at91emac.c revision 1.29 1 1.29 msaitoh /* $NetBSD: at91emac.c,v 1.29 2019/05/28 07:41:46 msaitoh Exp $ */
2 1.2 matt
3 1.2 matt /*
4 1.2 matt * Copyright (c) 2007 Embedtronics Oy
5 1.2 matt * All rights reserved.
6 1.2 matt *
7 1.2 matt * Based on arch/arm/ep93xx/epe.c
8 1.2 matt *
9 1.2 matt * Copyright (c) 2004 Jesse Off
10 1.2 matt * All rights reserved.
11 1.2 matt *
12 1.2 matt * Redistribution and use in source and binary forms, with or without
13 1.2 matt * modification, are permitted provided that the following conditions
14 1.2 matt * are met:
15 1.2 matt * 1. Redistributions of source code must retain the above copyright
16 1.2 matt * notice, this list of conditions and the following disclaimer.
17 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
18 1.2 matt * notice, this list of conditions and the following disclaimer in the
19 1.2 matt * documentation and/or other materials provided with the distribution.
20 1.2 matt *
21 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
32 1.2 matt */
33 1.2 matt
34 1.2 matt #include <sys/cdefs.h>
35 1.29 msaitoh __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.29 2019/05/28 07:41:46 msaitoh Exp $");
36 1.2 matt
37 1.2 matt #include <sys/types.h>
38 1.2 matt #include <sys/param.h>
39 1.2 matt #include <sys/systm.h>
40 1.2 matt #include <sys/ioctl.h>
41 1.2 matt #include <sys/kernel.h>
42 1.2 matt #include <sys/proc.h>
43 1.2 matt #include <sys/malloc.h>
44 1.2 matt #include <sys/time.h>
45 1.2 matt #include <sys/device.h>
46 1.2 matt #include <uvm/uvm_extern.h>
47 1.2 matt
48 1.10 dyoung #include <sys/bus.h>
49 1.2 matt #include <machine/intr.h>
50 1.2 matt
51 1.2 matt #include <arm/cpufunc.h>
52 1.2 matt
53 1.2 matt #include <net/if.h>
54 1.2 matt #include <net/if_dl.h>
55 1.2 matt #include <net/if_types.h>
56 1.2 matt #include <net/if_media.h>
57 1.2 matt #include <net/if_ether.h>
58 1.20 msaitoh #include <net/bpf.h>
59 1.2 matt
60 1.2 matt #include <dev/mii/mii.h>
61 1.2 matt #include <dev/mii/miivar.h>
62 1.2 matt
63 1.2 matt #ifdef INET
64 1.2 matt #include <netinet/in.h>
65 1.2 matt #include <netinet/in_systm.h>
66 1.2 matt #include <netinet/in_var.h>
67 1.2 matt #include <netinet/ip.h>
68 1.2 matt #include <netinet/if_inarp.h>
69 1.2 matt #endif
70 1.2 matt
71 1.2 matt #include <arm/at91/at91var.h>
72 1.2 matt #include <arm/at91/at91emacreg.h>
73 1.2 matt #include <arm/at91/at91emacvar.h>
74 1.2 matt
75 1.2 matt #define DEFAULT_MDCDIV 32
76 1.2 matt
77 1.2 matt #ifndef EMAC_FAST
78 1.2 matt #define EMAC_FAST
79 1.2 matt #endif
80 1.2 matt
81 1.2 matt #ifndef EMAC_FAST
82 1.2 matt #define EMAC_READ(x) \
83 1.2 matt bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
84 1.2 matt #define EMAC_WRITE(x, y) \
85 1.2 matt bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
86 1.2 matt #else
87 1.2 matt #define EMAC_READ(x) ETHREG(x)
88 1.2 matt #define EMAC_WRITE(x, y) ETHREG(x) = (y)
89 1.2 matt #endif /* ! EMAC_FAST */
90 1.2 matt
91 1.2 matt static int emac_match(device_t, cfdata_t, void *);
92 1.2 matt static void emac_attach(device_t, device_t, void *);
93 1.2 matt static void emac_init(struct emac_softc *);
94 1.27 msaitoh static int emac_intr(void* arg);
95 1.2 matt static int emac_gctx(struct emac_softc *);
96 1.2 matt static int emac_mediachange(struct ifnet *);
97 1.2 matt static void emac_mediastatus(struct ifnet *, struct ifmediareq *);
98 1.23 msaitoh int emac_mii_readreg (device_t, int, int, uint16_t *);
99 1.23 msaitoh int emac_mii_writereg (device_t, int, int, uint16_t);
100 1.11 matt void emac_statchg (struct ifnet *);
101 1.2 matt void emac_tick (void *);
102 1.2 matt static int emac_ifioctl (struct ifnet *, u_long, void *);
103 1.2 matt static void emac_ifstart (struct ifnet *);
104 1.2 matt static void emac_ifwatchdog (struct ifnet *);
105 1.2 matt static int emac_ifinit (struct ifnet *);
106 1.2 matt static void emac_ifstop (struct ifnet *, int);
107 1.2 matt static void emac_setaddr (struct ifnet *);
108 1.2 matt
109 1.11 matt CFATTACH_DECL_NEW(at91emac, sizeof(struct emac_softc),
110 1.2 matt emac_match, emac_attach, NULL, NULL);
111 1.2 matt
112 1.2 matt #ifdef EMAC_DEBUG
113 1.2 matt int emac_debug = EMAC_DEBUG;
114 1.26 msaitoh #define DPRINTFN(n, fmt) if (emac_debug >= (n)) printf fmt
115 1.2 matt #else
116 1.26 msaitoh #define DPRINTFN(n, fmt)
117 1.2 matt #endif
118 1.2 matt
119 1.2 matt static int
120 1.2 matt emac_match(device_t parent, cfdata_t match, void *aux)
121 1.2 matt {
122 1.2 matt if (strcmp(match->cf_name, "at91emac") == 0)
123 1.2 matt return 2;
124 1.2 matt return 0;
125 1.2 matt }
126 1.2 matt
127 1.2 matt static void
128 1.2 matt emac_attach(device_t parent, device_t self, void *aux)
129 1.2 matt {
130 1.2 matt struct emac_softc *sc = device_private(self);
131 1.2 matt struct at91bus_attach_args *sa = aux;
132 1.2 matt prop_data_t enaddr;
133 1.2 matt uint32_t u;
134 1.2 matt
135 1.2 matt printf("\n");
136 1.2 matt sc->sc_dev = self;
137 1.2 matt sc->sc_iot = sa->sa_iot;
138 1.2 matt sc->sc_pid = sa->sa_pid;
