Home | History | Annotate | Line # | Download | only in broadcom
bcm53xx_board.c revision 1.23.14.1
      1  1.23.14.1  pgoyette /*	$NetBSD: bcm53xx_board.c,v 1.23.14.1 2018/06/25 07:25:39 pgoyette Exp $	*/
      2        1.1      matt /*-
      3        1.1      matt  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      4        1.1      matt  * All rights reserved.
      5        1.1      matt  *
      6        1.1      matt  * This code is derived from software contributed to The NetBSD Foundation
      7        1.1      matt  * by Matt Thomas of 3am Software Foundry.
      8        1.1      matt  *
      9        1.1      matt  * Redistribution and use in source and binary forms, with or without
     10        1.1      matt  * modification, are permitted provided that the following conditions
     11        1.1      matt  * are met:
     12        1.1      matt  * 1. Redistributions of source code must retain the above copyright
     13        1.1      matt  *    notice, this list of conditions and the following disclaimer.
     14        1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     15        1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     16        1.1      matt  *    documentation and/or other materials provided with the distribution.
     17        1.1      matt  *
     18        1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19        1.1      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20        1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21        1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22        1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23        1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24        1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25        1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26        1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27        1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28        1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     29        1.1      matt  */
     30        1.1      matt 
     31        1.1      matt #include "opt_broadcom.h"
     32       1.18      matt #include "arml2cc.h"
     33        1.1      matt 
     34        1.1      matt #define	_ARM32_BUS_DMA_PRIVATE
     35        1.1      matt 
     36        1.1      matt #include <sys/cdefs.h>
     37        1.1      matt 
     38  1.23.14.1  pgoyette __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.23.14.1 2018/06/25 07:25:39 pgoyette Exp $");
     39        1.1      matt 
     40        1.1      matt #include <sys/param.h>
     41        1.1      matt #include <sys/bus.h>
     42        1.1      matt #include <sys/cpu.h>
     43        1.1      matt #include <sys/device.h>
     44        1.1      matt 
     45        1.1      matt #include <prop/proplib.h>
     46        1.1      matt 
     47        1.4      matt #include <net/if.h>
     48        1.4      matt #include <net/if_ether.h>
     49        1.4      matt 
     50       1.17      matt #define CCA_PRIVATE
     51        1.1      matt #define CRU_PRIVATE
     52        1.1      matt #define DDR_PRIVATE
     53        1.1      matt #define DMU_PRIVATE
     54        1.1      matt #define ARMCORE_PRIVATE
     55        1.4      matt #define SRAB_PRIVATE
     56        1.1      matt 
     57        1.1      matt #include <arm/cortex/a9tmr_var.h>
     58        1.2      matt #include <arm/cortex/pl310_var.h>
     59        1.1      matt #include <arm/mainbus/mainbus.h>
     60        1.1      matt 
     61        1.1      matt #include <arm/broadcom/bcm53xx_reg.h>
     62        1.1      matt #include <arm/broadcom/bcm53xx_var.h>
     63        1.1      matt 
     64        1.1      matt bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
     65        1.1      matt bus_space_handle_t bcm53xx_ioreg_bsh;
     66        1.1      matt bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
     67        1.1      matt bus_space_handle_t bcm53xx_armcore_bsh;
     68        1.1      matt 
     69        1.1      matt static struct cpu_softc cpu_softc;
     70        1.1      matt 
     71       1.13      matt struct arm32_dma_range bcm53xx_dma_ranges[] = {
     72       1.17      matt #ifdef BCM5301X
     73        1.8      matt 	[0] = {
     74        1.8      matt 		.dr_sysbase = 0x80000000,
     75        1.8      matt 		.dr_busbase = 0x80000000,
     76        1.8      matt 		.dr_len = 0x10000000,
     77        1.8      matt 	}, [1] = {
     78        1.8      matt 		.dr_sysbase = 0x90000000,
     79        1.8      matt 		.dr_busbase = 0x90000000,
     80        1.8      matt 	},
