Home | History | Annotate | Line # | Download | only in broadcom
bcm53xx_board.c revision 1.23.14.2
      1  1.23.14.2  pgoyette /*	$NetBSD: bcm53xx_board.c,v 1.23.14.2 2018/09/06 06:55:25 pgoyette Exp $	*/
      2        1.1      matt /*-
      3        1.1      matt  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      4        1.1      matt  * All rights reserved.
      5        1.1      matt  *
      6        1.1      matt  * This code is derived from software contributed to The NetBSD Foundation
      7        1.1      matt  * by Matt Thomas of 3am Software Foundry.
      8        1.1      matt  *
      9        1.1      matt  * Redistribution and use in source and binary forms, with or without
     10        1.1      matt  * modification, are permitted provided that the following conditions
     11        1.1      matt  * are met:
     12        1.1      matt  * 1. Redistributions of source code must retain the above copyright
     13        1.1      matt  *    notice, this list of conditions and the following disclaimer.
     14        1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     15        1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     16        1.1      matt  *    documentation and/or other materials provided with the distribution.
     17        1.1      matt  *
     18        1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19        1.1      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20        1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21        1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22        1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23        1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24        1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25        1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26        1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27        1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28        1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     29        1.1      matt  */
     30        1.1      matt 
     31  1.23.14.2  pgoyette #include "opt_arm_debug.h"
     32        1.1      matt #include "opt_broadcom.h"
     33       1.18      matt #include "arml2cc.h"
     34        1.1      matt 
     35        1.1      matt #define	_ARM32_BUS_DMA_PRIVATE
     36        1.1      matt 
     37        1.1      matt #include <sys/cdefs.h>
     38        1.1      matt 
     39  1.23.14.2  pgoyette __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.23.14.2 2018/09/06 06:55:25 pgoyette Exp $");
     40        1.1      matt 
     41        1.1      matt #include <sys/param.h>
     42        1.1      matt #include <sys/bus.h>
     43        1.1      matt #include <sys/cpu.h>
     44        1.1      matt #include <sys/device.h>
     45        1.1      matt 
     46        1.1      matt #include <prop/proplib.h>
     47        1.1      matt 
     48        1.4      matt #include <net/if.h>
     49        1.4      matt #include <net/if_ether.h>
     50        1.4      matt 
     51       1.17      matt #define CCA_PRIVATE
     52        1.1      matt #define CRU_PRIVATE
     53        1.1      matt #define DDR_PRIVATE
     54        1.1      matt #define DMU_PRIVATE
     55        1.1      matt #define ARMCORE_PRIVATE
     56        1.4      matt #define SRAB_PRIVATE
     57        1.1      matt 
     58        1.1      matt #include <arm/cortex/a9tmr_var.h>
     59        1.2      matt #include <arm/cortex/pl310_var.h>
     60        1.1      matt #include <arm/mainbus/mainbus.h>
     61        1.1      matt 
     62        1.1      matt #include <arm/broadcom/bcm53xx_reg.h>
     63        1.1      matt #include <arm/broadcom/bcm53xx_var.h>
     64        1.1      matt 
     65        1.1      matt bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
     66        1.1      matt bus_space_handle_t bcm53xx_ioreg_bsh;
     67        1.1      matt bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
     68        1.1      matt bus_space_handle_t bcm53xx_armcore_bsh;
     69        1.1      matt 
     70        1.1      matt static struct cpu_softc cpu_softc;
     71        1.1      matt 
     72       1.13      matt struct arm32_dma_range bcm53xx_dma_ranges[] = {
     73       1.17      matt #ifdef BCM5301X
     74        1.8      matt 	[0] = {
     75        1.8      matt 		.dr_sysbase = 0x80000000,
     76        1.8      matt 		.dr_busbase = 0x80000000,
     77        1.8      matt 		.dr_len = 0x10000000,
     78        1.8      matt 	}, [1] = {
     79        1.8      matt 		.dr_sysbase = 0x90000000,
     80        1.8      matt 		.dr_busbase = 0x90000000,
