bcm53xx_board.c revision 1.2 1 1.2 matt /* $NetBSD: bcm53xx_board.c,v 1.2 2012/09/07 11:52:30 matt Exp $ */
2 1.1 matt /*-
3 1.1 matt * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 1.1 matt * All rights reserved.
5 1.1 matt *
6 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.1 matt * by Matt Thomas of 3am Software Foundry.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt *
18 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
29 1.1 matt */
30 1.1 matt
31 1.1 matt #include "opt_broadcom.h"
32 1.1 matt
33 1.1 matt #define _ARM32_BUS_DMA_PRIVATE
34 1.1 matt
35 1.1 matt #include <sys/cdefs.h>
36 1.1 matt
37 1.2 matt __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.2 2012/09/07 11:52:30 matt Exp $");
38 1.1 matt
39 1.1 matt #include <sys/param.h>
40 1.1 matt #include <sys/bus.h>
41 1.1 matt #include <sys/cpu.h>
42 1.1 matt #include <sys/device.h>
43 1.1 matt
44 1.1 matt #include <prop/proplib.h>
45 1.1 matt
46 1.1 matt #define CRU_PRIVATE
47 1.1 matt #define DDR_PRIVATE
48 1.1 matt #define DMU_PRIVATE
49 1.1 matt #define ARMCORE_PRIVATE
50 1.1 matt
51 1.1 matt #include <arm/cortex/a9tmr_var.h>
52 1.2 matt #include <arm/cortex/pl310_var.h>
53 1.1 matt #include <arm/mainbus/mainbus.h>
54 1.1 matt
55 1.1 matt #include <arm/broadcom/bcm53xx_reg.h>
56 1.1 matt #include <arm/broadcom/bcm53xx_var.h>
57 1.1 matt
58 1.1 matt bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
59 1.1 matt bus_space_handle_t bcm53xx_ioreg_bsh;
60 1.1 matt bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
61 1.1 matt bus_space_handle_t bcm53xx_armcore_bsh;
62 1.1 matt
63 1.1 matt static struct cpu_softc cpu_softc;
64 1.1 matt static struct bcm53xx_clock_info clk_info;
65 1.1 matt
66 1.1 matt struct arm32_bus_dma_tag bcm53xx_dma_tag = {
67 1.2 matt ._dmamap_create = _bus_dmamap_create,
68 1.2 matt ._dmamap_destroy = _bus_dmamap_destroy,
69 1.2 matt ._dmamap_load = _bus_dmamap_load,
70 1.2 matt ._dmamap_load_mbuf = _bus_dmamap_load_mbuf,
71 1.2 matt ._dmamap_load_uio = _bus_dmamap_load_uio,
72 1.2 matt ._dmamap_load_raw = _bus_dmamap_load_raw,
73 1.2 matt ._dmamap_unload = _bus_dmamap_unload,
74 1.2 matt ._dmamap_sync_pre = _bus_dmamap_sync,
75 1.2 matt ._dmamap_sync_post = NULL,
76 1.2 matt ._dmamem_alloc = _bus_dmamem_alloc,
77 1.2 matt ._dmamem_free = _bus_dmamem_free,
78 1.2 matt ._dmamem_map = _bus_dmamem_map,
79 1.2 matt ._dmamem_unmap = _bus_dmamem_unmap,
80 1.2 matt ._dmamem_mmap = _bus_dmamem_mmap
81 1.1 matt };
82 1.1 matt
83 1.1 matt #ifdef BCM53XX_CONSOLE_EARLY
84 1.1 matt #include <dev/ic/ns16550reg.h>
85 1.1 matt #include <dev/ic/comreg.h>
86 1.1 matt #include <dev/cons.h>
87 1.1 matt
88 1.1 matt static vaddr_t com_base;
89 1.1 matt
90 1.1 matt static inline uint32_t
91 1.1 matt uart_read(bus_size_t o)
92 1.1 matt {
93 1.1 matt return *(volatile uint8_t *)(com_base + o);
94 1.1 matt }
95 1.1 matt
96 1.1 matt static inline void
97 1.1 matt uart_write(bus_size_t o, uint32_t v)
98 1.1 matt {
99 1.1 matt *(volatile uint8_t *)(com_base + o) = v;
100 1.1 matt }
101 1.1 matt
102 1.1 matt static int
103 1.1 matt bcm53xx_cngetc(dev_t dv)
104 1.1 matt {
105 1.1 matt if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
106 1.1 matt return -1;
107 1.1 matt
108 1.1 matt return uart_read(com_data) & 0xff;
109 1.1 matt }
110 1.1 matt
111 1.1 matt static void
112 1.1 matt bcm53xx_cnputc(dev_t dv, int c)