     81       1.19      matt #elif defined(BCM563XX)
     82       1.17      matt 	[0] = {
     83       1.17      matt 		.dr_sysbase = 0x60000000,
     84       1.17      matt 		.dr_busbase = 0x60000000,
     85       1.17      matt 		.dr_len = 0x20000000,
     86       1.17      matt 	}, [1] = {
     87       1.19      matt 		.dr_sysbase = 0x80000000,
     88       1.19      matt 		.dr_busbase = 0x80000000,
     89       1.20      matt 	},
     90       1.17      matt #endif
     91        1.8      matt };
     92        1.5      matt 
     93        1.1      matt struct arm32_bus_dma_tag bcm53xx_dma_tag = {
     94        1.8      matt 	._ranges = bcm53xx_dma_ranges,
     95        1.8      matt 	._nranges = __arraycount(bcm53xx_dma_ranges),
     96        1.3      matt 	_BUS_DMAMAP_FUNCS,
     97        1.3      matt 	_BUS_DMAMEM_FUNCS,
     98        1.3      matt 	_BUS_DMATAG_FUNCS,
     99        1.1      matt };
    100        1.1      matt 
    101       1.13      matt struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
    102       1.17      matt #ifdef BCM5301X
    103        1.8      matt 	[0] = {
    104        1.8      matt 		.dr_sysbase = 0x80000000,
    105        1.8      matt 		.dr_busbase = 0x80000000,
    106        1.8      matt 		.dr_len = 0x10000000,
    107        1.8      matt 		.dr_flags = _BUS_DMAMAP_COHERENT,
    108        1.8      matt 	}, [1] = {
    109        1.8      matt 		.dr_sysbase = 0x90000000,
    110        1.8      matt 		.dr_busbase = 0x90000000,
    111        1.8      matt 	},
    112       1.17      matt #elif defined(BCM563XX)
    113       1.17      matt 	[0] = {
    114       1.17      matt 		.dr_sysbase = 0x60000000,
    115       1.17      matt 		.dr_busbase = 0x60000000,
    116       1.17      matt 		.dr_len = 0x20000000,
    117       1.17      matt 		.dr_flags = _BUS_DMAMAP_COHERENT,
    118       1.17      matt 	}, [1] = {
    119       1.19      matt 		.dr_sysbase = 0x80000000,
    120       1.19      matt 		.dr_busbase = 0x80000000,
    121       1.17      matt 	},
    122       1.17      matt #endif
    123        1.8      matt };
    124        1.6      matt 
    125        1.6      matt struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
    126        1.8      matt 	._ranges = bcm53xx_coherent_dma_ranges,
    127        1.8      matt 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
    128        1.6      matt 	_BUS_DMAMAP_FUNCS,
    129        1.6      matt 	_BUS_DMAMEM_FUNCS,
    130        1.6      matt 	_BUS_DMATAG_FUNCS,
    131        1.6      matt };
    132        1.6      matt 
    133       1.14      matt #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    134       1.14      matt struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
    135       1.15      matt 	._ranges = bcm53xx_coherent_dma_ranges,
    136       1.15      matt 	._nranges = 1,
    137       1.14      matt 	_BUS_DMAMAP_FUNCS,
    138       1.14      matt 	_BUS_DMAMEM_FUNCS,
    139       1.14      matt 	_BUS_DMATAG_FUNCS,
    140       1.14      matt };
    141       1.14      matt #endif
    142       1.14      matt 
    143        1.1      matt #ifdef BCM53XX_CONSOLE_EARLY
    144        1.1      matt #include <dev/ic/ns16550reg.h>
    145        1.1      matt #include <dev/ic/comreg.h>
    146        1.1      matt #include <dev/cons.h>
    147        1.1      matt 
    148        1.1      matt static vaddr_t com_base;
    149        1.1      matt 
    150        1.1      matt static inline uint32_t
    151        1.1      matt uart_read(bus_size_t o)
    152        1.1      matt {
    153        1.1      matt 	return *(volatile uint8_t *)(com_base + o);
    154        1.1      matt }
    155        1.1      matt 
    156        1.1      matt static inline void
    157        1.1      matt uart_write(bus_size_t o, uint32_t v)
    158        1.1      matt {
    159        1.1      matt 	*(volatile uint8_t *)(com_base + o) = v;
    160        1.1      matt }
    161        1.1      matt 
    162        1.1      matt static int
    163        1.1      matt bcm53xx_cngetc(dev_t dv)
    164        1.1      matt {
    165        1.1      matt         if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
    166        1.1      matt 		return -1;
    167        1.1      matt 
    168        1.1      matt 	return uart_read(com_data) & 0xff;
    169        1.1      matt }
    170        1.1      matt 
    171        1.1      matt static void
    172        1.1      matt bcm53xx_cnputc(dev_t dv, int c)
    173        1.1      matt {
    174        1.1      matt 	int timo = 150000;
    175        1.1      matt 