     81        1.8      matt 	},
     82       1.19      matt #elif defined(BCM563XX)
     83       1.17      matt 	[0] = {
     84       1.17      matt 		.dr_sysbase = 0x60000000,
     85       1.17      matt 		.dr_busbase = 0x60000000,
     86       1.17      matt 		.dr_len = 0x20000000,
     87       1.17      matt 	}, [1] = {
     88       1.19      matt 		.dr_sysbase = 0x80000000,
     89       1.19      matt 		.dr_busbase = 0x80000000,
     90       1.20      matt 	},
     91       1.17      matt #endif
     92        1.8      matt };
     93        1.5      matt 
     94        1.1      matt struct arm32_bus_dma_tag bcm53xx_dma_tag = {
     95        1.8      matt 	._ranges = bcm53xx_dma_ranges,
     96        1.8      matt 	._nranges = __arraycount(bcm53xx_dma_ranges),
     97        1.3      matt 	_BUS_DMAMAP_FUNCS,
     98        1.3      matt 	_BUS_DMAMEM_FUNCS,
     99        1.3      matt 	_BUS_DMATAG_FUNCS,
    100        1.1      matt };
    101        1.1      matt 
    102       1.13      matt struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
    103       1.17      matt #ifdef BCM5301X
    104        1.8      matt 	[0] = {
    105        1.8      matt 		.dr_sysbase = 0x80000000,
    106        1.8      matt 		.dr_busbase = 0x80000000,
    107        1.8      matt 		.dr_len = 0x10000000,
    108        1.8      matt 		.dr_flags = _BUS_DMAMAP_COHERENT,
    109        1.8      matt 	}, [1] = {
    110        1.8      matt 		.dr_sysbase = 0x90000000,
    111        1.8      matt 		.dr_busbase = 0x90000000,
    112        1.8      matt 	},
    113       1.17      matt #elif defined(BCM563XX)
    114       1.17      matt 	[0] = {
    115       1.17      matt 		.dr_sysbase = 0x60000000,
    116       1.17      matt 		.dr_busbase = 0x60000000,
    117       1.17      matt 		.dr_len = 0x20000000,
    118       1.17      matt 		.dr_flags = _BUS_DMAMAP_COHERENT,
    119       1.17      matt 	}, [1] = {
    120       1.19      matt 		.dr_sysbase = 0x80000000,
    121       1.19      matt 		.dr_busbase = 0x80000000,
    122       1.17      matt 	},
    123       1.17      matt #endif
    124        1.8      matt };
    125        1.6      matt 
    126        1.6      matt struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
    127        1.8      matt 	._ranges = bcm53xx_coherent_dma_ranges,
    128        1.8      matt 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
    129        1.6      matt 	_BUS_DMAMAP_FUNCS,
    130        1.6      matt 	_BUS_DMAMEM_FUNCS,
    131        1.6      matt 	_BUS_DMATAG_FUNCS,
    132        1.6      matt };
    133        1.6      matt 
    134       1.14      matt #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    135       1.14      matt struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
    136       1.15      matt 	._ranges = bcm53xx_coherent_dma_ranges,
    137       1.15      matt 	._nranges = 1,
    138       1.14      matt 	_BUS_DMAMAP_FUNCS,
    139       1.14      matt 	_BUS_DMAMEM_FUNCS,
    140       1.14      matt 	_BUS_DMATAG_FUNCS,
    141       1.14      matt };
    142       1.14      matt #endif
    143       1.14      matt 
    144        1.1      matt #ifdef BCM53XX_CONSOLE_EARLY
    145        1.1      matt #include <dev/ic/ns16550reg.h>
    146        1.1      matt #include <dev/ic/comreg.h>
    147        1.1      matt #include <dev/cons.h>
    148        1.1      matt 
    149        1.1      matt static vaddr_t com_base;
    150        1.1      matt 
    151        1.1      matt static inline uint32_t
    152        1.1      matt uart_read(bus_size_t o)
    153        1.1      matt {
    154        1.1      matt 	return *(volatile uint8_t *)(com_base + o);
    155        1.1      matt }
    156        1.1      matt 
    157        1.1      matt static inline void
    158        1.1      matt uart_write(bus_size_t o, uint32_t v)
    159        1.1      matt {
    160        1.1      matt 	*(volatile uint8_t *)(com_base + o) = v;
    161        1.1      matt }
    162        1.1      matt 
    163        1.1      matt static int
    164        1.1      matt bcm53xx_cngetc(dev_t dv)
    165        1.1      matt {
    166        1.1      matt         if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
    167        1.1      matt 		return -1;
    168        1.1      matt 
    169        1.1      matt 	return uart_read(com_data) & 0xff;
    170        1.1      matt }
    171        1.1      matt 
    172        1.1      matt static void
    173        1.1      matt bcm53xx_cnputc(dev_t dv, int c)
    174        1.1      matt {
    175        1.1      matt 	int timo = 150000;
    176        1.1      matt 
