453 1.2 matt * with the physical addresses.
454 1.2 matt */
455 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
456 1.2 matt BUS_DMASYNC_PREREAD);
457 1.2 matt addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
458 1.13 skrll EMAC_WRITE(ETH_RBQP, (uint32_t)addr);
459 1.2 matt
460 1.2 matt /* Divide HCLK by 32 for MDC clock */
461 1.2 matt sc->sc_mii.mii_ifp = ifp;
462 1.2 matt sc->sc_mii.mii_readreg = emac_mii_readreg;
463 1.2 matt sc->sc_mii.mii_writereg = emac_mii_writereg;
464 1.2 matt sc->sc_mii.mii_statchg = emac_statchg;
465 1.2 matt ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, emac_mediachange,
466 1.2 matt emac_mediastatus);
467 1.2 matt mii_attach((device_t )sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
468 1.2 matt MII_OFFSET_ANY, 0);
469 1.2 matt ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
470 1.2 matt
471 1.2 matt // enable / disable interrupts
472 1.2 matt
473 1.2 matt #if 0
474 1.2 matt // enable / disable interrupts
475 1.2 matt EMAC_WRITE(ETH_IDR, -1);
476 1.2 matt EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
477 1.2 matt | ETH_ISR_RBNA | ETH_ISR_ROVR);
478 1.2 matt // (void)EMAC_READ(ETH_ISR); // why
479 1.2 matt
480 1.2 matt // enable transmitter / receiver
481 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
482 1.2 matt | ETH_CTL_CSR | ETH_CTL_MPE);
483 1.2 matt #endif
484 1.2 matt /*
485 1.2 matt * We can support 802.1Q VLAN-sized frames.
486 1.2 matt */
487 1.2 matt sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
488 1.2 matt
489 1.2 matt strcpy(ifp->if_xname, device_xname(sc->sc_dev));
490 1.2 matt ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
491 1.2 matt ifp->if_ioctl = emac_ifioctl;
492 1.2 matt ifp->if_start = emac_ifstart;
493 1.2 matt ifp->if_watchdog = emac_ifwatchdog;
494 1.2 matt ifp->if_init = emac_ifinit;
495 1.2 matt ifp->if_stop = emac_ifstop;
496 1.2 matt ifp->if_timer = 0;
497 1.2 matt ifp->if_softc = sc;
498 1.2 matt IFQ_SET_READY(&ifp->if_snd);
499 1.2 matt if_attach(ifp);
500 1.2 matt ether_ifattach(ifp, (sc)->sc_enaddr);
501 1.2 matt }
502 1.2 matt
503 1.2 matt static int
504 1.3 dsl emac_mediachange(struct ifnet *ifp)
505 1.2 matt {
506 1.2 matt if (ifp->if_flags & IFF_UP)
507 1.2 matt emac_ifinit(ifp);
508 1.2 matt return (0);
509 1.2 matt }
510 1.2 matt
511 1.2 matt static void
512 1.3 dsl emac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
513 1.2 matt {
514 1.2 matt struct emac_softc *sc = ifp->if_softc;
515 1.2 matt
516 1.2 matt mii_pollstat(&sc->sc_mii);
517 1.2 matt ifmr->ifm_active = sc->sc_mii.mii_media_active;
518 1.2 matt ifmr->ifm_status = sc->sc_mii.mii_media_status;
519 1.2 matt }
520 1.2 matt
521 1.2 matt
522 1.2 matt int
523 1.4 dsl emac_mii_readreg(device_t self, int phy, int reg)
524 1.2 matt {
525 1.15 skrll #ifndef EMAC_FAST
526 1.15 skrll struct emac_softc *sc = device_private(self);
527 1.15 skrll #endif
528 1.11 matt
529 1.2 matt EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
530 1.2 matt | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
531 1.2 matt | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
532 1.2 matt | ETH_MAN_CODE_IEEE802_3));
