Home | History | Annotate | Line # | Download | only in broadcom
bcm53xx_board.c revision 1.24.2.1
      1  1.24.2.1  christos /*	$NetBSD: bcm53xx_board.c,v 1.24.2.1 2019/06/10 22:05:52 christos Exp $	*/
      2       1.1      matt /*-
      3       1.1      matt  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      4       1.1      matt  * All rights reserved.
      5       1.1      matt  *
      6       1.1      matt  * This code is derived from software contributed to The NetBSD Foundation
      7       1.1      matt  * by Matt Thomas of 3am Software Foundry.
      8       1.1      matt  *
      9       1.1      matt  * Redistribution and use in source and binary forms, with or without
     10       1.1      matt  * modification, are permitted provided that the following conditions
     11       1.1      matt  * are met:
     12       1.1      matt  * 1. Redistributions of source code must retain the above copyright
     13       1.1      matt  *    notice, this list of conditions and the following disclaimer.
     14       1.1      matt  * 2. Redistributions in binary form must reproduce the above copyright
     15       1.1      matt  *    notice, this list of conditions and the following disclaimer in the
     16       1.1      matt  *    documentation and/or other materials provided with the distribution.
     17       1.1      matt  *
     18       1.1      matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19       1.1      matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20       1.1      matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21       1.1      matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22       1.1      matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23       1.1      matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24       1.1      matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25       1.1      matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26       1.1      matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27       1.1      matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28       1.1      matt  * POSSIBILITY OF SUCH DAMAGE.
     29       1.1      matt  */
     30       1.1      matt 
     31  1.24.2.1  christos #include "opt_arm_debug.h"
     32       1.1      matt #include "opt_broadcom.h"
     33      1.18      matt #include "arml2cc.h"
     34       1.1      matt 
     35       1.1      matt #define	_ARM32_BUS_DMA_PRIVATE
     36       1.1      matt 
     37       1.1      matt #include <sys/cdefs.h>
     38       1.1      matt 
     39  1.24.2.1  christos __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.24.2.1 2019/06/10 22:05:52 christos Exp $");
     40       1.1      matt 
     41       1.1      matt #include <sys/param.h>
     42       1.1      matt #include <sys/bus.h>
     43       1.1      matt #include <sys/cpu.h>
     44       1.1      matt #include <sys/device.h>
     45       1.1      matt 
     46       1.1      matt #include <prop/proplib.h>
     47       1.1      matt 
     48       1.4      matt #include <net/if.h>
     49       1.4      matt #include <net/if_ether.h>
     50       1.4      matt 
     51      1.17      matt #define CCA_PRIVATE
     52       1.1      matt #define CRU_PRIVATE
     53       1.1      matt #define DDR_PRIVATE
     54       1.1      matt #define DMU_PRIVATE
     55       1.1      matt #define ARMCORE_PRIVATE
     56       1.4      matt #define SRAB_PRIVATE
     57       1.1      matt 
     58       1.1      matt #include <arm/cortex/a9tmr_var.h>
     59       1.2      matt #include <arm/cortex/pl310_var.h>
     60       1.1      matt #include <arm/mainbus/mainbus.h>
     61       1.1      matt 
     62       1.1      matt #include <arm/broadcom/bcm53xx_reg.h>
     63       1.1      matt #include <arm/broadcom/bcm53xx_var.h>
     64       1.1      matt 
     65       1.1      matt bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
     66       1.1      matt bus_space_handle_t bcm53xx_ioreg_bsh;
     67       1.1      matt bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
     68       1.1      matt bus_space_handle_t bcm53xx_armcore_bsh;
     69       1.1      matt 
     70       1.1      matt static struct cpu_softc cpu_softc;
     71       1.1      matt 
     72      1.13      matt struct arm32_dma_range bcm53xx_dma_ranges[] = {
     73      1.17      matt #ifdef BCM5301X
     74       1.8      matt 	[0] = {
     75       1.8      matt 		.dr_sysbase = 0x80000000,
     76       1.8      matt 		.dr_busbase = 0x80000000,
     77       1.8      matt 		.dr_len = 0x10000000,
     78       1.8      matt 	}, [1] = {