    176        1.1      matt         while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
    177        1.1      matt 		;
    178        1.1      matt 
    179        1.1      matt 	uart_write(com_data, c);
    180        1.1      matt 
    181        1.1      matt 	timo = 150000;
    182        1.1      matt         while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
    183        1.1      matt 		;
    184        1.1      matt }
    185        1.1      matt 
    186        1.1      matt static struct consdev bcm53xx_earlycons = {
    187        1.1      matt 	.cn_putc = bcm53xx_cnputc,
    188        1.1      matt 	.cn_getc = bcm53xx_cngetc,
    189        1.1      matt 	.cn_pollc = nullcnpollc,
    190        1.1      matt };
    191        1.1      matt #endif /* BCM53XX_CONSOLE_EARLY */
    192        1.1      matt 
    193        1.1      matt psize_t
    194        1.1      matt bcm53xx_memprobe(void)
    195        1.1      matt {
    196        1.1      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    197        1.1      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    198        1.1      matt 
    199        1.1      matt 	/*
    200        1.1      matt 	 * First, let's read the magic DDR registers!
    201        1.1      matt 	 */
    202        1.1      matt 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
    203        1.1      matt 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
    204        1.1      matt 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
    205        1.1      matt 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
    206        1.1      matt 
    207        1.1      matt 	/*
    208        1.1      matt 	 * Calculate chip parameters
    209        1.1      matt 	 * */
    210        1.1      matt 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
    211        1.1      matt 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
    212        1.1      matt 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
    213        1.1      matt 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
    214        1.1      matt 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
    215        1.1      matt 
    216        1.1      matt 	/*
    217        1.1      matt 	 * For each chip select, increase the chip count if if is enabled.
    218        1.1      matt 	 */
    219        1.1      matt 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
    220        1.1      matt 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
    221        1.1      matt 	u_int chips = 0;
    222        1.1      matt 
    223        1.1      matt 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
    224        1.1      matt 		chips += (cs_map & 1);
    225        1.1      matt 	}
    226        1.1      matt 
    227        1.1      matt 	/* get log2(ddr width) */
    228        1.1      matt 
    229        1.1      matt 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
    230        1.1      matt 
    231        1.1      matt 	/*
    232        1.1      matt 	 * Let's add up all the things that contribute to the size of a chip.
    233        1.1      matt 	 */
    234        1.1      matt 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
    235        1.1      matt 
    236        1.1      matt 	/*
    237        1.1      matt 	 * Now our memory size is simply the number of chip shifted by the
    238        1.1      matt 	 * log2(chip_size).
    239        1.1      matt 	 */
    240        1.1      matt 	return (psize_t) chips << chip_size_log2;
    241        1.1      matt }
    242        1.1      matt 
    243        1.1      matt static inline uint32_t
    244        1.1      matt bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
    245        1.1      matt 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
    246        1.1      matt {
    247        1.1      matt 	if (ndiv_frac == 0 && pdiv == 1)
    248        1.1      matt 		return ndiv_int * clk->clk_ref;
    249        1.1      matt 
    250        1.1      matt 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
    251        1.1      matt 	freq64 *= clk->clk_ref;
    252        1.1      matt 	if (pdiv > 1)
    253        1.1      matt 		freq64 /= pdiv;
    254        1.1      matt 	return (uint32_t) (freq64 >> 30);
    255        1.1      matt }
    256        1.1      matt 
    257        1.1      matt static uint32_t
    258        1.1      matt bcm53xx_value_wrap(uint32_t value, uint32_t mask)
    259        1.1      matt {
    260        1.1      matt 	/*
    261        1.1      matt 	 * n is n except when n is 0 then n = mask + 1.