139 1.2 matt sc->sc_dmat = sa->sa_dmat;
140 1.2 matt
141 1.2 matt if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
142 1.2 matt panic("%s: Cannot map registers", device_xname(self));
143 1.2 matt
144 1.2 matt /* enable peripheral clock */
145 1.2 matt at91_peripheral_clock(sc->sc_pid, 1);
146 1.2 matt
147 1.2 matt /* configure emac: */
148 1.2 matt EMAC_WRITE(ETH_CTL, 0); // disable everything
149 1.2 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
150 1.2 matt EMAC_WRITE(ETH_RBQP, 0); // clear receive
151 1.26 msaitoh EMAC_WRITE(ETH_CFG,
152 1.26 msaitoh ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
153 1.2 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
154 1.2 matt //(void)EMAC_READ(ETH_ISR);
155 1.2 matt u = EMAC_READ(ETH_TSR);
156 1.2 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
157 1.2 matt | ETH_TSR_IDLE | ETH_TSR_RLE
158 1.26 msaitoh | ETH_TSR_COL | ETH_TSR_OVR)));
159 1.2 matt u = EMAC_READ(ETH_RSR);
160 1.26 msaitoh EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
161 1.2 matt
162 1.2 matt /* Fetch the Ethernet address from property if set. */
163 1.8 martin enaddr = prop_dictionary_get(device_properties(self), "mac-address");
164 1.2 matt
165 1.2 matt if (enaddr != NULL) {
166 1.2 matt KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
167 1.2 matt KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
168 1.2 matt memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
169 1.2 matt ETHER_ADDR_LEN);
170 1.2 matt } else {
171 1.2 matt static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
172 1.2 matt 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
173 1.2 matt };
174 1.2 matt memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
175 1.2 matt }
176 1.2 matt
177 1.26 msaitoh at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr,
178 1.26 msaitoh sc);
179 1.2 matt emac_init(sc);
180 1.2 matt }
181 1.2 matt
182 1.2 matt static int
183 1.2 matt emac_gctx(struct emac_softc *sc)
184 1.2 matt {
185 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
186 1.13 skrll uint32_t tsr;
187 1.2 matt
188 1.2 matt tsr = EMAC_READ(ETH_TSR);
189 1.2 matt if (!(tsr & ETH_TSR_BNQ)) {
190 1.2 matt // no space left
191 1.2 matt return 0;
192 1.2 matt }
193 1.2 matt
194 1.2 matt // free sent frames
195 1.2 matt while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
196 1.2 matt int i = sc->txqi % TX_QLEN;
197 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
198 1.26 msaitoh sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
199 1.2 matt bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
200 1.2 matt m_freem(sc->txq[i].m);
201 1.26 msaitoh DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
202 1.26 msaitoh __FUNCTION__, i, sc->txq[i].m, sc->txqc));
203 1.2 matt sc->txq[i].m = NULL;
204 1.2 matt sc->txqi = (i + 1) % TX_QLEN;
205 1.2 matt sc->txqc--;
206 1.2 matt }
207 1.2 matt
208 1.2 matt // mark we're free
209 1.2 matt if (ifp->if_flags & IFF_OACTIVE) {
210 1.2 matt ifp->if_flags &= ~IFF_OACTIVE;
211 1.2 matt /* Disable transmit-buffer-free interrupt */
212 1.2 matt /*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
213 1.2 matt }
214 1.2 matt
215 1.2 matt return 1;
216 1.2 matt }
217 1.2 matt
218 1.2 matt static int
219 1.2 matt emac_intr(void *arg)
220 1.2 matt {
221 1.2 matt struct emac_softc *sc = (struct emac_softc *)arg;
222 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
223 1.15 skrll uint32_t imr, isr, ctl;
224 1.2 matt int bi;
225 1.2 matt
226 1.2 matt imr = ~EMAC_READ(ETH_IMR);
227 1.26 msaitoh if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
228 1.26 msaitoh | ETH_ISR_RBNA | ETH_ISR_ROVR))) {
229 1.2 matt // interrupt not enabled, can't be us
230 1.2 matt return 0;
231 1.2 matt }
232 1.2 matt
233 1.2 matt isr = EMAC_READ(ETH_ISR) & imr;
234 1.26 msaitoh #ifdef EMAC_DEBUG
235 1.26 msaitoh uint32_t rsr =
236 1.15 skrll #endif
237 1.15 skrll EMAC_READ(ETH_RSR); // get receive status register
238 1.2 matt
239 1.26 msaitoh DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__,
240 1.26 msaitoh isr, rsr, imr));
241 1.2 matt
242 1.2 matt if (isr & ETH_ISR_RBNA) { // out of receive buffers
243 1.2 matt EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
244 1.2 matt ctl = EMAC_READ(ETH_CTL); // get current control register value
245 1.2 matt EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
246 1.2 matt EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
247 1.2 matt EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
248 1.2 matt ifp->if_ierrors++;
249 1.2 matt ifp->if_ipackets++;
250 1.2 matt DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
251 1.2 matt }
252 1.2 matt if (isr & ETH_ISR_ROVR) {
253 1.2 matt EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
254 1.2 matt ifp->if_ierrors++;
255 1.2 matt ifp->if_ipackets++;
256 1.2 matt DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
257 1.2 matt }
258 1.26 msaitoh
259 1.2 matt if (isr & ETH_ISR_RCOM) { // packet has been received!
