Home | History | Annotate | Line # | Download | only in broadcom
bcm53xx_board.c revision 1.21
      1  1.21  matt /*	$NetBSD: bcm53xx_board.c,v 1.21 2014/03/26 03:19:11 matt Exp $	*/
      2   1.1  matt /*-
      3   1.1  matt  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      4   1.1  matt  * All rights reserved.
      5   1.1  matt  *
      6   1.1  matt  * This code is derived from software contributed to The NetBSD Foundation
      7   1.1  matt  * by Matt Thomas of 3am Software Foundry.
      8   1.1  matt  *
      9   1.1  matt  * Redistribution and use in source and binary forms, with or without
     10   1.1  matt  * modification, are permitted provided that the following conditions
     11   1.1  matt  * are met:
     12   1.1  matt  * 1. Redistributions of source code must retain the above copyright
     13   1.1  matt  *    notice, this list of conditions and the following disclaimer.
     14   1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     15   1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     16   1.1  matt  *    documentation and/or other materials provided with the distribution.
     17   1.1  matt  *
     18   1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19   1.1  matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20   1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21   1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22   1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23   1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24   1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25   1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26   1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27   1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28   1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     29   1.1  matt  */
     30   1.1  matt 
     31   1.1  matt #include "opt_broadcom.h"
     32  1.18  matt #include "arml2cc.h"
     33   1.1  matt 
     34   1.1  matt #define	_ARM32_BUS_DMA_PRIVATE
     35   1.1  matt 
     36   1.1  matt #include <sys/cdefs.h>
     37   1.1  matt 
     38  1.21  matt __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.21 2014/03/26 03:19:11 matt Exp $");
     39   1.1  matt 
     40   1.1  matt #include <sys/param.h>
     41   1.1  matt #include <sys/bus.h>
     42   1.1  matt #include <sys/cpu.h>
     43   1.1  matt #include <sys/device.h>
     44   1.1  matt 
     45   1.1  matt #include <prop/proplib.h>
     46   1.1  matt 
     47   1.4  matt #include <net/if.h>
     48   1.4  matt #include <net/if_ether.h>
     49   1.4  matt 
     50  1.17  matt #define CCA_PRIVATE
     51   1.1  matt #define CRU_PRIVATE
     52   1.1  matt #define DDR_PRIVATE
     53   1.1  matt #define DMU_PRIVATE
     54   1.1  matt #define ARMCORE_PRIVATE
     55   1.4  matt #define SRAB_PRIVATE
     56   1.1  matt 
     57   1.1  matt #include <arm/cortex/a9tmr_var.h>
     58   1.2  matt #include <arm/cortex/pl310_var.h>
     59   1.1  matt #include <arm/mainbus/mainbus.h>
     60   1.1  matt 
     61   1.1  matt #include <arm/broadcom/bcm53xx_reg.h>
     62   1.1  matt #include <arm/broadcom/bcm53xx_var.h>
     63   1.1  matt 
     64   1.1  matt bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
     65   1.1  matt bus_space_handle_t bcm53xx_ioreg_bsh;
     66   1.1  matt bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
     67   1.1  matt bus_space_handle_t bcm53xx_armcore_bsh;
     68   1.1  matt 
     69   1.1  matt static struct cpu_softc cpu_softc;
     70   1.1  matt 
     71  1.13  matt struct arm32_dma_range bcm53xx_dma_ranges[] = {
     72  1.17  matt #ifdef BCM5301X
     73   1.8  matt 	[0] = {
     74   1.8  matt 		.dr_sysbase = 0x80000000,
     75   1.8  matt 		.dr_busbase = 0x80000000,
     76   1.8  matt 		.dr_len = 0x10000000,
     77   1.8  matt 	}, [1] = {
     78   1.8  matt 		.dr_sysbase = 0x90000000,