    262        1.1      matt 	 */
    263        1.1      matt 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
    264        1.1      matt }
    265        1.1      matt 
    266        1.1      matt static void
    267        1.1      matt bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
    268        1.1      matt 	uint32_t control6, uint32_t control7)
    269        1.1      matt {
    270        1.1      matt 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
    271        1.1      matt 	    GENPLL_CONTROL6_PDIV);
    272        1.1      matt 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
    273        1.1      matt 	    GENPLL_CONTROL5_NDIV_INT);
    274        1.1      matt 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
    275        1.1      matt 	    GENPLL_CONTROL5_NDIV_FRAC);
    276        1.1      matt 
    277        1.1      matt 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    278        1.1      matt 
    279        1.1      matt 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
    280        1.1      matt 	    GENPLL_CONTROL6_CH0_MDIV);
    281        1.1      matt 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
    282        1.1      matt 	    GENPLL_CONTROL6_CH1_MDIV);
    283        1.1      matt 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
    284        1.1      matt 	    GENPLL_CONTROL6_CH2_MDIV);
    285        1.1      matt 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
    286        1.1      matt 	    GENPLL_CONTROL7_CH3_MDIV);
    287        1.1      matt 
    288        1.1      matt 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
    289        1.1      matt 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
    290        1.1      matt 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
    291        1.1      matt 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
    292        1.1      matt }
    293        1.1      matt 
    294        1.1      matt static void
    295        1.1      matt bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
    296        1.1      matt 	uint32_t control2)
    297        1.1      matt {
    298        1.1      matt 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
    299        1.1      matt 	    LCPLL_CONTROL1_PDIV);
    300        1.1      matt 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
    301        1.1      matt 	    LCPLL_CONTROL1_NDIV_INT);
    302        1.1      matt 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
    303        1.1      matt 	    LCPLL_CONTROL1_NDIV_FRAC);
    304        1.1      matt 
    305        1.1      matt 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    306        1.1      matt 
    307        1.1      matt 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
    308        1.1      matt 	    LCPLL_CONTROL2_CH0_MDIV);
    309        1.1      matt 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
    310        1.1      matt 	    LCPLL_CONTROL2_CH1_MDIV);
    311        1.1      matt 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
    312        1.1      matt 	    LCPLL_CONTROL2_CH2_MDIV);
    313        1.1      matt 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
    314        1.1      matt 	    LCPLL_CONTROL2_CH3_MDIV);
    315        1.1      matt 
    316        1.1      matt 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
    317        1.1      matt 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
    318        1.1      matt 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
    319        1.1      matt 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
    320        1.1      matt }
    321        1.1      matt 
    322        1.1      matt static void
    323        1.1      matt bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
    324        1.1      matt {
    325        1.1      matt 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
    326        1.1      matt 	    USB2_CONTROL_PDIV);
    327        1.1      matt 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
    328        1.1      matt 	    USB2_CONTROL_NDIV_INT);
    329        1.1      matt 
    330        1.1      matt 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
    331        1.1      matt 	if (usb_ref != USB2_REF_CLK) {
    332        1.1      matt 		/*
    333        1.1      matt 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
    334        1.1      matt 		 * USB2_CONTROL to produce it.