260 1.2 matt uint32_t nfo;
261 1.2 matt // @@@ if memory is NOT coherent, then we're in trouble @@@@
262 1.2 matt // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
263 1.2 matt // printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
264 1.26 msaitoh DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN,
265 1.26 msaitoh sc->RDSC[sc->rxqi % RX_QLEN].Info));
266 1.2 matt while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
267 1.2 matt int fl;
268 1.2 matt struct mbuf *m;
269 1.2 matt
270 1.2 matt nfo = sc->RDSC[bi].Info;
271 1.27 msaitoh fl = (nfo & ETH_RDSC_I_LEN) - 4;
272 1.2 matt DPRINTFN(2,("## nfo=0x%08X\n", nfo));
273 1.2 matt
274 1.2 matt MGETHDR(m, M_DONTWAIT, MT_DATA);
275 1.2 matt if (m != NULL) MCLGET(m, M_DONTWAIT);
276 1.2 matt if (m != NULL && (m->m_flags & M_EXT)) {
277 1.26 msaitoh bus_dmamap_sync(sc->sc_dmat,
278 1.26 msaitoh sc->rxq[bi].m_dmamap, 0,
279 1.26 msaitoh MCLBYTES, BUS_DMASYNC_POSTREAD);
280 1.26 msaitoh bus_dmamap_unload(sc->sc_dmat,
281 1.2 matt sc->rxq[bi].m_dmamap);
282 1.17 ozaki m_set_rcvif(sc->rxq[bi].m, ifp);
283 1.26 msaitoh sc->rxq[bi].m->m_pkthdr.len =
284 1.2 matt sc->rxq[bi].m->m_len = fl;
285 1.2 matt DPRINTFN(2,("received %u bytes packet\n", fl));
286 1.16 ozaki if_percpuq_enqueue(ifp->if_percpuq, sc->rxq[bi].m);
287 1.2 matt if (mtod(m, intptr_t) & 3) {
288 1.2 matt m_adj(m, mtod(m, intptr_t) & 3);
289 1.2 matt }
290 1.2 matt sc->rxq[bi].m = m;
291 1.26 msaitoh bus_dmamap_load(sc->sc_dmat,
292 1.26 msaitoh sc->rxq[bi].m_dmamap,
293 1.2 matt m->m_ext.ext_buf, MCLBYTES,
294 1.2 matt NULL, BUS_DMA_NOWAIT);
295 1.26 msaitoh bus_dmamap_sync(sc->sc_dmat,
296 1.26 msaitoh sc->rxq[bi].m_dmamap, 0,
297 1.26 msaitoh MCLBYTES, BUS_DMASYNC_PREREAD);
298 1.2 matt sc->RDSC[bi].Info = 0;
299 1.2 matt sc->RDSC[bi].Addr =
300 1.2 matt sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
301 1.2 matt | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
302 1.2 matt } else {
303 1.2 matt /* Drop packets until we can get replacement
304 1.2 matt * empty mbufs for the RXDQ.
305 1.2 matt */
306 1.2 matt if (m != NULL) {
307 1.2 matt m_freem(m);
308 1.2 matt }
309 1.2 matt ifp->if_ierrors++;
310 1.26 msaitoh }
311 1.2 matt sc->rxqi++;
312 1.2 matt }
313 1.2 matt // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
314 1.2 matt }
315 1.2 matt
316 1.19 ozaki if (emac_gctx(sc) > 0)
317 1.19 ozaki if_schedule_deferred_start(ifp);
318 1.2 matt #if 0 // reloop
319 1.2 matt irq = EMAC_READ(IntStsC);
320 1.26 msaitoh if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
321 1.2 matt goto begin;
322 1.2 matt #endif
323 1.2 matt
324 1.2 matt return (1);
325 1.2 matt }
326 1.2 matt
327 1.2 matt
328 1.2 matt static void
329 1.2 matt emac_init(struct emac_softc *sc)
330 1.2 matt {
331 1.2 matt bus_dma_segment_t segs;
332 1.2 matt void *addr;
333 1.2 matt int rsegs, err, i;
334 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
335 1.26 msaitoh struct mii_data * const mii = &sc->sc_mii;
336 1.2 matt uint32_t u;
337 1.2 matt #if 0
338 1.2 matt int mdcdiv = DEFAULT_MDCDIV;
339 1.2 matt #endif
340 1.2 matt
341 1.2 matt callout_init(&sc->emac_tick_ch, 0);
342 1.2 matt
343 1.2 matt // ok...
