Home | History | Annotate | Line # | Download | only in broadcom
bcm53xx_board.c revision 1.2.2.2
      1  1.2.2.2   tls /*	$NetBSD: bcm53xx_board.c,v 1.2.2.2 2013/02/25 00:28:25 tls Exp $	*/
      2      1.1  matt /*-
      3      1.1  matt  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      4      1.1  matt  * All rights reserved.
      5      1.1  matt  *
      6      1.1  matt  * This code is derived from software contributed to The NetBSD Foundation
      7      1.1  matt  * by Matt Thomas of 3am Software Foundry.
      8      1.1  matt  *
      9      1.1  matt  * Redistribution and use in source and binary forms, with or without
     10      1.1  matt  * modification, are permitted provided that the following conditions
     11      1.1  matt  * are met:
     12      1.1  matt  * 1. Redistributions of source code must retain the above copyright
     13      1.1  matt  *    notice, this list of conditions and the following disclaimer.
     14      1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     15      1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     16      1.1  matt  *    documentation and/or other materials provided with the distribution.
     17      1.1  matt  *
     18      1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19      1.1  matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20      1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21      1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22      1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23      1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24      1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25      1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26      1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27      1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28      1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     29      1.1  matt  */
     30      1.1  matt 
     31      1.1  matt #include "opt_broadcom.h"
     32      1.1  matt 
     33      1.1  matt #define	_ARM32_BUS_DMA_PRIVATE
     34      1.1  matt 
     35      1.1  matt #include <sys/cdefs.h>
     36      1.1  matt 
     37  1.2.2.2   tls __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.2.2.2 2013/02/25 00:28:25 tls Exp $");
     38      1.1  matt 
     39      1.1  matt #include <sys/param.h>
     40      1.1  matt #include <sys/bus.h>
     41      1.1  matt #include <sys/cpu.h>
     42      1.1  matt #include <sys/device.h>
     43      1.1  matt 
     44      1.1  matt #include <prop/proplib.h>
     45      1.1  matt 
     46  1.2.2.1   tls #include <net/if.h>
     47  1.2.2.1   tls #include <net/if_ether.h>
     48  1.2.2.1   tls 
     49      1.1  matt #define CRU_PRIVATE
     50      1.1  matt #define DDR_PRIVATE
     51      1.1  matt #define DMU_PRIVATE
     52      1.1  matt #define ARMCORE_PRIVATE
     53  1.2.2.1   tls #define SRAB_PRIVATE
     54      1.1  matt 
     55      1.1  matt #include <arm/cortex/a9tmr_var.h>
     56      1.2  matt #include <arm/cortex/pl310_var.h>
     57      1.1  matt #include <arm/mainbus/mainbus.h>
     58      1.1  matt 
     59      1.1  matt #include <arm/broadcom/bcm53xx_reg.h>
     60      1.1  matt #include <arm/broadcom/bcm53xx_var.h>
     61      1.1  matt 
     62      1.1  matt bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
     63      1.1  matt bus_space_handle_t bcm53xx_ioreg_bsh;
     64      1.1  matt bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
     65      1.1  matt bus_space_handle_t bcm53xx_armcore_bsh;
     66      1.1  matt 
     67      1.1  matt static struct cpu_softc cpu_softc;
     68      1.1  matt 
     69  1.2.2.2   tls struct arm32_dma_range bcm53xx_dma_ranges[] = {
     70  1.2.2.1   tls 	[0] = {
     71  1.2.2.1   tls 		.dr_sysbase = 0x80000000,
     72  1.2.2.1   tls 		.dr_busbase = 0x80000000,
     73  1.2.2.1   tls 		.dr_len = 0x10000000,
     74  1.2.2.1   tls 	}, [1] = {
     75  1.2.2.1   tls 		.dr_sysbase = 0x90000000,
     76  1.2.2.1   tls 		.dr_busbase = 0x90000000,
     77  1.2.2.1   tls 	},
     78  1.2.2.1   tls };
     79  1.2.2.1   tls 
