at91emac.c revision 1.23 1 /* $Id: at91emac.c,v 1.23 2019/01/22 03:42:24 msaitoh Exp $ */
2 /* $NetBSD: at91emac.c,v 1.23 2019/01/22 03:42:24 msaitoh Exp $ */
3
4 /*
5 * Copyright (c) 2007 Embedtronics Oy
6 * All rights reserved.
7 *
8 * Based on arch/arm/ep93xx/epe.c
9 *
10 * Copyright (c) 2004 Jesse Off
11 * All rights reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.23 2019/01/22 03:42:24 msaitoh Exp $");
37
38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/ioctl.h>
42 #include <sys/kernel.h>
43 #include <sys/proc.h>
44 #include <sys/malloc.h>
45 #include <sys/time.h>
46 #include <sys/device.h>
47 #include <uvm/uvm_extern.h>
48
49 #include <sys/bus.h>
50 #include <machine/intr.h>
51
52 #include <arm/cpufunc.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_types.h>
57 #include <net/if_media.h>
58 #include <net/if_ether.h>
59 #include <net/bpf.h>
60
61 #include <dev/mii/mii.h>
62 #include <dev/mii/miivar.h>
63
64 #ifdef INET
65 #include <netinet/in.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/in_var.h>
68 #include <netinet/ip.h>
69 #include <netinet/if_inarp.h>
70 #endif
71
72 #include <arm/at91/at91var.h>
73 #include <arm/at91/at91emacreg.h>
74 #include <arm/at91/at91emacvar.h>
75
76 #define DEFAULT_MDCDIV 32
77
78 #ifndef EMAC_FAST
79 #define EMAC_FAST
80 #endif
81
82 #ifndef EMAC_FAST
83 #define EMAC_READ(x) \
84 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
85 #define EMAC_WRITE(x, y) \
86 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
87 #else
88 #define EMAC_READ(x) ETHREG(x)
89 #define EMAC_WRITE(x, y) ETHREG(x) = (y)
90 #endif /* ! EMAC_FAST */
91
92 static int emac_match(device_t, cfdata_t, void *);
93 static void emac_attach(device_t, device_t, void *);
94 static void emac_init(struct emac_softc *);
95 static int emac_intr(void* arg);
96 static int emac_gctx(struct emac_softc *);
97 static int emac_mediachange(struct ifnet *);
98 static void emac_mediastatus(struct ifnet *, struct ifmediareq *);
99 int emac_mii_readreg (device_t, int, int, uint16_t *);
100 int emac_mii_writereg (device_t, int, int, uint16_t);
101 void emac_statchg (struct ifnet *);
102 void emac_tick (void *);
103 static int emac_ifioctl (struct ifnet *, u_long, void *);
104 static void emac_ifstart (struct ifnet *);
105 static void emac_ifwatchdog (struct ifnet *);
106 static int emac_ifinit (struct ifnet *);
107 static void emac_ifstop (struct ifnet *, int);
108 static void emac_setaddr (struct ifnet *);
109
110 CFATTACH_DECL_NEW(at91emac, sizeof(struct emac_softc),
111 emac_match, emac_attach, NULL, NULL);
112
113 #ifdef EMAC_DEBUG
114 int emac_debug = EMAC_DEBUG;
115 #define DPRINTFN(n,fmt) if (emac_debug >= (n)) printf fmt
116 #else
117 #define DPRINTFN(n,fmt)
118 #endif
119
120 static int
121 emac_match(device_t parent, cfdata_t match, void *aux)
122 {
123 if (strcmp(match->cf_name, "at91emac") == 0)
124 return 2;
125 return 0;
126 }
127
128 static void
129 emac_attach(device_t parent, device_t self, void *aux)
130 {
131 struct emac_softc *sc = device_private(self);
132 struct at91bus_attach_args *sa = aux;
133 prop_data_t enaddr;
134 uint32_t u;
135
136 printf("\n");
137 sc->sc_dev = self;
138 sc->sc_iot = sa->sa_iot;
139 sc->sc_pid = sa->sa_pid;
140 sc->sc_dmat = sa->sa_dmat;
141
142 if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
143 panic("%s: Cannot map registers", device_xname(self));
144
145 /* enable peripheral clock */
146 at91_peripheral_clock(sc->sc_pid, 1);
147
148 /* configure emac: */
149 EMAC_WRITE(ETH_CTL, 0); // disable everything
150 EMAC_WRITE(ETH_IDR, -1); // disable interrupts
151 EMAC_WRITE(ETH_RBQP, 0); // clear receive
152 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
153 EMAC_WRITE(ETH_TCR, 0); // send nothing
154 //(void)EMAC_READ(ETH_ISR);
155 u = EMAC_READ(ETH_TSR);
156 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
157 | ETH_TSR_IDLE | ETH_TSR_RLE
158 | ETH_TSR_COL|ETH_TSR_OVR)));
159 u = EMAC_READ(ETH_RSR);
160 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
161
162 /* Fetch the Ethernet address from property if set. */
163 enaddr = prop_dictionary_get(device_properties(self), "mac-address");
164
165 if (enaddr != NULL) {
166 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
