at91emac.c revision 1.32 1 1.32 thorpej /* $NetBSD: at91emac.c,v 1.32 2020/02/19 02:51:54 thorpej Exp $ */
2 1.2 matt
3 1.2 matt /*
4 1.2 matt * Copyright (c) 2007 Embedtronics Oy
5 1.2 matt * All rights reserved.
6 1.2 matt *
7 1.2 matt * Based on arch/arm/ep93xx/epe.c
8 1.2 matt *
9 1.2 matt * Copyright (c) 2004 Jesse Off
10 1.2 matt * All rights reserved.
11 1.2 matt *
12 1.2 matt * Redistribution and use in source and binary forms, with or without
13 1.2 matt * modification, are permitted provided that the following conditions
14 1.2 matt * are met:
15 1.2 matt * 1. Redistributions of source code must retain the above copyright
16 1.2 matt * notice, this list of conditions and the following disclaimer.
17 1.2 matt * 2. Redistributions in binary form must reproduce the above copyright
18 1.2 matt * notice, this list of conditions and the following disclaimer in the
19 1.2 matt * documentation and/or other materials provided with the distribution.
20 1.2 matt *
21 1.2 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 1.2 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 1.2 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 1.2 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 1.2 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 1.2 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 1.2 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 1.2 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 1.2 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 1.2 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 1.2 matt * POSSIBILITY OF SUCH DAMAGE.
32 1.2 matt */
33 1.2 matt
34 1.2 matt #include <sys/cdefs.h>
35 1.32 thorpej __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.32 2020/02/19 02:51:54 thorpej Exp $");
36 1.2 matt
37 1.2 matt #include <sys/types.h>
38 1.2 matt #include <sys/param.h>
39 1.2 matt #include <sys/systm.h>
40 1.2 matt #include <sys/ioctl.h>
41 1.2 matt #include <sys/kernel.h>
42 1.2 matt #include <sys/proc.h>
43 1.2 matt #include <sys/malloc.h>
44 1.2 matt #include <sys/time.h>
45 1.2 matt #include <sys/device.h>
46 1.2 matt #include <uvm/uvm_extern.h>
47 1.2 matt
48 1.10 dyoung #include <sys/bus.h>
49 1.2 matt #include <machine/intr.h>
50 1.2 matt
51 1.2 matt #include <arm/cpufunc.h>
52 1.2 matt
53 1.2 matt #include <net/if.h>
54 1.2 matt #include <net/if_dl.h>
55 1.2 matt #include <net/if_types.h>
56 1.2 matt #include <net/if_media.h>
57 1.2 matt #include <net/if_ether.h>
58 1.20 msaitoh #include <net/bpf.h>
59 1.2 matt
60 1.2 matt #include <dev/mii/mii.h>
61 1.2 matt #include <dev/mii/miivar.h>
62 1.2 matt
63 1.2 matt #ifdef INET
64 1.2 matt #include <netinet/in.h>
65 1.2 matt #include <netinet/in_systm.h>
66 1.2 matt #include <netinet/in_var.h>
67 1.2 matt #include <netinet/ip.h>
68 1.2 matt #include <netinet/if_inarp.h>
69 1.2 matt #endif
70 1.2 matt
71 1.2 matt #include <arm/at91/at91var.h>
72 1.2 matt #include <arm/at91/at91emacreg.h>
73 1.2 matt #include <arm/at91/at91emacvar.h>
74 1.2 matt
75 1.2 matt #define DEFAULT_MDCDIV 32
76 1.2 matt
77 1.2 matt #ifndef EMAC_FAST
78 1.2 matt #define EMAC_FAST
79 1.2 matt #endif
80 1.2 matt
81 1.2 matt #ifndef EMAC_FAST
82 1.2 matt #define EMAC_READ(x) \
83 1.2 matt bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
84 1.2 matt #define EMAC_WRITE(x, y) \
85 1.2 matt bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
86 1.2 matt #else
87 1.2 matt #define EMAC_READ(x) ETHREG(x)
88 1.2 matt #define EMAC_WRITE(x, y) ETHREG(x) = (y)
89 1.2 matt #endif /* ! EMAC_FAST */
90 1.2 matt
91 1.2 matt static int emac_match(device_t, cfdata_t, void *);
92 1.2 matt static void emac_attach(device_t, device_t, void *);
93 1.2 matt static void emac_init(struct emac_softc *);
94 1.27 msaitoh static int emac_intr(void* arg);
95 1.2 matt static int emac_gctx(struct emac_softc *);
96 1.23 msaitoh int emac_mii_readreg (device_t, int, int, uint16_t *);
97 1.23 msaitoh int emac_mii_writereg (device_t, int, int, uint16_t);
98 1.11 matt void emac_statchg (struct ifnet *);
99 1.2 matt void emac_tick (void *);
100 1.2 matt static int emac_ifioctl (struct ifnet *, u_long, void *);
101 1.2 matt static void emac_ifstart (struct ifnet *);