     80      1.1  matt struct arm32_bus_dma_tag bcm53xx_dma_tag = {
     81  1.2.2.1   tls 	._ranges = bcm53xx_dma_ranges,
     82  1.2.2.1   tls 	._nranges = __arraycount(bcm53xx_dma_ranges),
     83  1.2.2.1   tls 	_BUS_DMAMAP_FUNCS,
     84  1.2.2.1   tls 	_BUS_DMAMEM_FUNCS,
     85  1.2.2.1   tls 	_BUS_DMATAG_FUNCS,
     86  1.2.2.1   tls };
     87  1.2.2.1   tls 
     88  1.2.2.2   tls struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
     89  1.2.2.1   tls 	[0] = {
     90  1.2.2.1   tls 		.dr_sysbase = 0x80000000,
     91  1.2.2.1   tls 		.dr_busbase = 0x80000000,
     92  1.2.2.1   tls 		.dr_len = 0x10000000,
     93  1.2.2.1   tls 		.dr_flags = _BUS_DMAMAP_COHERENT,
     94  1.2.2.1   tls 	}, [1] = {
     95  1.2.2.1   tls 		.dr_sysbase = 0x90000000,
     96  1.2.2.1   tls 		.dr_busbase = 0x90000000,
     97  1.2.2.1   tls 	},
     98  1.2.2.1   tls };
     99  1.2.2.1   tls 
    100  1.2.2.1   tls struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
    101  1.2.2.1   tls 	._ranges = bcm53xx_coherent_dma_ranges,
    102  1.2.2.1   tls 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
    103  1.2.2.1   tls 	_BUS_DMAMAP_FUNCS,
    104  1.2.2.1   tls 	_BUS_DMAMEM_FUNCS,
    105  1.2.2.1   tls 	_BUS_DMATAG_FUNCS,
    106      1.1  matt };
    107      1.1  matt 
    108  1.2.2.2   tls #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    109  1.2.2.2   tls struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
    110  1.2.2.2   tls 	._ranges = bcm53xx_coherent_dma_ranges,
    111  1.2.2.2   tls 	._nranges = 1,
    112  1.2.2.2   tls 	_BUS_DMAMAP_FUNCS,
    113  1.2.2.2   tls 	_BUS_DMAMEM_FUNCS,
    114  1.2.2.2   tls 	_BUS_DMATAG_FUNCS,
    115  1.2.2.2   tls };
    116  1.2.2.2   tls #endif
    117  1.2.2.2   tls 
    118      1.1  matt #ifdef BCM53XX_CONSOLE_EARLY
    119      1.1  matt #include <dev/ic/ns16550reg.h>
    120      1.1  matt #include <dev/ic/comreg.h>
    121      1.1  matt #include <dev/cons.h>
    122      1.1  matt 
    123      1.1  matt static vaddr_t com_base;
    124      1.1  matt 
    125      1.1  matt static inline uint32_t
    126      1.1  matt uart_read(bus_size_t o)
    127      1.1  matt {
    128      1.1  matt 	return *(volatile uint8_t *)(com_base + o);
    129      1.1  matt }
    130      1.1  matt 
    131      1.1  matt static inline void
    132      1.1  matt uart_write(bus_size_t o, uint32_t v)
    133      1.1  matt {
    134      1.1  matt 	*(volatile uint8_t *)(com_base + o) = v;
    135      1.1  matt }
    136      1.1  matt 
    137      1.1  matt static int
    138      1.1  matt bcm53xx_cngetc(dev_t dv)
    139      1.1  matt {
    140      1.1  matt         if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
    141      1.1  matt 		return -1;
    142      1.1  matt 
    143      1.1  matt 	return uart_read(com_data) & 0xff;
    144      1.1  matt }
    145      1.1  matt 
    146      1.1  matt static void
    147      1.1  matt bcm53xx_cnputc(dev_t dv, int c)
    148      1.1  matt {
    149      1.1  matt 	int timo = 150000;
    150      1.1  matt 
    151      1.1  matt         while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
    152      1.1  matt 		;
    153      1.1  matt 
    154      1.1  matt 	uart_write(com_data, c);
    155      1.1  matt 
    156      1.1  matt 	timo = 150000;
    157      1.1  matt         while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
    158      1.1  matt 		;
    159      1.1  matt }
    160      1.1  matt 
    161      1.1  matt static struct consdev bcm53xx_earlycons = {
    162      1.1  matt 	.cn_putc = bcm53xx_cnputc,
    163      1.1  matt 	.cn_getc = bcm53xx_cngetc,
    164      1.1  matt 	.cn_pollc = nullcnpollc,
    165      1.1  matt };
    166      1.1  matt #endif /* BCM53XX_CONSOLE_EARLY */
    167      1.1  matt 
    168      1.1  matt psize_t
    169      1.1  matt bcm53xx_memprobe(void)
    170      1.1  matt {
    171      1.1  matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    172      1.1  matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    173      1.1  matt 
    174      1.1  matt 	/*
    175      1.1  matt 	 * First, let's read the magic DDR registers!