    177        1.1      matt         while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
    178        1.1      matt 		;
    179        1.1      matt 
    180        1.1      matt 	uart_write(com_data, c);
    181        1.1      matt 
    182        1.1      matt 	timo = 150000;
    183        1.1      matt         while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
    184        1.1      matt 		;
    185        1.1      matt }
    186        1.1      matt 
    187        1.1      matt static struct consdev bcm53xx_earlycons = {
    188        1.1      matt 	.cn_putc = bcm53xx_cnputc,
    189        1.1      matt 	.cn_getc = bcm53xx_cngetc,
    190        1.1      matt 	.cn_pollc = nullcnpollc,
    191        1.1      matt };
    192        1.1      matt #endif /* BCM53XX_CONSOLE_EARLY */
    193        1.1      matt 
    194        1.1      matt psize_t
    195        1.1      matt bcm53xx_memprobe(void)
    196        1.1      matt {
    197        1.1      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    198        1.1      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    199        1.1      matt 
    200        1.1      matt 	/*
    201        1.1      matt 	 * First, let's read the magic DDR registers!
    202        1.1      matt 	 */
    203        1.1      matt 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
    204        1.1      matt 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
    205        1.1      matt 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
    206        1.1      matt 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
    207        1.1      matt 
    208        1.1      matt 	/*
    209        1.1      matt 	 * Calculate chip parameters
    210        1.1      matt 	 * */
    211        1.1      matt 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
    212        1.1      matt 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
    213        1.1      matt 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
    214        1.1      matt 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
    215        1.1      matt 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
    216        1.1      matt 
    217        1.1      matt 	/*
    218        1.1      matt 	 * For each chip select, increase the chip count if if is enabled.
    219        1.1      matt 	 */
    220        1.1      matt 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
    221        1.1      matt 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
    222        1.1      matt 	u_int chips = 0;
    223        1.1      matt 
    224        1.1      matt 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
    225        1.1      matt 		chips += (cs_map & 1);
    226        1.1      matt 	}
    227        1.1      matt 
    228        1.1      matt 	/* get log2(ddr width) */
    229        1.1      matt 
    230        1.1      matt 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
    231        1.1      matt 
    232        1.1      matt 	/*
    233        1.1      matt 	 * Let's add up all the things that contribute to the size of a chip.
    234        1.1      matt 	 */
    235        1.1      matt 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
    236        1.1      matt 
    237        1.1      matt 	/*
    238        1.1      matt 	 * Now our memory size is simply the number of chip shifted by the
    239        1.1      matt 	 * log2(chip_size).
    240        1.1      matt 	 */
    241        1.1      matt 	return (psize_t) chips << chip_size_log2;
    242        1.1      matt }
    243        1.1      matt 
    244        1.1      matt static inline uint32_t
    245        1.1      matt bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
    246        1.1      matt 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
    247        1.1      matt {
    248        1.1      matt 	if (ndiv_frac == 0 && pdiv == 1)
    249        1.1      matt 		return ndiv_int * clk->clk_ref;
    250        1.1      matt 
    251        1.1      matt 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
    252        1.1      matt 	freq64 *= clk->clk_ref;
    253        1.1      matt 	if (pdiv > 1)
    254        1.1      matt 		freq64 /= pdiv;
    255        1.1      matt 	return (uint32_t) (freq64 >> 30);
    256        1.1      matt }
    257        1.1      matt 
    258        1.1      matt static uint32_t
    259        1.1      matt bcm53xx_value_wrap(uint32_t value, uint32_t mask)
    260        1.1      matt {
    261        1.1      matt 	/*
    262        1.1      matt 	 * n is n except when n is 0 then n = mask + 1.