102 1.2 matt static void emac_ifwatchdog (struct ifnet *);
103 1.2 matt static int emac_ifinit (struct ifnet *);
104 1.2 matt static void emac_ifstop (struct ifnet *, int);
105 1.2 matt static void emac_setaddr (struct ifnet *);
106 1.2 matt
107 1.11 matt CFATTACH_DECL_NEW(at91emac, sizeof(struct emac_softc),
108 1.2 matt emac_match, emac_attach, NULL, NULL);
109 1.2 matt
110 1.2 matt #ifdef EMAC_DEBUG
111 1.2 matt int emac_debug = EMAC_DEBUG;
112 1.26 msaitoh #define DPRINTFN(n, fmt) if (emac_debug >= (n)) printf fmt
113 1.2 matt #else
114 1.26 msaitoh #define DPRINTFN(n, fmt)
115 1.2 matt #endif
116 1.2 matt
117 1.2 matt static int
118 1.2 matt emac_match(device_t parent, cfdata_t match, void *aux)
119 1.2 matt {
120 1.2 matt if (strcmp(match->cf_name, "at91emac") == 0)
121 1.2 matt return 2;
122 1.2 matt return 0;
123 1.2 matt }
124 1.2 matt
125 1.2 matt static void
126 1.2 matt emac_attach(device_t parent, device_t self, void *aux)
127 1.2 matt {
128 1.2 matt struct emac_softc *sc = device_private(self);
129 1.2 matt struct at91bus_attach_args *sa = aux;
130 1.2 matt prop_data_t enaddr;
131 1.2 matt uint32_t u;
132 1.2 matt
133 1.2 matt printf("\n");
134 1.2 matt sc->sc_dev = self;
135 1.2 matt sc->sc_iot = sa->sa_iot;
136 1.2 matt sc->sc_pid = sa->sa_pid;
137 1.2 matt sc->sc_dmat = sa->sa_dmat;
138 1.2 matt
139 1.2 matt if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
140 1.2 matt panic("%s: Cannot map registers", device_xname(self));
141 1.2 matt
142 1.2 matt /* enable peripheral clock */
143 1.2 matt at91_peripheral_clock(sc->sc_pid, 1);
144 1.2 matt
145 1.2 matt /* configure emac: */
146 1.2 matt EMAC_WRITE(ETH_CTL, 0); // disable everything
147 1.2 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
148 1.2 matt EMAC_WRITE(ETH_RBQP, 0); // clear receive
149 1.26 msaitoh EMAC_WRITE(ETH_CFG,
150 1.26 msaitoh ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
151 1.2 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
152 1.2 matt //(void)EMAC_READ(ETH_ISR);
153 1.2 matt u = EMAC_READ(ETH_TSR);
154 1.2 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
155 1.2 matt | ETH_TSR_IDLE | ETH_TSR_RLE
156 1.26 msaitoh | ETH_TSR_COL | ETH_TSR_OVR)));
157 1.2 matt u = EMAC_READ(ETH_RSR);
158 1.26 msaitoh EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
159 1.2 matt
160 1.2 matt /* Fetch the Ethernet address from property if set. */
161 1.8 martin enaddr = prop_dictionary_get(device_properties(self), "mac-address");
162 1.2 matt
163 1.2 matt if (enaddr != NULL) {
164 1.2 matt KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
165 1.2 matt KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
166 1.2 matt memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
167 1.2 matt ETHER_ADDR_LEN);
168 1.2 matt } else {
169 1.2 matt static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
170 1.2 matt 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
171 1.2 matt };
172 1.2 matt memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
173 1.2 matt }
174 1.2 matt
175 1.26 msaitoh at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr,
176 1.26 msaitoh sc);
177 1.2 matt emac_init(sc);
178 1.2 matt }
179 1.2 matt
180 1.2 matt static int
181 1.2 matt emac_gctx(struct emac_softc *sc)
182 1.2 matt {
183 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
184 1.13 skrll uint32_t tsr;
185 1.2 matt
186 1.2 matt tsr = EMAC_READ(ETH_TSR);
187 1.2 matt if (!(tsr & ETH_TSR_BNQ)) {
188 1.2 matt // no space left
189 1.2 matt return 0;
190 1.2 matt }
191 1.2 matt
192 1.2 matt // free sent frames
193 1.2 matt while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
194 1.2 matt int i = sc->txqi % TX_QLEN;
195 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
196 1.26 msaitoh sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
197 1.2 matt bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
198 1.2 matt m_freem(sc->txq[i].m);
199 1.26 msaitoh DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
200 1.26 msaitoh __FUNCTION__, i, sc->txq[i].m, sc->txqc));
201 1.2 matt sc->txq[i].m = NULL;
202 1.2 matt sc->txqi = (i + 1) % TX_QLEN;
203 1.2 matt sc->txqc--;
204 1.2 matt }
205 1.2 matt