    335        1.1      matt 		 */
    336        1.1      matt 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
    337        1.1      matt 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
    338        1.1      matt 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
    339        1.1      matt 
    340        1.1      matt 		// Allow Clocks to be modified
    341        1.1      matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    342        1.1      matt 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
    343        1.1      matt 
    344        1.1      matt 		// Update USB2 clock generator
    345        1.1      matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    346        1.1      matt 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
    347        1.1      matt 
    348        1.1      matt 		// Prevent Clock modification
    349        1.1      matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    350        1.1      matt 		    CRU_BASE + CRU_CLKSET_KEY, 0);
    351        1.1      matt 
    352        1.1      matt 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
    353        1.1      matt 	}
    354        1.1      matt 
    355        1.1      matt 	clk->clk_usb_ref = usb_ref;
    356        1.1      matt }
    357        1.1      matt 
    358        1.1      matt 
    359        1.1      matt static void
    360        1.1      matt bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
    361        1.1      matt {
    362        1.1      matt 	clk->clk_ref = BCM53XX_REF_CLK;
    363        1.1      matt 	clk->clk_sys = 8*clk->clk_ref;
    364        1.1      matt }
    365        1.1      matt 
    366        1.1      matt /*
    367        1.1      matt  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
    368        1.1      matt  */
    369        1.1      matt static void
    370        1.1      matt bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
    371        1.1      matt     uint32_t pll_dividers)
    372        1.1      matt {
    373        1.1      matt 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
    374        1.1      matt 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
    375        1.1      matt 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
    376        1.1      matt 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
    377        1.1      matt 
    378        1.1      matt 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
    379        1.1      matt 
    380        1.1      matt 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
    381        1.1      matt 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
    382        1.1      matt }
    383        1.1      matt 
    384        1.1      matt /*
    385        1.1      matt  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
    386        1.1      matt  */
    387        1.1      matt static void
    388        1.1      matt bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
    389        1.1      matt 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
    390        1.1      matt {
    391        1.1      matt 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
    392        1.1      matt 
    393        1.1      matt 	if (policy == CLK_POLICY_REF_CLK) {
    394        1.1      matt 		clk->clk_cpu = clk->clk_ref;
    395        1.1      matt 		clk->clk_apb = clk->clk_cpu;
    396        1.1      matt 		return;
    397        1.1      matt 	}
    398        1.1      matt 
    399        1.1      matt 	if (policy == CLK_POLICY_SYS_CLK) {
    400        1.1      matt 		clk->clk_cpu = clk->clk_sys;
    401        1.1      matt 		clk->clk_apb = clk->clk_cpu / 4;
    402        1.1      matt 		return;
    403        1.1      matt 	}
    404        1.1      matt 
    405        1.1      matt 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
    406        1.1      matt 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
    407        1.1      matt 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
    408        1.1      matt 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
    409        1.1      matt 
    410        1.1      matt 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
    411        1.1      matt 
    412        1.1      matt 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
    413        1.1      matt 	clk->clk_apb = clk->clk_cpu / 4;
    414        1.1      matt }
    415        1.1      matt 
    416        1.1      matt struct bcm53xx_chip_state {
    417        1.1      matt 	uint32_t bcs_lcpll_control1;
    418        1.1      matt 	uint32_t bcs_lcpll_control2;
    419        1.1      matt 
    420        1.1      matt 	uint32_t bcs_genpll_control5;
    421        1.1      matt 	uint32_t bcs_genpll_control6;
    422        1.1      matt 	uint32_t bcs_genpll_control7;
    423        1.1      matt 
    424        1.1      matt 	uint32_t bcs_usb2_control;
    425        1.1      matt 
    426        1.1      matt 	uint32_t bcs_ddr_phy_ctl_pll_status;
    427        1.1      matt 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
    428        1.1      matt 
    429        1.1      matt 	uint32_t bcs_armcore_clk_policy;
    430        1.1      matt 	uint32_t bcs_armcore_clk_pllarma;
    431        1.1      matt 	uint32_t bcs_armcore_clk_pllarmb;
    432        1.1      matt };
    433        1.1      matt 
    434        1.1      matt static void
    435        1.1      matt bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
    436        1.1      matt 	bus_space_tag_t bst, bus_space_handle_t bsh)