     79   1.8  matt 		.dr_busbase = 0x90000000,
     80   1.8  matt 	},
     81  1.19  matt #elif defined(BCM563XX)
     82  1.17  matt 	[0] = {
     83  1.17  matt 		.dr_sysbase = 0x60000000,
     84  1.17  matt 		.dr_busbase = 0x60000000,
     85  1.17  matt 		.dr_len = 0x20000000,
     86  1.17  matt 	}, [1] = {
     87  1.19  matt 		.dr_sysbase = 0x80000000,
     88  1.19  matt 		.dr_busbase = 0x80000000,
     89  1.20  matt 	},
     90  1.17  matt #endif
     91   1.8  matt };
     92   1.5  matt 
     93   1.1  matt struct arm32_bus_dma_tag bcm53xx_dma_tag = {
     94   1.8  matt 	._ranges = bcm53xx_dma_ranges,
     95   1.8  matt 	._nranges = __arraycount(bcm53xx_dma_ranges),
     96   1.3  matt 	_BUS_DMAMAP_FUNCS,
     97   1.3  matt 	_BUS_DMAMEM_FUNCS,
     98   1.3  matt 	_BUS_DMATAG_FUNCS,
     99   1.1  matt };
    100   1.1  matt 
    101  1.13  matt struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
    102  1.17  matt #ifdef BCM5301X
    103   1.8  matt 	[0] = {
    104   1.8  matt 		.dr_sysbase = 0x80000000,
    105   1.8  matt 		.dr_busbase = 0x80000000,
    106   1.8  matt 		.dr_len = 0x10000000,
    107   1.8  matt 		.dr_flags = _BUS_DMAMAP_COHERENT,
    108   1.8  matt 	}, [1] = {
    109   1.8  matt 		.dr_sysbase = 0x90000000,
    110   1.8  matt 		.dr_busbase = 0x90000000,
    111   1.8  matt 	},
    112  1.17  matt #elif defined(BCM563XX)
    113  1.17  matt 	[0] = {
    114  1.17  matt 		.dr_sysbase = 0x60000000,
    115  1.17  matt 		.dr_busbase = 0x60000000,
    116  1.17  matt 		.dr_len = 0x20000000,
    117  1.17  matt 		.dr_flags = _BUS_DMAMAP_COHERENT,
    118  1.17  matt 	}, [1] = {
    119  1.19  matt 		.dr_sysbase = 0x80000000,
    120  1.19  matt 		.dr_busbase = 0x80000000,
    121  1.17  matt 	},
    122  1.17  matt #endif
    123   1.8  matt };
    124   1.6  matt 
    125   1.6  matt struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
    126   1.8  matt 	._ranges = bcm53xx_coherent_dma_ranges,
    127   1.8  matt 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
    128   1.6  matt 	_BUS_DMAMAP_FUNCS,
    129   1.6  matt 	_BUS_DMAMEM_FUNCS,
    130   1.6  matt 	_BUS_DMATAG_FUNCS,
    131   1.6  matt };
    132   1.6  matt 
    133  1.14  matt #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    134  1.14  matt struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
    135  1.15  matt 	._ranges = bcm53xx_coherent_dma_ranges,
    136  1.15  matt 	._nranges = 1,
    137  1.14  matt 	_BUS_DMAMAP_FUNCS,
    138  1.14  matt 	_BUS_DMAMEM_FUNCS,
    139  1.14  matt 	_BUS_DMATAG_FUNCS,
    140  1.14  matt };
    141  1.14  matt #endif
    142  1.14  matt 
    143   1.1  matt #ifdef BCM53XX_CONSOLE_EARLY
    144   1.1  matt #include <dev/ic/ns16550reg.h>
    145   1.1  matt #include <dev/ic/comreg.h>
    146   1.1  matt #include <dev/cons.h>
    147   1.1  matt 
    148   1.1  matt static vaddr_t com_base;
    149   1.1  matt 
    150   1.1  matt static inline uint32_t
    151   1.1  matt uart_read(bus_size_t o)
    152   1.1  matt {
    153   1.1  matt 	return *(volatile uint8_t *)(com_base + o);
    154   1.1  matt }
    155   1.1  matt 
    156   1.1  matt static inline void
    157   1.1  matt uart_write(bus_size_t o, uint32_t v)
    158   1.1  matt {
    159   1.1  matt 	*(volatile uint8_t *)(com_base + o) = v;
    160   1.1  matt }
    161   1.1  matt 
    162   1.1  matt static int
    163   1.1  matt bcm53xx_cngetc(dev_t dv)
    164   1.1  matt {
    165   1.1  matt         if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
    166   1.1  matt 		return -1;
    167   1.1  matt 
    168   1.1  matt 	return uart_read(com_data) & 0xff;
    169   1.1  matt }
    170   1.1  matt 
    171   1.1  matt static void
    172   1.1  matt bcm53xx_cnputc(dev_t dv, int c)
    173   1.1  matt {
    174   1.1  matt 	int timo = 150000;
    175   1.1  matt 