     79       1.8      matt 		.dr_sysbase = 0x90000000,
     80       1.8      matt 		.dr_busbase = 0x90000000,
     81       1.8      matt 	},
     82      1.19      matt #elif defined(BCM563XX)
     83      1.17      matt 	[0] = {
     84      1.17      matt 		.dr_sysbase = 0x60000000,
     85      1.17      matt 		.dr_busbase = 0x60000000,
     86      1.17      matt 		.dr_len = 0x20000000,
     87      1.17      matt 	}, [1] = {
     88      1.19      matt 		.dr_sysbase = 0x80000000,
     89      1.19      matt 		.dr_busbase = 0x80000000,
     90      1.20      matt 	},
     91      1.17      matt #endif
     92       1.8      matt };
     93       1.5      matt 
     94       1.1      matt struct arm32_bus_dma_tag bcm53xx_dma_tag = {
     95       1.8      matt 	._ranges = bcm53xx_dma_ranges,
     96       1.8      matt 	._nranges = __arraycount(bcm53xx_dma_ranges),
     97       1.3      matt 	_BUS_DMAMAP_FUNCS,
     98       1.3      matt 	_BUS_DMAMEM_FUNCS,
     99       1.3      matt 	_BUS_DMATAG_FUNCS,
    100       1.1      matt };
    101       1.1      matt 
    102      1.13      matt struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
    103      1.17      matt #ifdef BCM5301X
    104       1.8      matt 	[0] = {
    105       1.8      matt 		.dr_sysbase = 0x80000000,
    106       1.8      matt 		.dr_busbase = 0x80000000,
    107       1.8      matt 		.dr_len = 0x10000000,
    108       1.8      matt 		.dr_flags = _BUS_DMAMAP_COHERENT,
    109       1.8      matt 	}, [1] = {
    110       1.8      matt 		.dr_sysbase = 0x90000000,
    111       1.8      matt 		.dr_busbase = 0x90000000,
    112       1.8      matt 	},
    113      1.17      matt #elif defined(BCM563XX)
    114      1.17      matt 	[0] = {
    115      1.17      matt 		.dr_sysbase = 0x60000000,
    116      1.17      matt 		.dr_busbase = 0x60000000,
    117      1.17      matt 		.dr_len = 0x20000000,
    118      1.17      matt 		.dr_flags = _BUS_DMAMAP_COHERENT,
    119      1.17      matt 	}, [1] = {
    120      1.19      matt 		.dr_sysbase = 0x80000000,
    121      1.19      matt 		.dr_busbase = 0x80000000,
    122      1.17      matt 	},
    123      1.17      matt #endif
    124       1.8      matt };
    125       1.6      matt 
    126       1.6      matt struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
    127       1.8      matt 	._ranges = bcm53xx_coherent_dma_ranges,
    128       1.8      matt 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
    129       1.6      matt 	_BUS_DMAMAP_FUNCS,
    130       1.6      matt 	_BUS_DMAMEM_FUNCS,
    131       1.6      matt 	_BUS_DMATAG_FUNCS,
    132       1.6      matt };
    133       1.6      matt 
    134      1.14      matt #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    135      1.14      matt struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
    136      1.15      matt 	._ranges = bcm53xx_coherent_dma_ranges,
    137      1.15      matt 	._nranges = 1,
    138      1.14      matt 	_BUS_DMAMAP_FUNCS,
    139      1.14      matt 	_BUS_DMAMEM_FUNCS,
    140      1.14      matt 	_BUS_DMATAG_FUNCS,
    141      1.14      matt };
    142      1.14      matt #endif
    143      1.14      matt 
    144       1.1      matt #ifdef BCM53XX_CONSOLE_EARLY
    145       1.1      matt #include <dev/ic/ns16550reg.h>
    146       1.1      matt #include <dev/ic/comreg.h>
    147       1.1      matt #include <dev/cons.h>
    148       1.1      matt 
    149       1.1      matt static vaddr_t com_base;
    150       1.1      matt 
    151       1.1      matt static inline uint32_t
    152       1.1      matt uart_read(bus_size_t o)
    153       1.1      matt {
    154       1.1      matt 	return *(volatile uint8_t *)(com_base + o);
    155       1.1      matt }
    156       1.1      matt 
    157       1.1      matt static inline void
    158       1.1      matt uart_write(bus_size_t o, uint32_t v)
    159       1.1      matt {
    160       1.1      matt 	*(volatile uint8_t *)(com_base + o) = v;
    161       1.1      matt }
    162       1.1      matt 
    163       1.1      matt static int
    164       1.1      matt bcm53xx_cngetc(dev_t dv)
    165       1.1      matt {
    166       1.1      matt         if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
    167       1.1      matt 		return -1;
    168       1.1      matt 
    169       1.1      matt 	return uart_read(com_data) & 0xff;
    170       1.1      matt }
    171       1.1      matt 
    172       1.1      matt static void
    173       1.1      matt bcm53xx_cnputc(dev_t dv, int c)
    174       1.1      matt {