206 1.2 matt // mark we're free
207 1.2 matt if (ifp->if_flags & IFF_OACTIVE) {
208 1.2 matt ifp->if_flags &= ~IFF_OACTIVE;
209 1.2 matt /* Disable transmit-buffer-free interrupt */
210 1.2 matt /*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
211 1.2 matt }
212 1.2 matt
213 1.2 matt return 1;
214 1.2 matt }
215 1.2 matt
216 1.2 matt static int
217 1.2 matt emac_intr(void *arg)
218 1.2 matt {
219 1.2 matt struct emac_softc *sc = (struct emac_softc *)arg;
220 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
221 1.15 skrll uint32_t imr, isr, ctl;
222 1.2 matt int bi;
223 1.2 matt
224 1.2 matt imr = ~EMAC_READ(ETH_IMR);
225 1.26 msaitoh if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
226 1.26 msaitoh | ETH_ISR_RBNA | ETH_ISR_ROVR))) {
227 1.2 matt // interrupt not enabled, can't be us
228 1.2 matt return 0;
229 1.2 matt }
230 1.2 matt
231 1.2 matt isr = EMAC_READ(ETH_ISR) & imr;
232 1.26 msaitoh #ifdef EMAC_DEBUG
233 1.26 msaitoh uint32_t rsr =
234 1.15 skrll #endif
235 1.15 skrll EMAC_READ(ETH_RSR); // get receive status register
236 1.2 matt
237 1.26 msaitoh DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__,
238 1.26 msaitoh isr, rsr, imr));
239 1.2 matt
240 1.2 matt if (isr & ETH_ISR_RBNA) { // out of receive buffers
241 1.2 matt EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
242 1.2 matt ctl = EMAC_READ(ETH_CTL); // get current control register value
243 1.2 matt EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
244 1.2 matt EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
245 1.2 matt EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
246 1.30 skrll if_statinc(ifp, if_ierrors);
247 1.31 skrll if_statinc(ifp, if_ipackets);
248 1.2 matt DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
249 1.2 matt }
250 1.2 matt if (isr & ETH_ISR_ROVR) {
251 1.2 matt EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
252 1.30 skrll if_statinc(ifp, if_ierrors);
253 1.31 skrll if_statinc(ifp, if_ipackets);
254 1.2 matt DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
255 1.2 matt }
256 1.26 msaitoh
257 1.2 matt if (isr & ETH_ISR_RCOM) { // packet has been received!
258 1.2 matt uint32_t nfo;
259 1.2 matt // @@@ if memory is NOT coherent, then we're in trouble @@@@
260 1.2 matt // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
261 1.2 matt // printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
262 1.26 msaitoh DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN,
263 1.26 msaitoh sc->RDSC[sc->rxqi % RX_QLEN].Info));
264 1.2 matt while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
265 1.2 matt int fl;
266 1.2 matt struct mbuf *m;
267 1.2 matt
268 1.2 matt nfo = sc->RDSC[bi].Info;
269 1.27 msaitoh fl = (nfo & ETH_RDSC_I_LEN) - 4;
270 1.2 matt DPRINTFN(2,("## nfo=0x%08X\n", nfo));
271 1.2 matt
272 1.2 matt MGETHDR(m, M_DONTWAIT, MT_DATA);
273 1.2 matt if (m != NULL) MCLGET(m, M_DONTWAIT);
274 1.2 matt if (m != NULL && (m->m_flags & M_EXT)) {
275 1.26 msaitoh bus_dmamap_sync(sc->sc_dmat,
276 1.26 msaitoh sc->rxq[bi].m_dmamap, 0,
277 1.26 msaitoh MCLBYTES, BUS_DMASYNC_POSTREAD);
278 1.26 msaitoh bus_dmamap_unload(sc->sc_dmat,
279 1.2 matt sc->rxq[bi].m_dmamap);
280 1.17 ozaki m_set_rcvif(sc->rxq[bi].m, ifp);
281 1.26 msaitoh sc->rxq[bi].m->m_pkthdr.len =
282 1.2 matt sc->rxq[bi].m->m_len = fl;
283 1.2 matt DPRINTFN(2,("received %u bytes packet\n", fl));
284 1.16 ozaki if_percpuq_enqueue(ifp->if_percpuq, sc->rxq[bi].m);
285 1.2 matt if (mtod(m, intptr_t) & 3) {
286 1.2 matt m_adj(m, mtod(m, intptr_t) & 3);
287 1.2 matt }
288 1.2 matt sc->rxq[bi].m = m;
289 1.26 msaitoh bus_dmamap_load(sc->sc_dmat,
290 1.26 msaitoh sc->rxq[bi].m_dmamap,
291 1.2 matt m->m_ext.ext_buf, MCLBYTES,
292 1.2 matt NULL, BUS_DMA_NOWAIT);
293 1.26 msaitoh bus_dmamap_sync(sc->sc_dmat,
294 1.26 msaitoh sc->rxq[bi].m_dmamap, 0,
295 1.26 msaitoh MCLBYTES, BUS_DMASYNC_PREREAD);
296 1.2 matt sc->RDSC[bi].Info = 0;
297 1.2 matt sc->RDSC[bi].Addr =
298 1.2 matt sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
299 1.2 matt | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
300 1.2 matt } else {
301 1.2 matt /* Drop packets until we can get replacement
302 1.2 matt * empty mbufs for the RXDQ.