    263        1.1      matt 	 */
    264        1.1      matt 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
    265        1.1      matt }
    266        1.1      matt 
    267        1.1      matt static void
    268        1.1      matt bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
    269        1.1      matt 	uint32_t control6, uint32_t control7)
    270        1.1      matt {
    271        1.1      matt 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
    272        1.1      matt 	    GENPLL_CONTROL6_PDIV);
    273        1.1      matt 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
    274        1.1      matt 	    GENPLL_CONTROL5_NDIV_INT);
    275        1.1      matt 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
    276        1.1      matt 	    GENPLL_CONTROL5_NDIV_FRAC);
    277        1.1      matt 
    278        1.1      matt 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    279        1.1      matt 
    280        1.1      matt 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
    281        1.1      matt 	    GENPLL_CONTROL6_CH0_MDIV);
    282        1.1      matt 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
    283        1.1      matt 	    GENPLL_CONTROL6_CH1_MDIV);
    284        1.1      matt 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
    285        1.1      matt 	    GENPLL_CONTROL6_CH2_MDIV);
    286        1.1      matt 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
    287        1.1      matt 	    GENPLL_CONTROL7_CH3_MDIV);
    288        1.1      matt 
    289        1.1      matt 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
    290        1.1      matt 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
    291        1.1      matt 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
    292        1.1      matt 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
    293        1.1      matt }
    294        1.1      matt 
    295        1.1      matt static void
    296        1.1      matt bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
    297        1.1      matt 	uint32_t control2)
    298        1.1      matt {
    299        1.1      matt 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
    300        1.1      matt 	    LCPLL_CONTROL1_PDIV);
    301        1.1      matt 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
    302        1.1      matt 	    LCPLL_CONTROL1_NDIV_INT);
    303        1.1      matt 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
    304        1.1      matt 	    LCPLL_CONTROL1_NDIV_FRAC);
    305        1.1      matt 
    306        1.1      matt 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    307        1.1      matt 
    308        1.1      matt 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
    309        1.1      matt 	    LCPLL_CONTROL2_CH0_MDIV);
    310        1.1      matt 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
    311        1.1      matt 	    LCPLL_CONTROL2_CH1_MDIV);
    312        1.1      matt 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
    313        1.1      matt 	    LCPLL_CONTROL2_CH2_MDIV);
    314        1.1      matt 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
    315        1.1      matt 	    LCPLL_CONTROL2_CH3_MDIV);
    316        1.1      matt 
    317        1.1      matt 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
    318        1.1      matt 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
    319        1.1      matt 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
    320        1.1      matt 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
    321        1.1      matt }
    322        1.1      matt 
    323        1.1      matt static void
    324        1.1      matt bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
    325        1.1      matt {
    326        1.1      matt 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
    327        1.1      matt 	    USB2_CONTROL_PDIV);
    328        1.1      matt 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
    329        1.1      matt 	    USB2_CONTROL_NDIV_INT);
    330        1.1      matt 
    331        1.1      matt 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
    332        1.1      matt 	if (usb_ref != USB2_REF_CLK) {
    333        1.1      matt 		/*
    334        1.1      matt 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
    335        1.1      matt 		 * USB2_CONTROL to produce it.