    176      1.1  matt 	 */
    177      1.1  matt 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
    178      1.1  matt 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
    179      1.1  matt 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
    180      1.1  matt 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
    181      1.1  matt 
    182      1.1  matt 	/*
    183      1.1  matt 	 * Calculate chip parameters
    184      1.1  matt 	 * */
    185      1.1  matt 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
    186      1.1  matt 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
    187      1.1  matt 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
    188      1.1  matt 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
    189      1.1  matt 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
    190      1.1  matt 
    191      1.1  matt 	/*
    192      1.1  matt 	 * For each chip select, increase the chip count if if is enabled.
    193      1.1  matt 	 */
    194      1.1  matt 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
    195      1.1  matt 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
    196      1.1  matt 	u_int chips = 0;
    197      1.1  matt 
    198      1.1  matt 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
    199      1.1  matt 		chips += (cs_map & 1);
    200      1.1  matt 	}
    201      1.1  matt 
    202      1.1  matt 	/* get log2(ddr width) */
    203      1.1  matt 
    204      1.1  matt 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
    205      1.1  matt 
    206      1.1  matt 	/*
    207      1.1  matt 	 * Let's add up all the things that contribute to the size of a chip.
    208      1.1  matt 	 */
    209      1.1  matt 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
    210      1.1  matt 
    211      1.1  matt 	/*
    212      1.1  matt 	 * Now our memory size is simply the number of chip shifted by the
    213      1.1  matt 	 * log2(chip_size).
    214      1.1  matt 	 */
    215      1.1  matt 	return (psize_t) chips << chip_size_log2;
    216      1.1  matt }
    217      1.1  matt 
    218      1.1  matt static inline uint32_t
    219      1.1  matt bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
    220      1.1  matt 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
    221      1.1  matt {
    222      1.1  matt 	if (ndiv_frac == 0 && pdiv == 1)
    223      1.1  matt 		return ndiv_int * clk->clk_ref;
    224      1.1  matt 
    225      1.1  matt 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
    226      1.1  matt 	freq64 *= clk->clk_ref;
    227      1.1  matt 	if (pdiv > 1)
    228      1.1  matt 		freq64 /= pdiv;
    229      1.1  matt 	return (uint32_t) (freq64 >> 30);
    230      1.1  matt }
    231      1.1  matt 
    232      1.1  matt static uint32_t
    233      1.1  matt bcm53xx_value_wrap(uint32_t value, uint32_t mask)
    234      1.1  matt {
    235      1.1  matt 	/*
    236      1.1  matt 	 * n is n except when n is 0 then n = mask + 1.