303 1.2 matt */
304 1.2 matt if (m != NULL) {
305 1.2 matt m_freem(m);
306 1.2 matt }
307 1.30 skrll if_statinc(ifp, if_ierrors);
308 1.26 msaitoh }
309 1.2 matt sc->rxqi++;
310 1.2 matt }
311 1.2 matt // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
312 1.2 matt }
313 1.2 matt
314 1.19 ozaki if (emac_gctx(sc) > 0)
315 1.19 ozaki if_schedule_deferred_start(ifp);
316 1.2 matt #if 0 // reloop
317 1.2 matt irq = EMAC_READ(IntStsC);
318 1.26 msaitoh if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
319 1.2 matt goto begin;
320 1.2 matt #endif
321 1.2 matt
322 1.2 matt return (1);
323 1.2 matt }
324 1.2 matt
325 1.2 matt
326 1.2 matt static void
327 1.2 matt emac_init(struct emac_softc *sc)
328 1.2 matt {
329 1.2 matt bus_dma_segment_t segs;
330 1.2 matt void *addr;
331 1.2 matt int rsegs, err, i;
332 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
333 1.26 msaitoh struct mii_data * const mii = &sc->sc_mii;
334 1.2 matt uint32_t u;
335 1.2 matt #if 0
336 1.2 matt int mdcdiv = DEFAULT_MDCDIV;
337 1.2 matt #endif
338 1.2 matt
339 1.2 matt callout_init(&sc->emac_tick_ch, 0);
340 1.2 matt
341 1.2 matt // ok...
342 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
343 1.2 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
344 1.2 matt EMAC_WRITE(ETH_RBQP, 0); // clear receive
345 1.26 msaitoh EMAC_WRITE(ETH_CFG,
346 1.26 msaitoh ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
347 1.2 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
348 1.2 matt // (void)EMAC_READ(ETH_ISR);
349 1.2 matt u = EMAC_READ(ETH_TSR);
350 1.2 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
351 1.2 matt | ETH_TSR_IDLE | ETH_TSR_RLE
352 1.26 msaitoh | ETH_TSR_COL | ETH_TSR_OVR)));
353 1.2 matt u = EMAC_READ(ETH_RSR);
354 1.26 msaitoh EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
355 1.2 matt
356 1.2 matt /* configure EMAC */
357 1.26 msaitoh EMAC_WRITE(ETH_CFG,
358 1.26 msaitoh ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
359 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
360 1.2 matt #if 0
361 1.12 chs if (device_cfdata(sc->sc_dev)->cf_flags)
362 1.12 chs mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
363 1.2 matt #endif
364 1.2 matt /* set ethernet address */
365 1.2 matt EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
366 1.2 matt | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
367 1.2 matt | (sc->sc_enaddr[0]));
368 1.2 matt EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
369 1.2 matt | (sc->sc_enaddr[4]));
370 1.2 matt EMAC_WRITE(ETH_SA2L, 0);
371 1.2 matt EMAC_WRITE(ETH_SA2H, 0);
372 1.2 matt EMAC_WRITE(ETH_SA3L, 0);
373 1.2 matt EMAC_WRITE(ETH_SA3H, 0);
374 1.2 matt EMAC_WRITE(ETH_SA4L, 0);
375 1.2 matt EMAC_WRITE(ETH_SA4H, 0);
376 1.2 matt
377 1.2 matt /* Allocate a page of memory for receive queue descriptors */
378 1.2 matt sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
379 1.2 matt sc->rbqlen *= PAGE_SIZE;
380 1.2 matt DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
381 1.2 matt
382 1.2 matt err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
383 1.2 matt MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
384 1.2 matt &segs, 1, &rsegs, BUS_DMA_WAITOK);
385 1.2 matt if (err == 0) {
386 1.2 matt DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
387 1.2 matt err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
388 1.26 msaitoh &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
389 1.2 matt }
390 1.2 matt if (err == 0) {
391 1.2 matt DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
392 1.2 matt err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
393 1.2 matt sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
394 1.2 matt &sc->rbqpage_dmamap);
395 1.2 matt }
396 1.2 matt if (err == 0) {
397 1.2 matt DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
398 1.2 matt err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
399 1.2 matt sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
400 1.2 matt }
401 1.2 matt if (err != 0) {
402 1.2 matt panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
403 1.2 matt }
404 1.2 matt sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
405 1.2 matt
406 1.5 cegger memset(sc->rbqpage, 0, sc->rbqlen);
407 1.2 matt
408 1.2 matt /* Set up pointers to start of each queue in kernel addr space.