113 1.1 matt {
114 1.1 matt int timo = 150000;
115 1.1 matt
116 1.1 matt while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
117 1.1 matt ;
118 1.1 matt
119 1.1 matt uart_write(com_data, c);
120 1.1 matt
121 1.1 matt timo = 150000;
122 1.1 matt while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
123 1.1 matt ;
124 1.1 matt }
125 1.1 matt
126 1.1 matt static struct consdev bcm53xx_earlycons = {
127 1.1 matt .cn_putc = bcm53xx_cnputc,
128 1.1 matt .cn_getc = bcm53xx_cngetc,
129 1.1 matt .cn_pollc = nullcnpollc,
130 1.1 matt };
131 1.1 matt #endif /* BCM53XX_CONSOLE_EARLY */
132 1.1 matt
133 1.1 matt psize_t
134 1.1 matt bcm53xx_memprobe(void)
135 1.1 matt {
136 1.1 matt bus_space_tag_t bst = bcm53xx_ioreg_bst;
137 1.1 matt bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
138 1.1 matt
139 1.1 matt /*
140 1.1 matt * First, let's read the magic DDR registers!
141 1.1 matt */
142 1.1 matt const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
143 1.1 matt const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
144 1.1 matt const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
145 1.1 matt const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
146 1.1 matt
147 1.1 matt /*
148 1.1 matt * Calculate chip parameters
149 1.1 matt * */
150 1.1 matt const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
151 1.1 matt - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
152 1.1 matt const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
153 1.1 matt - __SHIFTOUT(v82, CTL_82_COL_DIFF);
154 1.1 matt const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
155 1.1 matt
156 1.1 matt /*
157 1.1 matt * For each chip select, increase the chip count if if is enabled.
158 1.1 matt */
159 1.1 matt const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
160 1.1 matt u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
161 1.1 matt u_int chips = 0;
162 1.1 matt
163 1.1 matt for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
164 1.1 matt chips += (cs_map & 1);
165 1.1 matt }
166 1.1 matt
167 1.1 matt /* get log2(ddr width) */
168 1.1 matt
169 1.1 matt const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
170 1.1 matt
171 1.1 matt /*
172 1.1 matt * Let's add up all the things that contribute to the size of a chip.
173 1.1 matt */
174 1.1 matt const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
175 1.1 matt
176 1.1 matt /*
177 1.1 matt * Now our memory size is simply the number of chip shifted by the
178 1.1 matt * log2(chip_size).
179 1.1 matt */
180 1.1 matt return (psize_t) chips << chip_size_log2;
181 1.1 matt }
182 1.1 matt
183 1.1 matt static inline uint32_t
184 1.1 matt bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
185 1.1 matt uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
186 1.1 matt {
187 1.1 matt if (ndiv_frac == 0 && pdiv == 1)
188 1.1 matt return ndiv_int * clk->clk_ref;
189 1.1 matt
190 1.1 matt uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
191 1.1 matt freq64 *= clk->clk_ref;
192 1.1 matt if (pdiv > 1)
193 1.1 matt freq64 /= pdiv;
194 1.1 matt return (uint32_t) (freq64 >> 30);
195 1.1 matt }
196 1.1 matt
197 1.1 matt static uint32_t
198 1.1 matt bcm53xx_value_wrap(uint32_t value, uint32_t mask)
199 1.1 matt {
200 1.1 matt /*
201 1.1 matt * n is n except when n is 0 then n = mask + 1.