344 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
345 1.2 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
346 1.2 matt EMAC_WRITE(ETH_RBQP, 0); // clear receive
347 1.26 msaitoh EMAC_WRITE(ETH_CFG,
348 1.26 msaitoh ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
349 1.2 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
350 1.2 matt // (void)EMAC_READ(ETH_ISR);
351 1.2 matt u = EMAC_READ(ETH_TSR);
352 1.2 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
353 1.2 matt | ETH_TSR_IDLE | ETH_TSR_RLE
354 1.26 msaitoh | ETH_TSR_COL | ETH_TSR_OVR)));
355 1.2 matt u = EMAC_READ(ETH_RSR);
356 1.26 msaitoh EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
357 1.2 matt
358 1.2 matt /* configure EMAC */
359 1.26 msaitoh EMAC_WRITE(ETH_CFG,
360 1.26 msaitoh ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
361 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
362 1.2 matt #if 0
363 1.12 chs if (device_cfdata(sc->sc_dev)->cf_flags)
364 1.12 chs mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
365 1.2 matt #endif
366 1.2 matt /* set ethernet address */
367 1.2 matt EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
368 1.2 matt | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
369 1.2 matt | (sc->sc_enaddr[0]));
370 1.2 matt EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
371 1.2 matt | (sc->sc_enaddr[4]));
372 1.2 matt EMAC_WRITE(ETH_SA2L, 0);
373 1.2 matt EMAC_WRITE(ETH_SA2H, 0);
374 1.2 matt EMAC_WRITE(ETH_SA3L, 0);
375 1.2 matt EMAC_WRITE(ETH_SA3H, 0);
376 1.2 matt EMAC_WRITE(ETH_SA4L, 0);
377 1.2 matt EMAC_WRITE(ETH_SA4H, 0);
378 1.2 matt
379 1.2 matt /* Allocate a page of memory for receive queue descriptors */
380 1.2 matt sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
381 1.2 matt sc->rbqlen *= PAGE_SIZE;
382 1.2 matt DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
383 1.2 matt
384 1.2 matt err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
385 1.2 matt MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
386 1.2 matt &segs, 1, &rsegs, BUS_DMA_WAITOK);
387 1.2 matt if (err == 0) {
388 1.2 matt DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
389 1.2 matt err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
390 1.26 msaitoh &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
391 1.2 matt }
392 1.2 matt if (err == 0) {
393 1.2 matt DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
394 1.2 matt err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
395 1.2 matt sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
396 1.2 matt &sc->rbqpage_dmamap);
397 1.2 matt }
398 1.2 matt if (err == 0) {
399 1.2 matt DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
400 1.2 matt err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
401 1.2 matt sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
402 1.2 matt }
403 1.2 matt if (err != 0) {
404 1.2 matt panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
405 1.2 matt }
406 1.2 matt sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
407 1.2 matt
408 1.5 cegger memset(sc->rbqpage, 0, sc->rbqlen);
409 1.2 matt
410 1.2 matt /* Set up pointers to start of each queue in kernel addr space.
411 1.2 matt * Each descriptor queue or status queue entry uses 2 words
412 1.2 matt */
413 1.2 matt sc->RDSC = (void*)sc->rbqpage;
414 1.2 matt
415 1.2 matt /* Populate the RXQ with mbufs */
416 1.2 matt sc->rxqi = 0;
417 1.26 msaitoh for (i = 0; i < RX_QLEN; i++) {
418 1.2 matt struct mbuf *m;
419 1.2 matt
420 1.26 msaitoh err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
421 1.26 msaitoh PAGE_SIZE, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
422 1.26 msaitoh if (err)
423 1.26 msaitoh panic("%s: dmamap_create failed: %i\n",
424 1.26 msaitoh __FUNCTION__, err);
425 1.26 msaitoh
426 1.2 matt MGETHDR(m, M_WAIT, MT_DATA);
427 1.2 matt MCLGET(m, M_WAIT);
428 1.2 matt sc->rxq[i].m = m;
429 1.2 matt if (mtod(m, intptr_t) & 3) {
430 1.2 matt m_adj(m, mtod(m, intptr_t) & 3);
431 1.2 matt }
432 1.26 msaitoh err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
433 1.26 msaitoh m->m_ext.ext_buf, MCLBYTES, NULL,
434 1.2 matt BUS_DMA_WAITOK);
435 1.26 msaitoh if (err)
436 1.26 msaitoh panic("%s: dmamap_load failed: %i\n",
437 1.26 msaitoh __FUNCTION__, err);
438 1.26 msaitoh
439 1.2 matt sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
440 1.2 matt | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
441 1.2 matt sc->RDSC[i].Info = 0;
442 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
443 1.2 matt MCLBYTES, BUS_DMASYNC_PREREAD);
444 1.2 matt }
445 1.2 matt
446 1.2 matt /* prepare transmit queue */
447 1.2 matt for (i = 0; i < TX_QLEN; i++) {
448 1.2 matt err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
449 1.2 matt (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
450 1.2 matt &sc->txq[i].m_dmamap);
451 1.2 matt if (err)
452 1.2 matt panic("ARGH #1");
453 1.2 matt sc->txq[i].m = NULL;
454 1.2 matt }
455 1.2 matt
456 1.2 matt /* Program each queue's start addr, cur addr, and len registers
457 1.26 msaitoh * with the physical addresses.