167 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
168 memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
169 ETHER_ADDR_LEN);
170 } else {
171 static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
172 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
173 };
174 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
175 }
176
177 at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr, sc);
178 emac_init(sc);
179 }
180
181 static int
182 emac_gctx(struct emac_softc *sc)
183 {
184 struct ifnet * ifp = &sc->sc_ec.ec_if;
185 uint32_t tsr;
186
187 tsr = EMAC_READ(ETH_TSR);
188 if (!(tsr & ETH_TSR_BNQ)) {
189 // no space left
190 return 0;
191 }
192
193 // free sent frames
194 while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
195 int i = sc->txqi % TX_QLEN;
196 bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
197 sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
198 bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
199 m_freem(sc->txq[i].m);
200 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n", __FUNCTION__, i, sc->txq[i].m, sc->txqc));
201 sc->txq[i].m = NULL;
202 sc->txqi = (i + 1) % TX_QLEN;
203 sc->txqc--;
204 }
205
206 // mark we're free
207 if (ifp->if_flags & IFF_OACTIVE) {
208 ifp->if_flags &= ~IFF_OACTIVE;
209 /* Disable transmit-buffer-free interrupt */
210 /*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
211 }
212
213 return 1;
214 }
215
216 static int
217 emac_intr(void *arg)
218 {
219 struct emac_softc *sc = (struct emac_softc *)arg;
220 struct ifnet * ifp = &sc->sc_ec.ec_if;
221 uint32_t imr, isr, ctl;
222 int bi;
223
224 imr = ~EMAC_READ(ETH_IMR);
225 if (!(imr & (ETH_ISR_RCOM|ETH_ISR_TBRE|ETH_ISR_TIDLE|ETH_ISR_RBNA|ETH_ISR_ROVR))) {
226 // interrupt not enabled, can't be us
227 return 0;
228 }
229
230 isr = EMAC_READ(ETH_ISR) & imr;
231 #ifdef EMAC_DEBUG
232 uint32_t rsr =
233 #endif
234 EMAC_READ(ETH_RSR); // get receive status register
235
236 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
237
238 if (isr & ETH_ISR_RBNA) { // out of receive buffers
239 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
240 ctl = EMAC_READ(ETH_CTL); // get current control register value
241 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
242 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
243 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
244 ifp->if_ierrors++;
245 ifp->if_ipackets++;
246 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
247 }
248 if (isr & ETH_ISR_ROVR) {
249 EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
250 ifp->if_ierrors++;
251 ifp->if_ipackets++;
252 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
253 }
254
255 if (isr & ETH_ISR_RCOM) { // packet has been received!
256 uint32_t nfo;
257 // @@@ if memory is NOT coherent, then we're in trouble @@@@
258 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
259 // printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
260 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
261 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
262 int fl;
263 struct mbuf *m;
264
265 nfo = sc->RDSC[bi].Info;
266 fl = (nfo & ETH_RDSC_I_LEN) - 4;
267 DPRINTFN(2,("## nfo=0x%08X\n", nfo));
268
269 MGETHDR(m, M_DONTWAIT, MT_DATA);
270 if (m != NULL) MCLGET(m, M_DONTWAIT);
271 if (m != NULL && (m->m_flags & M_EXT)) {
272 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
273 MCLBYTES, BUS_DMASYNC_POSTREAD);
274 bus_dmamap_unload(sc->sc_dmat,
275 sc->rxq[bi].m_dmamap);
276 m_set_rcvif(sc->rxq[bi].m, ifp);
277 sc->rxq[bi].m->m_pkthdr.len =
278 sc->rxq[bi].m->m_len = fl;
279 DPRINTFN(2,("received %u bytes packet\n", fl));
280 if_percpuq_enqueue(ifp->if_percpuq, sc->rxq[bi].m);
281 if (mtod(m, intptr_t) & 3) {
282 m_adj(m, mtod(m, intptr_t) & 3);
283 }
284 sc->rxq[bi].m = m;
285 bus_dmamap_load(sc->sc_dmat,
286 sc->rxq[bi].m_dmamap,
287 m->m_ext.ext_buf, MCLBYTES,
288 NULL, BUS_DMA_NOWAIT);
289 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
290 MCLBYTES, BUS_DMASYNC_PREREAD);
291 sc->RDSC[bi].Info = 0;
292 sc->RDSC[bi].Addr =
293 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
294 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
295 } else {
296 /* Drop packets until we can get replacement
297 * empty mbufs for the RXDQ.