    175       1.1      matt 	int timo = 150000;
    176       1.1      matt 
    177       1.1      matt         while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
    178       1.1      matt 		;
    179       1.1      matt 
    180       1.1      matt 	uart_write(com_data, c);
    181       1.1      matt 
    182       1.1      matt 	timo = 150000;
    183       1.1      matt         while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
    184       1.1      matt 		;
    185       1.1      matt }
    186       1.1      matt 
    187       1.1      matt static struct consdev bcm53xx_earlycons = {
    188       1.1      matt 	.cn_putc = bcm53xx_cnputc,
    189       1.1      matt 	.cn_getc = bcm53xx_cngetc,
    190       1.1      matt 	.cn_pollc = nullcnpollc,
    191       1.1      matt };
    192       1.1      matt #endif /* BCM53XX_CONSOLE_EARLY */
    193       1.1      matt 
    194       1.1      matt psize_t
    195       1.1      matt bcm53xx_memprobe(void)
    196       1.1      matt {
    197       1.1      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    198       1.1      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    199       1.1      matt 
    200       1.1      matt 	/*
    201       1.1      matt 	 * First, let's read the magic DDR registers!
    202       1.1      matt 	 */
    203       1.1      matt 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
    204       1.1      matt 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
    205       1.1      matt 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
    206       1.1      matt 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
    207       1.1      matt 
    208       1.1      matt 	/*
    209       1.1      matt 	 * Calculate chip parameters
    210       1.1      matt 	 * */
    211       1.1      matt 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
    212       1.1      matt 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
    213       1.1      matt 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
    214       1.1      matt 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
    215       1.1      matt 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
    216       1.1      matt 
    217       1.1      matt 	/*
    218       1.1      matt 	 * For each chip select, increase the chip count if if is enabled.
    219       1.1      matt 	 */
    220       1.1      matt 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
    221       1.1      matt 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
    222       1.1      matt 	u_int chips = 0;
    223       1.1      matt 
    224       1.1      matt 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
    225       1.1      matt 		chips += (cs_map & 1);
    226       1.1      matt 	}
    227       1.1      matt 
    228       1.1      matt 	/* get log2(ddr width) */
    229       1.1      matt 
    230       1.1      matt 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
    231       1.1      matt 
    232       1.1      matt 	/*
    233       1.1      matt 	 * Let's add up all the things that contribute to the size of a chip.
    234       1.1      matt 	 */
    235       1.1      matt 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
    236       1.1      matt 
    237       1.1      matt 	/*
    238       1.1      matt 	 * Now our memory size is simply the number of chip shifted by the
    239       1.1      matt 	 * log2(chip_size).
    240       1.1      matt 	 */
    241       1.1      matt 	return (psize_t) chips << chip_size_log2;
    242       1.1      matt }
    243       1.1      matt 
    244       1.1      matt static inline uint32_t
    245       1.1      matt bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
    246       1.1      matt 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
    247       1.1      matt {
    248       1.1      matt 	if (ndiv_frac == 0 && pdiv == 1)
    249       1.1      matt 		return ndiv_int * clk->clk_ref;
    250       1.1      matt 
    251       1.1      matt 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
    252       1.1      matt 	freq64 *= clk->clk_ref;
    253       1.1      matt 	if (pdiv > 1)
    254       1.1      matt 		freq64 /= pdiv;
    255       1.1      matt 	return (uint32_t) (freq64 >> 30);
    256       1.1      matt }
    257       1.1      matt 
    258       1.1      matt static uint32_t
    259       1.1      matt bcm53xx_value_wrap(uint32_t value, uint32_t mask)
    260       1.1      matt {
    261       1.1      matt 	/*
    262       1.1      matt 	 * n is n except when n is 0 then n = mask + 1.
