at91emac.c revision 1.33 1 /* $NetBSD: at91emac.c,v 1.33 2021/11/04 06:57:51 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2007 Embedtronics Oy
5 * All rights reserved.
6 *
7 * Based on arch/arm/ep93xx/epe.c
8 *
9 * Copyright (c) 2004 Jesse Off
10 * All rights reserved.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
22 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
23 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
24 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
31 * POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: at91emac.c,v 1.33 2021/11/04 06:57:51 skrll Exp $");
36
37 #include <sys/types.h>
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/ioctl.h>
41 #include <sys/kernel.h>
42 #include <sys/proc.h>
43 #include <sys/malloc.h>
44 #include <sys/time.h>
45 #include <sys/device.h>
46 #include <uvm/uvm_extern.h>
47
48 #include <sys/bus.h>
49 #include <machine/intr.h>
50
51 #include <arm/cpufunc.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/if_media.h>
57 #include <net/if_ether.h>
58 #include <net/bpf.h>
59
60 #include <dev/mii/mii.h>
61 #include <dev/mii/miivar.h>
62
63 #ifdef INET
64 #include <netinet/in.h>
65 #include <netinet/in_systm.h>
66 #include <netinet/in_var.h>
67 #include <netinet/ip.h>
68 #include <netinet/if_inarp.h>
69 #endif
70
71 #include <arm/at91/at91var.h>
72 #include <arm/at91/at91emacreg.h>
73 #include <arm/at91/at91emacvar.h>
74
75 #define DEFAULT_MDCDIV 32
76
77 #ifndef EMAC_FAST
78 #define EMAC_FAST
79 #endif
80
81 #ifndef EMAC_FAST
82 #define EMAC_READ(x) \
83 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
84 #define EMAC_WRITE(x, y) \
85 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
86 #else
87 #define EMAC_READ(x) ETHREG(x)
88 #define EMAC_WRITE(x, y) ETHREG(x) = (y)
89 #endif /* ! EMAC_FAST */
90
91 static int emac_match(device_t, cfdata_t, void *);
92 static void emac_attach(device_t, device_t, void *);
93 static void emac_init(struct emac_softc *);
94 static int emac_intr(void* arg);
95 static int emac_gctx(struct emac_softc *);
96 int emac_mii_readreg (device_t, int, int, uint16_t *);
97 int emac_mii_writereg (device_t, int, int, uint16_t);
98 void emac_statchg (struct ifnet *);
99 void emac_tick (void *);
100 static int emac_ifioctl (struct ifnet *, u_long, void *);
101 static void emac_ifstart (struct ifnet *);
102 static void emac_ifwatchdog (struct ifnet *);
103 static int emac_ifinit (struct ifnet *);
104 static void emac_ifstop (struct ifnet *, int);
105 static void emac_setaddr (struct ifnet *);
106
107 CFATTACH_DECL_NEW(at91emac, sizeof(struct emac_softc),
108 emac_match, emac_attach, NULL, NULL);
109
110 #ifdef EMAC_DEBUG
111 int emac_debug = EMAC_DEBUG;
112 #define DPRINTFN(n, fmt) if (emac_debug >= (n)) printf fmt
113 #else
114 #define DPRINTFN(n, fmt)
115 #endif
116
117 static int
118 emac_match(device_t parent, cfdata_t match, void *aux)
119 {
120 if (strcmp(match->cf_name, "at91emac") == 0)
121 return 2;
122 return 0;
123 }
124
125 static void
126 emac_attach(device_t parent, device_t self, void *aux)
127 {
128 struct emac_softc *sc = device_private(self);
129 struct at91bus_attach_args *sa = aux;
130 prop_data_t enaddr;
131 uint32_t u;
132
133 printf("\n");
134 sc->sc_dev = self;
135 sc->sc_iot = sa->sa_iot;
136 sc->sc_pid = sa->sa_pid;
137 sc->sc_dmat = sa->sa_dmat;
138
139 if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size, 0, &sc->sc_ioh))
140 panic("%s: Cannot map registers", device_xname(self));
141
142 /* enable peripheral clock */
143 at91_peripheral_clock(sc->sc_pid, 1);
144
145 /* configure emac: */