458 1.2 matt */
459 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
460 1.2 matt BUS_DMASYNC_PREREAD);
461 1.2 matt addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
462 1.13 skrll EMAC_WRITE(ETH_RBQP, (uint32_t)addr);
463 1.2 matt
464 1.2 matt /* Divide HCLK by 32 for MDC clock */
465 1.26 msaitoh mii->mii_ifp = ifp;
466 1.26 msaitoh mii->mii_readreg = emac_mii_readreg;
467 1.26 msaitoh mii->mii_writereg = emac_mii_writereg;
468 1.26 msaitoh mii->mii_statchg = emac_statchg;
469 1.26 msaitoh sc->sc_ec.ec_mii = mii;
470 1.26 msaitoh ifmedia_init(&mii->mii_media, IFM_IMASK, emac_mediachange,
471 1.2 matt emac_mediastatus);
472 1.26 msaitoh mii_attach((device_t )sc, mii, 0xffffffff, MII_PHY_ANY,
473 1.2 matt MII_OFFSET_ANY, 0);
474 1.26 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
475 1.2 matt
476 1.2 matt // enable / disable interrupts
477 1.2 matt
478 1.2 matt #if 0
479 1.2 matt // enable / disable interrupts
480 1.2 matt EMAC_WRITE(ETH_IDR, -1);
481 1.2 matt EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
482 1.2 matt | ETH_ISR_RBNA | ETH_ISR_ROVR);
483 1.2 matt // (void)EMAC_READ(ETH_ISR); // why
484 1.2 matt
485 1.2 matt // enable transmitter / receiver
486 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
487 1.2 matt | ETH_CTL_CSR | ETH_CTL_MPE);
488 1.2 matt #endif
489 1.2 matt /*
490 1.2 matt * We can support 802.1Q VLAN-sized frames.
491 1.2 matt */
492 1.2 matt sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
493 1.2 matt
494 1.27 msaitoh strcpy(ifp->if_xname, device_xname(sc->sc_dev));
495 1.27 msaitoh ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
496 1.27 msaitoh ifp->if_ioctl = emac_ifioctl;
497 1.27 msaitoh ifp->if_start = emac_ifstart;
498 1.27 msaitoh ifp->if_watchdog = emac_ifwatchdog;
499 1.27 msaitoh ifp->if_init = emac_ifinit;
500 1.27 msaitoh ifp->if_stop = emac_ifstop;
501 1.27 msaitoh ifp->if_timer = 0;
502 1.2 matt ifp->if_softc = sc;
503 1.27 msaitoh IFQ_SET_READY(&ifp->if_snd);
504 1.27 msaitoh if_attach(ifp);
505 1.19 ozaki if_deferred_start_init(ifp, NULL);
506 1.27 msaitoh ether_ifattach(ifp, (sc)->sc_enaddr);
507 1.2 matt }
508 1.2 matt
509 1.2 matt static int
510 1.3 dsl emac_mediachange(struct ifnet *ifp)
511 1.2 matt {
512 1.2 matt if (ifp->if_flags & IFF_UP)
513 1.2 matt emac_ifinit(ifp);
514 1.2 matt return (0);
515 1.2 matt }
516 1.2 matt
517 1.2 matt static void
518 1.3 dsl emac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
519 1.2 matt {
520 1.2 matt struct emac_softc *sc = ifp->if_softc;
521 1.2 matt
522 1.2 matt mii_pollstat(&sc->sc_mii);
523 1.2 matt ifmr->ifm_active = sc->sc_mii.mii_media_active;
524 1.2 matt ifmr->ifm_status = sc->sc_mii.mii_media_status;
525 1.2 matt }
526 1.2 matt
527 1.2 matt
528 1.2 matt int
529 1.23 msaitoh emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
530 1.2 matt {
531 1.15 skrll #ifndef EMAC_FAST
532 1.15 skrll struct emac_softc *sc = device_private(self);
533 1.15 skrll #endif
534 1.11 matt
535 1.2 matt EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
536 1.2 matt | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
537 1.2 matt | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
538 1.2 matt | ETH_MAN_CODE_IEEE802_3));
539 1.26 msaitoh while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
540 1.26 msaitoh ;
541 1.23 msaitoh *val = EMAC_READ(ETH_MAN) & ETH_MAN_DATA;
542 1.23 msaitoh
543 1.23 msaitoh return 0;
544 1.2 matt }
545 1.2 matt
546 1.23 msaitoh int
547 1.23 msaitoh emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
548 1.2 matt {
549 1.15 skrll #ifndef EMAC_FAST
550 1.15 skrll struct emac_softc *sc = device_private(self);
551 1.15 skrll #endif
552 1.11 matt
553 1.2 matt EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
554 1.2 matt | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
555 1.2 matt | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
556 1.2 matt | ETH_MAN_CODE_IEEE802_3
557 1.2 matt | (val & ETH_MAN_DATA)));
558 1.26 msaitoh while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
559 1.26 msaitoh ;
560 1.23 msaitoh
561 1.23 msaitoh return 0;
562 1.2 matt }
563 1.2 matt
564 1.2 matt void
565 1.11 matt emac_statchg(struct ifnet *ifp)
566 1.2 matt {
567 1.27 msaitoh struct emac_softc *sc = ifp->if_softc;
568 1.27 msaitoh uint32_t reg;
569 1.2 matt
570 1.27 msaitoh /*
571 1.27 msaitoh * We must keep the MAC and the PHY in sync as
572 1.27 msaitoh * to the status of full-duplex!