533 1.2 matt while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
534 1.2 matt return (EMAC_READ(ETH_MAN) & ETH_MAN_DATA);
535 1.2 matt }
536 1.2 matt
537 1.2 matt void
538 1.4 dsl emac_mii_writereg(device_t self, int phy, int reg, int val)
539 1.2 matt {
540 1.15 skrll #ifndef EMAC_FAST
541 1.15 skrll struct emac_softc *sc = device_private(self);
542 1.15 skrll #endif
543 1.11 matt
544 1.2 matt EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
545 1.2 matt | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
546 1.2 matt | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
547 1.2 matt | ETH_MAN_CODE_IEEE802_3
548 1.2 matt | (val & ETH_MAN_DATA)));
549 1.2 matt while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
550 1.2 matt }
551 1.2 matt
552 1.2 matt
553 1.2 matt void
554 1.11 matt emac_statchg(struct ifnet *ifp)
555 1.2 matt {
556 1.11 matt struct emac_softc *sc = ifp->if_softc;
557 1.13 skrll uint32_t reg;
558 1.2 matt
559 1.2 matt /*
560 1.2 matt * We must keep the MAC and the PHY in sync as
561 1.2 matt * to the status of full-duplex!
562 1.2 matt */
563 1.2 matt reg = EMAC_READ(ETH_CFG);
564 1.2 matt if (sc->sc_mii.mii_media_active & IFM_FDX)
565 1.2 matt reg |= ETH_CFG_FD;
566 1.2 matt else
567 1.2 matt reg &= ~ETH_CFG_FD;
568 1.2 matt EMAC_WRITE(ETH_CFG, reg);
569 1.2 matt }
570 1.2 matt
571 1.2 matt void
572 1.3 dsl emac_tick(void *arg)
573 1.2 matt {
574 1.2 matt struct emac_softc* sc = (struct emac_softc *)arg;
575 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
576 1.2 matt int s;
577 1.13 skrll uint32_t misses;
578 1.2 matt
579 1.2 matt ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL);
580 1.2 matt /* These misses are ok, they will happen if the RAM/CPU can't keep up */
581 1.2 matt misses = EMAC_READ(ETH_DRFC);
582 1.2 matt if (misses > 0)
583 1.2 matt printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
584 1.2 matt
585 1.2 matt s = splnet();
586 1.2 matt if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
587 1.2 matt emac_ifstart(ifp);
588 1.2 matt }
589 1.2 matt splx(s);
590 1.2 matt
591 1.2 matt mii_tick(&sc->sc_mii);
592 1.2 matt callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
593 1.2 matt }
594 1.2 matt
595 1.2 matt
596 1.2 matt static int
597 1.2 matt emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
598 1.2 matt {
599 1.2 matt struct emac_softc *sc = ifp->if_softc;
600 1.2 matt struct ifreq *ifr = (struct ifreq *)data;
601 1.2 matt int s, error;
602 1.2 matt
603 1.2 matt s = splnet();
604 1.2 matt switch(cmd) {
605 1.2 matt case SIOCSIFMEDIA:
606 1.2 matt case SIOCGIFMEDIA:
607 1.2 matt error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
608 1.2 matt break;
609 1.2 matt default:
610 1.2 matt error = ether_ioctl(ifp, cmd, data);
611 1.2 matt if (error == ENETRESET) {
612 1.2 matt if (ifp->if_flags & IFF_RUNNING)
613 1.2 matt emac_setaddr(ifp);
614 1.2 matt error = 0;
615 1.2 matt }
616 1.2 matt }
617 1.2 matt splx(s);
618 1.2 matt return error;
619 1.2 matt }
620 1.2 matt
621 1.2 matt static void
622 1.3 dsl emac_ifstart(struct ifnet *ifp)
623 1.2 matt {
624 1.2 matt struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