202 1.1 matt */
203 1.1 matt return ((__SHIFTOUT(value, mask) - 1) & __SHIFTOUT(mask, mask)) + 1;
204 1.1 matt }
205 1.1 matt
206 1.1 matt static void
207 1.1 matt bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
208 1.1 matt uint32_t control6, uint32_t control7)
209 1.1 matt {
210 1.1 matt const uint32_t pdiv = bcm53xx_value_wrap(control6,
211 1.1 matt GENPLL_CONTROL6_PDIV);
212 1.1 matt const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
213 1.1 matt GENPLL_CONTROL5_NDIV_INT);
214 1.1 matt const uint32_t ndiv_frac = __SHIFTOUT(control5,
215 1.1 matt GENPLL_CONTROL5_NDIV_FRAC);
216 1.1 matt
217 1.1 matt clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
218 1.1 matt
219 1.1 matt const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
220 1.1 matt GENPLL_CONTROL6_CH0_MDIV);
221 1.1 matt const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
222 1.1 matt GENPLL_CONTROL6_CH1_MDIV);
223 1.1 matt const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
224 1.1 matt GENPLL_CONTROL6_CH2_MDIV);
225 1.1 matt const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
226 1.1 matt GENPLL_CONTROL7_CH3_MDIV);
227 1.1 matt
228 1.1 matt clk->clk_mac = clk->clk_genpll / ch0_mdiv; // GENPLL CH0
229 1.1 matt clk->clk_robo = clk->clk_genpll / ch1_mdiv; // GENPLL CH1
230 1.1 matt clk->clk_usb2 = clk->clk_genpll / ch2_mdiv; // GENPLL CH2
231 1.1 matt clk->clk_iproc = clk->clk_genpll / ch3_mdiv; // GENPLL CH3
232 1.1 matt }
233 1.1 matt
234 1.1 matt static void
235 1.1 matt bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
236 1.1 matt uint32_t control2)
237 1.1 matt {
238 1.1 matt const uint32_t pdiv = bcm53xx_value_wrap(control1,
239 1.1 matt LCPLL_CONTROL1_PDIV);
240 1.1 matt const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
241 1.1 matt LCPLL_CONTROL1_NDIV_INT);
242 1.1 matt const uint32_t ndiv_frac = __SHIFTOUT(control1,
243 1.1 matt LCPLL_CONTROL1_NDIV_FRAC);
244 1.1 matt
245 1.1 matt clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
246 1.1 matt
247 1.1 matt const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
248 1.1 matt LCPLL_CONTROL2_CH0_MDIV);
249 1.1 matt const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
250 1.1 matt LCPLL_CONTROL2_CH1_MDIV);
251 1.1 matt const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
252 1.1 matt LCPLL_CONTROL2_CH2_MDIV);
253 1.1 matt const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
254 1.1 matt LCPLL_CONTROL2_CH3_MDIV);
255 1.1 matt
256 1.1 matt clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv; // LCPLL CH0
257 1.1 matt clk->clk_sdio = clk->clk_lcpll / ch1_mdiv; // LCPLL CH1
258 1.1 matt clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv; // LCPLL CH2
259 1.1 matt clk->clk_axi = clk->clk_lcpll / ch3_mdiv; // LCPLL CH3
260 1.1 matt }
261 1.1 matt
262 1.1 matt static void
263 1.1 matt bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
264 1.1 matt {
265 1.1 matt const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
266 1.1 matt USB2_CONTROL_PDIV);
267 1.1 matt const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
268 1.1 matt USB2_CONTROL_NDIV_INT);
269 1.1 matt
270 1.1 matt uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
271 1.1 matt if (usb_ref != USB2_REF_CLK) {
272 1.1 matt /*
273 1.1 matt * USB Reference Clock isn't 1.92GHz. So we need to modify
274 1.1 matt * USB2_CONTROL to produce it.