146 EMAC_WRITE(ETH_CTL, 0); // disable everything
147 EMAC_WRITE(ETH_IDR, -1); // disable interrupts
148 EMAC_WRITE(ETH_RBQP, 0); // clear receive
149 EMAC_WRITE(ETH_CFG,
150 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
151 EMAC_WRITE(ETH_TCR, 0); // send nothing
152 //(void)EMAC_READ(ETH_ISR);
153 u = EMAC_READ(ETH_TSR);
154 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
155 | ETH_TSR_IDLE | ETH_TSR_RLE
156 | ETH_TSR_COL | ETH_TSR_OVR)));
157 u = EMAC_READ(ETH_RSR);
158 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
159
160 /* Fetch the Ethernet address from property if set. */
161 enaddr = prop_dictionary_get(device_properties(self), "mac-address");
162
163 if (enaddr != NULL) {
164 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
165 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
166 memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
167 ETHER_ADDR_LEN);
168 } else {
169 static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
170 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
171 };
172 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
173 }
174
175 at91_intr_establish(sc->sc_pid, IPL_NET, INTR_HIGH_LEVEL, emac_intr,
176 sc);
177 emac_init(sc);
178 }
179
180 static int
181 emac_gctx(struct emac_softc *sc)
182 {
183 struct ifnet * ifp = &sc->sc_ec.ec_if;
184 uint32_t tsr;
185
186 tsr = EMAC_READ(ETH_TSR);
187 if (!(tsr & ETH_TSR_BNQ)) {
188 // no space left
189 return 0;
190 }
191
192 // free sent frames
193 while (sc->txqc > (tsr & ETH_TSR_IDLE ? 0 : 1)) {
194 int i = sc->txqi % TX_QLEN;
195 bus_dmamap_sync(sc->sc_dmat, sc->txq[i].m_dmamap, 0,
196 sc->txq[i].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
197 bus_dmamap_unload(sc->sc_dmat, sc->txq[i].m_dmamap);
198 m_freem(sc->txq[i].m);
199 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
200 __FUNCTION__, i, sc->txq[i].m, sc->txqc));
201 sc->txq[i].m = NULL;
202 sc->txqi = (i + 1) % TX_QLEN;
203 sc->txqc--;
204 }
205
206 // mark we're free
207 if (ifp->if_flags & IFF_OACTIVE) {
208 ifp->if_flags &= ~IFF_OACTIVE;
209 /* Disable transmit-buffer-free interrupt */
210 /*EMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
211 }
212
213 return 1;
214 }
215
216 static int
217 emac_intr(void *arg)
218 {
219 struct emac_softc *sc = (struct emac_softc *)arg;
220 struct ifnet * ifp = &sc->sc_ec.ec_if;
221 uint32_t imr, isr, ctl;
222 int bi;
223
224 imr = ~EMAC_READ(ETH_IMR);
225 if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
226 | ETH_ISR_RBNA | ETH_ISR_ROVR))) {
227 // interrupt not enabled, can't be us
228 return 0;
229 }
230
231 isr = EMAC_READ(ETH_ISR) & imr;
232 #ifdef EMAC_DEBUG
233 uint32_t rsr =
234 #endif
235 EMAC_READ(ETH_RSR); // get receive status register
236
237 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__,
238 isr, rsr, imr));
239
240 if (isr & ETH_ISR_RBNA) { // out of receive buffers
241 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
242 ctl = EMAC_READ(ETH_CTL); // get current control register value
243 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
244 EMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
245 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
246 if_statinc(ifp, if_ierrors);
247 if_statinc(ifp, if_ipackets);
248 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
249 }
250 if (isr & ETH_ISR_ROVR) {
251 EMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
252 if_statinc(ifp, if_ierrors);
253 if_statinc(ifp, if_ipackets);
254 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
255 }
256
257 if (isr & ETH_ISR_RCOM) { // packet has been received!
