at91emac.c revision 1.29 1 /* $NetBSD: at91emac.c,v 1.29 2019/05/28 07:41:46 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2007 Embedtronics Oy
5 * All rights reserved.
6 *
7 * Based on arch/arm/ep93xx/epe.c
8 *
9 * Copyright (c) 2004 Jesse Off
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.29 2019/05/28 07:41:46 msaitoh Exp $");
36
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/ioctl.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/malloc.h>
44 #include <sys/time.h>
45 #include <sys/device.h>
46 #include <uvm/uvm_extern.h>
47
48 #include <sys/bus.h>
49 #include <machine/intr.h>
50
51 #include <arm/cpufunc.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58 #include <net/bpf.h>
59
60 #include <dev/mii/mii.h>
61 #include <dev/mii/miivar.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_inarp.h>
69 #endif
70
71 #include <arm/at91/at91var.h>
72 #include <arm/at91/at91emacreg.h>
73 #include <arm/at91/at91emacvar.h>
74
75 #define DEFAULT_MDCDIV 32
76
77 #ifndef EMAC_FAST
78 #define EMAC_FAST
79 #endif
80
81 #ifndef EMAC_FAST
82 #define EMAC_READ(x) \
83 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
84 #define EMAC_WRITE(x, y) \
85 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
86 #else
87 #define EMAC_READ(x) ETHREG(x)
88 #define EMAC_WRITE(x, y) ETHREG(x) = (y)
89 #endif /* ! EMAC_FAST */
90
91 static int emac_match(device_t, cfdata_t, void *);
92 static void emac_attach(device_t, device_t, void *);
93 static void emac_init(struct emac_softc *);
94 static int emac_intr(void* arg);
95 static int emac_gctx(struct emac_softc *);
96 static int emac_mediachange(struct ifnet *);
97 static void emac_mediastatus(struct ifnet *, struct ifmediareq *);
98 int emac_mii_readreg (device_t, int, int, uint16_t *);
99 int emac_mii_writereg (device_t, int, int, uint16_t);
100 void emac_statchg (struct ifnet *);
101 void emac_tick (void *);
102 static int emac_ifioctl (struct ifnet *, u_long, void *);
103 static void emac_ifstart (struct ifnet *);
104 static void emac_ifwatchdog (struct ifnet *);
105 static int emac_ifinit (struct ifnet *);
106 static void emac_ifstop (struct ifnet *, int);
107 static void emac_setaddr (struct ifnet *);
108
109 CFATTACH_DECL_NEW(at91emac, sizeof(struct emac_softc),
110 emac_match, emac_attach, NULL, NULL);
111
112 #ifdef EMAC_DEBUG
113 int emac_debug = EMAC_DEBUG;
114 #define DPRINTFN(n, fmt) if (emac_debug >= (n)) printf fmt
115 #else
116 #define DPRINTFN(n, fmt)
117 #endif
118
119 static int
120 emac_match(device_t parent, cfdata_t match, void *aux)
121 {
122 if (strcmp(match->cf_name, "at91emac") == 0)
123 return 2;
124 return 0;
125 }
126
127 static void
128 emac_attach(device_t parent, device_t self, void *aux)
129 {
130 struct emac_softc *sc = device_private(self);
131 struct at91bus_attach_args *sa = aux;
132 prop_data_t enaddr;
133 uint32_t u;
134
135 printf("\n");
136 sc->sc_dev = self;
137 sc->sc_iot = sa->sa_iot;
138 sc->sc_pid = sa->sa_pid;
139 sc->sc_dmat = sa->sa_dmat;
140
141 if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
142 panic("%s: Cannot map registers", device_xname(self));
143
144 /* enable peripheral clock */
145 at91_peripheral_clock(sc->sc_pid, 1);
146
147 /* configure emac: */
148 EMAC_WRITE(ETH_CTL, 0); // disable everything
149 EMAC_WRITE(ETH_IDR, -1); // disable interrupts
150 EMAC_WRITE(ETH_RBQP, 0); // clear receive
151 EMAC_WRITE(ETH_CFG,
152 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
153 EMAC_WRITE(ETH_TCR, 0); // send nothing
154 //(void)EMAC_READ(ETH_ISR);
155 u = EMAC_READ(ETH_TSR);
156 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
157 | ETH_TSR_IDLE | ETH_TSR_RLE
158 | ETH_TSR_COL | ETH_TSR_OVR)));
159 u = EMAC_READ(ETH_RSR);
160 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
161
162 /* Fetch the Ethernet address from property if set. */
163 enaddr = prop_dictionary_get(device_properties(self), "mac-address");
164
165 if (enaddr != NULL) {
166 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
167 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
168 memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
169 ETHER_ADDR_LEN);
170 } else {