409 1.2 matt * Each descriptor queue or status queue entry uses 2 words
410 1.2 matt */
411 1.2 matt sc->RDSC = (void*)sc->rbqpage;
412 1.2 matt
413 1.2 matt /* Populate the RXQ with mbufs */
414 1.2 matt sc->rxqi = 0;
415 1.26 msaitoh for (i = 0; i < RX_QLEN; i++) {
416 1.2 matt struct mbuf *m;
417 1.2 matt
418 1.26 msaitoh err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
419 1.26 msaitoh PAGE_SIZE, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
420 1.26 msaitoh if (err)
421 1.26 msaitoh panic("%s: dmamap_create failed: %i\n",
422 1.26 msaitoh __FUNCTION__, err);
423 1.26 msaitoh
424 1.2 matt MGETHDR(m, M_WAIT, MT_DATA);
425 1.2 matt MCLGET(m, M_WAIT);
426 1.2 matt sc->rxq[i].m = m;
427 1.2 matt if (mtod(m, intptr_t) & 3) {
428 1.2 matt m_adj(m, mtod(m, intptr_t) & 3);
429 1.2 matt }
430 1.26 msaitoh err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
431 1.26 msaitoh m->m_ext.ext_buf, MCLBYTES, NULL,
432 1.2 matt BUS_DMA_WAITOK);
433 1.26 msaitoh if (err)
434 1.26 msaitoh panic("%s: dmamap_load failed: %i\n",
435 1.26 msaitoh __FUNCTION__, err);
436 1.26 msaitoh
437 1.2 matt sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
438 1.2 matt | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
439 1.2 matt sc->RDSC[i].Info = 0;
440 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
441 1.2 matt MCLBYTES, BUS_DMASYNC_PREREAD);
442 1.2 matt }
443 1.2 matt
444 1.2 matt /* prepare transmit queue */
445 1.2 matt for (i = 0; i < TX_QLEN; i++) {
446 1.2 matt err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
447 1.2 matt (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
448 1.2 matt &sc->txq[i].m_dmamap);
449 1.2 matt if (err)
450 1.2 matt panic("ARGH #1");
451 1.2 matt sc->txq[i].m = NULL;
452 1.2 matt }
453 1.2 matt
454 1.2 matt /* Program each queue's start addr, cur addr, and len registers
455 1.26 msaitoh * with the physical addresses.
456 1.2 matt */
457 1.2 matt bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
458 1.2 matt BUS_DMASYNC_PREREAD);
459 1.2 matt addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
460 1.13 skrll EMAC_WRITE(ETH_RBQP, (uint32_t)addr);
461 1.2 matt
462 1.2 matt /* Divide HCLK by 32 for MDC clock */
463 1.26 msaitoh mii->mii_ifp = ifp;
464 1.26 msaitoh mii->mii_readreg = emac_mii_readreg;
465 1.26 msaitoh mii->mii_writereg = emac_mii_writereg;
466 1.26 msaitoh mii->mii_statchg = emac_statchg;
467 1.26 msaitoh sc->sc_ec.ec_mii = mii;
468 1.32 thorpej ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
469 1.32 thorpej ether_mediastatus);
470 1.26 msaitoh mii_attach((device_t )sc, mii, 0xffffffff, MII_PHY_ANY,
471 1.2 matt MII_OFFSET_ANY, 0);
472 1.26 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
473 1.2 matt
474 1.2 matt // enable / disable interrupts
475 1.2 matt
476 1.2 matt #if 0
477 1.2 matt // enable / disable interrupts
478 1.2 matt EMAC_WRITE(ETH_IDR, -1);
479 1.2 matt EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
480 1.2 matt | ETH_ISR_RBNA | ETH_ISR_ROVR);
481 1.2 matt // (void)EMAC_READ(ETH_ISR); // why
482 1.2 matt
483 1.2 matt // enable transmitter / receiver
484 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
485 1.2 matt | ETH_CTL_CSR | ETH_CTL_MPE);
486 1.2 matt #endif
487 1.2 matt /*
488 1.2 matt * We can support 802.1Q VLAN-sized frames.
489 1.2 matt */
490 1.2 matt sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
491 1.2 matt
492 1.27 msaitoh strcpy(ifp->if_xname, device_xname(sc->sc_dev));
493 1.27 msaitoh ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
494 1.27 msaitoh ifp->if_ioctl = emac_ifioctl;
495 1.27 msaitoh ifp->if_start = emac_ifstart;
496 1.27 msaitoh ifp->if_watchdog = emac_ifwatchdog;
497 1.27 msaitoh ifp->if_init = emac_ifinit;
498 1.27 msaitoh ifp->if_stop = emac_ifstop;
499 1.27 msaitoh ifp->if_timer = 0;
500 1.2 matt ifp->if_softc = sc;
501 1.27 msaitoh IFQ_SET_READY(&ifp->if_snd);
502 1.27 msaitoh if_attach(ifp);
503 1.19 ozaki if_deferred_start_init(ifp, NULL);
504 1.27 msaitoh ether_ifattach(ifp, (sc)->sc_enaddr);
505 1.2 matt }
506 1.2 matt
507 1.2 matt int
508 1.23 msaitoh emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
509 1.2 matt {
510 1.15 skrll #ifndef EMAC_FAST
511 1.15 skrll struct emac_softc *sc = device_private(self);
512 1.15 skrll #endif
513 1.11 matt
514 1.2 matt EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
515 1.2 matt | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
516 1.2 matt | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
517 1.2 matt | ETH_MAN_CODE_IEEE802_3));
518 1.26 msaitoh while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
519 1.26 msaitoh ;
520 1.23 msaitoh *val = EMAC_READ(ETH_MAN) & ETH_MAN_DATA;
521 1.23 msaitoh
522 1.23 msaitoh return 0;
523 1.2 matt }
524 1.2 matt
525 1.23 msaitoh int
526 1.23 msaitoh emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
527 1.2 matt {
528 1.15 skrll #ifndef EMAC_FAST
529 1.15 skrll struct emac_softc *sc = device_private(self);
530 1.15 skrll #endif
531 1.11 matt
532 1.2 matt EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
533 1.2 matt | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
534 1.2 matt | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
535 1.2 matt | ETH_MAN_CODE_IEEE802_3
536 1.2 matt | (val & ETH_MAN_DATA)));
537 1.26 msaitoh while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
538 1.26 msaitoh ;
539 1.23 msaitoh
540 1.23 msaitoh return 0;
541 1.2 matt }
542 1.2 matt
543 1.2 matt void
544 1.11 matt emac_statchg(struct ifnet *ifp)
545 1.2 matt {
546 1.27 msaitoh struct emac_softc *sc = ifp->if_softc;
547 1.27 msaitoh uint32_t reg;
548 1.2 matt
549 1.27 msaitoh /*
550 1.27 msaitoh * We must keep the MAC and the PHY in sync as
551 1.27 msaitoh * to the status of full-duplex!