275 1.1 matt */
276 1.1 matt uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
277 1.1 matt usb2_control &= ~USB2_CONTROL_NDIV_INT;
278 1.1 matt usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
279 1.1 matt
280 1.1 matt // Allow Clocks to be modified
281 1.1 matt bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
282 1.1 matt CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
283 1.1 matt
284 1.1 matt // Update USB2 clock generator
285 1.1 matt bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
286 1.1 matt CRU_BASE + CRU_USB2_CONTROL, usb2_control);
287 1.1 matt
288 1.1 matt // Prevent Clock modification
289 1.1 matt bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
290 1.1 matt CRU_BASE + CRU_CLKSET_KEY, 0);
291 1.1 matt
292 1.1 matt usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
293 1.1 matt }
294 1.1 matt
295 1.1 matt clk->clk_usb_ref = usb_ref;
296 1.1 matt }
297 1.1 matt
298 1.1 matt
299 1.1 matt static void
300 1.1 matt bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
301 1.1 matt {
302 1.1 matt clk->clk_ref = BCM53XX_REF_CLK;
303 1.1 matt clk->clk_sys = 8*clk->clk_ref;
304 1.1 matt }
305 1.1 matt
306 1.1 matt /*
307 1.1 matt * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
308 1.1 matt */
309 1.1 matt static void
310 1.1 matt bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
311 1.1 matt uint32_t pll_dividers)
312 1.1 matt {
313 1.1 matt const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
314 1.1 matt u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
315 1.1 matt u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
316 1.1 matt u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
317 1.1 matt
318 1.1 matt pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
319 1.1 matt
320 1.1 matt clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
321 1.1 matt clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
322 1.1 matt }
323 1.1 matt
324 1.1 matt /*
325 1.1 matt * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
326 1.1 matt */
327 1.1 matt static void
328 1.1 matt bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
329 1.1 matt uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
330 1.1 matt {
331 1.1 matt policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
332 1.1 matt
333 1.1 matt if (policy == CLK_POLICY_REF_CLK) {
334 1.1 matt clk->clk_cpu = clk->clk_ref;
335 1.1 matt clk->clk_apb = clk->clk_cpu;
336 1.1 matt return;
337 1.1 matt }
338 1.1 matt
339 1.1 matt if (policy == CLK_POLICY_SYS_CLK) {
340 1.1 matt clk->clk_cpu = clk->clk_sys;
341 1.1 matt clk->clk_apb = clk->clk_cpu / 4;
342 1.1 matt return;
343 1.1 matt }
344 1.1 matt
345 1.1 matt const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
346 1.1 matt const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
347 1.1 matt const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
348 1.1 matt // const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
349 1.1 matt
350 1.1 matt const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
351 1.1 matt
352 1.1 matt clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
353 1.1 matt clk->clk_apb = clk->clk_cpu / 4;
354 1.1 matt }
355 1.1 matt
356 1.1 matt struct bcm53xx_chip_state {
357 1.1 matt uint32_t bcs_lcpll_control1;
358 1.1 matt uint32_t bcs_lcpll_control2;
359 1.1 matt
360 1.1 matt uint32_t bcs_genpll_control5;
361 1.1 matt uint32_t bcs_genpll_control6;
362 1.1 matt uint32_t bcs_genpll_control7;
363 1.1 matt
364 1.1 matt uint32_t bcs_usb2_control;
365 1.1 matt
366 1.1 matt uint32_t bcs_ddr_phy_ctl_pll_status;
367 1.1 matt uint32_t bcs_ddr_phy_ctl_pll_dividers;
368 1.1 matt
369 1.1 matt uint32_t bcs_armcore_clk_policy;
370 1.1 matt uint32_t bcs_armcore_clk_pllarma;