    336        1.1      matt 		 */
    337        1.1      matt 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
    338        1.1      matt 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
    339        1.1      matt 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
    340        1.1      matt 
    341        1.1      matt 		// Allow Clocks to be modified
    342        1.1      matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    343        1.1      matt 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
    344        1.1      matt 
    345        1.1      matt 		// Update USB2 clock generator
    346        1.1      matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    347        1.1      matt 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
    348        1.1      matt 
    349        1.1      matt 		// Prevent Clock modification
    350        1.1      matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    351        1.1      matt 		    CRU_BASE + CRU_CLKSET_KEY, 0);
    352        1.1      matt 
    353        1.1      matt 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
    354        1.1      matt 	}
    355        1.1      matt 
    356        1.1      matt 	clk->clk_usb_ref = usb_ref;
    357        1.1      matt }
    358        1.1      matt 
    359        1.1      matt 
    360        1.1      matt static void
    361        1.1      matt bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
    362        1.1      matt {
    363        1.1      matt 	clk->clk_ref = BCM53XX_REF_CLK;
    364        1.1      matt 	clk->clk_sys = 8*clk->clk_ref;
    365        1.1      matt }
    366        1.1      matt 
    367        1.1      matt /*
    368        1.1      matt  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
    369        1.1      matt  */
    370        1.1      matt static void
    371        1.1      matt bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
    372        1.1      matt     uint32_t pll_dividers)
    373        1.1      matt {
    374        1.1      matt 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
    375        1.1      matt 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
    376        1.1      matt 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
    377        1.1      matt 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
    378        1.1      matt 
    379        1.1      matt 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
    380        1.1      matt 
    381        1.1      matt 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
    382        1.1      matt 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
    383        1.1      matt }
    384        1.1      matt 
    385        1.1      matt /*
    386        1.1      matt  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
    387        1.1      matt  */
    388        1.1      matt static void
    389        1.1      matt bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
    390        1.1      matt 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
    391        1.1      matt {
    392        1.1      matt 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
    393        1.1      matt 
    394        1.1      matt 	if (policy == CLK_POLICY_REF_CLK) {
    395        1.1      matt 		clk->clk_cpu = clk->clk_ref;
    396        1.1      matt 		clk->clk_apb = clk->clk_cpu;
    397        1.1      matt 		return;
    398        1.1      matt 	}
    399        1.1      matt 
    400        1.1      matt 	if (policy == CLK_POLICY_SYS_CLK) {
    401        1.1      matt 		clk->clk_cpu = clk->clk_sys;
    402        1.1      matt 		clk->clk_apb = clk->clk_cpu / 4;
    403        1.1      matt 		return;
    404        1.1      matt 	}
    405        1.1      matt 
    406        1.1      matt 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
    407        1.1      matt 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
    408        1.1      matt 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
    409        1.1      matt 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
    410        1.1      matt 
    411        1.1      matt 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
    412        1.1      matt 
    413        1.1      matt 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
    414        1.1      matt 	clk->clk_apb = clk->clk_cpu / 4;
    415        1.1      matt }
    416        1.1      matt 
    417        1.1      matt struct bcm53xx_chip_state {
    418        1.1      matt 	uint32_t bcs_lcpll_control1;
    419        1.1      matt 	uint32_t bcs_lcpll_control2;
    420        1.1      matt 
    421        1.1      matt 	uint32_t bcs_genpll_control5;
    422        1.1      matt 	uint32_t bcs_genpll_control6;
    423        1.1      matt 	uint32_t bcs_genpll_control7;
    424        1.1      matt 
    425        1.1      matt 	uint32_t bcs_usb2_control;
    426        1.1      matt 
    427        1.1      matt 	uint32_t bcs_ddr_phy_ctl_pll_status;
    428        1.1      matt 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
    429        1.1      matt 
    430        1.1      matt 	uint32_t bcs_armcore_clk_policy;
    431        1.1      matt 	uint32_t bcs_armcore_clk_pllarma;
    432        1.1      matt 	uint32_t bcs_armcore_clk_pllarmb;
    433        1.1      matt };
    434        1.1      matt 
    435        1.1      matt static void
    436        1.1      matt bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
    437        1.1      matt 	bus_space_tag_t bst, bus_space_handle_t bsh)