552 1.27 msaitoh */
553 1.2 matt reg = EMAC_READ(ETH_CFG);
554 1.27 msaitoh if (sc->sc_mii.mii_media_active & IFM_FDX)
555 1.27 msaitoh reg |= ETH_CFG_FD;
556 1.27 msaitoh else
557 1.27 msaitoh reg &= ~ETH_CFG_FD;
558 1.2 matt EMAC_WRITE(ETH_CFG, reg);
559 1.2 matt }
560 1.2 matt
561 1.2 matt void
562 1.3 dsl emac_tick(void *arg)
563 1.2 matt {
564 1.2 matt struct emac_softc* sc = (struct emac_softc *)arg;
565 1.2 matt struct ifnet * ifp = &sc->sc_ec.ec_if;
566 1.2 matt int s;
567 1.13 skrll uint32_t misses;
568 1.2 matt
569 1.30 skrll if_statadd(ifp, if_collisions, EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL));
570 1.2 matt /* These misses are ok, they will happen if the RAM/CPU can't keep up */
571 1.2 matt misses = EMAC_READ(ETH_DRFC);
572 1.26 msaitoh if (misses > 0)
573 1.2 matt printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
574 1.2 matt
575 1.2 matt s = splnet();
576 1.2 matt if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
577 1.2 matt emac_ifstart(ifp);
578 1.2 matt }
579 1.2 matt splx(s);
580 1.2 matt
581 1.2 matt mii_tick(&sc->sc_mii);
582 1.2 matt callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
583 1.2 matt }
584 1.2 matt
585 1.2 matt
586 1.2 matt static int
587 1.2 matt emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
588 1.2 matt {
589 1.2 matt int s, error;
590 1.2 matt
591 1.2 matt s = splnet();
592 1.26 msaitoh switch (cmd) {
593 1.2 matt default:
594 1.2 matt error = ether_ioctl(ifp, cmd, data);
595 1.2 matt if (error == ENETRESET) {
596 1.2 matt if (ifp->if_flags & IFF_RUNNING)
597 1.2 matt emac_setaddr(ifp);
598 1.2 matt error = 0;
599 1.2 matt }
600 1.2 matt }
601 1.2 matt splx(s);
602 1.2 matt return error;
603 1.2 matt }
604 1.2 matt
605 1.2 matt static void
606 1.3 dsl emac_ifstart(struct ifnet *ifp)
607 1.2 matt {
608 1.2 matt struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
609 1.2 matt struct mbuf *m;
610 1.2 matt bus_dma_segment_t *segs;
611 1.2 matt int s, bi, err, nsegs;
612 1.2 matt
613 1.26 msaitoh s = splnet();
614 1.2 matt start:
615 1.2 matt if (emac_gctx(sc) == 0) {
616 1.2 matt /* Enable transmit-buffer-free interrupt */
617 1.2 matt EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
618 1.2 matt ifp->if_flags |= IFF_OACTIVE;
619 1.2 matt ifp->if_timer = 10;
620 1.2 matt splx(s);
621 1.2 matt return;
622 1.2 matt }
623 1.2 matt
624 1.2 matt ifp->if_timer = 0;
625 1.2 matt
626 1.2 matt IFQ_POLL(&ifp->if_snd, m);
627 1.2 matt if (m == NULL) {
628 1.2 matt splx(s);
629 1.2 matt return;
630 1.2 matt }
631 1.2 matt //more:
632 1.2 matt bi = (sc->txqi + sc->txqc) % TX_QLEN;
633 1.2 matt if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
634 1.26 msaitoh BUS_DMA_NOWAIT)) ||
635 1.2 matt sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
636 1.2 matt sc->txq[bi].m_dmamap->dm_nsegs > 1) {
637 1.2 matt /* Copy entire mbuf chain to new single */
638 1.2 matt struct mbuf *mn;
639 1.2 matt
640 1.26 msaitoh if (err == 0)
641 1.2 matt bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
642 1.2 matt
643 1.2 matt MGETHDR(mn, M_DONTWAIT, MT_DATA);
644 1.2 matt if (mn == NULL) goto stop;
645 1.2 matt if (m->m_pkthdr.len > MHLEN) {
646 1.2 matt MCLGET(mn, M_DONTWAIT);
647 1.2 matt if ((mn->m_flags & M_EXT) == 0) {
648 1.2 matt m_freem(mn);
649 1.2 matt goto stop;
650 1.2 matt }
651 1.2 matt }
652 1.2 matt m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
653 1.2 matt mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
654 1.2 matt IFQ_DEQUEUE(&ifp->if_snd, m);
655 1.2 matt m_freem(m);
656 1.2 matt m = mn;
657 1.2 matt bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
658 1.2 matt BUS_DMA_NOWAIT);
659 1.2 matt } else {
660 1.2 matt IFQ_DEQUEUE(&ifp->if_snd, m);
661 1.2 matt }
662 1.2 matt
663 1.21 msaitoh bpf_mtap(ifp, m, BPF_D_OUT);
664 1.2 matt
665 1.2 matt nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
666 1.2 matt segs = sc->txq[bi].m_dmamap->dm_segs;
667 1.2 matt if (nsegs > 1) {
668 1.2 matt panic("#### ARGH #2");
669 1.2 matt }
670 1.2 matt
671 1.2 matt sc->txq[bi].m = m;
672 1.2 matt sc->txqc++;
673 1.2 matt
674 1.2 matt DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