    237      1.1  matt 	 */
    238      1.1  matt 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
    239      1.1  matt }
    240      1.1  matt 
    241      1.1  matt static void
    242      1.1  matt bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
    243      1.1  matt 	uint32_t control6, uint32_t control7)
    244      1.1  matt {
    245      1.1  matt 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
    246      1.1  matt 	    GENPLL_CONTROL6_PDIV);
    247      1.1  matt 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
    248      1.1  matt 	    GENPLL_CONTROL5_NDIV_INT);
    249      1.1  matt 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
    250      1.1  matt 	    GENPLL_CONTROL5_NDIV_FRAC);
    251      1.1  matt 
    252      1.1  matt 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    253      1.1  matt 
    254      1.1  matt 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
    255      1.1  matt 	    GENPLL_CONTROL6_CH0_MDIV);
    256      1.1  matt 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
    257      1.1  matt 	    GENPLL_CONTROL6_CH1_MDIV);
    258      1.1  matt 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
    259      1.1  matt 	    GENPLL_CONTROL6_CH2_MDIV);
    260      1.1  matt 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
    261      1.1  matt 	    GENPLL_CONTROL7_CH3_MDIV);
    262      1.1  matt 
    263      1.1  matt 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
    264      1.1  matt 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
    265      1.1  matt 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
    266      1.1  matt 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
    267      1.1  matt }
    268      1.1  matt 
    269      1.1  matt static void
    270      1.1  matt bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
    271      1.1  matt 	uint32_t control2)
    272      1.1  matt {
    273      1.1  matt 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
    274      1.1  matt 	    LCPLL_CONTROL1_PDIV);
    275      1.1  matt 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
    276      1.1  matt 	    LCPLL_CONTROL1_NDIV_INT);
    277      1.1  matt 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
    278      1.1  matt 	    LCPLL_CONTROL1_NDIV_FRAC);
    279      1.1  matt 
    280      1.1  matt 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    281      1.1  matt 
    282      1.1  matt 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
    283      1.1  matt 	    LCPLL_CONTROL2_CH0_MDIV);
    284      1.1  matt 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
    285      1.1  matt 	    LCPLL_CONTROL2_CH1_MDIV);
    286      1.1  matt 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
    287      1.1  matt 	    LCPLL_CONTROL2_CH2_MDIV);
    288      1.1  matt 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
    289      1.1  matt 	    LCPLL_CONTROL2_CH3_MDIV);
    290      1.1  matt 
    291      1.1  matt 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
    292      1.1  matt 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
    293      1.1  matt 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
    294      1.1  matt 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
    295      1.1  matt }
    296      1.1  matt 
    297      1.1  matt static void
    298      1.1  matt bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
    299      1.1  matt {
    300      1.1  matt 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
    301      1.1  matt 	    USB2_CONTROL_PDIV);
    302      1.1  matt 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
    303      1.1  matt 	    USB2_CONTROL_NDIV_INT);
    304      1.1  matt 
    305      1.1  matt 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
    306      1.1  matt 	if (usb_ref != USB2_REF_CLK) {
    307      1.1  matt 		/*
    308      1.1  matt 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
    309      1.1  matt 		 * USB2_CONTROL to produce it.
    310      1.1  matt 		 */
    311      1.1  matt 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
    312      1.1  matt 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
    313      1.1  matt 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
    314      1.1  matt 
    315      1.1  matt 		// Allow Clocks to be modified
    316      1.1  matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    317      1.1  matt 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
    318      1.1  matt 
    319      1.1  matt 		// Update USB2 clock generator
    320      1.1  matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    321      1.1  matt 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
    322      1.1  matt 
    323      1.1  matt 		// Prevent Clock modification
    324      1.1  matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    325      1.1  matt 		    CRU_BASE + CRU_CLKSET_KEY, 0);
    326      1.1  matt 
    327      1.1  matt 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
    328      1.1  matt 	}
    329      1.1  matt 
    330      1.1  matt 	clk->clk_usb_ref = usb_ref;
    331      1.1  matt }
    332      1.1  matt 
    333      1.1  matt 
    334      1.1  matt static void
    335      1.1  matt bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
    336      1.1  matt {
    337      1.1  matt 	clk->clk_ref = BCM53XX_REF_CLK;
    338      1.1  matt 	clk->clk_sys = 8*clk->clk_ref;