171 static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
172 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
173 };
174 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
175 }
176
177 at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr,
178 sc);
179 emac_init(sc);
180 }
181
182 static int
183 emac_gctx(struct emac_softc *sc)
184 {
185 struct ifnet * ifp = &sc->sc_ec.ec_if;
186 uint32_t tsr;
187
188 tsr = EMAC_READ(ETH_TSR);
189 if (!(tsr & ETH_TSR_BNQ)) {
190 // no space left
191 return 0;
192 }
193
194 // free sent frames
195 while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
196 int i = sc->txqi % TX_QLEN;
197 bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
198 sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
199 bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
200 m_freem(sc->txq[i].m);
201 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
202 __FUNCTION__, i, sc->txq[i].m, sc->txqc));
203 sc->txq[i].m = NULL;
204 sc->txqi = (i + 1) % TX_QLEN;
205 sc->txqc--;
206 }
207
208 // mark we're free
209 if (ifp->if_flags & IFF_OACTIVE) {
210 ifp->if_flags &= ~IFF_OACTIVE;
211 /* Disable transmit-buffer-free interrupt */
212 /*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
213 }
214
215 return 1;
216 }
217
218 static int
219 emac_intr(void *arg)
220 {
221 struct emac_softc *sc = (struct emac_softc *)arg;
222 struct ifnet * ifp = &sc->sc_ec.ec_if;
223 uint32_t imr, isr, ctl;
224 int bi;
225
226 imr = ~EMAC_READ(ETH_IMR);
227 if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
228 | ETH_ISR_RBNA | ETH_ISR_ROVR))) {
229 // interrupt not enabled, can't be us
230 return 0;
231 }
232
233 isr = EMAC_READ(ETH_ISR) & imr;
234 #ifdef EMAC_DEBUG
235 uint32_t rsr =
236 #endif
237 EMAC_READ(ETH_RSR); // get receive status register
238
239 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__,
240 isr, rsr, imr));
241
242 if (isr & ETH_ISR_RBNA) { // out of receive buffers
243 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
244 ctl = EMAC_READ(ETH_CTL); // get current control register value
245 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
246 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
247 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
248 ifp->if_ierrors++;
249 ifp->if_ipackets++;
250 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
251 }
252 if (isr & ETH_ISR_ROVR) {
253 EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
254 ifp->if_ierrors++;
255 ifp->if_ipackets++;
256 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
257 }
258
259 if (isr & ETH_ISR_RCOM) { // packet has been received!
260 uint32_t nfo;
261 // @@@ if memory is NOT coherent, then we're in trouble @@@@
262 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
263 // printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
264 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN,
265 sc->RDSC[sc->rxqi % RX_QLEN].Info));
266 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
267 int fl;
268 struct mbuf *m;
269
270 nfo = sc->RDSC[bi].Info;
271 fl = (nfo & ETH_RDSC_I_LEN) - 4;
272 DPRINTFN(2,("## nfo=0x%08X\n", nfo));
273
274 MGETHDR(m, M_DONTWAIT, MT_DATA);
275 if (m != NULL) MCLGET(m, M_DONTWAIT);
276 if (m != NULL && (m->m_flags & M_EXT)) {
277 bus_dmamap_sync(sc->sc_dmat,
278 sc->rxq[bi].m_dmamap, 0,
279 MCLBYTES, BUS_DMASYNC_POSTREAD);
280 bus_dmamap_unload(sc->sc_dmat,
281 sc->rxq[bi].m_dmamap);
282 m_set_rcvif(sc->rxq[bi].m, ifp);
283 sc->rxq[bi].m->m_pkthdr.len =
284 sc->rxq[bi].m->m_len = fl;
285 DPRINTFN(2,("received %u bytes packet\n", fl));
286 if_percpuq_enqueue(ifp->if_percpuq, sc->rxq[bi].m);
287 if (mtod(m, intptr_t) & 3) {
288 m_adj(m, mtod(m, intptr_t) & 3);
289 }
290 sc->rxq[bi].m = m;
291 bus_dmamap_load(sc->sc_dmat,
292 sc->rxq[bi].m_dmamap,
293 m->m_ext.ext_buf, MCLBYTES,
294 NULL, BUS_DMA_NOWAIT);
295 bus_dmamap_sync(sc->sc_dmat,
296 sc->rxq[bi].m_dmamap, 0,
297 MCLBYTES, BUS_DMASYNC_PREREAD);
298 sc->RDSC[bi].Info = 0;
299 sc->RDSC[bi].Addr =
300 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
301 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
302 } else {
303 /* Drop packets until we can get replacement
304 * empty mbufs for the RXDQ.