    438        1.1      matt {
    439        1.1      matt 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
    440        1.1      matt 	    DMU_BASE + DMU_LCPLL_CONTROL1);
    441        1.1      matt 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
    442        1.1      matt 	    DMU_BASE + DMU_LCPLL_CONTROL2);
    443        1.1      matt 
    444        1.1      matt 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
    445        1.1      matt 	    CRU_BASE + CRU_GENPLL_CONTROL5);
    446        1.1      matt 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
    447        1.1      matt 	    CRU_BASE + CRU_GENPLL_CONTROL6);
    448        1.1      matt 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
    449        1.1      matt 	    CRU_BASE + CRU_GENPLL_CONTROL7);
    450        1.1      matt 
    451        1.1      matt 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
    452        1.1      matt 	    CRU_BASE + CRU_USB2_CONTROL);
    453        1.1      matt 
    454        1.1      matt 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
    455        1.1      matt 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
    456        1.1      matt 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
    457        1.1      matt 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
    458        1.1      matt }
    459        1.1      matt 
    460        1.1      matt static void
    461        1.1      matt bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
    462        1.1      matt 	bus_space_tag_t bst, bus_space_handle_t bsh)
    463        1.1      matt {
    464        1.1      matt 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
    465        1.1      matt 	    ARMCORE_CLK_POLICY_FREQ);
    466        1.1      matt 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
    467        1.1      matt 	    ARMCORE_CLK_PLLARMA);
    468        1.1      matt 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
    469        1.1      matt 	    ARMCORE_CLK_PLLARMB);
    470        1.1      matt }
    471        1.1      matt 
    472        1.1      matt void
    473        1.1      matt bcm53xx_cpu_softc_init(struct cpu_info *ci)
    474        1.1      matt {
    475        1.1      matt 	struct cpu_softc * const cpu = ci->ci_softc;
    476        1.1      matt 
    477        1.1      matt 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
    478        1.1      matt 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
    479        1.1      matt 
    480        1.1      matt 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
    481        1.1      matt 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
    482       1.17      matt 
    483       1.17      matt 	const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
    484       1.17      matt 	    cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
    485       1.17      matt 
    486       1.17      matt 	cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
    487        1.1      matt }
    488        1.1      matt 
    489        1.1      matt void
    490        1.1      matt bcm53xx_print_clocks(void)
    491        1.1      matt {
    492       1.16       riz #if defined(VERBOSE_INIT_ARM)
    493        1.9      matt 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    494        1.9      matt 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
    495        1.9      matt 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
    496        1.9      matt 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
    497        1.9      matt 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
    498        1.9      matt 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
    499        1.9      matt 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
    500        1.9      matt 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
    501        1.9      matt 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
    502        1.9      matt 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
    503        1.9      matt 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
    504        1.9      matt 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
    505        1.9      matt 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
    506        1.9      matt 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
    507        1.9      matt 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
    508        1.9      matt 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
    509        1.9      matt 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
    510        1.9      matt 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
    511        1.1      matt #endif
    512        1.1      matt }
    513        1.1      matt 
    514        1.1      matt void
    515        1.1      matt bcm53xx_bootstrap(vaddr_t iobase)
    516        1.1      matt {
    517        1.1      matt 	struct bcm53xx_chip_state bcs;
    518        1.1      matt 	int error;
    519        1.1      matt 
    520        1.1      matt #ifdef BCM53XX_CONSOLE_EARLY
    521        1.1      matt 	com_base = iobase + CCA_UART0_BASE;
    522        1.1      matt 	cn_tab = &bcm53xx_earlycons;
    523        1.1      matt #endif
    524        1.1      matt 
    525        1.1      matt 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
    526        1.1      matt 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
    527        1.1      matt 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