625 1.2 matt struct mbuf *m;
626 1.2 matt bus_dma_segment_t *segs;
627 1.2 matt int s, bi, err, nsegs;
628 1.2 matt
629 1.2 matt s = splnet();
630 1.2 matt start:
631 1.2 matt if (emac_gctx(sc) == 0) {
632 1.2 matt /* Enable transmit-buffer-free interrupt */
633 1.2 matt EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
634 1.2 matt ifp->if_flags |= IFF_OACTIVE;
635 1.2 matt ifp->if_timer = 10;
636 1.2 matt splx(s);
637 1.2 matt return;
638 1.2 matt }
639 1.2 matt
640 1.2 matt ifp->if_timer = 0;
641 1.2 matt
642 1.2 matt IFQ_POLL(&ifp->if_snd, m);
643 1.2 matt if (m == NULL) {
644 1.2 matt splx(s);
645 1.2 matt return;
646 1.2 matt }
647 1.2 matt //more:
648 1.2 matt bi = (sc->txqi + sc->txqc) % TX_QLEN;
649 1.2 matt if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
650 1.2 matt BUS_DMA_NOWAIT)) ||
651 1.2 matt sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
652 1.2 matt sc->txq[bi].m_dmamap->dm_nsegs > 1) {
653 1.2 matt /* Copy entire mbuf chain to new single */
654 1.2 matt struct mbuf *mn;
655 1.2 matt
656 1.2 matt if (err == 0)
657 1.2 matt bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
658 1.2 matt
659 1.2 matt MGETHDR(mn, M_DONTWAIT, MT_DATA);
660 1.2 matt if (mn == NULL) goto stop;
661 1.2 matt if (m->m_pkthdr.len > MHLEN) {
662 1.2 matt MCLGET(mn, M_DONTWAIT);
663 1.2 matt if ((mn->m_flags & M_EXT) == 0) {
664 1.2 matt m_freem(mn);
665 1.2 matt goto stop;
666 1.2 matt }
667 1.2 matt }
668 1.2 matt m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
669 1.2 matt mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
670 1.2 matt IFQ_DEQUEUE(&ifp->if_snd, m);
671 1.2 matt m_freem(m);
672 1.2 matt m = mn;
673 1.2 matt bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
674 1.2 matt BUS_DMA_NOWAIT);
675 1.2 matt } else {
676 1.2 matt IFQ_DEQUEUE(&ifp->if_snd, m);
677 1.2 matt }
678 1.2 matt
679 1.9 joerg bpf_mtap(ifp, m);
680 1.2 matt
681 1.2 matt nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
682 1.2 matt segs = sc->txq[bi].m_dmamap->dm_segs;
683 1.2 matt if (nsegs > 1) {
684 1.2 matt panic("#### ARGH #2");
685 1.2 matt }
686 1.2 matt
687 1.2 matt sc->txq[bi].m = m;
688 1.2 matt sc->txqc++;
689 1.2 matt
690 1.2 matt DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
691 1.2 matt (unsigned)m->m_pkthdr.len));
692 1.2 matt #ifdef DIAGNOSTIC
693 1.2 matt if (sc->txqc > TX_QLEN) {
694 1.2 matt panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
695 1.2 matt }
696 1.2 matt #endif
697 1.2 matt
698 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
699 1.2 matt sc->txq[bi].m_dmamap->dm_mapsize,
700 1.2 matt BUS_DMASYNC_PREWRITE);
701 1.2 matt
702 1.2 matt EMAC_WRITE(ETH_TAR, segs->ds_addr);
703 1.2 matt EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
704 1.2 matt if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
705 1.2 matt goto start;
706 1.2 matt stop:
707 1.2 matt
708 1.2 matt splx(s);
709 1.2 matt return;
710 1.2 matt }
711 1.2 matt
712 1.2 matt static void
713 1.3 dsl emac_ifwatchdog(struct ifnet *ifp)
714 1.2 matt {
715 1.2 matt struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
716 1.2 matt