    263       1.1      matt 	 */
    264       1.1      matt 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
    265       1.1      matt }
    266       1.1      matt 
    267       1.1      matt static void
    268       1.1      matt bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
    269       1.1      matt 	uint32_t control6, uint32_t control7)
    270       1.1      matt {
    271       1.1      matt 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
    272       1.1      matt 	    GENPLL_CONTROL6_PDIV);
    273       1.1      matt 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
    274       1.1      matt 	    GENPLL_CONTROL5_NDIV_INT);
    275       1.1      matt 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
    276       1.1      matt 	    GENPLL_CONTROL5_NDIV_FRAC);
    277       1.1      matt 
    278       1.1      matt 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    279       1.1      matt 
    280       1.1      matt 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
    281       1.1      matt 	    GENPLL_CONTROL6_CH0_MDIV);
    282       1.1      matt 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
    283       1.1      matt 	    GENPLL_CONTROL6_CH1_MDIV);
    284       1.1      matt 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
    285       1.1      matt 	    GENPLL_CONTROL6_CH2_MDIV);
    286       1.1      matt 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
    287       1.1      matt 	    GENPLL_CONTROL7_CH3_MDIV);
    288       1.1      matt 
    289       1.1      matt 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
    290       1.1      matt 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
    291       1.1      matt 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
    292       1.1      matt 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
    293       1.1      matt }
    294       1.1      matt 
    295       1.1      matt static void
    296       1.1      matt bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
    297       1.1      matt 	uint32_t control2)
    298       1.1      matt {
    299       1.1      matt 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
    300       1.1      matt 	    LCPLL_CONTROL1_PDIV);
    301       1.1      matt 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
    302       1.1      matt 	    LCPLL_CONTROL1_NDIV_INT);
    303       1.1      matt 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
    304       1.1      matt 	    LCPLL_CONTROL1_NDIV_FRAC);
    305       1.1      matt 
    306       1.1      matt 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    307       1.1      matt 
    308       1.1      matt 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
    309       1.1      matt 	    LCPLL_CONTROL2_CH0_MDIV);
    310       1.1      matt 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
    311       1.1      matt 	    LCPLL_CONTROL2_CH1_MDIV);
    312       1.1      matt 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
    313       1.1      matt 	    LCPLL_CONTROL2_CH2_MDIV);
    314       1.1      matt 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
    315       1.1      matt 	    LCPLL_CONTROL2_CH3_MDIV);
    316       1.1      matt 
    317       1.1      matt 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
    318       1.1      matt 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
    319       1.1      matt 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
    320       1.1      matt 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
    321       1.1      matt }
    322       1.1      matt 
    323       1.1      matt static void
    324       1.1      matt bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
    325       1.1      matt {
    326       1.1      matt 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
    327       1.1      matt 	    USB2_CONTROL_PDIV);
    328       1.1      matt 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
    329       1.1      matt 	    USB2_CONTROL_NDIV_INT);
    330       1.1      matt 
    331       1.1      matt 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
    332       1.1      matt 	if (usb_ref != USB2_REF_CLK) {
    333       1.1      matt 		/*
    334       1.1      matt 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
    335       1.1      matt 		 * USB2_CONTROL to produce it.
    336       1.1      matt 		 */
    337       1.1      matt 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
    338       1.1      matt 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
    339       1.1      matt 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
    340       1.1      matt 
    341       1.1      matt 		// Allow Clocks to be modified
    342       1.1      matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    343       1.1      matt 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
    344       1.1      matt 
    345       1.1      matt 		// Update USB2 clock generator
    346       1.1      matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    347       1.1      matt 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
    348       1.1      matt 
    349       1.1      matt 		// Prevent Clock modification
    350       1.1      matt 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    351       1.1      matt 		    CRU_BASE + CRU_CLKSET_KEY, 0);
    352       1.1      matt 
    353       1.1      matt 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
    354       1.1      matt 	}
    355       1.1      matt 
    356       1.1      matt 	clk->clk_usb_ref = usb_ref;
    357       1.1      matt }
    358       1.1      matt 
    359       1.1      matt 
    360       1.1      matt static void
    361       1.1      matt bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
    362       1.1      matt {
    363       1.1      matt 	clk->clk_ref = BCM53XX_REF_CLK;
    364       1.1      matt 	clk->clk_sys = 8*clk->clk_ref;
    365       1.1      matt }
    366       1.1      matt 
    367       1.1      matt /*
    368       1.1      matt  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