675 1.2 matt (unsigned)m->m_pkthdr.len));
676 1.2 matt #ifdef DIAGNOSTIC
677 1.2 matt if (sc->txqc > TX_QLEN) {
678 1.2 matt panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
679 1.2 matt }
680 1.2 matt #endif
681 1.2 matt
682 1.26 msaitoh bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
683 1.26 msaitoh sc->txq[bi].m_dmamap->dm_mapsize,
684 1.2 matt BUS_DMASYNC_PREWRITE);
685 1.2 matt
686 1.2 matt EMAC_WRITE(ETH_TAR, segs->ds_addr);
687 1.2 matt EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
688 1.2 matt if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
689 1.2 matt goto start;
690 1.2 matt stop:
691 1.2 matt
692 1.2 matt splx(s);
693 1.2 matt return;
694 1.2 matt }
695 1.2 matt
696 1.2 matt static void
697 1.3 dsl emac_ifwatchdog(struct ifnet *ifp)
698 1.2 matt {
699 1.2 matt struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
700 1.2 matt
701 1.2 matt if ((ifp->if_flags & IFF_RUNNING) == 0)
702 1.2 matt return;
703 1.27 msaitoh printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
704 1.2 matt device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
705 1.2 matt }
706 1.2 matt
707 1.2 matt static int
708 1.3 dsl emac_ifinit(struct ifnet *ifp)
709 1.2 matt {
710 1.2 matt struct emac_softc *sc = ifp->if_softc;
711 1.2 matt int s = splnet();
712 1.2 matt
713 1.2 matt callout_stop(&sc->emac_tick_ch);
714 1.2 matt
715 1.2 matt // enable interrupts
716 1.2 matt EMAC_WRITE(ETH_IDR, -1);
717 1.2 matt EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
718 1.2 matt | ETH_ISR_RBNA | ETH_ISR_ROVR);
719 1.2 matt
720 1.2 matt // enable transmitter / receiver
721 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
722 1.2 matt | ETH_CTL_CSR | ETH_CTL_MPE);
723 1.2 matt
724 1.2 matt mii_mediachg(&sc->sc_mii);
725 1.2 matt callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
726 1.27 msaitoh ifp->if_flags |= IFF_RUNNING;
727 1.2 matt splx(s);
728 1.2 matt return 0;
729 1.2 matt }
730 1.2 matt
731 1.2 matt static void
732 1.3 dsl emac_ifstop(struct ifnet *ifp, int disable)
733 1.2 matt {
734 1.13 skrll // uint32_t u;
735 1.2 matt struct emac_softc *sc = ifp->if_softc;
736 1.2 matt
737 1.2 matt #if 0
738 1.2 matt EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
739 1.2 matt EMAC_WRITE(ETH_IDR, -1); // disable interrupts
740 1.2 matt // EMAC_WRITE(ETH_RBQP, 0); // clear receive
741 1.26 msaitoh EMAC_WRITE(ETH_CFG,
742 1.26 msaitoh ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
743 1.2 matt EMAC_WRITE(ETH_TCR, 0); // send nothing
744 1.2 matt // (void)EMAC_READ(ETH_ISR);
745 1.2 matt u = EMAC_READ(ETH_TSR);
746 1.2 matt EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
747 1.2 matt | ETH_TSR_IDLE | ETH_TSR_RLE
748 1.26 msaitoh | ETH_TSR_COL | ETH_TSR_OVR)));
749 1.2 matt u = EMAC_READ(ETH_RSR);
750 1.26 msaitoh EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
751 1.2 matt #endif
752 1.2 matt callout_stop(&sc->emac_tick_ch);
753 1.2 matt
754 1.2 matt /* Down the MII. */
755 1.2 matt mii_down(&sc->sc_mii);
756 1.2 matt
757 1.2 matt ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
758 1.2 matt ifp->if_timer = 0;
759 1.2 matt sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
760 1.2 matt }
761 1.2 matt
762 1.2 matt static void
763 1.3 dsl emac_setaddr(struct ifnet *ifp)
764 1.2 matt {
765 1.2 matt struct emac_softc *sc = ifp->if_softc;
766 1.28 msaitoh struct ethercom *ec = &sc->sc_ec;
767 1.2 matt struct ether_multi *enm;
768 1.2 matt struct ether_multistep step;
769 1.13 skrll uint8_t ias[3][ETHER_ADDR_LEN];
770 1.13 skrll uint32_t h, nma = 0, hashes[2] = { 0, 0 };
771 1.13 skrll uint32_t ctl = EMAC_READ(ETH_CTL);
772 1.13 skrll uint32_t cfg = EMAC_READ(ETH_CFG);
773 1.2 matt
774 1.2 matt /* disable receiver temporarily */
775 1.2 matt EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
776 1.2 matt
777 1.2 matt cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
778 1.2 matt
779 1.2 matt if (ifp->if_flags & IFF_PROMISC) {
780 1.27 msaitoh cfg |= ETH_CFG_CAF;
781 1.2 matt } else {
782 1.2 matt cfg &= ~ETH_CFG_CAF;
783 1.2 matt }
784 1.2 matt
785 1.2 matt // ETH_CFG_BIG?