    176   1.1  matt         while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
    177   1.1  matt 		;
    178   1.1  matt 
    179   1.1  matt 	uart_write(com_data, c);
    180   1.1  matt 
    181   1.1  matt 	timo = 150000;
    182   1.1  matt         while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
    183   1.1  matt 		;
    184   1.1  matt }
    185   1.1  matt 
    186   1.1  matt static struct consdev bcm53xx_earlycons = {
    187   1.1  matt 	.cn_putc = bcm53xx_cnputc,
    188   1.1  matt 	.cn_getc = bcm53xx_cngetc,
    189   1.1  matt 	.cn_pollc = nullcnpollc,
    190   1.1  matt };
    191   1.1  matt #endif /* BCM53XX_CONSOLE_EARLY */
    192   1.1  matt 
    193   1.1  matt psize_t
    194   1.1  matt bcm53xx_memprobe(void)
    195   1.1  matt {
    196   1.1  matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    197   1.1  matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    198   1.1  matt 
    199   1.1  matt 	/*
    200   1.1  matt 	 * First, let's read the magic DDR registers!
    201   1.1  matt 	 */
    202   1.1  matt 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
    203   1.1  matt 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
    204   1.1  matt 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
    205   1.1  matt 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
    206   1.1  matt 
    207   1.1  matt 	/*
    208   1.1  matt 	 * Calculate chip parameters
    209   1.1  matt 	 * */
    210   1.1  matt 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
    211   1.1  matt 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
    212   1.1  matt 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
    213   1.1  matt 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
    214   1.1  matt 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
    215   1.1  matt 
    216   1.1  matt 	/*
    217   1.1  matt 	 * For each chip select, increase the chip count if if is enabled.
    218   1.1  matt 	 */
    219   1.1  matt 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
    220   1.1  matt 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
    221   1.1  matt 	u_int chips = 0;
    222   1.1  matt 
    223   1.1  matt 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
    224   1.1  matt 		chips += (cs_map & 1);
    225   1.1  matt 	}
    226   1.1  matt 
    227   1.1  matt 	/* get log2(ddr width) */
    228   1.1  matt 
    229   1.1  matt 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
    230   1.1  matt 
    231   1.1  matt 	/*
    232   1.1  matt 	 * Let's add up all the things that contribute to the size of a chip.
    233   1.1  matt 	 */
    234   1.1  matt 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
    235   1.1  matt 
    236   1.1  matt 	/*
    237   1.1  matt 	 * Now our memory size is simply the number of chip shifted by the
    238   1.1  matt 	 * log2(chip_size).
    239   1.1  matt 	 */
    240   1.1  matt 	return (psize_t) chips << chip_size_log2;
    241   1.1  matt }
    242   1.1  matt 
    243   1.1  matt static inline uint32_t
    244   1.1  matt bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
    245   1.1  matt 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
    246   1.1  matt {
    247   1.1  matt 	if (ndiv_frac == 0 && pdiv == 1)
    248   1.1  matt 		return ndiv_int * clk->clk_ref;
    249   1.1  matt 
    250   1.1  matt 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
    251   1.1  matt 	freq64 *= clk->clk_ref;
    252   1.1  matt 	if (pdiv > 1)
    253   1.1  matt 		freq64 /= pdiv;
    254   1.1  matt 	return (uint32_t) (freq64 >> 30);
    255   1.1  matt }
    256   1.1  matt 
    257   1.1  matt static uint32_t
    258   1.1  matt bcm53xx_value_wrap(uint32_t value, uint32_t mask)
    259   1.1  matt {
    260   1.1  matt 	/*
    261   1.1  matt 	 * n is n except when n is 0 then n = mask + 1.