305 */
306 if (m != NULL) {
307 m_freem(m);
308 }
309 ifp->if_ierrors++;
310 }
311 sc->rxqi++;
312 }
313 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
314 }
315
316 if (emac_gctx(sc) > 0)
317 if_schedule_deferred_start(ifp);
318 #if 0 // reloop
319 irq = EMAC_READ(IntStsC);
320 if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
321 goto begin;
322 #endif
323
324 return (1);
325 }
326
327
328 static void
329 emac_init(struct emac_softc *sc)
330 {
331 bus_dma_segment_t segs;
332 void *addr;
333 int rsegs, err, i;
334 struct ifnet * ifp = &sc->sc_ec.ec_if;
335 struct mii_data * const mii = &sc->sc_mii;
336 uint32_t u;
337 #if 0
338 int mdcdiv = DEFAULT_MDCDIV;
339 #endif
340
341 callout_init(&sc->emac_tick_ch, 0);
342
343 // ok...
344 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
345 EMAC_WRITE(ETH_IDR, -1); // disable interrupts
346 EMAC_WRITE(ETH_RBQP, 0); // clear receive
347 EMAC_WRITE(ETH_CFG,
348 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
349 EMAC_WRITE(ETH_TCR, 0); // send nothing
350 // (void)EMAC_READ(ETH_ISR);
351 u = EMAC_READ(ETH_TSR);
352 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
353 | ETH_TSR_IDLE | ETH_TSR_RLE
354 | ETH_TSR_COL | ETH_TSR_OVR)));
355 u = EMAC_READ(ETH_RSR);
356 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
357
358 /* configure EMAC */
359 EMAC_WRITE(ETH_CFG,
360 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
361 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
362 #if 0
363 if (device_cfdata(sc->sc_dev)->cf_flags)
364 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
365 #endif
366 /* set ethernet address */
367 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
368 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
369 | (sc->sc_enaddr[0]));
370 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
371 | (sc->sc_enaddr[4]));
372 EMAC_WRITE(ETH_SA2L, 0);
373 EMAC_WRITE(ETH_SA2H, 0);
374 EMAC_WRITE(ETH_SA3L, 0);
375 EMAC_WRITE(ETH_SA3H, 0);
376 EMAC_WRITE(ETH_SA4L, 0);
377 EMAC_WRITE(ETH_SA4H, 0);
378
379 /* Allocate a page of memory for receive queue descriptors */
380 sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
381 sc->rbqlen *= PAGE_SIZE;
382 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
383
384 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
385 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
386 &segs, 1, &rsegs, BUS_DMA_WAITOK);
387 if (err == 0) {
388 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
389 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
390 &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
391 }
392 if (err == 0) {
393 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
394 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
395 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
396 &sc->rbqpage_dmamap);
397 }
398 if (err == 0) {
399 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
400 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
401 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
402 }
403 if (err != 0) {
404 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
405 }
406 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
407
408 memset(sc->rbqpage, 0, sc->rbqlen);
409
410 /* Set up pointers to start of each queue in kernel addr space.
411 * Each descriptor queue or status queue entry uses 2 words
412 */
413 sc->RDSC = (void*)sc->rbqpage;
414
415 /* Populate the RXQ with mbufs */
416 sc->rxqi = 0;
417 for (i = 0; i < RX_QLEN; i++) {
418 struct mbuf *m;
419
420 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
421 PAGE_SIZE, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
422 if (err)
423 panic("%s: dmamap_create failed: %i\n",
424 __FUNCTION__, err);
425
426 MGETHDR(m, M_WAIT, MT_DATA);
427 MCLGET(m, M_WAIT);
428 sc->rxq[i].m = m;
429 if (mtod(m, intptr_t) & 3) {
430 m_adj(m, mtod(m, intptr_t) & 3);
431 }
432 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
433 m->m_ext.ext_buf, MCLBYTES, NULL,
434 BUS_DMA_WAITOK);
435 if (err)
436 panic("%s: dmamap_load failed: %i\n",
437 __FUNCTION__, err);
438
439 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
440 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
441 sc->RDSC[i].Info = 0;
442 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
443 MCLBYTES, BUS_DMASYNC_PREREAD);
444 }
445
446 /* prepare transmit queue */
447 for (i = 0; i < TX_QLEN; i++) {
448 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
449 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
450 &sc->txq[i].m_dmamap);
451 if (err)
452 panic("ARGH #1");
453 sc->txq[i].m = NULL;
454 }
455
456 /* Program each queue's start addr, cur addr, and len registers
457 * with the physical addresses.