258 uint32_t nfo;
259 // @@@ if memory is NOT coherent, then we're in trouble @@@@
260 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
261 // printf("## RDSC[%i].ADDR=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Addr);
262 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN,
263 sc->RDSC[sc->rxqi % RX_QLEN].Info));
264 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
265 int fl;
266 struct mbuf *m;
267
268 nfo = sc->RDSC[bi].Info;
269 fl = (nfo & ETH_RDSC_I_LEN) - 4;
270 DPRINTFN(2,("## nfo=0x%08X\n", nfo));
271
272 MGETHDR(m, M_DONTWAIT, MT_DATA);
273 if (m != NULL) MCLGET(m, M_DONTWAIT);
274 if (m != NULL && (m->m_flags & M_EXT)) {
275 bus_dmamap_sync(sc->sc_dmat,
276 sc->rxq[bi].m_dmamap, 0,
277 MCLBYTES, BUS_DMASYNC_POSTREAD);
278 bus_dmamap_unload(sc->sc_dmat,
279 sc->rxq[bi].m_dmamap);
280 m_set_rcvif(sc->rxq[bi].m, ifp);
281 sc->rxq[bi].m->m_pkthdr.len =
282 sc->rxq[bi].m->m_len = fl;
283 DPRINTFN(2,("received %u bytes packet\n", fl));
284 if_percpuq_enqueue(ifp->if_percpuq, sc->rxq[bi].m);
285 if (mtod(m, intptr_t) & 3) {
286 m_adj(m, mtod(m, intptr_t) & 3);
287 }
288 sc->rxq[bi].m = m;
289 bus_dmamap_load(sc->sc_dmat,
290 sc->rxq[bi].m_dmamap,
291 m->m_ext.ext_buf, MCLBYTES,
292 NULL, BUS_DMA_NOWAIT);
293 bus_dmamap_sync(sc->sc_dmat,
294 sc->rxq[bi].m_dmamap, 0,
295 MCLBYTES, BUS_DMASYNC_PREREAD);
296 sc->RDSC[bi].Info = 0;
297 sc->RDSC[bi].Addr =
298 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
299 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
300 } else {
301 /* Drop packets until we can get replacement
302 * empty mbufs for the RXDQ.
303 */
304 if (m != NULL) {
305 m_freem(m);
306 }
307 if_statinc(ifp, if_ierrors);
308 }
309 sc->rxqi++;
310 }
311 // bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
312 }
313
314 if (emac_gctx(sc) > 0)
315 if_schedule_deferred_start(ifp);
316 #if 0 // reloop
317 irq = EMAC_READ(IntStsC);
318 if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
319 goto begin;
320 #endif
321
322 return (1);
323 }
324
325
326 static void
327 emac_init(struct emac_softc *sc)
328 {
329 bus_dma_segment_t segs;
330 void *addr;
331 int rsegs, err, i;
332 struct ifnet * ifp = &sc->sc_ec.ec_if;
333 struct mii_data * const mii = &sc->sc_mii;
334 uint32_t u;
335 #if 0
336 int mdcdiv = DEFAULT_MDCDIV;
337 #endif
338
339 callout_init(&sc->emac_tick_ch, 0);
340
341 // ok...