298 */
299 if (m != NULL) {
300 m_freem(m);
301 }
302 ifp->if_ierrors++;
303 }
304 sc->rxqi++;
305 }
306 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
307 }
308
309 if (emac_gctx(sc) > 0)
310 if_schedule_deferred_start(ifp);
311 #if 0 // reloop
312 irq = EMAC_READ(IntStsC);
313 if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
314 goto begin;
315 #endif
316
317 return (1);
318 }
319
320
321 static void
322 emac_init(struct emac_softc *sc)
323 {
324 bus_dma_segment_t segs;
325 void *addr;
326 int rsegs, err, i;
327 struct ifnet * ifp = &sc->sc_ec.ec_if;
328 uint32_t u;
329 #if 0
330 int mdcdiv = DEFAULT_MDCDIV;
331 #endif
332
333 callout_init(&sc->emac_tick_ch, 0);
334
335 // ok...
336 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
337 EMAC_WRITE(ETH_IDR, -1); // disable interrupts
338 EMAC_WRITE(ETH_RBQP, 0); // clear receive
339 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
340 EMAC_WRITE(ETH_TCR, 0); // send nothing
341 // (void)EMAC_READ(ETH_ISR);
342 u = EMAC_READ(ETH_TSR);
343 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
344 | ETH_TSR_IDLE | ETH_TSR_RLE
345 | ETH_TSR_COL|ETH_TSR_OVR)));
346 u = EMAC_READ(ETH_RSR);
347 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
348
349 /* configure EMAC */
350 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
351 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
352 #if 0
353 if (device_cfdata(sc->sc_dev)->cf_flags)
354 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
355 #endif
356 /* set ethernet address */
357 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
358 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
359 | (sc->sc_enaddr[0]));
360 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
361 | (sc->sc_enaddr[4]));
362 EMAC_WRITE(ETH_SA2L, 0);
363 EMAC_WRITE(ETH_SA2H, 0);
364 EMAC_WRITE(ETH_SA3L, 0);
365 EMAC_WRITE(ETH_SA3H, 0);
366 EMAC_WRITE(ETH_SA4L, 0);
367 EMAC_WRITE(ETH_SA4H, 0);
368
369 /* Allocate a page of memory for receive queue descriptors */
370 sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
371 sc->rbqlen *= PAGE_SIZE;
372 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
373
374 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
375 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
376 &segs, 1, &rsegs, BUS_DMA_WAITOK);
377 if (err == 0) {
378 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
379 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
380 &sc->rbqpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
381 }
382 if (err == 0) {
383 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
384 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
385 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
386 &sc->rbqpage_dmamap);
387 }
388 if (err == 0) {
389 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
390 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
391 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
392 }
393 if (err != 0) {
394 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
395 }
396 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
397
398 memset(sc->rbqpage, 0, sc->rbqlen);
399
400 /* Set up pointers to start of each queue in kernel addr space.
401 * Each descriptor queue or status queue entry uses 2 words
402 */
403 sc->RDSC = (void*)sc->rbqpage;
404
405 /* Populate the RXQ with mbufs */
406 sc->rxqi = 0;
407 for(i = 0; i < RX_QLEN; i++) {
408 struct mbuf *m;
409
410 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
411 BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
412 if (err) {
413 panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
414 }
415 MGETHDR(m, M_WAIT, MT_DATA);
416 MCLGET(m, M_WAIT);
417 sc->rxq[i].m = m;
418 if (mtod(m, intptr_t) & 3) {
419 m_adj(m, mtod(m, intptr_t) & 3);
420 }
421 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
422 m->m_ext.ext_buf, MCLBYTES, NULL,
423 BUS_DMA_WAITOK);
424 if (err) {
425 panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
426 }
427 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
428 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
429 sc->RDSC[i].Info = 0;
430 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
431 MCLBYTES, BUS_DMASYNC_PREREAD);
432 }
433
434 /* prepare transmit queue */
435 for (i = 0; i < TX_QLEN; i++) {
436 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
437 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
438 &sc->txq[i].m_dmamap);
439 if (err)
440 panic("ARGH #1");
441 sc->txq[i].m = NULL;
442 }
443
444 /* Program each queue's start addr, cur addr, and len registers
445 * with the physical addresses.