    339      1.1  matt }
    340      1.1  matt 
    341      1.1  matt /*
    342      1.1  matt  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
    343      1.1  matt  */
    344      1.1  matt static void
    345      1.1  matt bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
    346      1.1  matt     uint32_t pll_dividers)
    347      1.1  matt {
    348      1.1  matt 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
    349      1.1  matt 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
    350      1.1  matt 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
    351      1.1  matt 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
    352      1.1  matt 
    353      1.1  matt 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
    354      1.1  matt 
    355      1.1  matt 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
    356      1.1  matt 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
    357      1.1  matt }
    358      1.1  matt 
    359      1.1  matt /*
    360      1.1  matt  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
    361      1.1  matt  */
    362      1.1  matt static void
    363      1.1  matt bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
    364      1.1  matt 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
    365      1.1  matt {
    366      1.1  matt 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
    367      1.1  matt 
    368      1.1  matt 	if (policy == CLK_POLICY_REF_CLK) {
    369      1.1  matt 		clk->clk_cpu = clk->clk_ref;
    370      1.1  matt 		clk->clk_apb = clk->clk_cpu;
    371      1.1  matt 		return;
    372      1.1  matt 	}
    373      1.1  matt 
    374      1.1  matt 	if (policy == CLK_POLICY_SYS_CLK) {
    375      1.1  matt 		clk->clk_cpu = clk->clk_sys;
    376      1.1  matt 		clk->clk_apb = clk->clk_cpu / 4;
    377      1.1  matt 		return;
    378      1.1  matt 	}
    379      1.1  matt 
    380      1.1  matt 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
    381      1.1  matt 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
    382      1.1  matt 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
    383      1.1  matt 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
    384      1.1  matt 
    385      1.1  matt 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
    386      1.1  matt 
    387      1.1  matt 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
    388      1.1  matt 	clk->clk_apb = clk->clk_cpu / 4;
    389      1.1  matt }
    390      1.1  matt 
    391      1.1  matt struct bcm53xx_chip_state {
    392      1.1  matt 	uint32_t bcs_lcpll_control1;
    393      1.1  matt 	uint32_t bcs_lcpll_control2;
    394      1.1  matt 
    395      1.1  matt 	uint32_t bcs_genpll_control5;
    396      1.1  matt 	uint32_t bcs_genpll_control6;
    397      1.1  matt 	uint32_t bcs_genpll_control7;
    398      1.1  matt 
    399      1.1  matt 	uint32_t bcs_usb2_control;
    400      1.1  matt 
    401      1.1  matt 	uint32_t bcs_ddr_phy_ctl_pll_status;
    402      1.1  matt 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
    403      1.1  matt 
    404      1.1  matt 	uint32_t bcs_armcore_clk_policy;
    405      1.1  matt 	uint32_t bcs_armcore_clk_pllarma;
    406      1.1  matt 	uint32_t bcs_armcore_clk_pllarmb;
    407      1.1  matt };
    408      1.1  matt 
    409      1.1  matt static void
    410      1.1  matt bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
    411      1.1  matt 	bus_space_tag_t bst, bus_space_handle_t bsh)
    412      1.1  matt {
    413      1.1  matt 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
    414      1.1  matt 	    DMU_BASE + DMU_LCPLL_CONTROL1);
    415      1.1  matt 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
    416      1.1  matt 	    DMU_BASE + DMU_LCPLL_CONTROL2);
    417      1.1  matt 
    418      1.1  matt 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
    419      1.1  matt 	    CRU_BASE + CRU_GENPLL_CONTROL5);
    420      1.1  matt 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
    421      1.1  matt 	    CRU_BASE + CRU_GENPLL_CONTROL6);
    422      1.1  matt 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
    423      1.1  matt 	    CRU_BASE + CRU_GENPLL_CONTROL7);
    424      1.1  matt 
    425      1.1  matt 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
    426      1.1  matt 	    CRU_BASE + CRU_USB2_CONTROL);
    427      1.1  matt 
    428      1.1  matt 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
    429      1.1  matt 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
    430      1.1  matt 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
    431      1.1  matt 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
    432      1.1  matt }
    433      1.1  matt 
    434      1.1  matt static void
    435      1.1  matt bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
    436      1.1  matt 	bus_space_tag_t bst, bus_space_handle_t bsh)
    437      1.1  matt {
    438      1.1  matt 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
    439      1.1  matt 	    ARMCORE_CLK_POLICY_FREQ);
    440      1.1  matt 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
    441      1.1  matt 	    ARMCORE_CLK_PLLARMA);
    442      1.1  matt 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
    443      1.1  matt 	    ARMCORE_CLK_PLLARMB);
    444      1.1  matt }
    445      1.1  matt 
    446      1.1  matt void