    437        1.1      matt {
    438        1.1      matt 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
    439        1.1      matt 	    DMU_BASE + DMU_LCPLL_CONTROL1);
    440        1.1      matt 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
    441        1.1      matt 	    DMU_BASE + DMU_LCPLL_CONTROL2);
    442        1.1      matt 
    443        1.1      matt 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
    444        1.1      matt 	    CRU_BASE + CRU_GENPLL_CONTROL5);
    445        1.1      matt 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
    446        1.1      matt 	    CRU_BASE + CRU_GENPLL_CONTROL6);
    447        1.1      matt 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
    448        1.1      matt 	    CRU_BASE + CRU_GENPLL_CONTROL7);
    449        1.1      matt 
    450        1.1      matt 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
    451        1.1      matt 	    CRU_BASE + CRU_USB2_CONTROL);
    452        1.1      matt 
    453        1.1      matt 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
    454        1.1      matt 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
    455        1.1      matt 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
    456        1.1      matt 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
    457        1.1      matt }
    458        1.1      matt 
    459        1.1      matt static void
    460        1.1      matt bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
    461        1.1      matt 	bus_space_tag_t bst, bus_space_handle_t bsh)
    462        1.1      matt {
    463        1.1      matt 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
    464        1.1      matt 	    ARMCORE_CLK_POLICY_FREQ);
    465        1.1      matt 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
    466        1.1      matt 	    ARMCORE_CLK_PLLARMA);
    467        1.1      matt 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
    468        1.1      matt 	    ARMCORE_CLK_PLLARMB);
    469        1.1      matt }
    470        1.1      matt 
    471        1.1      matt void
    472        1.1      matt bcm53xx_cpu_softc_init(struct cpu_info *ci)
    473        1.1      matt {
    474        1.1      matt 	struct cpu_softc * const cpu = ci->ci_softc;
    475        1.1      matt 
    476        1.1      matt 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
    477        1.1      matt 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
    478        1.1      matt 
    479        1.1      matt 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
    480        1.1      matt 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
    481       1.17      matt 
    482       1.17      matt 	const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
    483       1.17      matt 	    cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
    484       1.17      matt 
    485       1.17      matt 	cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
    486        1.1      matt }
    487        1.1      matt 
    488        1.1      matt void
    489        1.1      matt bcm53xx_print_clocks(void)
    490        1.1      matt {
    491       1.16       riz #if defined(VERBOSE_INIT_ARM)
    492        1.9      matt 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    493        1.9      matt 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
    494        1.9      matt 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
    495        1.9      matt 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
    496        1.9      matt 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
    497        1.9      matt 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
    498        1.9      matt 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
    499        1.9      matt 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
    500        1.9      matt 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
    501        1.9      matt 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
    502        1.9      matt 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
    503        1.9      matt 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
    504        1.9      matt 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
    505        1.9      matt 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
    506        1.9      matt 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
    507        1.9      matt 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
    508        1.9      matt 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
    509        1.9      matt 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
    510        1.1      matt #endif
    511        1.1      matt }
    512        1.1      matt 
    513        1.1      matt void
    514        1.1      matt bcm53xx_bootstrap(vaddr_t iobase)
    515        1.1      matt {
    516        1.1      matt 	struct bcm53xx_chip_state bcs;
    517        1.1      matt 	int error;
    518        1.1      matt 
    519        1.1      matt #ifdef BCM53XX_CONSOLE_EARLY
    520        1.1      matt 	com_base = iobase + CCA_UART0_BASE;
    521        1.1      matt 	cn_tab = &bcm53xx_earlycons;
    522        1.1      matt #endif
    523        1.1      matt 
    524        1.1      matt 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
    525        1.1      matt 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
    526        1.1      matt 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