446 */
447 bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
448 BUS_DMASYNC_PREREAD);
449 addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
450 EMAC_WRITE(ETH_RBQP, (uint32_t)addr);
451
452 /* Divide HCLK by 32 for MDC clock */
453 sc->sc_mii.mii_ifp = ifp;
454 sc->sc_mii.mii_readreg = emac_mii_readreg;
455 sc->sc_mii.mii_writereg = emac_mii_writereg;
456 sc->sc_mii.mii_statchg = emac_statchg;
457 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, emac_mediachange,
458 emac_mediastatus);
459 mii_attach((device_t )sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
460 MII_OFFSET_ANY, 0);
461 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
462
463 // enable / disable interrupts
464
465 #if 0
466 // enable / disable interrupts
467 EMAC_WRITE(ETH_IDR, -1);
468 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
469 | ETH_ISR_RBNA | ETH_ISR_ROVR);
470 // (void)EMAC_READ(ETH_ISR); // why
471
472 // enable transmitter / receiver
473 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
474 | ETH_CTL_CSR | ETH_CTL_MPE);
475 #endif
476 /*
477 * We can support 802.1Q VLAN-sized frames.
478 */
479 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
480
481 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
482 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
483 ifp->if_ioctl = emac_ifioctl;
484 ifp->if_start = emac_ifstart;
485 ifp->if_watchdog = emac_ifwatchdog;
486 ifp->if_init = emac_ifinit;
487 ifp->if_stop = emac_ifstop;
488 ifp->if_timer = 0;
489 ifp->if_softc = sc;
490 IFQ_SET_READY(&ifp->if_snd);
491 if_attach(ifp);
492 if_deferred_start_init(ifp, NULL);
493 ether_ifattach(ifp, (sc)->sc_enaddr);
494 }
495
496 static int
497 emac_mediachange(struct ifnet *ifp)
498 {
499 if (ifp->if_flags & IFF_UP)
500 emac_ifinit(ifp);
501 return (0);
502 }
503
504 static void
505 emac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
506 {
507 struct emac_softc *sc = ifp->if_softc;
508
509 mii_pollstat(&sc->sc_mii);
510 ifmr->ifm_active = sc->sc_mii.mii_media_active;
511 ifmr->ifm_status = sc->sc_mii.mii_media_status;
512 }
513
514
515 int
516 emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
517 {
518 #ifndef EMAC_FAST
519 struct emac_softc *sc = device_private(self);
520 #endif
521
522 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
523 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
524 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
525 | ETH_MAN_CODE_IEEE802_3));
526 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
527 *val = EMAC_READ(ETH_MAN) & ETH_MAN_DATA;
528
529 return 0;
530 }
531
532 int
533 emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
534 {
535 #ifndef EMAC_FAST
536 struct emac_softc *sc = device_private(self);
537 #endif
538
539 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
540 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
541 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
542 | ETH_MAN_CODE_IEEE802_3
543 | (val & ETH_MAN_DATA)));
544 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
545
546 return 0;
547 }
548
549
550 void
551 emac_statchg(struct ifnet *ifp)
552 {
553 struct emac_softc *sc = ifp->if_softc;
554 uint32_t reg;
555
556 /*
557 * We must keep the MAC and the PHY in sync as
558 * to the status of full-duplex!