    369       1.1      matt  */
    370       1.1      matt static void
    371       1.1      matt bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
    372       1.1      matt     uint32_t pll_dividers)
    373       1.1      matt {
    374       1.1      matt 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
    375       1.1      matt 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
    376       1.1      matt 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
    377       1.1      matt 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
    378       1.1      matt 
    379       1.1      matt 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
    380       1.1      matt 
    381       1.1      matt 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
    382       1.1      matt 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
    383       1.1      matt }
    384       1.1      matt 
    385       1.1      matt /*
    386       1.1      matt  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
    387       1.1      matt  */
    388       1.1      matt static void
    389       1.1      matt bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
    390       1.1      matt 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
    391       1.1      matt {
    392       1.1      matt 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
    393       1.1      matt 
    394       1.1      matt 	if (policy == CLK_POLICY_REF_CLK) {
    395       1.1      matt 		clk->clk_cpu = clk->clk_ref;
    396       1.1      matt 		clk->clk_apb = clk->clk_cpu;
    397       1.1      matt 		return;
    398       1.1      matt 	}
    399       1.1      matt 
    400       1.1      matt 	if (policy == CLK_POLICY_SYS_CLK) {
    401       1.1      matt 		clk->clk_cpu = clk->clk_sys;
    402       1.1      matt 		clk->clk_apb = clk->clk_cpu / 4;
    403       1.1      matt 		return;
    404       1.1      matt 	}
    405       1.1      matt 
    406       1.1      matt 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
    407       1.1      matt 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
    408       1.1      matt 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
    409       1.1      matt 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
    410       1.1      matt 
    411       1.1      matt 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
    412       1.1      matt 
    413       1.1      matt 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
    414       1.1      matt 	clk->clk_apb = clk->clk_cpu / 4;
    415       1.1      matt }
    416       1.1      matt 
    417       1.1      matt struct bcm53xx_chip_state {
    418       1.1      matt 	uint32_t bcs_lcpll_control1;
    419       1.1      matt 	uint32_t bcs_lcpll_control2;
    420       1.1      matt 
    421       1.1      matt 	uint32_t bcs_genpll_control5;
    422       1.1      matt 	uint32_t bcs_genpll_control6;
    423       1.1      matt 	uint32_t bcs_genpll_control7;
    424       1.1      matt 
    425       1.1      matt 	uint32_t bcs_usb2_control;
    426       1.1      matt 
    427       1.1      matt 	uint32_t bcs_ddr_phy_ctl_pll_status;
    428       1.1      matt 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
    429       1.1      matt 
    430       1.1      matt 	uint32_t bcs_armcore_clk_policy;
    431       1.1      matt 	uint32_t bcs_armcore_clk_pllarma;
    432       1.1      matt 	uint32_t bcs_armcore_clk_pllarmb;
    433       1.1      matt };
    434       1.1      matt 
    435       1.1      matt static void
    436       1.1      matt bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
    437       1.1      matt 	bus_space_tag_t bst, bus_space_handle_t bsh)
    438       1.1      matt {
    439       1.1      matt 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
    440       1.1      matt 	    DMU_BASE + DMU_LCPLL_CONTROL1);
    441       1.1      matt 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
    442       1.1      matt 	    DMU_BASE + DMU_LCPLL_CONTROL2);
    443       1.1      matt 
    444       1.1      matt 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
    445       1.1      matt 	    CRU_BASE + CRU_GENPLL_CONTROL5);
    446       1.1      matt 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
    447       1.1      matt 	    CRU_BASE + CRU_GENPLL_CONTROL6);
    448       1.1      matt 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
    449       1.1      matt 	    CRU_BASE + CRU_GENPLL_CONTROL7);
    450       1.1      matt 
    451       1.1      matt 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
    452       1.1      matt 	    CRU_BASE + CRU_USB2_CONTROL);
    453       1.1      matt 
    454       1.1      matt 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
    455       1.1      matt 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
    456       1.1      matt 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
    457       1.1      matt 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
    458       1.1      matt }
    459       1.1      matt 
    460       1.1      matt static void
    461       1.1      matt bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
    462       1.1      matt 	bus_space_tag_t bst, bus_space_handle_t bsh)
    463       1.1      matt {
    464       1.1      matt 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
    465       1.1      matt 	    ARMCORE_CLK_POLICY_FREQ);
    466       1.1      matt 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
    467       1.1      matt 	    ARMCORE_CLK_PLLARMA);
    468       1.1      matt 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
    469       1.1      matt 	    ARMCORE_CLK_PLLARMB);
    470       1.1      matt }
    471       1.1      matt 
    472       1.1      matt void
    473       1.1      matt bcm53xx_cpu_softc_init(struct cpu_info *ci)
    474       1.1      matt {
    475       1.1      matt 	struct cpu_softc * const cpu = ci->ci_softc;
    476       1.1      matt 
    477       1.1      matt 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