786 1.2 matt
787 1.2 matt ifp->if_flags &= ~IFF_ALLMULTI;
788 1.2 matt
789 1.29 msaitoh ETHER_LOCK(ec);
790 1.28 msaitoh ETHER_FIRST_MULTI(step, ec, enm);
791 1.2 matt while (enm != NULL) {
792 1.2 matt if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
793 1.2 matt /*
794 1.2 matt * We must listen to a range of multicast addresses.
795 1.2 matt * For now, just accept all multicasts, rather than
796 1.2 matt * trying to set only those filter bits needed to match
797 1.2 matt * the range. (At this time, the only use of address
798 1.2 matt * ranges is for IP multicast routing, for which the
799 1.2 matt * range is big enough to require all bits set.)
800 1.2 matt */
801 1.2 matt cfg |= ETH_CFG_CAF;
802 1.2 matt hashes[0] = 0xffffffffUL;
803 1.2 matt hashes[1] = 0xffffffffUL;
804 1.2 matt ifp->if_flags |= IFF_ALLMULTI;
805 1.2 matt nma = 0;
806 1.2 matt break;
807 1.2 matt }
808 1.2 matt
809 1.2 matt if (nma < 3) {
810 1.2 matt /* We can program 3 perfect address filters for mcast */
811 1.2 matt memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
812 1.2 matt } else {
813 1.2 matt /*
814 1.2 matt * XXX: Datasheet is not very clear here, I'm not sure
815 1.2 matt * if I'm doing this right. --joff
816 1.2 matt */
817 1.2 matt h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
818 1.2 matt
819 1.2 matt /* Just want the 6 most-significant bits. */
820 1.2 matt h = h >> 26;
821 1.2 matt
822 1.2 matt hashes[ h / 32 ] |= (1 << (h % 32));
823 1.2 matt cfg |= ETH_CFG_MTI;
824 1.2 matt }
825 1.2 matt ETHER_NEXT_MULTI(step, enm);
826 1.2 matt nma++;
827 1.2 matt }
828 1.29 msaitoh ETHER_UNLOCK(ec);
829 1.2 matt
830 1.2 matt // program...
831 1.2 matt DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
832 1.2 matt sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
833 1.2 matt sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
834 1.2 matt EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
835 1.2 matt | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
836 1.2 matt | (sc->sc_enaddr[0]));
837 1.2 matt EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
838 1.2 matt | (sc->sc_enaddr[4]));
839 1.2 matt if (nma > 1) {
840 1.28 msaitoh DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n",
841 1.28 msaitoh __FUNCTION__,
842 1.28 msaitoh ias[0][0], ias[0][1], ias[0][2],
843 1.28 msaitoh ias[0][3], ias[0][4], ias[0][5]));
844 1.2 matt EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
845 1.2 matt | (ias[0][2] << 16) | (ias[0][1] << 8)
846 1.2 matt | (ias[0][0]));
847 1.2 matt EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
848 1.2 matt | (ias[0][5]));
849 1.2 matt }
850 1.2 matt if (nma > 2) {
851 1.28 msaitoh DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n",
852 1.28 msaitoh __FUNCTION__,
853 1.28 msaitoh ias[1][0], ias[1][1], ias[1][2],
854 1.28 msaitoh ias[1][3], ias[1][4], ias[1][5]));
855 1.2 matt EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
856 1.2 matt | (ias[1][2] << 16) | (ias[1][1] << 8)
857 1.2 matt | (ias[1][0]));
858 1.2 matt EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
859 1.2 matt | (ias[1][5]));
860 1.2 matt }
861 1.2 matt if (nma > 3) {
862 1.28 msaitoh DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n",
863 1.28 msaitoh __FUNCTION__,
864 1.28 msaitoh ias[2][0], ias[2][1], ias[2][2],
865 1.28 msaitoh ias[2][3], ias[2][4], ias[2][5]));
866 1.2 matt EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
867 1.2 matt | (ias[2][2] << 16) | (ias[2][1] << 8)
868 1.2 matt | (ias[2][0]));
869 1.2 matt EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
870 1.2 matt | (ias[2][5]));
871 1.2 matt }
872 1.2 matt EMAC_WRITE(ETH_HSH, hashes[0]);
873 1.2 matt EMAC_WRITE(ETH_HSL, hashes[1]);
874 1.2 matt EMAC_WRITE(ETH_CFG, cfg);
875 1.2 matt EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
876 1.2 matt }
877