371 1.1 matt uint32_t bcs_armcore_clk_pllarmb;
372 1.1 matt };
373 1.1 matt
374 1.1 matt static void
375 1.1 matt bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
376 1.1 matt bus_space_tag_t bst, bus_space_handle_t bsh)
377 1.1 matt {
378 1.1 matt bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
379 1.1 matt DMU_BASE + DMU_LCPLL_CONTROL1);
380 1.1 matt bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
381 1.1 matt DMU_BASE + DMU_LCPLL_CONTROL2);
382 1.1 matt
383 1.1 matt bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
384 1.1 matt CRU_BASE + CRU_GENPLL_CONTROL5);
385 1.1 matt bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
386 1.1 matt CRU_BASE + CRU_GENPLL_CONTROL6);
387 1.1 matt bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
388 1.1 matt CRU_BASE + CRU_GENPLL_CONTROL7);
389 1.1 matt
390 1.1 matt bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
391 1.1 matt CRU_BASE + CRU_USB2_CONTROL);
392 1.1 matt
393 1.1 matt bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
394 1.1 matt DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
395 1.1 matt bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
396 1.1 matt DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
397 1.1 matt }
398 1.1 matt
399 1.1 matt static void
400 1.1 matt bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
401 1.1 matt bus_space_tag_t bst, bus_space_handle_t bsh)
402 1.1 matt {
403 1.1 matt bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
404 1.1 matt ARMCORE_CLK_POLICY_FREQ);
405 1.1 matt bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
406 1.1 matt ARMCORE_CLK_PLLARMA);
407 1.1 matt bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
408 1.1 matt ARMCORE_CLK_PLLARMB);
409 1.1 matt }
410 1.1 matt
411 1.1 matt void
412 1.1 matt bcm53xx_cpu_softc_init(struct cpu_info *ci)
413 1.1 matt {
414 1.1 matt struct cpu_softc * const cpu = ci->ci_softc;
415 1.1 matt
416 1.1 matt cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
417 1.1 matt cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
418 1.1 matt
419 1.1 matt cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
420 1.1 matt cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
421 1.1 matt }
422 1.1 matt
423 1.1 matt void
424 1.1 matt bcm53xx_print_clocks(void)
425 1.1 matt {
426 1.1 matt #if defined(VERBOSE_ARM_INIT)
427 1.1 matt printf("ref clk = %u (%#x)\n", clk_info.clk_ref, clk_info.clk_ref);
428 1.1 matt printf("sys clk = %u (%#x)\n", clk_info.clk_sys, clk_info.clk_sys);
429 1.1 matt printf("lcpll clk = %u (%#x)\n", clk_info.clk_lcpll, clk_info.clk_lcpll);
430 1.1 matt printf("pcie ref clk = %u (%#x) [CH0]\n", clk_info.clk_pcie_ref, clk_info.clk_pcie_ref);
431 1.1 matt printf("sdio clk = %u (%#x) [CH1]\n", clk_info.clk_sdio, clk_info.clk_sdio);
432 1.1 matt printf("ddr ref clk = %u (%#x) [CH2]\n", clk_info.clk_ddr_ref, clk_info.clk_ddr_ref);
433 1.1 matt printf("axi clk = %u (%#x) [CH3]\n", clk_info.clk_axi, clk_info.clk_axi);
434 1.1 matt printf("genpll clk = %u (%#x)\n", clk_info.clk_genpll, clk_info.clk_genpll);
435 1.1 matt printf("mac clk = %u (%#x) [CH0]\n", clk_info.clk_mac, clk_info.clk_mac);
436 1.1 matt printf("robo clk = %u (%#x) [CH1]\n", clk_info.clk_robo, clk_info.clk_robo);
437 1.1 matt printf("usb2 clk = %u (%#x) [CH2]\n", clk_info.clk_usb2, clk_info.clk_usb2);
438 1.1 matt printf("iproc clk = %u (%#x) [CH3]\n", clk_info.clk_iproc, clk_info.clk_iproc);
439 1.1 matt printf("ddr clk = %u (%#x)\n", clk_info.clk_ddr, clk_info.clk_ddr);
440 1.1 matt printf("ddr mhz = %u (%#x)\n", clk_info.clk_ddr_mhz, clk_info.clk_ddr_mhz);
441 1.1 matt printf("cpu clk = %u (%#x)\n", clk_info.clk_cpu, clk_info.clk_cpu);
442 1.1 matt printf("apb clk = %u (%#x)\n", clk_info.clk_apb, clk_info.clk_apb);