573 1.27 msaitoh */
574 1.2 matt reg = EMAC_READ(ETH_CFG);
575 1.27 msaitoh if (sc->sc_mii.mii_media_active & IFM_FDX)
576 1.27 msaitoh reg |= ETH_CFG_FD;
577 1.27 msaitoh else
578 1.27 msaitoh reg &= ~ETH_CFG_FD;
579 1.2 matt EMAC_WRITE(ETH_CFG, reg);
580 1.2 matt }
581 1.2 matt
582 1.2 matt void
583 1.3 dsl emac_tick(void *arg)
584 1.2 matt {
585 1.2 matt struct emac_softc* sc = (struct emac_softc *)arg;
586 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
587 1.2 matt int s;
588 1.13 skrll uint32_t misses;
589 1.2 matt
590 1.2 matt ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL);
591 1.2 matt /* These misses are ok, they will happen if the RAM/CPU can't keep up */
592 1.2 matt misses = EMAC_READ(ETH_DRFC);
593 1.26 msaitoh if (misses > 0)
594 1.2 matt printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
595 1.2 matt
596 1.2 matt s = splnet();
597 1.2 matt if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
598 1.2 matt emac_ifstart(ifp);
599 1.2 matt }
600 1.2 matt splx(s);
601 1.2 matt
602 1.2 matt mii_tick(&sc->sc_mii);
603 1.2 matt callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
604 1.2 matt }
605 1.2 matt
606 1.2 matt
607 1.2 matt static int
608 1.2 matt emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
609 1.2 matt {
610 1.2 matt int s, error;
611 1.2 matt
612 1.2 matt s = splnet();
613 1.26 msaitoh switch (cmd) {
614 1.2 matt default:
615 1.2 matt error = ether_ioctl(ifp, cmd, data);
616 1.2 matt if (error == ENETRESET) {
617 1.2 matt if (ifp->if_flags & IFF_RUNNING)
618 1.2 matt emac_setaddr(ifp);
619 1.2 matt error = 0;
620 1.2 matt }
621 1.2 matt }
622 1.2 matt splx(s);
623 1.2 matt return error;
624 1.2 matt }
625 1.2 matt
626 1.2 matt static void
627 1.3 dsl emac_ifstart(struct ifnet *ifp)
628 1.2 matt {
629 1.2 matt struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
630 1.2 matt struct mbuf *m;
631 1.2 matt bus_dma_segment_t *segs;
632 1.2 matt int s, bi, err, nsegs;
633 1.2 matt
634 1.26 msaitoh s = splnet();
635 1.2 matt start:
636 1.2 matt if (emac_gctx(sc) == 0) {
637 1.2 matt /* Enable transmit-buffer-free interrupt */
638 1.2 matt EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
639 1.2 matt ifp->if_flags |= IFF_OACTIVE;
640 1.2 matt ifp->if_timer = 10;
641 1.2 matt splx(s);
642 1.2 matt return;
643 1.2 matt }
644 1.2 matt
645 1.2 matt ifp->if_timer = 0;
646 1.2 matt
647 1.2 matt IFQ_POLL(&ifp->if_snd, m);
648 1.2 matt if (m == NULL) {
649 1.2 matt splx(s);
650 1.2 matt return;
651 1.2 matt }
652 1.2 matt //more:
653 1.2 matt bi = (sc->txqi + sc->txqc) % TX_QLEN;
654 1.2 matt if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
655 1.26 msaitoh BUS_DMA_NOWAIT)) ||
656 1.2 matt sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
657 1.2 matt sc->txq[bi].m_dmamap->dm_nsegs > 1) {
658 1.2 matt /* Copy entire mbuf chain to new single */
659 1.2 matt struct mbuf *mn;
660 1.2 matt
661 1.26 msaitoh if (err == 0)
662 1.2 matt bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
663 1.2 matt
664 1.2 matt MGETHDR(mn, M_DONTWAIT, MT_DATA);
665 1.2 matt if (mn == NULL) goto stop;
666 1.2 matt if (m->m_pkthdr.len > MHLEN) {
667 1.2 matt MCLGET(mn, M_DONTWAIT);
668 1.2 matt if ((mn->m_flags & M_EXT) == 0) {
669 1.2 matt m_freem(mn);
670 1.2 matt goto stop;
671 1.2 matt }
672 1.2 matt }
673 1.2 matt m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
674 1.2 matt mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
675 1.2 matt IFQ_DEQUEUE(&ifp->if_snd, m);
676 1.2 matt m_freem(m);
677 1.2 matt m = mn;
678 1.2 matt bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
679 1.2 matt BUS_DMA_NOWAIT);
680 1.2 matt } else {
681 1.2 matt IFQ_DEQUEUE(&ifp->if_snd, m);
682 1.2 matt }
683 1.2 matt
684 1.21 msaitoh bpf_mtap(ifp, m, BPF_D_OUT);
685 1.2 matt
686 1.2 matt nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
687 1.2 matt segs = sc->txq[bi].m_dmamap->dm_segs;
688 1.2 matt if (nsegs > 1) {
689 1.2 matt panic("#### ARGH #2");
690 1.2 matt }
691 1.2 matt
692 1.2 matt sc->txq[bi].m = m;
693 1.2 matt sc->txqc++;
694 1.2 matt
695 1.2 matt DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