    447      1.1  matt bcm53xx_cpu_softc_init(struct cpu_info *ci)
    448      1.1  matt {
    449      1.1  matt 	struct cpu_softc * const cpu = ci->ci_softc;
    450      1.1  matt 
    451      1.1  matt 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
    452      1.1  matt 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
    453      1.1  matt 
    454      1.1  matt 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
    455      1.1  matt 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
    456      1.1  matt }
    457      1.1  matt 
    458      1.1  matt void
    459      1.1  matt bcm53xx_print_clocks(void)
    460      1.1  matt {
    461      1.1  matt #if defined(VERBOSE_ARM_INIT)
    462  1.2.2.2   tls 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    463  1.2.2.2   tls 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
    464  1.2.2.2   tls 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
    465  1.2.2.2   tls 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
    466  1.2.2.2   tls 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
    467  1.2.2.2   tls 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
    468  1.2.2.2   tls 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
    469  1.2.2.2   tls 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
    470  1.2.2.2   tls 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
    471  1.2.2.2   tls 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
    472  1.2.2.2   tls 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
    473  1.2.2.2   tls 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
    474  1.2.2.2   tls 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
    475  1.2.2.2   tls 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
    476  1.2.2.2   tls 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
    477  1.2.2.2   tls 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
    478  1.2.2.2   tls 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
    479  1.2.2.2   tls 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
    480      1.1  matt #endif
    481      1.1  matt }
    482      1.1  matt 
    483      1.1  matt void
    484      1.1  matt bcm53xx_bootstrap(vaddr_t iobase)
    485      1.1  matt {
    486      1.1  matt 	struct bcm53xx_chip_state bcs;
    487      1.1  matt 	int error;
    488      1.1  matt 
    489      1.1  matt #ifdef BCM53XX_CONSOLE_EARLY
    490      1.1  matt 	com_base = iobase + CCA_UART0_BASE;
    491      1.1  matt 	cn_tab = &bcm53xx_earlycons;
    492      1.1  matt #endif
    493      1.1  matt 
    494      1.1  matt 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
    495      1.1  matt 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
    496      1.1  matt 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
    497      1.1  matt 	if (error)
    498      1.1  matt 		panic("%s: failed to map BCM53xx %s registers: %d",
    499      1.1  matt 		    __func__, "io", error);
    500      1.1  matt 
    501      1.1  matt 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
    502      1.1  matt 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
    503      1.1  matt 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
    504      1.1  matt 	if (error)
    505      1.1  matt 		panic("%s: failed to map BCM53xx %s registers: %d",
    506      1.1  matt 		    __func__, "armcore", error);
    507      1.1  matt 
    508      1.1  matt 	curcpu()->ci_softc = &cpu_softc;
    509      1.1  matt 
    510      1.1  matt 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
    511      1.1  matt 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
    512      1.1  matt 
    513  1.2.2.2   tls 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    514      1.1  matt 
    515      1.1  matt 	bcm53xx_clock_init(clk);
    516      1.1  matt 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
    517      1.1  matt 	    bcs.bcs_lcpll_control2);
    518      1.1  matt 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
    519      1.1  matt 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
    520      1.1  matt 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
    521      1.1  matt 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
    522      1.1  matt 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
    523      1.1  matt 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
    524      1.1  matt 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
    525      1.1  matt 
    526      1.1  matt 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
    527      1.2  matt 
    528      1.2  matt 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, ARMCORE_L2C_BASE);
    529      1.1  matt }
    530      1.1  matt 
    531  1.2.2.1   tls void
    532  1.2.2.1   tls bcm53xx_dma_bootstrap(psize_t memsize)
    533  1.2.2.1   tls {
    534  1.2.2.2   tls 	if (memsize <= 256*1024*1024) {
    535  1.2.2.2   tls 		bcm53xx_dma_ranges[0].dr_len = memsize;
    536  1.2.2.2   tls 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
    537  1.2.2.2   tls 		bcm53xx_dma_tag._nranges = 1;
    538  1.2.2.2   tls 		bcm53xx_coherent_dma_tag._nranges = 1;
    539  1.2.2.2   tls 	} else {
    540  1.2.2.1   tls 		/*
    541  1.2.2.1   tls 		 * By setting up two ranges, bus_dmamem_alloc will always
    542  1.2.2.1   tls 		 * try to allocate from range 0 first resulting in allocations
    543  1.2.2.1   tls 		 * below 256MB which for PCI and GMAC are coherent.