    527        1.1      matt 	if (error)
    528        1.1      matt 		panic("%s: failed to map BCM53xx %s registers: %d",
    529        1.1      matt 		    __func__, "io", error);
    530        1.1      matt 
    531        1.1      matt 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
    532        1.1      matt 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
    533        1.1      matt 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
    534        1.1      matt 	if (error)
    535        1.1      matt 		panic("%s: failed to map BCM53xx %s registers: %d",
    536        1.1      matt 		    __func__, "armcore", error);
    537        1.1      matt 
    538        1.1      matt 	curcpu()->ci_softc = &cpu_softc;
    539        1.1      matt 
    540        1.1      matt 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
    541        1.1      matt 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
    542        1.1      matt 
    543        1.9      matt 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    544        1.1      matt 
    545        1.1      matt 	bcm53xx_clock_init(clk);
    546        1.1      matt 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
    547        1.1      matt 	    bcs.bcs_lcpll_control2);
    548        1.1      matt 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
    549        1.1      matt 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
    550        1.1      matt 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
    551        1.1      matt 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
    552        1.1      matt 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
    553        1.1      matt 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
    554        1.1      matt 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
    555        1.1      matt 
    556        1.1      matt 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
    557        1.2      matt 
    558       1.18      matt #if NARML2CC > 0
    559       1.17      matt 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
    560       1.17      matt 	    ARMCORE_L2C_BASE);
    561       1.18      matt #endif
    562        1.1      matt }
    563        1.1      matt 
    564        1.5      matt void
    565        1.5      matt bcm53xx_dma_bootstrap(psize_t memsize)
    566        1.5      matt {
    567       1.13      matt 	if (memsize <= 256*1024*1024) {
    568       1.10      matt 		bcm53xx_dma_ranges[0].dr_len = memsize;
    569       1.10      matt 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
    570       1.11      matt 		bcm53xx_dma_tag._nranges = 1;
    571       1.10      matt 		bcm53xx_coherent_dma_tag._nranges = 1;
    572       1.10      matt 	} else {
    573        1.5      matt 		/*
    574        1.5      matt 		 * By setting up two ranges, bus_dmamem_alloc will always
    575        1.5      matt 		 * try to allocate from range 0 first resulting in allocations
    576        1.5      matt 		 * below 256MB which for PCI and GMAC are coherent.
    577        1.5      matt 		 */
    578        1.5      matt 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
    579        1.8      matt 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
    580        1.5      matt 	}
    581        1.8      matt 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
    582        1.8      matt 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    583       1.14      matt #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    584       1.14      matt 	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    585       1.14      matt #endif
    586        1.5      matt }
    587        1.5      matt 
    588        1.1      matt #ifdef MULTIPROCESSOR
    589        1.1      matt void
    590        1.1      matt bcm53xx_cpu_hatch(struct cpu_info *ci)
    591        1.1      matt {
    592        1.1      matt 	a9tmr_init_cpu_clock(ci);
    593        1.1      matt }
    594        1.1      matt #endif
    595        1.1      matt 
    596        1.1      matt void
    597        1.1      matt bcm53xx_device_register(device_t self, void *aux)
    598        1.1      matt {
    599        1.1      matt 	prop_dictionary_t dict = device_properties(self);
    600        1.1      matt 
    601        1.1      matt 	if (device_is_a(self, "armperiph")
    602        1.1      matt 	    && device_is_a(device_parent(self), "mainbus")) {
    603        1.1      matt 		/*
    604        1.1      matt 		 * XXX KLUDGE ALERT XXX
    605        1.1      matt 		 * The iot mainbus supplies is completely wrong since it scales
    606       1.22     skrll 		 * addresses by 2.  The simplest remedy is to replace with our
    607       1.23     skrll 		 * bus space used for the armcore registers (which armperiph uses).
    608        1.1      matt 		 */
    609        1.1      matt 		struct mainbus_attach_args * const mb = aux;
    610        1.1      matt 		mb->mb_iot = bcm53xx_armcore_bst;
    611        1.1      matt 		return;
    612        1.1      matt 	}
    613        1.1      matt 
    614        1.1      matt 	/*
    615        1.1      matt 	 * We need to tell the A9 Global/Watchdog Timer
    616        1.1      matt 	 * what frequency it runs at.
    617        1.1      matt 	 */
    618  1.23.14.1  pgoyette 	if (device_is_a(self, "arma9tmr") || device_is_a(self, "a9wdt")) {
    619        1.1      matt 		/*
    620        1.1      matt 		 * This clock always runs at (arm_clk div 2) and only goes
    621        1.1      matt 		 * to timers that are part of the A9 MP core subsystem.