342 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
343 EMAC_WRITE(ETH_IDR, -1); // disable interrupts
344 EMAC_WRITE(ETH_RBQP, 0); // clear receive
345 EMAC_WRITE(ETH_CFG,
346 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
347 EMAC_WRITE(ETH_TCR, 0); // send nothing
348 // (void)EMAC_READ(ETH_ISR);
349 u = EMAC_READ(ETH_TSR);
350 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
351 | ETH_TSR_IDLE | ETH_TSR_RLE
352 | ETH_TSR_COL | ETH_TSR_OVR)));
353 u = EMAC_READ(ETH_RSR);
354 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
355
356 /* configure EMAC */
357 EMAC_WRITE(ETH_CFG,
358 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
359 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE);
360 #if 0
361 if (device_cfdata(sc->sc_dev)->cf_flags)
362 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
363 #endif
364 /* set ethernet address */
365 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
366 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
367 | (sc->sc_enaddr[0]));
368 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
369 | (sc->sc_enaddr[4]));
370 EMAC_WRITE(ETH_SA2L, 0);
371 EMAC_WRITE(ETH_SA2H, 0);
372 EMAC_WRITE(ETH_SA3L, 0);
373 EMAC_WRITE(ETH_SA3H, 0);
374 EMAC_WRITE(ETH_SA4L, 0);
375 EMAC_WRITE(ETH_SA4H, 0);
376
377 /* Allocate a page of memory for receive queue descriptors */
378 sc->rbqlen = (ETH_RDSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
379 sc->rbqlen *= PAGE_SIZE;
380 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
381
382 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
383 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
384 &segs, 1, &rsegs, BUS_DMA_WAITOK);
385 if (err == 0) {
386 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
387 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
388 &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
389 }
390 if (err == 0) {
391 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
392 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
393 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
394 &sc->rbqpage_dmamap);
395 }
396 if (err == 0) {
397 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
398 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
399 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
400 }
401 if (err != 0) {
402 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
403 }
404 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
405
406 memset(sc->rbqpage, 0, sc->rbqlen);
407
408 /* Set up pointers to start of each queue in kernel addr space.
409 * Each descriptor queue or status queue entry uses 2 words
410 */
411 sc->RDSC = (void*)sc->rbqpage;
412
413 /* Populate the RXQ with mbufs */
414 sc->rxqi = 0;
415 for (i = 0; i < RX_QLEN; i++) {
416 struct mbuf *m;
417
418 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
419 PAGE_SIZE, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
420 if (err)
421 panic("%s: dmamap_create failed: %i\n",
422 __FUNCTION__, err);
423
424 MGETHDR(m, M_WAIT, MT_DATA);
425 MCLGET(m, M_WAIT);
426 sc->rxq[i].m = m;
427 if (mtod(m, intptr_t) & 3) {
428 m_adj(m, mtod(m, intptr_t) & 3);
429 }
430 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
431 m->m_ext.ext_buf, MCLBYTES, NULL,
432 BUS_DMA_WAITOK);
433 if (err)
434 panic("%s: dmamap_load failed: %i\n",
435 __FUNCTION__, err);
436
437 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
438 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
439 sc->RDSC[i].Info = 0;
440 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
441 MCLBYTES, BUS_DMASYNC_PREREAD);
442 }
443
444 /* prepare transmit queue */
445 for (i = 0; i < TX_QLEN; i++) {
446 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
447 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
448 &sc->txq[i].m_dmamap);
449 if (err)
450 panic("ARGH #1");
451 sc->txq[i].m = NULL;
452 }
453
454 /* Program each queue's start addr, cur addr, and len registers
455 * with the physical addresses.
456 */
457 bus_dmamap_sync(sc->sc_dmat, sc->rbqpage_dmamap, 0, sc->rbqlen,
458 BUS_DMASYNC_PREREAD);
459 addr = (void *)sc->rbqpage_dmamap->dm_segs[0].ds_addr;
460 EMAC_WRITE(ETH_RBQP, (uint32_t)addr);
461
462 /* Divide HCLK by 32 for MDC clock */
463 mii->mii_ifp = ifp;
464 mii->mii_readreg = emac_mii_readreg;
465 mii->mii_writereg = emac_mii_writereg;
466 mii->mii_statchg = emac_statchg;
467 sc->sc_ec.ec_mii = mii;
468 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
469 ether_mediastatus);
470 mii_attach((device_t )sc, mii, 0xffffffff, MII_PHY_ANY,
471 MII_OFFSET_ANY, 0);
472 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
473
474 // enable / disable interrupts
475
476 #if 0
477 // enable / disable interrupts
478 EMAC_WRITE(ETH_IDR, -1);
479 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
480 | ETH_ISR_RBNA | ETH_ISR_ROVR);
481 // (void)EMAC_READ(ETH_ISR); // why
482
483 // enable transmitter / receiver
484 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
485 | ETH_CTL_CSR | ETH_CTL_MPE);
486 #endif
487 /*
488 * We can support 802.1Q VLAN-sized frames.