    262   1.1  matt 	 */
    263   1.1  matt 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
    264   1.1  matt }
    265   1.1  matt 
    266   1.1  matt static void
    267   1.1  matt bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
    268   1.1  matt 	uint32_t control6, uint32_t control7)
    269   1.1  matt {
    270   1.1  matt 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
    271   1.1  matt 	    GENPLL_CONTROL6_PDIV);
    272   1.1  matt 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
    273   1.1  matt 	    GENPLL_CONTROL5_NDIV_INT);
    274   1.1  matt 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
    275   1.1  matt 	    GENPLL_CONTROL5_NDIV_FRAC);
    276   1.1  matt 
    277   1.1  matt 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    278   1.1  matt 
    279   1.1  matt 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
    280   1.1  matt 	    GENPLL_CONTROL6_CH0_MDIV);
    281   1.1  matt 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
    282   1.1  matt 	    GENPLL_CONTROL6_CH1_MDIV);
    283   1.1  matt 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
    284   1.1  matt 	    GENPLL_CONTROL6_CH2_MDIV);
    285   1.1  matt 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
    286   1.1  matt 	    GENPLL_CONTROL7_CH3_MDIV);
    287   1.1  matt 
    288   1.1  matt 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
    289   1.1  matt 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
    290   1.1  matt 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
    291   1.1  matt 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
    292   1.1  matt }
    293   1.1  matt 
    294   1.1  matt static void
    295   1.1  matt bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
    296   1.1  matt 	uint32_t control2)
    297   1.1  matt {
    298   1.1  matt 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
    299   1.1  matt 	    LCPLL_CONTROL1_PDIV);
    300   1.1  matt 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
    301   1.1  matt 	    LCPLL_CONTROL1_NDIV_INT);
    302   1.1  matt 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
    303   1.1  matt 	    LCPLL_CONTROL1_NDIV_FRAC);
    304   1.1  matt 
    305   1.1  matt 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    306   1.1  matt 
    307   1.1  matt 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
    308   1.1  matt 	    LCPLL_CONTROL2_CH0_MDIV);
    309   1.1  matt 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
    310   1.1  matt 	    LCPLL_CONTROL2_CH1_MDIV);
    311   1.1  matt 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
    312   1.1  matt 	    LCPLL_CONTROL2_CH2_MDIV);
    313   1.1  matt 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
    314   1.1  matt 	    LCPLL_CONTROL2_CH3_MDIV);
    315   1.1  matt 
    316   1.1  matt 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
    317   1.1  matt 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
    318   1.1  matt 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
    319   1.1  matt 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
    320   1.1  matt }
    321   1.1  matt 
    322   1.1  matt static void
    323   1.1  matt bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
    324   1.1  matt {
    325   1.1  matt 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
    326   1.1  matt 	    USB2_CONTROL_PDIV);
    327   1.1  matt 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
    328   1.1  matt 	    USB2_CONTROL_NDIV_INT);
    329   1.1  matt 
    330   1.1  matt 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
    331   1.1  matt 	if (usb_ref != USB2_REF_CLK) {
    332   1.1  matt 		/*
    333   1.1  matt 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
    334   1.1  matt 		 * USB2_CONTROL to produce it.