    478       1.1      matt 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
    479       1.1      matt 
    480       1.1      matt 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
    481       1.1      matt 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
    482      1.17      matt 
    483      1.17      matt 	const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
    484      1.17      matt 	    cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
    485      1.17      matt 
    486      1.17      matt 	cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
    487       1.1      matt }
    488       1.1      matt 
    489       1.1      matt void
    490       1.1      matt bcm53xx_print_clocks(void)
    491       1.1      matt {
    492      1.16       riz #if defined(VERBOSE_INIT_ARM)
    493       1.9      matt 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    494       1.9      matt 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
    495       1.9      matt 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
    496       1.9      matt 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
    497       1.9      matt 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
    498       1.9      matt 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
    499       1.9      matt 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
    500       1.9      matt 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
    501       1.9      matt 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
    502       1.9      matt 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
    503       1.9      matt 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
    504       1.9      matt 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
    505       1.9      matt 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
    506       1.9      matt 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
    507       1.9      matt 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
    508       1.9      matt 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
    509       1.9      matt 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
    510       1.9      matt 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
    511       1.1      matt #endif
    512       1.1      matt }
    513       1.1      matt 
    514       1.1      matt void
    515       1.1      matt bcm53xx_bootstrap(vaddr_t iobase)
    516       1.1      matt {
    517       1.1      matt 	struct bcm53xx_chip_state bcs;
    518       1.1      matt 	int error;
    519       1.1      matt 
    520       1.1      matt #ifdef BCM53XX_CONSOLE_EARLY
    521       1.1      matt 	com_base = iobase + CCA_UART0_BASE;
    522       1.1      matt 	cn_tab = &bcm53xx_earlycons;
    523       1.1      matt #endif
    524       1.1      matt 
    525       1.1      matt 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
    526       1.1      matt 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
    527       1.1      matt 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
    528       1.1      matt 	if (error)
    529       1.1      matt 		panic("%s: failed to map BCM53xx %s registers: %d",
    530       1.1      matt 		    __func__, "io", error);
    531       1.1      matt 
    532       1.1      matt 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
    533       1.1      matt 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
    534       1.1      matt 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
    535       1.1      matt 	if (error)
    536       1.1      matt 		panic("%s: failed to map BCM53xx %s registers: %d",
    537       1.1      matt 		    __func__, "armcore", error);
    538       1.1      matt 
    539       1.1      matt 	curcpu()->ci_softc = &cpu_softc;
    540       1.1      matt 
    541       1.1      matt 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
    542       1.1      matt 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
    543       1.1      matt 
    544       1.9      matt 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    545       1.1      matt 
    546       1.1      matt 	bcm53xx_clock_init(clk);
    547       1.1      matt 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
    548       1.1      matt 	    bcs.bcs_lcpll_control2);
    549       1.1      matt 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
    550       1.1      matt 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
    551       1.1      matt 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
    552       1.1      matt 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
    553       1.1      matt 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
    554       1.1      matt 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
    555       1.1      matt 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
    556       1.1      matt 
    557       1.1      matt 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
    558       1.2      matt 
    559      1.18      matt #if NARML2CC > 0
    560      1.17      matt 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
    561      1.17      matt 	    ARMCORE_L2C_BASE);
    562      1.18      matt #endif
    563       1.1      matt }
    564       1.1      matt 
    565       1.5      matt void
    566       1.5      matt bcm53xx_dma_bootstrap(psize_t memsize)
    567       1.5      matt {
    568      1.13      matt 	if (memsize <= 256*1024*1024) {
    569      1.10      matt 		bcm53xx_dma_ranges[0].dr_len = memsize;
    570      1.10      matt 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
    571      1.11      matt 		bcm53xx_dma_tag._nranges = 1;
    572      1.10      matt 		bcm53xx_coherent_dma_tag._nranges = 1;
    573      1.10      matt 	} else {
    574       1.5      matt 		/*
    575       1.5      matt 		 * By setting up two ranges, bus_dmamem_alloc will always
    576       1.5      matt 		 * try to allocate from range 0 first resulting in allocations
    577       1.5      matt 		 * below 256MB which for PCI and GMAC are coherent.