489 */
490 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
491
492 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
493 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
494 ifp->if_ioctl = emac_ifioctl;
495 ifp->if_start = emac_ifstart;
496 ifp->if_watchdog = emac_ifwatchdog;
497 ifp->if_init = emac_ifinit;
498 ifp->if_stop = emac_ifstop;
499 ifp->if_timer = 0;
500 ifp->if_softc = sc;
501 IFQ_SET_READY(&ifp->if_snd);
502 if_attach(ifp);
503 if_deferred_start_init(ifp, NULL);
504 ether_ifattach(ifp, (sc)->sc_enaddr);
505 }
506
507 int
508 emac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
509 {
510 #ifndef EMAC_FAST
511 struct emac_softc *sc = device_private(self);
512 #endif
513
514 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
515 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
516 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
517 | ETH_MAN_CODE_IEEE802_3));
518 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
519 ;
520 *val = EMAC_READ(ETH_MAN) & ETH_MAN_DATA;
521
522 return 0;
523 }
524
525 int
526 emac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
527 {
528 #ifndef EMAC_FAST
529 struct emac_softc *sc = device_private(self);
530 #endif
531
532 EMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
533 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
534 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
535 | ETH_MAN_CODE_IEEE802_3
536 | (val & ETH_MAN_DATA)));
537 while (!(EMAC_READ(ETH_SR) & ETH_SR_IDLE))
538 ;
539
540 return 0;
541 }
542
543 void
544 emac_statchg(struct ifnet *ifp)
545 {
546 struct emac_softc *sc = ifp->if_softc;
547 uint32_t reg;
548
549 /*
550 * We must keep the MAC and the PHY in sync as
551 * to the status of full-duplex!
552 */
553 reg = EMAC_READ(ETH_CFG);
554 if (sc->sc_mii.mii_media_active & IFM_FDX)
555 reg |= ETH_CFG_FD;
556 else
557 reg &= ~ETH_CFG_FD;
558 EMAC_WRITE(ETH_CFG, reg);
559 }
560
561 void
562 emac_tick(void *arg)
563 {
564 struct emac_softc* sc = (struct emac_softc *)arg;
565 struct ifnet * ifp = &sc->sc_ec.ec_if;
566 int s;
567 uint32_t misses;
568
569 if_statadd(ifp, if_collisions, EMAC_READ(ETH_SCOL) + EMAC_READ(ETH_MCOL));
570 /* These misses are ok, they will happen if the RAM/CPU can't keep up */
571 misses = EMAC_READ(ETH_DRFC);
572 if (misses > 0)
573 printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
574
575 s = splnet();
576 if (emac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
577 emac_ifstart(ifp);
578 }
579 splx(s);
580
581 mii_tick(&sc->sc_mii);
582 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
583 }
584
585
586 static int
587 emac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
588 {
589 int s, error;
590
591 s = splnet();
592 switch (cmd) {
593 default:
594 error = ether_ioctl(ifp, cmd, data);
595 if (error == ENETRESET) {
596 if (ifp->if_flags & IFF_RUNNING)
597 emac_setaddr(ifp);
598 error = 0;
599 }
600 }
601 splx(s);
602 return error;
603 }
604
605 static void
606 emac_ifstart(struct ifnet *ifp)
607 {
608 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
609 struct mbuf *m;
610 bus_dma_segment_t *segs;
611 int s, bi, err, nsegs;
612
613 s = splnet();
614 start:
615 if (emac_gctx(sc) == 0) {
616 /* Enable transmit-buffer-free interrupt */
617 EMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
618 ifp->if_flags |= IFF_OACTIVE;
619 ifp->if_timer = 10;
620 splx(s);
621 return;
622 }
623
624 ifp->if_timer = 0;
625
626 IFQ_POLL(&ifp->if_snd, m);
627 if (m == NULL) {
628 splx(s);
629 return;
630 }
631 //more:
632 bi = (sc->txqi + sc->txqc) % TX_QLEN;
633 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
634 BUS_DMA_NOWAIT)) ||
635 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
636 sc->txq[bi].m_dmamap->dm_nsegs > 1) {
637 /* Copy entire mbuf chain to new single */
638 struct mbuf *mn;
639
640 if (err == 0)
641 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
642