    335   1.1  matt 		 */
    336   1.1  matt 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
    337   1.1  matt 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
    338   1.1  matt 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
    339   1.1  matt 
    340   1.1  matt 		// Allow Clocks to be modified
    341   1.1  matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    342   1.1  matt 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
    343   1.1  matt 
    344   1.1  matt 		// Update USB2 clock generator
    345   1.1  matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    346   1.1  matt 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
    347   1.1  matt 
    348   1.1  matt 		// Prevent Clock modification
    349   1.1  matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    350   1.1  matt 		    CRU_BASE + CRU_CLKSET_KEY, 0);
    351   1.1  matt 
    352   1.1  matt 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
    353   1.1  matt 	}
    354   1.1  matt 
    355   1.1  matt 	clk->clk_usb_ref = usb_ref;
    356   1.1  matt }
    357   1.1  matt 
    358   1.1  matt 
    359   1.1  matt static void
    360   1.1  matt bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
    361   1.1  matt {
    362   1.1  matt 	clk->clk_ref = BCM53XX_REF_CLK;
    363   1.1  matt 	clk->clk_sys = 8*clk->clk_ref;
    364   1.1  matt }
    365   1.1  matt 
    366   1.1  matt /*
    367   1.1  matt  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
    368   1.1  matt  */
    369   1.1  matt static void
    370   1.1  matt bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
    371   1.1  matt     uint32_t pll_dividers)
    372   1.1  matt {
    373   1.1  matt 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
    374   1.1  matt 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
    375   1.1  matt 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
    376   1.1  matt 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
    377   1.1  matt 
    378   1.1  matt 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
    379   1.1  matt 
    380   1.1  matt 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
    381   1.1  matt 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
    382   1.1  matt }
    383   1.1  matt 
    384   1.1  matt /*
    385   1.1  matt  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
    386   1.1  matt  */
    387   1.1  matt static void
    388   1.1  matt bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
    389   1.1  matt 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
    390   1.1  matt {
    391   1.1  matt 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
    392   1.1  matt 
    393   1.1  matt 	if (policy == CLK_POLICY_REF_CLK) {
    394   1.1  matt 		clk->clk_cpu = clk->clk_ref;
    395   1.1  matt 		clk->clk_apb = clk->clk_cpu;
    396   1.1  matt 		return;
    397   1.1  matt 	}
    398   1.1  matt 
    399   1.1  matt 	if (policy == CLK_POLICY_SYS_CLK) {
    400   1.1  matt 		clk->clk_cpu = clk->clk_sys;
    401   1.1  matt 		clk->clk_apb = clk->clk_cpu / 4;
    402   1.1  matt 		return;
    403   1.1  matt 	}
    404   1.1  matt 
    405   1.1  matt 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
    406   1.1  matt 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
    407   1.1  matt 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
    408   1.1  matt 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
    409   1.1  matt 
    410   1.1  matt 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
    411   1.1  matt 
    412   1.1  matt 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
    413   1.1  matt 	clk->clk_apb = clk->clk_cpu / 4;
    414   1.1  matt }
    415   1.1  matt 
    416   1.1  matt struct bcm53xx_chip_state {
    417   1.1  matt 	uint32_t bcs_lcpll_control1;
    418   1.1  matt 	uint32_t bcs_lcpll_control2;
    419   1.1  matt 
    420   1.1  matt 	uint32_t bcs_genpll_control5;
    421   1.1  matt 	uint32_t bcs_genpll_control6;
    422   1.1  matt 	uint32_t bcs_genpll_control7;
    423   1.1  matt 
    424   1.1  matt 	uint32_t bcs_usb2_control;
    425   1.1  matt 
    426   1.1  matt 	uint32_t bcs_ddr_phy_ctl_pll_status;
    427   1.1  matt 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
    428   1.1  matt 
    429   1.1  matt 	uint32_t bcs_armcore_clk_policy;
    430   1.1  matt 	uint32_t bcs_armcore_clk_pllarma;
    431   1.1  matt 	uint32_t bcs_armcore_clk_pllarmb;
    432   1.1  matt };
    433   1.1  matt 
    434   1.1  matt static void
    435   1.1  matt bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
    436   1.1  matt 	bus_space_tag_t bst, bus_space_handle_t bsh)
    437   1.1  matt {
    438   1.1  matt 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
    439   1.1  matt 	    DMU_BASE + DMU_LCPLL_CONTROL1);
    440   1.1  matt 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
    441   1.1  matt 	    DMU_BASE + DMU_LCPLL_CONTROL2);
    442   1.1  matt 
    443   1.1  matt 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
    444   1.1  matt 	    CRU_BASE + CRU_GENPLL_CONTROL5);
    445   1.1  matt 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
    446   1.1  matt 	    CRU_BASE + CRU_GENPLL_CONTROL6);
    447   1.1  matt 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
    448   1.1  matt 	    CRU_BASE + CRU_GENPLL_CONTROL7);
    449   1.1  matt 
    450   1.1  matt 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
    451   1.1  matt 	    CRU_BASE + CRU_USB2_CONTROL);
    452   1.1  matt 
    453   1.1  matt 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
    454   1.1  matt 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
    455   1.1  matt 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
    456   1.1  matt 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
    457   1.1  matt }
    458   1.1  matt 
    459   1.1  matt static void
    460   1.1  matt bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
    461   1.1  matt 	bus_space_tag_t bst, bus_space_handle_t bsh)