458 */
459 bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
460 BUS_DMASYNC_PREREAD);
461 addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
462 EMAC_WRITE(ETH_RBQP, (uint32_t)addr);
463
464 /* Divide HCLK by 32 for MDC clock */
465 mii->mii_ifp = ifp;
466 mii->mii_readreg = emac_mii_readreg;
467 mii->mii_writereg = emac_mii_writereg;
468 mii->mii_statchg = emac_statchg;
469 sc->sc_ec.ec_mii = mii;
470 ifmedia_init(&mii->mii_media, IFM_IMASK, emac_mediachange,
471 emac_mediastatus);
472 mii_attach((device_t )sc, mii, 0xffffffff, MII_PHY_ANY,
473 MII_OFFSET_ANY, 0);
474 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
475
476 // enable / disable interrupts
477
478 #if 0
479 // enable / disable interrupts
480 EMAC_WRITE(ETH_IDR, -1);
481 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
482 | ETH_ISR_RBNA | ETH_ISR_ROVR);
483 // (void)EMAC_READ(ETH_ISR); // why
484
485 // enable transmitter / receiver
486 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
487 | ETH_CTL_CSR | ETH_CTL_MPE);
488 #endif
489 /*
490 * We can support 802.1Q VLAN-sized frames.
491 */
492 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
493
494 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
495 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
496 ifp->if_ioctl = emac_ifioctl;
497 ifp->if_start = emac_ifstart;
498 ifp->if_watchdog = emac_ifwatchdog;
499 ifp->if_init = emac_ifinit;
500 ifp->if_stop = emac_ifstop;
501 ifp->if_timer = 0;
502 ifp->if_softc = sc;
503 IFQ_SET_READY(&ifp->if_snd);
504 if_attach(ifp);
505 if_deferred_start_init(ifp, NULL);
506 ether_ifattach(ifp, (sc)->sc_enaddr);
507 }
508
509 static int
510 emac_mediachange(struct ifnet *ifp)
511 {
512 if (ifp->if_flags & IFF_UP)
513 emac_ifinit(ifp);
514 return (0);
515 }
516
517 static void
518 emac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
519 {
520 struct emac_softc *sc = ifp->if_softc;
521
522 mii_pollstat(&sc->sc_mii);
523 ifmr->ifm_active = sc->sc_mii.mii_media_active;
524 ifmr->ifm_status = sc->sc_mii.mii_media_status;
525 }
526
527
528 int
529 emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
530 {
531 #ifndef EMAC_FAST
532 struct emac_softc *sc = device_private(self);
533 #endif
534
535 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
536 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
537 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
538 | ETH_MAN_CODE_IEEE802_3));
539 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
540 ;
541 *val = EMAC_READ(ETH_MAN) & ETH_MAN_DATA;
542
543 return 0;
544 }
545
546 int
547 emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
548 {
549 #ifndef EMAC_FAST
550 struct emac_softc *sc = device_private(self);
551 #endif
552
553 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
554 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
555 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
556 | ETH_MAN_CODE_IEEE802_3
557 | (val & ETH_MAN_DATA)));
558 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
559 ;
560
561 return 0;
562 }
563
564 void
565 emac_statchg(struct ifnet *ifp)
566 {
567 struct emac_softc *sc = ifp->if_softc;
568 uint32_t reg;
569
570 /*
571 * We must keep the MAC and the PHY in sync as
572 * to the status of full-duplex!