    544  1.2.2.1   tls 		 */
    545  1.2.2.1   tls 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
    546  1.2.2.1   tls 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
    547  1.2.2.1   tls 	}
    548  1.2.2.1   tls 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
    549  1.2.2.1   tls 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    550  1.2.2.2   tls #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    551  1.2.2.2   tls 	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    552  1.2.2.2   tls #endif
    553  1.2.2.1   tls }
    554  1.2.2.1   tls 
    555      1.1  matt #ifdef MULTIPROCESSOR
    556      1.1  matt void
    557      1.1  matt bcm53xx_cpu_hatch(struct cpu_info *ci)
    558      1.1  matt {
    559      1.1  matt 	a9tmr_init_cpu_clock(ci);
    560      1.1  matt }
    561      1.1  matt #endif
    562      1.1  matt 
    563      1.1  matt void
    564      1.1  matt bcm53xx_device_register(device_t self, void *aux)
    565      1.1  matt {
    566      1.1  matt 	prop_dictionary_t dict = device_properties(self);
    567      1.1  matt 
    568      1.1  matt 	if (device_is_a(self, "armperiph")
    569      1.1  matt 	    && device_is_a(device_parent(self), "mainbus")) {
    570      1.1  matt 		/*
    571      1.1  matt 		 * XXX KLUDGE ALERT XXX
    572      1.1  matt 		 * The iot mainbus supplies is completely wrong since it scales
    573      1.1  matt 		 * addresses by 2.  The simpliest remedy is to replace with our
    574      1.1  matt 		 * bus space used for the armcore regisers (which armperiph uses).
    575      1.1  matt 		 */
    576      1.1  matt 		struct mainbus_attach_args * const mb = aux;
    577      1.1  matt 		mb->mb_iot = bcm53xx_armcore_bst;
    578      1.1  matt 		return;
    579      1.1  matt 	}
    580      1.1  matt 
    581      1.1  matt 	/*
    582      1.1  matt 	 * We need to tell the A9 Global/Watchdog Timer
    583      1.1  matt 	 * what frequency it runs at.
    584      1.1  matt 	 */
    585      1.1  matt 	if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
    586      1.1  matt 		/*
    587      1.1  matt 		 * This clock always runs at (arm_clk div 2) and only goes
    588      1.1  matt 		 * to timers that are part of the A9 MP core subsystem.
    589      1.1  matt 		 */
    590      1.1  matt                 prop_dictionary_set_uint32(dict, "frequency",
    591  1.2.2.2   tls 		    cpu_softc.cpu_clk.clk_cpu / 2);
    592      1.1  matt 		return;
    593  1.2.2.1   tls 	}
    594  1.2.2.1   tls 
    595  1.2.2.1   tls 	if (device_is_a(self, "bcmeth")) {
    596  1.2.2.1   tls 		const struct bcmccb_attach_args * const ccbaa = aux;
    597  1.2.2.1   tls 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
    598  1.2.2.1   tls 			0x00, 0x01, 0x02, 0x03, 0x04,
    599  1.2.2.1   tls 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
    600  1.2.2.1   tls 		};
    601  1.2.2.1   tls 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
    602  1.2.2.1   tls 		KASSERT(pd != NULL);
    603  1.2.2.1   tls 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
    604  1.2.2.1   tls 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
    605  1.2.2.1   tls 		}
    606  1.2.2.1   tls 		prop_object_release(pd);
    607  1.2.2.1   tls 	}
    608  1.2.2.1   tls }
    609  1.2.2.1   tls 
    610  1.2.2.1   tls static kmutex_t srab_lock __cacheline_aligned;
    611  1.2.2.1   tls 
    612  1.2.2.1   tls void
    613  1.2.2.1   tls bcm53xx_srab_init(void)
    614  1.2.2.1   tls {
    615  1.2.2.1   tls 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
    616  1.2.2.1   tls 
    617  1.2.2.1   tls 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
    618  1.2.2.1   tls 	for (u_int port = 0; port < 8; port++) {
    619  1.2.2.1   tls 		/* per port control: no stp */
    620  1.2.2.1   tls 		bcm53xx_srab_write_4(port, 0x00);
    621  1.2.2.1   tls 	}
    622  1.2.2.1   tls 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
    623  1.2.2.1   tls 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
    624  1.2.2.1   tls 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
    625  1.2.2.1   tls 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