643 MGETHDR(mn, M_DONTWAIT, MT_DATA);
644 if (mn == NULL) goto stop;
645 if (m->m_pkthdr.len > MHLEN) {
646 MCLGET(mn, M_DONTWAIT);
647 if ((mn->m_flags & M_EXT) == 0) {
648 m_freem(mn);
649 goto stop;
650 }
651 }
652 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
653 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
654 IFQ_DEQUEUE(&ifp->if_snd, m);
655 m_freem(m);
656 m = mn;
657 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
658 BUS_DMA_NOWAIT);
659 } else {
660 IFQ_DEQUEUE(&ifp->if_snd, m);
661 }
662
663 bpf_mtap(ifp, m, BPF_D_OUT);
664
665 nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
666 segs = sc->txq[bi].m_dmamap->dm_segs;
667 if (nsegs > 1) {
668 panic("#### ARGH #2");
669 }
670
671 sc->txq[bi].m = m;
672 sc->txqc++;
673
674 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
675 (unsigned)m->m_pkthdr.len));
676 #ifdef DIAGNOSTIC
677 if (sc->txqc > TX_QLEN) {
678 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
679 }
680 #endif
681
682 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
683 sc->txq[bi].m_dmamap->dm_mapsize,
684 BUS_DMASYNC_PREWRITE);
685
686 EMAC_WRITE(ETH_TAR, segs->ds_addr);
687 EMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
688 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
689 goto start;
690 stop:
691
692 splx(s);
693 return;
694 }
695
696 static void
697 emac_ifwatchdog(struct ifnet *ifp)
698 {
699 struct emac_softc *sc = (struct emac_softc *)ifp->if_softc;
700
701 if ((ifp->if_flags & IFF_RUNNING) == 0)
702 return;
703 printf("%s: device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
704 device_xname(sc->sc_dev), EMAC_READ(ETH_CTL), EMAC_READ(ETH_CFG));
705 }
706
707 static int
708 emac_ifinit(struct ifnet *ifp)
709 {
710 struct emac_softc *sc = ifp->if_softc;
711 int s = splnet();
712
713 callout_stop(&sc->emac_tick_ch);
714
715 // enable interrupts
716 EMAC_WRITE(ETH_IDR, -1);
717 EMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
718 | ETH_ISR_RBNA | ETH_ISR_ROVR);
719
720 // enable transmitter / receiver
721 EMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
722 | ETH_CTL_CSR | ETH_CTL_MPE);
723
724 mii_mediachg(&sc->sc_mii);
725 callout_reset(&sc->emac_tick_ch, hz, emac_tick, sc);
726 ifp->if_flags |= IFF_RUNNING;
727 splx(s);
728 return 0;
729 }
730
731 static void
732 emac_ifstop(struct ifnet *ifp, int disable)
733 {
734 // uint32_t u;
735 struct emac_softc *sc = ifp->if_softc;
736
737 #if 0
738 EMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
739 EMAC_WRITE(ETH_IDR, -1); // disable interrupts
740 // EMAC_WRITE(ETH_RBQP, 0); // clear receive
741 EMAC_WRITE(ETH_CFG,
742 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
743 EMAC_WRITE(ETH_TCR, 0); // send nothing
744 // (void)EMAC_READ(ETH_ISR);
745 u = EMAC_READ(ETH_TSR);
746 EMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
747 | ETH_TSR_IDLE | ETH_TSR_RLE
748 | ETH_TSR_COL | ETH_TSR_OVR)));
749 u = EMAC_READ(ETH_RSR);
750 EMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
751 #endif
752 callout_stop(&sc->emac_tick_ch);
753
754 /* Down the MII. */
755 mii_down(&sc->sc_mii);
756
757 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
758 ifp->if_timer = 0;
759 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
760 }
761
762 static void
763 emac_setaddr(struct ifnet *ifp)
764 {
765 struct emac_softc *sc = ifp->if_softc;
766 struct ethercom *ec = &sc->sc_ec;
767 struct ether_multi *enm;
768 struct ether_multistep step;
769 uint8_t ias[3][ETHER_ADDR_LEN];
770 uint32_t h, nma = 0, hashes[2] = { 0, 0 };
771 uint32_t ctl = EMAC_READ(ETH_CTL);
772 uint32_t cfg = EMAC_READ(ETH_CFG);
773
774 /* disable receiver temporarily */
775 EMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
776
777 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF);
778
779 if (ifp->if_flags & IFF_PROMISC) {
780 cfg |= ETH_CFG_CAF;
781 } else {
782 cfg &= ~ETH_CFG_CAF;
783 }
784
785 // ETH_CFG_BIG?