696 1.2 matt (unsigned)m->m_pkthdr.len));
697 1.2 matt #ifdef DIAGNOSTIC
698 1.2 matt if (sc->txqc > TX_QLEN) {
699 1.2 matt panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
700 1.2 matt }
701 1.2 matt #endif
702 1.2 matt
703 1.26 msaitoh bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
704 1.26 msaitoh sc->txq[bi].m_dmamap->dm_mapsize,
705 1.2 matt BUS_DMASYNC_PREWRITE);
706 1.2 matt
707 1.2 matt EMAC_WRITE(ETH_TAR, segs->ds_addr);
708 1.2 matt EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
709 1.2 matt if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
710 1.2 matt goto start;
711 1.2 matt stop:
712 1.2 matt
713 1.2 matt splx(s);
714 1.2 matt return;
715 1.2 matt }
716 1.2 matt
717 1.2 matt static void
718 1.3 dsl emac_ifwatchdog(struct ifnet *ifp)
719 1.2 matt {
720 1.2 matt struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
721 1.2 matt
722 1.2 matt if ((ifp->if_flags & IFF_RUNNING) == 0)
723 1.2 matt return;
724 1.27 msaitoh printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
725 1.2 matt device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
726 1.2 matt }
727 1.2 matt
728 1.2 matt static int
729 1.3 dsl emac_ifinit(struct ifnet *ifp)
730 1.2 matt {
731 1.2 matt struct emac_softc *sc = ifp->if_softc;
732 1.2 matt int s = splnet();
733 1.2 matt
734 1.2 matt callout_stop(&sc->emac_tick_ch);
735 1.2 matt
736 1.2 matt // enable interrupts
737 1.2 matt EMAC_WRITE(ETH_IDR, -1);
738 1.2 matt EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
739 1.2 matt | ETH_ISR_RBNA | ETH_ISR_ROVR);
740 1.2 matt
741 1.2 matt // enable transmitter / receiver
742 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
743 1.2 matt | ETH_CTL_CSR | ETH_CTL_MPE);
744 1.2 matt
745 1.2 matt mii_mediachg(&sc->sc_mii);
746 1.2 matt callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
747 1.27 msaitoh ifp->if_flags |= IFF_RUNNING;
748 1.2 matt splx(s);
749 1.2 matt return 0;
750 1.2 matt }
751 1.2 matt
752 1.2 matt static void
753 1.3 dsl emac_ifstop(struct ifnet *ifp, int disable)
754 1.2 matt {
755 1.13 skrll // uint32_t u;
756 1.2 matt struct emac_softc *sc = ifp->if_softc;
757 1.2 matt
758 1.2 matt #if 0
759 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
760 1.2 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
761 1.2 matt // EMAC_WRITE(ETH_RBQP, 0); // clear receive
762 1.26 msaitoh EMAC_WRITE(ETH_CFG,
763 1.26 msaitoh ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
764 1.2 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
765 1.2 matt // (void)EMAC_READ(ETH_ISR);
766 1.2 matt u = EMAC_READ(ETH_TSR);
767 1.2 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
768 1.2 matt | ETH_TSR_IDLE | ETH_TSR_RLE
769 1.26 msaitoh | ETH_TSR_COL | ETH_TSR_OVR)));
770 1.2 matt u = EMAC_READ(ETH_RSR);
771 1.26 msaitoh EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
772 1.2 matt #endif
773 1.2 matt callout_stop(&sc->emac_tick_ch);
774 1.2 matt
775 1.2 matt /* Down the MII. */
776 1.2 matt mii_down(&sc->sc_mii);
777 1.2 matt
778 1.2 matt ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
779 1.2 matt ifp->if_timer = 0;
780 1.2 matt sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
781 1.2 matt }
782 1.2 matt
783 1.2 matt static void
784 1.3 dsl emac_setaddr(struct ifnet *ifp)
785 1.2 matt {
786 1.2 matt struct emac_softc *sc = ifp->if_softc;
787 1.28 msaitoh struct ethercom *ec = &sc->sc_ec;
788 1.2 matt struct ether_multi *enm;
789 1.2 matt struct ether_multistep step;
790 1.13 skrll uint8_t ias[3][ETHER_ADDR_LEN];
791 1.13 skrll uint32_t h, nma = 0, hashes[2] = { 0, 0 };
792 1.13 skrll uint32_t ctl = EMAC_READ(ETH_CTL);
793 1.13 skrll uint32_t cfg = EMAC_READ(ETH_CFG);
794 1.2 matt
795 1.2 matt /* disable receiver temporarily */
796 1.2 matt EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
797 1.2 matt
798 1.2 matt cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
799 1.2 matt
800 1.2 matt if (ifp->if_flags & IFF_PROMISC) {
801 1.27 msaitoh cfg |= ETH_CFG_CAF;
802 1.2 matt } else {
803 1.2 matt cfg &= ~ETH_CFG_CAF;
804 1.2 matt }
805 1.2 matt
806 1.2 matt // ETH_CFG_BIG?