717 1.2 matt if ((ifp->if_flags & IFF_RUNNING) == 0)
718 1.2 matt return;
719 1.2 matt printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
720 1.2 matt device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
721 1.2 matt }
722 1.2 matt
723 1.2 matt static int
724 1.3 dsl emac_ifinit(struct ifnet *ifp)
725 1.2 matt {
726 1.2 matt struct emac_softc *sc = ifp->if_softc;
727 1.2 matt int s = splnet();
728 1.2 matt
729 1.2 matt callout_stop(&sc->emac_tick_ch);
730 1.2 matt
731 1.2 matt // enable interrupts
732 1.2 matt EMAC_WRITE(ETH_IDR, -1);
733 1.2 matt EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
734 1.2 matt | ETH_ISR_RBNA | ETH_ISR_ROVR);
735 1.2 matt
736 1.2 matt // enable transmitter / receiver
737 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
738 1.2 matt | ETH_CTL_CSR | ETH_CTL_MPE);
739 1.2 matt
740 1.2 matt mii_mediachg(&sc->sc_mii);
741 1.2 matt callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
742 1.2 matt ifp->if_flags |= IFF_RUNNING;
743 1.2 matt splx(s);
744 1.2 matt return 0;
745 1.2 matt }
746 1.2 matt
747 1.2 matt static void
748 1.3 dsl emac_ifstop(struct ifnet *ifp, int disable)
749 1.2 matt {
750 1.13 skrll // uint32_t u;
751 1.2 matt struct emac_softc *sc = ifp->if_softc;
752 1.2 matt
753 1.2 matt #if 0
754 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
755 1.2 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
756 1.2 matt // EMAC_WRITE(ETH_RBQP, 0); // clear receive
757 1.2 matt EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
758 1.2 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
759 1.2 matt // (void)EMAC_READ(ETH_ISR);
760 1.2 matt u = EMAC_READ(ETH_TSR);
761 1.2 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
762 1.2 matt | ETH_TSR_IDLE | ETH_TSR_RLE
763 1.2 matt | ETH_TSR_COL|ETH_TSR_OVR)));
764 1.2 matt u = EMAC_READ(ETH_RSR);
765 1.2 matt EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
766 1.2 matt #endif
767 1.2 matt callout_stop(&sc->emac_tick_ch);
768 1.2 matt
769 1.2 matt /* Down the MII. */
770 1.2 matt mii_down(&sc->sc_mii);
771 1.2 matt
772 1.2 matt ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
773 1.2 matt ifp->if_timer = 0;
774 1.2 matt sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
775 1.2 matt }
776 1.2 matt
777 1.2 matt static void
778 1.3 dsl emac_setaddr(struct ifnet *ifp)
779 1.2 matt {
780 1.2 matt struct emac_softc *sc = ifp->if_softc;
781 1.2 matt struct ethercom *ac = &sc->sc_ec;
782 1.2 matt struct ether_multi *enm;
783 1.2 matt struct ether_multistep step;
784 1.13 skrll uint8_t ias[3][ETHER_ADDR_LEN];
785 1.13 skrll uint32_t h, nma = 0, hashes[2] = { 0, 0 };
786 1.13 skrll uint32_t ctl = EMAC_READ(ETH_CTL);
787 1.13 skrll uint32_t cfg = EMAC_READ(ETH_CFG);
788 1.2 matt
789 1.2 matt /* disable receiver temporarily */
790 1.2 matt EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
791 1.2 matt
792 1.2 matt cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
793 1.2 matt
794 1.2 matt if (ifp->if_flags & IFF_PROMISC) {
795 1.2 matt cfg |= ETH_CFG_CAF;
796 1.2 matt } else {
797 1.2 matt cfg &= ~ETH_CFG_CAF;
798 1.2 matt }
799 1.2 matt
800 1.2 matt // ETH_CFG_BIG?