    528        1.1      matt 	if (error)
    529        1.1      matt 		panic("%s: failed to map BCM53xx %s registers: %d",
    530        1.1      matt 		    __func__, "io", error);
    531        1.1      matt 
    532        1.1      matt 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
    533        1.1      matt 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
    534        1.1      matt 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
    535        1.1      matt 	if (error)
    536        1.1      matt 		panic("%s: failed to map BCM53xx %s registers: %d",
    537        1.1      matt 		    __func__, "armcore", error);
    538        1.1      matt 
    539        1.1      matt 	curcpu()->ci_softc = &cpu_softc;
    540        1.1      matt 
    541        1.1      matt 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
    542        1.1      matt 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
    543        1.1      matt 
    544        1.9      matt 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    545        1.1      matt 
    546        1.1      matt 	bcm53xx_clock_init(clk);
    547        1.1      matt 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
    548        1.1      matt 	    bcs.bcs_lcpll_control2);
    549        1.1      matt 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
    550        1.1      matt 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
    551        1.1      matt 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
    552        1.1      matt 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
    553        1.1      matt 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
    554        1.1      matt 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
    555        1.1      matt 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
    556        1.1      matt 
    557        1.1      matt 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
    558        1.2      matt 
    559       1.18      matt #if NARML2CC > 0
    560       1.17      matt 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
    561       1.17      matt 	    ARMCORE_L2C_BASE);
    562       1.18      matt #endif
    563        1.1      matt }
    564        1.1      matt 
    565        1.5      matt void
    566        1.5      matt bcm53xx_dma_bootstrap(psize_t memsize)
    567        1.5      matt {
    568       1.13      matt 	if (memsize <= 256*1024*1024) {
    569       1.10      matt 		bcm53xx_dma_ranges[0].dr_len = memsize;
    570       1.10      matt 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
    571       1.11      matt 		bcm53xx_dma_tag._nranges = 1;
    572       1.10      matt 		bcm53xx_coherent_dma_tag._nranges = 1;
    573       1.10      matt 	} else {
    574        1.5      matt 		/*
    575        1.5      matt 		 * By setting up two ranges, bus_dmamem_alloc will always
    576        1.5      matt 		 * try to allocate from range 0 first resulting in allocations
    577        1.5      matt 		 * below 256MB which for PCI and GMAC are coherent.
    578        1.5      matt 		 */
    579        1.5      matt 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
    580        1.8      matt 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
    581        1.5      matt 	}
    582        1.8      matt 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
    583        1.8      matt 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    584       1.14      matt #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    585       1.14      matt 	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    586       1.14      matt #endif
    587        1.5      matt }
    588        1.5      matt 
    589        1.1      matt #ifdef MULTIPROCESSOR
    590        1.1      matt void
    591        1.1      matt bcm53xx_cpu_hatch(struct cpu_info *ci)
    592        1.1      matt {
    593        1.1      matt 	a9tmr_init_cpu_clock(ci);
    594        1.1      matt }
    595        1.1      matt #endif
    596        1.1      matt 
    597        1.1      matt void
    598        1.1      matt bcm53xx_device_register(device_t self, void *aux)
    599        1.1      matt {
    600        1.1      matt 	prop_dictionary_t dict = device_properties(self);
    601        1.1      matt 
    602        1.1      matt 	if (device_is_a(self, "armperiph")
    603        1.1      matt 	    && device_is_a(device_parent(self), "mainbus")) {
    604        1.1      matt 		/*
    605        1.1      matt 		 * XXX KLUDGE ALERT XXX
    606        1.1      matt 		 * The iot mainbus supplies is completely wrong since it scales
    607       1.22     skrll 		 * addresses by 2.  The simplest remedy is to replace with our
    608       1.23     skrll 		 * bus space used for the armcore registers (which armperiph uses).
    609        1.1      matt 		 */
    610        1.1      matt 		struct mainbus_attach_args * const mb = aux;
    611        1.1      matt 		mb->mb_iot = bcm53xx_armcore_bst;
    612        1.1      matt 		return;
    613        1.1      matt 	}
    614        1.1      matt 
    615        1.1      matt 	/*
    616        1.1      matt 	 * We need to tell the A9 Global/Watchdog Timer
    617        1.1      matt 	 * what frequency it runs at.
    618        1.1      matt 	 */
    619  1.23.14.1  pgoyette 	if (device_is_a(self, "arma9tmr") || device_is_a(self, "a9wdt")) {
    620        1.1      matt 		/*
    621        1.1      matt 		 * This clock always runs at (arm_clk div 2) and only goes
    622        1.1      matt 		 * to timers that are part of the A9 MP core subsystem.