573 */
574 reg = EMAC_READ(ETH_CFG);
575 if (sc->sc_mii.mii_media_active & IFM_FDX)
576 reg |= ETH_CFG_FD;
577 else
578 reg &= ~ETH_CFG_FD;
579 EMAC_WRITE(ETH_CFG, reg);
580 }
581
582 void
583 emac_tick(void *arg)
584 {
585 struct emac_softc* sc = (struct emac_softc *)arg;
586 struct ifnet * ifp = &sc->sc_ec.ec_if;
587 int s;
588 uint32_t misses;
589
590 ifp->if_collisions += EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL);
591 /* These misses are ok, they will happen if the RAM/CPU can't keep up */
592 misses = EMAC_READ(ETH_DRFC);
593 if (misses > 0)
594 printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
595
596 s = splnet();
597 if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
598 emac_ifstart(ifp);
599 }
600 splx(s);
601
602 mii_tick(&sc->sc_mii);
603 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
604 }
605
606
607 static int
608 emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
609 {
610 int s, error;
611
612 s = splnet();
613 switch (cmd) {
614 default:
615 error = ether_ioctl(ifp, cmd, data);
616 if (error == ENETRESET) {
617 if (ifp->if_flags & IFF_RUNNING)
618 emac_setaddr(ifp);
619 error = 0;
620 }
621 }
622 splx(s);
623 return error;
624 }
625
626 static void
627 emac_ifstart(struct ifnet *ifp)
628 {
629 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
630 struct mbuf *m;
631 bus_dma_segment_t *segs;
632 int s, bi, err, nsegs;
633
634 s = splnet();
635 start:
636 if (emac_gctx(sc) == 0) {
637 /* Enable transmit-buffer-free interrupt */
638 EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
639 ifp->if_flags |= IFF_OACTIVE;
640 ifp->if_timer = 10;
641 splx(s);
642 return;
643 }
644
645 ifp->if_timer = 0;
646
647 IFQ_POLL(&ifp->if_snd, m);
648 if (m == NULL) {
649 splx(s);
650 return;
651 }
652 //more:
653 bi = (sc->txqi + sc->txqc) % TX_QLEN;
654 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
655 BUS_DMA_NOWAIT)) ||
656 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
657 sc->txq[bi].m_dmamap->dm_nsegs > 1) {
658 /* Copy entire mbuf chain to new single */
659 struct mbuf *mn;
660
661 if (err == 0)
662 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
663
664 MGETHDR(mn, M_DONTWAIT, MT_DATA);
665 if (mn == NULL) goto stop;
666 if (m->m_pkthdr.len > MHLEN) {
667 MCLGET(mn, M_DONTWAIT);
668 if ((mn->m_flags & M_EXT) == 0) {
669 m_freem(mn);
670 goto stop;
671 }
672 }
673 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
674 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
675 IFQ_DEQUEUE(&ifp->if_snd, m);
676 m_freem(m);
677 m = mn;
678 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
679 BUS_DMA_NOWAIT);
680 } else {
681 IFQ_DEQUEUE(&ifp->if_snd, m);
682 }
683
684 bpf_mtap(ifp, m, BPF_D_OUT);
685
686 nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
687 segs = sc->txq[bi].m_dmamap->dm_segs;
688 if (nsegs > 1) {
689 panic("#### ARGH #2");
690 }
691
692 sc->txq[bi].m = m;
693 sc->txqc++;
694
695 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
696 (unsigned)m->m_pkthdr.len));
697 #ifdef DIAGNOSTIC
698 if (sc->txqc > TX_QLEN) {
699 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
700 }
701 #endif
702
703 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
704 sc->txq[bi].m_dmamap->dm_mapsize,
705 BUS_DMASYNC_PREWRITE);
706
707 EMAC_WRITE(ETH_TAR, segs->ds_addr);
708 EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
709 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
710 goto start;
711 stop:
712
713 splx(s);
714 return;
715 }
716
717 static void
718 emac_ifwatchdog(struct ifnet *ifp)
719 {
720 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
721
722 if ((ifp->if_flags & IFF_RUNNING) == 0)
723 return;
724 printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
725 device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
726 }
727
728 static int
729 emac_ifinit(struct ifnet *ifp)
730 {
731 struct emac_softc *sc = ifp->if_softc;
732 int s = splnet();
733
734 callout_stop(&sc->emac_tick_ch);
735
736 // enable interrupts
737 EMAC_WRITE(ETH_IDR, -1);
738 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
739 | ETH_ISR_RBNA | ETH_ISR_ROVR);
740
741 // enable transmitter / receiver
742 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
743 | ETH_CTL_CSR | ETH_CTL_MPE);
744
745 mii_mediachg(&sc->sc_mii);
746 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
747 ifp->if_flags |= IFF_RUNNING;
748 splx(s);
749 return 0;
750 }
751
752 static void
753 emac_ifstop(struct ifnet *ifp, int disable)
754 {