443 1.1 matt printf("usb ref clk = %u (%#x)\n", clk_info.clk_usb_ref, clk_info.clk_usb_ref);
444 1.1 matt #endif
445 1.1 matt }
446 1.1 matt
447 1.1 matt void
448 1.1 matt bcm53xx_bootstrap(vaddr_t iobase)
449 1.1 matt {
450 1.1 matt struct bcm53xx_chip_state bcs;
451 1.1 matt int error;
452 1.1 matt
453 1.1 matt #ifdef BCM53XX_CONSOLE_EARLY
454 1.1 matt com_base = iobase + CCA_UART0_BASE;
455 1.1 matt cn_tab = &bcm53xx_earlycons;
456 1.1 matt #endif
457 1.1 matt
458 1.1 matt bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
459 1.1 matt error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
460 1.1 matt BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
461 1.1 matt if (error)
462 1.1 matt panic("%s: failed to map BCM53xx %s registers: %d",
463 1.1 matt __func__, "io", error);
464 1.1 matt
465 1.1 matt bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
466 1.1 matt error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
467 1.1 matt BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
468 1.1 matt if (error)
469 1.1 matt panic("%s: failed to map BCM53xx %s registers: %d",
470 1.1 matt __func__, "armcore", error);
471 1.1 matt
472 1.1 matt curcpu()->ci_softc = &cpu_softc;
473 1.1 matt
474 1.1 matt bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
475 1.1 matt bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
476 1.1 matt
477 1.1 matt struct bcm53xx_clock_info * const clk = &clk_info;
478 1.1 matt
479 1.1 matt bcm53xx_clock_init(clk);
480 1.1 matt bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
481 1.1 matt bcs.bcs_lcpll_control2);
482 1.1 matt bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
483 1.1 matt bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
484 1.1 matt bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
485 1.1 matt bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
486 1.1 matt bcs.bcs_ddr_phy_ctl_pll_dividers);
487 1.1 matt bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
488 1.1 matt bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
489 1.1 matt
490 1.1 matt curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
491 1.2 matt
492 1.2 matt arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, ARMCORE_L2C_BASE);
493 1.1 matt }
494 1.1 matt
495 1.1 matt #ifdef MULTIPROCESSOR
496 1.1 matt void
497 1.1 matt bcm53xx_cpu_hatch(struct cpu_info *ci)
498 1.1 matt {
499 1.1 matt a9tmr_init_cpu_clock(ci);
500 1.1 matt }
501 1.1 matt #endif
502 1.1 matt
503 1.1 matt void
504 1.1 matt bcm53xx_device_register(device_t self, void *aux)
505 1.1 matt {
506 1.1 matt prop_dictionary_t dict = device_properties(self);
507 1.1 matt
508 1.1 matt if (device_is_a(self, "armperiph")
509 1.1 matt && device_is_a(device_parent(self), "mainbus")) {
510 1.1 matt /*
511 1.1 matt * XXX KLUDGE ALERT XXX
512 1.1 matt * The iot mainbus supplies is completely wrong since it scales
513 1.1 matt * addresses by 2. The simpliest remedy is to replace with our
514 1.1 matt * bus space used for the armcore regisers (which armperiph uses).
515 1.1 matt */
516 1.1 matt struct mainbus_attach_args * const mb = aux;
517 1.1 matt mb->mb_iot = bcm53xx_armcore_bst;
518 1.1 matt return;
519 1.1 matt }
520 1.1 matt
521 1.1 matt /*
522 1.1 matt * We need to tell the A9 Global/Watchdog Timer
523 1.1 matt * what frequency it runs at.
524 1.1 matt */
525 1.1 matt if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
526 1.1 matt /*
527 1.1 matt * This clock always runs at (arm_clk div 2) and only goes
528 1.1 matt * to timers that are part of the A9 MP core subsystem.
529 1.1 matt */
530 1.1 matt prop_dictionary_set_uint32(dict, "frequency",
531 1.1 matt clk_info.clk_cpu / 2);
532 1.1 matt return;
533 1.1 matt }
534 1.1 matt }
535