807 1.2 matt
808 1.2 matt ifp->if_flags &= ~IFF_ALLMULTI;
809 1.2 matt
810 1.29 msaitoh ETHER_LOCK(ec);
811 1.28 msaitoh ETHER_FIRST_MULTI(step, ec, enm);
812 1.2 matt while (enm != NULL) {
813 1.2 matt if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
814 1.2 matt /*
815 1.2 matt * We must listen to a range of multicast addresses.
816 1.2 matt * For now, just accept all multicasts, rather than
817 1.2 matt * trying to set only those filter bits needed to match
818 1.2 matt * the range. (At this time, the only use of address
819 1.2 matt * ranges is for IP multicast routing, for which the
820 1.2 matt * range is big enough to require all bits set.)
821 1.2 matt */
822 1.2 matt cfg |= ETH_CFG_CAF;
823 1.2 matt hashes[0] = 0xffffffffUL;
824 1.2 matt hashes[1] = 0xffffffffUL;
825 1.2 matt ifp->if_flags |= IFF_ALLMULTI;
826 1.2 matt nma = 0;
827 1.2 matt break;
828 1.2 matt }
829 1.2 matt
830 1.2 matt if (nma < 3) {
831 1.2 matt /* We can program 3 perfect address filters for mcast */
832 1.2 matt memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
833 1.2 matt } else {
834 1.2 matt /*
835 1.2 matt * XXX: Datasheet is not very clear here, I'm not sure
836 1.2 matt * if I'm doing this right. --joff
837 1.2 matt */
838 1.2 matt h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
839 1.2 matt
840 1.2 matt /* Just want the 6 most-significant bits. */
841 1.2 matt h = h >> 26;
842 1.2 matt
843 1.2 matt hashes[ h / 32 ] |= (1 << (h % 32));
844 1.2 matt cfg |= ETH_CFG_MTI;
845 1.2 matt }
846 1.2 matt ETHER_NEXT_MULTI(step, enm);
847 1.2 matt nma++;
848 1.2 matt }
849 1.29 msaitoh ETHER_UNLOCK(ec);
850 1.2 matt
851 1.2 matt // program...
852 1.2 matt DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
853 1.2 matt sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
854 1.2 matt sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
855 1.2 matt EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
856 1.2 matt | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
857 1.2 matt | (sc->sc_enaddr[0]));
858 1.2 matt EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
859 1.2 matt | (sc->sc_enaddr[4]));
860 1.2 matt if (nma > 1) {
861 1.28 msaitoh DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n",
862 1.28 msaitoh __FUNCTION__,
863 1.28 msaitoh ias[0][0], ias[0][1], ias[0][2],
864 1.28 msaitoh ias[0][3], ias[0][4], ias[0][5]));
865 1.2 matt EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
866 1.2 matt | (ias[0][2] << 16) | (ias[0][1] << 8)
867 1.2 matt | (ias[0][0]));
868 1.2 matt EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
869 1.2 matt | (ias[0][5]));
870 1.2 matt }
871 1.2 matt if (nma > 2) {
872 1.28 msaitoh DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n",
873 1.28 msaitoh __FUNCTION__,
874 1.28 msaitoh ias[1][0], ias[1][1], ias[1][2],
875 1.28 msaitoh ias[1][3], ias[1][4], ias[1][5]));
876 1.2 matt EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
877 1.2 matt | (ias[1][2] << 16) | (ias[1][1] << 8)
878 1.2 matt | (ias[1][0]));
879 1.2 matt EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
880 1.2 matt | (ias[1][5]));
881 1.2 matt }
882 1.2 matt if (nma > 3) {
883 1.28 msaitoh DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n",
884 1.28 msaitoh __FUNCTION__,
885 1.28 msaitoh ias[2][0], ias[2][1], ias[2][2],
886 1.28 msaitoh ias[2][3], ias[2][4], ias[2][5]));
887 1.2 matt EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
888 1.2 matt | (ias[2][2] << 16) | (ias[2][1] << 8)
889 1.2 matt | (ias[2][0]));
890 1.2 matt EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
891 1.2 matt | (ias[2][5]));
892 1.2 matt }
893 1.2 matt EMAC_WRITE(ETH_HSH, hashes[0]);
894 1.2 matt EMAC_WRITE(ETH_HSL, hashes[1]);
895 1.2 matt EMAC_WRITE(ETH_CFG, cfg);
896 1.2 matt EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
897 1.2 matt }
898