559 */
560 reg = EMAC_READ(ETH_CFG);
561 if (sc->sc_mii.mii_media_active & IFM_FDX)
562 reg |= ETH_CFG_FD;
563 else
564 reg &= ~ETH_CFG_FD;
565 EMAC_WRITE(ETH_CFG, reg);
566 }
567
568 void
569 emac_tick(void *arg)
570 {
571 struct emac_softc* sc = (struct emac_softc *)arg;
572 struct ifnet * ifp = &sc->sc_ec.ec_if;
573 int s;
574 uint32_t misses;
575
576 ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL);
577 /* These misses are ok, they will happen if the RAM/CPU can't keep up */
578 misses = EMAC_READ(ETH_DRFC);
579 if (misses > 0)
580 printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
581
582 s = splnet();
583 if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
584 emac_ifstart(ifp);
585 }
586 splx(s);
587
588 mii_tick(&sc->sc_mii);
589 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
590 }
591
592
593 static int
594 emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
595 {
596 struct emac_softc *sc = ifp->if_softc;
597 struct ifreq *ifr = (struct ifreq *)data;
598 int s, error;
599
600 s = splnet();
601 switch(cmd) {
602 case SIOCSIFMEDIA:
603 case SIOCGIFMEDIA:
604 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
605 break;
606 default:
607 error = ether_ioctl(ifp, cmd, data);
608 if (error == ENETRESET) {
609 if (ifp->if_flags & IFF_RUNNING)
610 emac_setaddr(ifp);
611 error = 0;
612 }
613 }
614 splx(s);
615 return error;
616 }
617
618 static void
619 emac_ifstart(struct ifnet *ifp)
620 {
621 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
622 struct mbuf *m;
623 bus_dma_segment_t *segs;
624 int s, bi, err, nsegs;
625
626 s = splnet();
627 start:
628 if (emac_gctx(sc) == 0) {
629 /* Enable transmit-buffer-free interrupt */
630 EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
631 ifp->if_flags |= IFF_OACTIVE;
632 ifp->if_timer = 10;
633 splx(s);
634 return;
635 }
636
637 ifp->if_timer = 0;
638
639 IFQ_POLL(&ifp->if_snd, m);
640 if (m == NULL) {
641 splx(s);
642 return;
643 }
644 //more:
645 bi = (sc->txqi + sc->txqc) % TX_QLEN;
646 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
647 BUS_DMA_NOWAIT)) ||
648 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
649 sc->txq[bi].m_dmamap->dm_nsegs > 1) {
650 /* Copy entire mbuf chain to new single */
651 struct mbuf *mn;
652
653 if (err == 0)
654 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
655
656 MGETHDR(mn, M_DONTWAIT, MT_DATA);
657 if (mn == NULL) goto stop;
658 if (m->m_pkthdr.len > MHLEN) {
659 MCLGET(mn, M_DONTWAIT);
660 if ((mn->m_flags & M_EXT) == 0) {
661 m_freem(mn);
662 goto stop;
663 }
664 }
665 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
666 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
667 IFQ_DEQUEUE(&ifp->if_snd, m);
668 m_freem(m);
669 m = mn;
670 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
671 BUS_DMA_NOWAIT);
672 } else {
673 IFQ_DEQUEUE(&ifp->if_snd, m);
674 }
675
676 bpf_mtap(ifp, m, BPF_D_OUT);
677
678 nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
679 segs = sc->txq[bi].m_dmamap->dm_segs;
680 if (nsegs > 1) {
681 panic("#### ARGH #2");
682 }
683
684 sc->txq[bi].m = m;
685 sc->txqc++;
686
687 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
688 (unsigned)m->m_pkthdr.len));
689 #ifdef DIAGNOSTIC
690 if (sc->txqc > TX_QLEN) {
691 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
692 }
693 #endif
694
695 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
696 sc->txq[bi].m_dmamap->dm_mapsize,
697 BUS_DMASYNC_PREWRITE);
698
699 EMAC_WRITE(ETH_TAR, segs->ds_addr);
700 EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
701 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
702 goto start;
703 stop:
704
705 splx(s);
706 return;
707 }
708
709 static void
710 emac_ifwatchdog(struct ifnet *ifp)
711 {
712 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
713
714 if ((ifp->if_flags & IFF_RUNNING) == 0)
715 return;
716 printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
717 device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
718 }
719
720 static int
721 emac_ifinit(struct ifnet *ifp)
722 {
723 struct emac_softc *sc = ifp->if_softc;
724 int s = splnet();
725
726 callout_stop(&sc->emac_tick_ch);
727
728 // enable interrupts
729 EMAC_WRITE(ETH_IDR, -1);
730 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
731 | ETH_ISR_RBNA | ETH_ISR_ROVR);
732
733 // enable transmitter / receiver
734 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
735 | ETH_CTL_CSR | ETH_CTL_MPE);
736
737 mii_mediachg(&sc->sc_mii);
738 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