    622        1.1      matt 		 */
    623        1.1      matt                 prop_dictionary_set_uint32(dict, "frequency",
    624        1.9      matt 		    cpu_softc.cpu_clk.clk_cpu / 2);
    625        1.1      matt 		return;
    626        1.4      matt 	}
    627        1.4      matt 
    628        1.4      matt 	if (device_is_a(self, "bcmeth")) {
    629        1.4      matt 		const struct bcmccb_attach_args * const ccbaa = aux;
    630        1.4      matt 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
    631        1.4      matt 			0x00, 0x01, 0x02, 0x03, 0x04,
    632        1.4      matt 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
    633        1.4      matt 		};
    634        1.4      matt 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
    635        1.4      matt 		KASSERT(pd != NULL);
    636        1.4      matt 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
    637        1.4      matt 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
    638        1.4      matt 		}
    639        1.4      matt 		prop_object_release(pd);
    640        1.4      matt 	}
    641        1.4      matt }
    642        1.4      matt 
    643       1.21      matt #ifdef SRAB_BASE
    644        1.4      matt static kmutex_t srab_lock __cacheline_aligned;
    645        1.4      matt 
    646        1.4      matt void
    647        1.4      matt bcm53xx_srab_init(void)
    648        1.4      matt {
    649        1.4      matt 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
    650        1.4      matt 
    651        1.4      matt 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
    652        1.4      matt 	for (u_int port = 0; port < 8; port++) {
    653        1.4      matt 		/* per port control: no stp */
    654        1.4      matt 		bcm53xx_srab_write_4(port, 0x00);
    655        1.4      matt 	}
    656        1.4      matt 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
    657        1.4      matt 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
    658        1.4      matt 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
    659        1.4      matt 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
    660        1.4      matt 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
    661        1.4      matt 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
    662        1.4      matt 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
    663        1.4      matt }
    664        1.4      matt 
    665        1.4      matt static inline void
    666        1.4      matt bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
    667        1.4      matt {
    668        1.4      matt 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
    669        1.4      matt 		delay(10);
    670        1.4      matt 	}
    671        1.4      matt }
    672        1.4      matt 
    673        1.4      matt uint32_t
    674        1.4      matt bcm53xx_srab_read_4(u_int pageoffset)
    675        1.4      matt {
    676        1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    677        1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    678        1.4      matt 	uint32_t rv;
    679        1.4      matt 
    680        1.4      matt 	mutex_spin_enter(&srab_lock);
    681        1.4      matt 
    682        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    683        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    684        1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    685        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    686        1.4      matt 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    687        1.4      matt 
    688        1.4      matt 	mutex_spin_exit(&srab_lock);
    689        1.4      matt 	return rv;
    690        1.4      matt }
    691        1.4      matt 
    692        1.4      matt uint64_t
    693        1.4      matt bcm53xx_srab_read_8(u_int pageoffset)
    694        1.4      matt {
    695        1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    696        1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    697        1.4      matt 	uint64_t rv;
    698        1.4      matt 
    699        1.4      matt 	mutex_spin_enter(&srab_lock);
    700        1.4      matt 
    701        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    702        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    703        1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    704        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    705        1.4      matt 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
    706        1.4      matt 	rv <<= 32;
    707        1.4      matt 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    708        1.4      matt 
    709        1.4      matt 	mutex_spin_exit(&srab_lock);
    710        1.4      matt 	return rv;
    711        1.4      matt }
    712        1.4      matt 
    713        1.4      matt void
    714        1.4      matt bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
    715        1.4      matt {
    716        1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    717        1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    718        1.4      matt 
    719        1.4      matt 	mutex_spin_enter(&srab_lock);
    720        1.4      matt 
    721        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    722        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    723        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    724        1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    725        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    726        1.4      matt 
    727        1.4      matt 	mutex_spin_exit(&srab_lock);
    728        1.4      matt }
    729        1.4      matt 
    730        1.4      matt void
    731        1.4      matt bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
    732        1.4      matt {
    733        1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    734        1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    735        1.4      matt 
    736        1.4      matt 	mutex_spin_enter(&srab_lock);
    737        1.4      matt 
    738        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    739        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    740        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
    741        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    742        1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    743        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    744        1.4      matt 	mutex_spin_exit(&srab_lock);
    745        1.1      matt }
    746       1.21      matt #endif
    747