    623        1.1      matt 		 */
    624        1.1      matt                 prop_dictionary_set_uint32(dict, "frequency",
    625        1.9      matt 		    cpu_softc.cpu_clk.clk_cpu / 2);
    626        1.1      matt 		return;
    627        1.4      matt 	}
    628        1.4      matt 
    629        1.4      matt 	if (device_is_a(self, "bcmeth")) {
    630        1.4      matt 		const struct bcmccb_attach_args * const ccbaa = aux;
    631        1.4      matt 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
    632        1.4      matt 			0x00, 0x01, 0x02, 0x03, 0x04,
    633        1.4      matt 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
    634        1.4      matt 		};
    635        1.4      matt 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
    636        1.4      matt 		KASSERT(pd != NULL);
    637        1.4      matt 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
    638        1.4      matt 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
    639        1.4      matt 		}
    640        1.4      matt 		prop_object_release(pd);
    641        1.4      matt 	}
    642        1.4      matt }
    643        1.4      matt 
    644       1.21      matt #ifdef SRAB_BASE
    645        1.4      matt static kmutex_t srab_lock __cacheline_aligned;
    646        1.4      matt 
    647        1.4      matt void
    648        1.4      matt bcm53xx_srab_init(void)
    649        1.4      matt {
    650        1.4      matt 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
    651        1.4      matt 
    652        1.4      matt 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
    653        1.4      matt 	for (u_int port = 0; port < 8; port++) {
    654        1.4      matt 		/* per port control: no stp */
    655        1.4      matt 		bcm53xx_srab_write_4(port, 0x00);
    656        1.4      matt 	}
    657        1.4      matt 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
    658        1.4      matt 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
    659        1.4      matt 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
    660        1.4      matt 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
    661        1.4      matt 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
    662        1.4      matt 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
    663        1.4      matt 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
    664        1.4      matt }
    665        1.4      matt 
    666        1.4      matt static inline void
    667        1.4      matt bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
    668        1.4      matt {
    669        1.4      matt 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
    670        1.4      matt 		delay(10);
    671        1.4      matt 	}
    672        1.4      matt }
    673        1.4      matt 
    674        1.4      matt uint32_t
    675        1.4      matt bcm53xx_srab_read_4(u_int pageoffset)
    676        1.4      matt {
    677        1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    678        1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    679        1.4      matt 	uint32_t rv;
    680        1.4      matt 
    681        1.4      matt 	mutex_spin_enter(&srab_lock);
    682        1.4      matt 
    683        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    684        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    685        1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    686        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    687        1.4      matt 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    688        1.4      matt 
    689        1.4      matt 	mutex_spin_exit(&srab_lock);
    690        1.4      matt 	return rv;
    691        1.4      matt }
    692        1.4      matt 
    693        1.4      matt uint64_t
    694        1.4      matt bcm53xx_srab_read_8(u_int pageoffset)
    695        1.4      matt {
    696        1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    697        1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    698        1.4      matt 	uint64_t rv;
    699        1.4      matt 
    700        1.4      matt 	mutex_spin_enter(&srab_lock);
    701        1.4      matt 
    702        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    703        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    704        1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    705        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    706        1.4      matt 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
    707        1.4      matt 	rv <<= 32;
    708        1.4      matt 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    709        1.4      matt 
    710        1.4      matt 	mutex_spin_exit(&srab_lock);
    711        1.4      matt 	return rv;
    712        1.4      matt }
    713        1.4      matt 
    714        1.4      matt void
    715        1.4      matt bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
    716        1.4      matt {
    717        1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    718        1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    719        1.4      matt 
    720        1.4      matt 	mutex_spin_enter(&srab_lock);
    721        1.4      matt 
    722        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    723        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    724        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    725        1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    726        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    727        1.4      matt 
    728        1.4      matt 	mutex_spin_exit(&srab_lock);
    729        1.4      matt }
    730        1.4      matt 
    731        1.4      matt void
    732        1.4      matt bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
    733        1.4      matt {
    734        1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    735        1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    736        1.4      matt 
    737        1.4      matt 	mutex_spin_enter(&srab_lock);
    738        1.4      matt 
    739        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    740        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    741        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
    742        1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    743        1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    744        1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    745        1.4      matt 	mutex_spin_exit(&srab_lock);
    746        1.1      matt }
    747       1.21      matt #endif
    748