755 // uint32_t u;
756 struct emac_softc *sc = ifp->if_softc;
757
758 #if 0
759 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
760 EMAC_WRITE(ETH_IDR, -1); // disable interrupts
761 // EMAC_WRITE(ETH_RBQP, 0); // clear receive
762 EMAC_WRITE(ETH_CFG,
763 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
764 EMAC_WRITE(ETH_TCR, 0); // send nothing
765 // (void)EMAC_READ(ETH_ISR);
766 u = EMAC_READ(ETH_TSR);
767 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
768 | ETH_TSR_IDLE | ETH_TSR_RLE
769 | ETH_TSR_COL | ETH_TSR_OVR)));
770 u = EMAC_READ(ETH_RSR);
771 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
772 #endif
773 callout_stop(&sc->emac_tick_ch);
774
775 /* Down the MII. */
776 mii_down(&sc->sc_mii);
777
778 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
779 ifp->if_timer = 0;
780 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
781 }
782
783 static void
784 emac_setaddr(struct ifnet *ifp)
785 {
786 struct emac_softc *sc = ifp->if_softc;
787 struct ethercom *ec = &sc->sc_ec;
788 struct ether_multi *enm;
789 struct ether_multistep step;
790 uint8_t ias[3][ETHER_ADDR_LEN];
791 uint32_t h, nma = 0, hashes[2] = { 0, 0 };
792 uint32_t ctl = EMAC_READ(ETH_CTL);
793 uint32_t cfg = EMAC_READ(ETH_CFG);
794
795 /* disable receiver temporarily */
796 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
797
798 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
799
800 if (ifp->if_flags & IFF_PROMISC) {
801 cfg |= ETH_CFG_CAF;
802 } else {
803 cfg &= ~ETH_CFG_CAF;
804 }
805
806 // ETH_CFG_BIG?
807
808 ifp->if_flags &= ~IFF_ALLMULTI;
809
810 ETHER_LOCK(ec);
811 ETHER_FIRST_MULTI(step, ec, enm);
812 while (enm != NULL) {
813 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
814 /*
815 * We must listen to a range of multicast addresses.
816 * For now, just accept all multicasts, rather than
817 * trying to set only those filter bits needed to match
818 * the range. (At this time, the only use of address
819 * ranges is for IP multicast routing, for which the
820 * range is big enough to require all bits set.)
821 */
822 cfg |= ETH_CFG_CAF;
823 hashes[0] = 0xffffffffUL;
824 hashes[1] = 0xffffffffUL;
825 ifp->if_flags |= IFF_ALLMULTI;
826 nma = 0;
827 break;
828 }
829
830 if (nma < 3) {
831 /* We can program 3 perfect address filters for mcast */
832 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
833 } else {
834 /*
835 * XXX: Datasheet is not very clear here, I'm not sure
836 * if I'm doing this right. --joff
837 */
838 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
839
840 /* Just want the 6 most-significant bits. */
841 h = h >> 26;
842
843 hashes[ h / 32 ] |= (1 << (h % 32));
844 cfg |= ETH_CFG_MTI;
845 }
846 ETHER_NEXT_MULTI(step, enm);
847 nma++;
848 }
849 ETHER_UNLOCK(ec);
850
851 // program...
852 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
853 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
854 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
855 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
856 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
857 | (sc->sc_enaddr[0]));
858 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
859 | (sc->sc_enaddr[4]));
860 if (nma > 1) {
861 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n",
862 __FUNCTION__,
863 ias[0][0], ias[0][1], ias[0][2],
864 ias[0][3], ias[0][4], ias[0][5]));
865 EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
866 | (ias[0][2] << 16) | (ias[0][1] << 8)
867 | (ias[0][0]));
868 EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
869 | (ias[0][5]));
870 }
871 if (nma > 2) {
872 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n",
873 __FUNCTION__,
874 ias[1][0], ias[1][1], ias[1][2],
875 ias[1][3], ias[1][4], ias[1][5]));
876 EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
877 | (ias[1][2] << 16) | (ias[1][1] << 8)
878 | (ias[1][0]));
879 EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
880 | (ias[1][5]));
881 }
882 if (nma > 3) {
883 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n",
884 __FUNCTION__,
885 ias[2][0], ias[2][1], ias[2][2],
886 ias[2][3], ias[2][4], ias[2][5]));
887 EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
888 | (ias[2][2] << 16) | (ias[2][1] << 8)
889 | (ias[2][0]));
890 EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
891 | (ias[2][5]));
892 }
893 EMAC_WRITE(ETH_HSH, hashes[0]);
894 EMAC_WRITE(ETH_HSL, hashes[1]);
895 EMAC_WRITE(ETH_CFG, cfg);
896 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
897 }
898