801 1.2 matt
802 1.2 matt ifp->if_flags &= ~IFF_ALLMULTI;
803 1.2 matt
804 1.2 matt ETHER_FIRST_MULTI(step, ac, enm);
805 1.2 matt while (enm != NULL) {
806 1.2 matt if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
807 1.2 matt /*
808 1.2 matt * We must listen to a range of multicast addresses.
809 1.2 matt * For now, just accept all multicasts, rather than
810 1.2 matt * trying to set only those filter bits needed to match
811 1.2 matt * the range. (At this time, the only use of address
812 1.2 matt * ranges is for IP multicast routing, for which the
813 1.2 matt * range is big enough to require all bits set.)
814 1.2 matt */
815 1.2 matt cfg |= ETH_CFG_CAF;
816 1.2 matt hashes[0] = 0xffffffffUL;
817 1.2 matt hashes[1] = 0xffffffffUL;
818 1.2 matt ifp->if_flags |= IFF_ALLMULTI;
819 1.2 matt nma = 0;
820 1.2 matt break;
821 1.2 matt }
822 1.2 matt
823 1.2 matt if (nma < 3) {
824 1.2 matt /* We can program 3 perfect address filters for mcast */
825 1.2 matt memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
826 1.2 matt } else {
827 1.2 matt /*
828 1.2 matt * XXX: Datasheet is not very clear here, I'm not sure
829 1.2 matt * if I'm doing this right. --joff
830 1.2 matt */
831 1.2 matt h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
832 1.2 matt
833 1.2 matt /* Just want the 6 most-significant bits. */
834 1.2 matt h = h >> 26;
835 1.2 matt
836 1.2 matt hashes[ h / 32 ] |= (1 << (h % 32));
837 1.2 matt cfg |= ETH_CFG_MTI;
838 1.2 matt }
839 1.2 matt ETHER_NEXT_MULTI(step, enm);
840 1.2 matt nma++;
841 1.2 matt }
842 1.2 matt
843 1.2 matt // program...
844 1.2 matt DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
845 1.2 matt sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
846 1.2 matt sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
847 1.2 matt EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
848 1.2 matt | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
849 1.2 matt | (sc->sc_enaddr[0]));
850 1.2 matt EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
851 1.2 matt | (sc->sc_enaddr[4]));
852 1.2 matt if (nma > 1) {
853 1.2 matt DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
854 1.2 matt ias[0][0], ias[0][1], ias[0][2],
855 1.2 matt ias[0][3], ias[0][4], ias[0][5]));
856 1.2 matt EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
857 1.2 matt | (ias[0][2] << 16) | (ias[0][1] << 8)
858 1.2 matt | (ias[0][0]));
859 1.2 matt EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
860 1.2 matt | (ias[0][5]));
861 1.2 matt }
862 1.2 matt if (nma > 2) {
863 1.2 matt DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
864 1.2 matt ias[1][0], ias[1][1], ias[1][2],
865 1.2 matt ias[1][3], ias[1][4], ias[1][5]));
866 1.2 matt EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
867 1.2 matt | (ias[1][2] << 16) | (ias[1][1] << 8)
868 1.2 matt | (ias[1][0]));
869 1.2 matt EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
870 1.2 matt | (ias[1][5]));
871 1.2 matt }
872 1.2 matt if (nma > 3) {
873 1.2 matt DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
874 1.2 matt ias[2][0], ias[2][1], ias[2][2],
875 1.2 matt ias[2][3], ias[2][4], ias[2][5]));
876 1.2 matt EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
877 1.2 matt | (ias[2][2] << 16) | (ias[2][1] << 8)
878 1.2 matt | (ias[2][0]));
879 1.2 matt EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
880 1.2 matt | (ias[2][5]));
881 1.2 matt }
882 1.2 matt EMAC_WRITE(ETH_HSH, hashes[0]);
883 1.2 matt EMAC_WRITE(ETH_HSL, hashes[1]);
884 1.2 matt EMAC_WRITE(ETH_CFG, cfg);
885 1.2 matt EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
886 1.2 matt }
887