739 ifp->if_flags |= IFF_RUNNING;
740 splx(s);
741 return 0;
742 }
743
744 static void
745 emac_ifstop(struct ifnet *ifp, int disable)
746 {
747 // uint32_t u;
748 struct emac_softc *sc = ifp->if_softc;
749
750 #if 0
751 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
752 EMAC_WRITE(ETH_IDR, -1); // disable interrupts
753 // EMAC_WRITE(ETH_RBQP, 0); // clear receive
754 EMAC_WRITE(ETH_CFG, ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
755 EMAC_WRITE(ETH_TCR, 0); // send nothing
756 // (void)EMAC_READ(ETH_ISR);
757 u = EMAC_READ(ETH_TSR);
758 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
759 | ETH_TSR_IDLE | ETH_TSR_RLE
760 | ETH_TSR_COL|ETH_TSR_OVR)));
761 u = EMAC_READ(ETH_RSR);
762 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
763 #endif
764 callout_stop(&sc->emac_tick_ch);
765
766 /* Down the MII. */
767 mii_down(&sc->sc_mii);
768
769 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
770 ifp->if_timer = 0;
771 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
772 }
773
774 static void
775 emac_setaddr(struct ifnet *ifp)
776 {
777 struct emac_softc *sc = ifp->if_softc;
778 struct ethercom *ac = &sc->sc_ec;
779 struct ether_multi *enm;
780 struct ether_multistep step;
781 uint8_t ias[3][ETHER_ADDR_LEN];
782 uint32_t h, nma = 0, hashes[2] = { 0, 0 };
783 uint32_t ctl = EMAC_READ(ETH_CTL);
784 uint32_t cfg = EMAC_READ(ETH_CFG);
785
786 /* disable receiver temporarily */
787 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
788
789 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
790
791 if (ifp->if_flags & IFF_PROMISC) {
792 cfg |= ETH_CFG_CAF;
793 } else {
794 cfg &= ~ETH_CFG_CAF;
795 }
796
797 // ETH_CFG_BIG?
798
799 ifp->if_flags &= ~IFF_ALLMULTI;
800
801 ETHER_FIRST_MULTI(step, ac, enm);
802 while (enm != NULL) {
803 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
804 /*
805 * We must listen to a range of multicast addresses.
806 * For now, just accept all multicasts, rather than
807 * trying to set only those filter bits needed to match
808 * the range. (At this time, the only use of address
809 * ranges is for IP multicast routing, for which the
810 * range is big enough to require all bits set.)
811 */
812 cfg |= ETH_CFG_CAF;
813 hashes[0] = 0xffffffffUL;
814 hashes[1] = 0xffffffffUL;
815 ifp->if_flags |= IFF_ALLMULTI;
816 nma = 0;
817 break;
818 }
819
820 if (nma < 3) {
821 /* We can program 3 perfect address filters for mcast */
822 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
823 } else {
824 /*
825 * XXX: Datasheet is not very clear here, I'm not sure
826 * if I'm doing this right. --joff
827 */
828 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
829
830 /* Just want the 6 most-significant bits. */
831 h = h >> 26;
832
833 hashes[ h / 32 ] |= (1 << (h % 32));
834 cfg |= ETH_CFG_MTI;
835 }
836 ETHER_NEXT_MULTI(step, enm);
837 nma++;
838 }
839
840 // program...
841 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
842 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
843 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
844 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
845 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
846 | (sc->sc_enaddr[0]));
847 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
848 | (sc->sc_enaddr[4]));
849 if (nma > 1) {
850 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
851 ias[0][0], ias[0][1], ias[0][2],
852 ias[0][3], ias[0][4], ias[0][5]));
853 EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
854 | (ias[0][2] << 16) | (ias[0][1] << 8)
855 | (ias[0][0]));
856 EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
857 | (ias[0][5]));
858 }
859 if (nma > 2) {
860 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
861 ias[1][0], ias[1][1], ias[1][2],
862 ias[1][3], ias[1][4], ias[1][5]));
863 EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
864 | (ias[1][2] << 16) | (ias[1][1] << 8)
865 | (ias[1][0]));
866 EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
867 | (ias[1][5]));
868 }
869 if (nma > 3) {
870 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
871 ias[2][0], ias[2][1], ias[2][2],
872 ias[2][3], ias[2][4], ias[2][5]));
873 EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
874 | (ias[2][2] << 16) | (ias[2][1] << 8)
875 | (ias[2][0]));
876 EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
877 | (ias[2][5]));
878 }
879 EMAC_WRITE(ETH_HSH, hashes[0]);
880 EMAC_WRITE(ETH_HSL, hashes[1]);
881 EMAC_WRITE(ETH_CFG, cfg);
882 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
883 }
884