786
787 ifp->if_flags &= ~IFF_ALLMULTI;
788
789 ETHER_LOCK(ec);
790 ETHER_FIRST_MULTI(step, ec, enm);
791 while (enm != NULL) {
792 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
793 /*
794 * We must listen to a range of multicast addresses.
795 * For now, just accept all multicasts, rather than
796 * trying to set only those filter bits needed to match
797 * the range. (At this time, the only use of address
798 * ranges is for IP multicast routing, for which the
799 * range is big enough to require all bits set.)
800 */
801 cfg |= ETH_CFG_CAF;
802 hashes[0] = 0xffffffffUL;
803 hashes[1] = 0xffffffffUL;
804 ifp->if_flags |= IFF_ALLMULTI;
805 nma = 0;
806 break;
807 }
808
809 if (nma < 3) {
810 /* We can program 3 perfect address filters for mcast */
811 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
812 } else {
813 /*
814 * XXX: Datasheet is not very clear here, I'm not sure
815 * if I'm doing this right. --joff
816 */
817 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
818
819 /* Just want the 6 most-significant bits. */
820 h = h >> 26;
821
822 hashes[ h / 32 ] |= (1 << (h % 32));
823 cfg |= ETH_CFG_MTI;
824 }
825 ETHER_NEXT_MULTI(step, enm);
826 nma++;
827 }
828 ETHER_UNLOCK(ec);
829
830 // program...
831 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
832 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
833 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
834 EMAC_WRITE(ETH_SA1L, (sc->sc_enaddr[3] << 24)
835 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
836 | (sc->sc_enaddr[0]));
837 EMAC_WRITE(ETH_SA1H, (sc->sc_enaddr[5] << 8)
838 | (sc->sc_enaddr[4]));
839 if (nma > 1) {
840 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n",
841 __FUNCTION__,
842 ias[0][0], ias[0][1], ias[0][2],
843 ias[0][3], ias[0][4], ias[0][5]));
844 EMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
845 | (ias[0][2] << 16) | (ias[0][1] << 8)
846 | (ias[0][0]));
847 EMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
848 | (ias[0][5]));
849 }
850 if (nma > 2) {
851 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n",
852 __FUNCTION__,
853 ias[1][0], ias[1][1], ias[1][2],
854 ias[1][3], ias[1][4], ias[1][5]));
855 EMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
856 | (ias[1][2] << 16) | (ias[1][1] << 8)
857 | (ias[1][0]));
858 EMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
859 | (ias[1][5]));
860 }
861 if (nma > 3) {
862 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n",
863 __FUNCTION__,
864 ias[2][0], ias[2][1], ias[2][2],
865 ias[2][3], ias[2][4], ias[2][5]));
866 EMAC_WRITE(ETH_SA3L, (ias[2][3] << 24)
867 | (ias[2][2] << 16) | (ias[2][1] << 8)
868 | (ias[2][0]));
869 EMAC_WRITE(ETH_SA3H, (ias[2][4] << 8)
870 | (ias[2][5]));
871 }
872 EMAC_WRITE(ETH_HSH, hashes[0]);
873 EMAC_WRITE(ETH_HSL, hashes[1]);
874 EMAC_WRITE(ETH_CFG, cfg);
875 EMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
876 }
877