    462   1.1  matt {
    463   1.1  matt 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
    464   1.1  matt 	    ARMCORE_CLK_POLICY_FREQ);
    465   1.1  matt 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
    466   1.1  matt 	    ARMCORE_CLK_PLLARMA);
    467   1.1  matt 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
    468   1.1  matt 	    ARMCORE_CLK_PLLARMB);
    469   1.1  matt }
    470   1.1  matt 
    471   1.1  matt void
    472   1.1  matt bcm53xx_cpu_softc_init(struct cpu_info *ci)
    473   1.1  matt {
    474   1.1  matt 	struct cpu_softc * const cpu = ci->ci_softc;
    475   1.1  matt 
    476   1.1  matt 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
    477   1.1  matt 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
    478   1.1  matt 
    479   1.1  matt 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
    480   1.1  matt 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
    481  1.17  matt 
    482  1.17  matt 	const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
    483  1.17  matt 	    cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
    484  1.17  matt 
    485  1.17  matt 	cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
    486   1.1  matt }
    487   1.1  matt 
    488   1.1  matt void
    489   1.1  matt bcm53xx_print_clocks(void)
    490   1.1  matt {
    491  1.16   riz #if defined(VERBOSE_INIT_ARM)
    492   1.9  matt 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    493   1.9  matt 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
    494   1.9  matt 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
    495   1.9  matt 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
    496   1.9  matt 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
    497   1.9  matt 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
    498   1.9  matt 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
    499   1.9  matt 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
    500   1.9  matt 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
    501   1.9  matt 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
    502   1.9  matt 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
    503   1.9  matt 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
    504   1.9  matt 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
    505   1.9  matt 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
    506   1.9  matt 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
    507   1.9  matt 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
    508   1.9  matt 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
    509   1.9  matt 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
    510   1.1  matt #endif
    511   1.1  matt }
    512   1.1  matt 
    513   1.1  matt void
    514   1.1  matt bcm53xx_bootstrap(vaddr_t iobase)
    515   1.1  matt {
    516   1.1  matt 	struct bcm53xx_chip_state bcs;
    517   1.1  matt 	int error;
    518   1.1  matt 
    519   1.1  matt #ifdef BCM53XX_CONSOLE_EARLY
    520   1.1  matt 	com_base = iobase + CCA_UART0_BASE;
    521   1.1  matt 	cn_tab = &bcm53xx_earlycons;
    522   1.1  matt #endif
    523   1.1  matt 
    524   1.1  matt 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
    525   1.1  matt 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
    526   1.1  matt 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
    527   1.1  matt 	if (error)
    528   1.1  matt 		panic("%s: failed to map BCM53xx %s registers: %d",
    529   1.1  matt 		    __func__, "io", error);
    530   1.1  matt 
    531   1.1  matt 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
    532   1.1  matt 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
    533   1.1  matt 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
    534   1.1  matt 	if (error)
    535   1.1  matt 		panic("%s: failed to map BCM53xx %s registers: %d",
    536   1.1  matt 		    __func__, "armcore", error);
    537   1.1  matt 
    538   1.1  matt 	curcpu()->ci_softc = &cpu_softc;
    539   1.1  matt 
    540   1.1  matt 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
    541   1.1  matt 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
    542   1.1  matt 
    543   1.9  matt 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    544   1.1  matt 
    545   1.1  matt 	bcm53xx_clock_init(clk);
    546   1.1  matt 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
    547   1.1  matt 	    bcs.bcs_lcpll_control2);
    548   1.1  matt 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
    549   1.1  matt 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
    550   1.1  matt 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
    551   1.1  matt 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
    552   1.1  matt 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
    553   1.1  matt 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
    554   1.1  matt 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
    555   1.1  matt 
    556   1.1  matt 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
    557   1.2  matt 
    558  1.18  matt #if NARML2CC > 0
    559  1.17  matt 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
    560  1.17  matt 	    ARMCORE_L2C_BASE);
    561  1.18  matt #endif
    562   1.1  matt }
    563   1.1  matt 
    564   1.5  matt void
    565   1.5  matt bcm53xx_dma_bootstrap(psize_t memsize)
    566   1.5  matt {
    567  1.13  matt 	if (memsize <= 256*1024*1024) {
    568  1.10  matt 		bcm53xx_dma_ranges[0].dr_len = memsize;
    569  1.10  matt 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
    570  1.11  matt 		bcm53xx_dma_tag._nranges = 1;
    571  1.10  matt 		bcm53xx_coherent_dma_tag._nranges = 1;
    572  1.10  matt 	} else {
    573   1.5  matt 		/*
    574   1.5  matt 		 * By setting up two ranges, bus_dmamem_alloc will always
    575   1.5  matt 		 * try to allocate from range 0 first resulting in allocations
    576   1.5  matt 		 * below 256MB which for PCI and GMAC are coherent.