    626  1.2.2.1   tls 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
    627  1.2.2.1   tls 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
    628  1.2.2.1   tls 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
    629  1.2.2.1   tls }
    630  1.2.2.1   tls 
    631  1.2.2.1   tls static inline void
    632  1.2.2.1   tls bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
    633  1.2.2.1   tls {
    634  1.2.2.1   tls 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
    635  1.2.2.1   tls 		delay(10);
    636  1.2.2.1   tls 	}
    637  1.2.2.1   tls }
    638  1.2.2.1   tls 
    639  1.2.2.1   tls uint32_t
    640  1.2.2.1   tls bcm53xx_srab_read_4(u_int pageoffset)
    641  1.2.2.1   tls {
    642  1.2.2.1   tls 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    643  1.2.2.1   tls 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    644  1.2.2.1   tls 	uint32_t rv;
    645  1.2.2.1   tls 
    646  1.2.2.1   tls 	mutex_spin_enter(&srab_lock);
    647  1.2.2.1   tls 
    648  1.2.2.1   tls 	bcm53xx_srab_busywait(bst, bsh);
    649  1.2.2.1   tls 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    650  1.2.2.1   tls 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    651  1.2.2.1   tls 	bcm53xx_srab_busywait(bst, bsh);
    652  1.2.2.1   tls 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    653  1.2.2.1   tls 
    654  1.2.2.1   tls 	mutex_spin_exit(&srab_lock);
    655  1.2.2.1   tls 	return rv;
    656  1.2.2.1   tls }
    657  1.2.2.1   tls 
    658  1.2.2.1   tls uint64_t
    659  1.2.2.1   tls bcm53xx_srab_read_8(u_int pageoffset)
    660  1.2.2.1   tls {
    661  1.2.2.1   tls 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    662  1.2.2.1   tls 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    663  1.2.2.1   tls 	uint64_t rv;
    664  1.2.2.1   tls 
    665  1.2.2.1   tls 	mutex_spin_enter(&srab_lock);
    666  1.2.2.1   tls 
    667  1.2.2.1   tls 	bcm53xx_srab_busywait(bst, bsh);
    668  1.2.2.1   tls 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    669  1.2.2.1   tls 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    670  1.2.2.1   tls 	bcm53xx_srab_busywait(bst, bsh);
    671  1.2.2.1   tls 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
    672  1.2.2.1   tls 	rv <<= 32;
    673  1.2.2.1   tls 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    674  1.2.2.1   tls 
    675  1.2.2.1   tls 	mutex_spin_exit(&srab_lock);
    676  1.2.2.1   tls 	return rv;
    677  1.2.2.1   tls }
    678  1.2.2.1   tls 
    679  1.2.2.1   tls void
    680  1.2.2.1   tls bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
    681  1.2.2.1   tls {
    682  1.2.2.1   tls 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    683  1.2.2.1   tls 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    684  1.2.2.1   tls 
    685  1.2.2.1   tls 	mutex_spin_enter(&srab_lock);
    686  1.2.2.1   tls 
    687  1.2.2.1   tls 	bcm53xx_srab_busywait(bst, bsh);
    688  1.2.2.1   tls 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    689  1.2.2.1   tls 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    690  1.2.2.1   tls 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    691  1.2.2.1   tls 	bcm53xx_srab_busywait(bst, bsh);
    692  1.2.2.1   tls 
    693  1.2.2.1   tls 	mutex_spin_exit(&srab_lock);
    694  1.2.2.1   tls }
    695  1.2.2.1   tls 
    696  1.2.2.1   tls void
    697  1.2.2.1   tls bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
    698  1.2.2.1   tls {
    699  1.2.2.1   tls 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    700  1.2.2.1   tls 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    701  1.2.2.1   tls 
    702  1.2.2.1   tls 	mutex_spin_enter(&srab_lock);
    703  1.2.2.1   tls 
    704  1.2.2.1   tls 	bcm53xx_srab_busywait(bst, bsh);
    705  1.2.2.1   tls 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    706  1.2.2.1   tls 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
    707  1.2.2.1   tls 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    708  1.2.2.1   tls 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    709  1.2.2.1   tls 	bcm53xx_srab_busywait(bst, bsh);
    710  1.2.2.1   tls 	mutex_spin_exit(&srab_lock);
    711      1.1  matt }
    712