    577   1.5  matt 		 */
    578   1.5  matt 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
    579   1.8  matt 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
    580   1.5  matt 	}
    581   1.8  matt 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
    582   1.8  matt 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    583  1.14  matt #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    584  1.14  matt 	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    585  1.14  matt #endif
    586   1.5  matt }
    587   1.5  matt 
    588   1.1  matt #ifdef MULTIPROCESSOR
    589   1.1  matt void
    590   1.1  matt bcm53xx_cpu_hatch(struct cpu_info *ci)
    591   1.1  matt {
    592   1.1  matt 	a9tmr_init_cpu_clock(ci);
    593   1.1  matt }
    594   1.1  matt #endif
    595   1.1  matt 
    596   1.1  matt void
    597   1.1  matt bcm53xx_device_register(device_t self, void *aux)
    598   1.1  matt {
    599   1.1  matt 	prop_dictionary_t dict = device_properties(self);
    600   1.1  matt 
    601   1.1  matt 	if (device_is_a(self, "armperiph")
    602   1.1  matt 	    && device_is_a(device_parent(self), "mainbus")) {
    603   1.1  matt 		/*
    604   1.1  matt 		 * XXX KLUDGE ALERT XXX
    605   1.1  matt 		 * The iot mainbus supplies is completely wrong since it scales
    606   1.1  matt 		 * addresses by 2.  The simpliest remedy is to replace with our
    607   1.1  matt 		 * bus space used for the armcore regisers (which armperiph uses).
    608   1.1  matt 		 */
    609   1.1  matt 		struct mainbus_attach_args * const mb = aux;
    610   1.1  matt 		mb->mb_iot = bcm53xx_armcore_bst;
    611   1.1  matt 		return;
    612   1.1  matt 	}
    613   1.1  matt 
    614   1.1  matt 	/*
    615   1.1  matt 	 * We need to tell the A9 Global/Watchdog Timer
    616   1.1  matt 	 * what frequency it runs at.
    617   1.1  matt 	 */
    618   1.1  matt 	if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
    619   1.1  matt 		/*
    620   1.1  matt 		 * This clock always runs at (arm_clk div 2) and only goes
    621   1.1  matt 		 * to timers that are part of the A9 MP core subsystem.
    622   1.1  matt 		 */
    623   1.1  matt                 prop_dictionary_set_uint32(dict, "frequency",
    624   1.9  matt 		    cpu_softc.cpu_clk.clk_cpu / 2);
    625   1.1  matt 		return;
    626   1.4  matt 	}
    627   1.4  matt 
    628   1.4  matt 	if (device_is_a(self, "bcmeth")) {
    629   1.4  matt 		const struct bcmccb_attach_args * const ccbaa = aux;
    630   1.4  matt 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
    631   1.4  matt 			0x00, 0x01, 0x02, 0x03, 0x04,
    632   1.4  matt 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
    633   1.4  matt 		};
    634   1.4  matt 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
    635   1.4  matt 		KASSERT(pd != NULL);
    636   1.4  matt 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
    637   1.4  matt 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
    638   1.4  matt 		}
    639   1.4  matt 		prop_object_release(pd);
    640   1.4  matt 	}
    641   1.4  matt }
    642   1.4  matt 
    643  1.21  matt #ifdef SRAB_BASE
    644   1.4  matt static kmutex_t srab_lock __cacheline_aligned;
    645   1.4  matt 
    646   1.4  matt void
    647   1.4  matt bcm53xx_srab_init(void)
    648   1.4  matt {
    649   1.4  matt 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
    650   1.4  matt 
    651   1.4  matt 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
    652   1.4  matt 	for (u_int port = 0; port < 8; port++) {
    653   1.4  matt 		/* per port control: no stp */
    654   1.4  matt 		bcm53xx_srab_write_4(port, 0x00);
    655   1.4  matt 	}
    656   1.4  matt 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
    657   1.4  matt 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
    658   1.4  matt 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
    659   1.4  matt 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
    660   1.4  matt 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
    661   1.4  matt 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
    662   1.4  matt 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
    663   1.4  matt }
    664   1.4  matt 
    665   1.4  matt static inline void
    666   1.4  matt bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
    667   1.4  matt {
    668   1.4  matt 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
    669   1.4  matt 		delay(10);
    670   1.4  matt 	}
    671   1.4  matt }
    672   1.4  matt 
    673   1.4  matt uint32_t
    674   1.4  matt bcm53xx_srab_read_4(u_int pageoffset)
    675   1.4  matt {
    676   1.4  matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    677   1.4  matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    678   1.4  matt 	uint32_t rv;
    679   1.4  matt 
    680   1.4  matt 	mutex_spin_enter(&srab_lock);
    681   1.4  matt 
    682   1.4  matt 	bcm53xx_srab_busywait(bst, bsh);
    683   1.4  matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    684   1.4  matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    685   1.4  matt 	bcm53xx_srab_busywait(bst, bsh);
    686   1.4  matt 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    687   1.4  matt 
    688   1.4  matt 	mutex_spin_exit(&srab_lock);
    689   1.4  matt 	return rv;
    690   1.4  matt }
    691   1.4  matt 
    692   1.4  matt uint64_t
    693   1.4  matt bcm53xx_srab_read_8(u_int pageoffset)
    694   1.4  matt {
    695   1.4  matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    696   1.4  matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    697   1.4  matt 	uint64_t rv;
    698   1.4  matt 
    699   1.4  matt 	mutex_spin_enter(&srab_lock);
    700   1.4  matt 
    701   1.4  matt 	bcm53xx_srab_busywait(bst, bsh);
    702   1.4  matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    703   1.4  matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    704   1.4  matt 	bcm53xx_srab_busywait(bst, bsh);
    705   1.4  matt 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
    706   1.4  matt 	rv <<= 32;
    707   1.4  matt 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    708   1.4  matt 
    709   1.4  matt 	mutex_spin_exit(&srab_lock);
    710   1.4  matt 	return rv;
    711   1.4  matt }
    712   1.4  matt 
    713   1.4  matt void
    714   1.4  matt bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
    715   1.4  matt {
    716   1.4  matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    717   1.4  matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    718   1.4  matt 
    719   1.4  matt 	mutex_spin_enter(&srab_lock);
    720   1.4  matt 
    721   1.4  matt 	bcm53xx_srab_busywait(bst, bsh);
    722   1.4  matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    723   1.4  matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    724   1.4  matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    725   1.4  matt 	bcm53xx_srab_busywait(bst, bsh);
    726   1.4  matt 
    727   1.4  matt 	mutex_spin_exit(&srab_lock);
    728   1.4  matt }
    729   1.4  matt 
    730   1.4  matt void
    731   1.4  matt bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
    732   1.4  matt {
    733   1.4  matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    734   1.4  matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    735   1.4  matt 
    736   1.4  matt 	mutex_spin_enter(&srab_lock);
    737   1.4  matt 
    738   1.4  matt 	bcm53xx_srab_busywait(bst, bsh);
    739   1.4  matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    740   1.4  matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
    741   1.4  matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    742   1.4  matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    743   1.4  matt 	bcm53xx_srab_busywait(bst, bsh);
    744   1.4  matt 	mutex_spin_exit(&srab_lock);
    745   1.1  matt }
    746  1.21  matt #endif
    747