    578       1.5      matt 		 */
    579       1.5      matt 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
    580       1.8      matt 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
    581       1.5      matt 	}
    582       1.8      matt 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
    583       1.8      matt 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    584      1.14      matt #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    585      1.14      matt 	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    586      1.14      matt #endif
    587       1.5      matt }
    588       1.5      matt 
    589       1.1      matt #ifdef MULTIPROCESSOR
    590       1.1      matt void
    591       1.1      matt bcm53xx_cpu_hatch(struct cpu_info *ci)
    592       1.1      matt {
    593       1.1      matt 	a9tmr_init_cpu_clock(ci);
    594       1.1      matt }
    595       1.1      matt #endif
    596       1.1      matt 
    597       1.1      matt void
    598       1.1      matt bcm53xx_device_register(device_t self, void *aux)
    599       1.1      matt {
    600       1.1      matt 	prop_dictionary_t dict = device_properties(self);
    601       1.1      matt 
    602       1.1      matt 	if (device_is_a(self, "armperiph")
    603       1.1      matt 	    && device_is_a(device_parent(self), "mainbus")) {
    604       1.1      matt 		/*
    605       1.1      matt 		 * XXX KLUDGE ALERT XXX
    606       1.1      matt 		 * The iot mainbus supplies is completely wrong since it scales
    607      1.22     skrll 		 * addresses by 2.  The simplest remedy is to replace with our
    608      1.23     skrll 		 * bus space used for the armcore registers (which armperiph uses).
    609       1.1      matt 		 */
    610       1.1      matt 		struct mainbus_attach_args * const mb = aux;
    611       1.1      matt 		mb->mb_iot = bcm53xx_armcore_bst;
    612       1.1      matt 		return;
    613       1.1      matt 	}
    614       1.1      matt 
    615       1.1      matt 	/*
    616       1.1      matt 	 * We need to tell the A9 Global/Watchdog Timer
    617       1.1      matt 	 * what frequency it runs at.
    618       1.1      matt 	 */
    619      1.24   hkenken 	if (device_is_a(self, "arma9tmr") || device_is_a(self, "a9wdt")) {
    620       1.1      matt 		/*
    621       1.1      matt 		 * This clock always runs at (arm_clk div 2) and only goes
    622       1.1      matt 		 * to timers that are part of the A9 MP core subsystem.
    623       1.1      matt 		 */
    624       1.1      matt                 prop_dictionary_set_uint32(dict, "frequency",
    625       1.9      matt 		    cpu_softc.cpu_clk.clk_cpu / 2);
    626       1.1      matt 		return;
    627       1.4      matt 	}
    628       1.4      matt 
    629       1.4      matt 	if (device_is_a(self, "bcmeth")) {
    630       1.4      matt 		const struct bcmccb_attach_args * const ccbaa = aux;
    631       1.4      matt 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
    632       1.4      matt 			0x00, 0x01, 0x02, 0x03, 0x04,
    633       1.4      matt 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
    634       1.4      matt 		};
    635       1.4      matt 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
    636       1.4      matt 		KASSERT(pd != NULL);
    637       1.4      matt 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
    638       1.4      matt 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
    639       1.4      matt 		}
    640       1.4      matt 		prop_object_release(pd);
    641       1.4      matt 	}
    642       1.4      matt }
    643       1.4      matt 
    644      1.21      matt #ifdef SRAB_BASE
    645       1.4      matt static kmutex_t srab_lock __cacheline_aligned;
    646       1.4      matt 
    647       1.4      matt void
    648       1.4      matt bcm53xx_srab_init(void)
    649       1.4      matt {
    650       1.4      matt 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
    651       1.4      matt 
    652       1.4      matt 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
    653       1.4      matt 	for (u_int port = 0; port < 8; port++) {
    654       1.4      matt 		/* per port control: no stp */
    655       1.4      matt 		bcm53xx_srab_write_4(port, 0x00);
    656       1.4      matt 	}
    657       1.4      matt 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
    658       1.4      matt 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
    659       1.4      matt 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
    660       1.4      matt 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
    661       1.4      matt 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
    662       1.4      matt 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
    663       1.4      matt 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
    664       1.4      matt }
    665       1.4      matt 
    666       1.4      matt static inline void
    667       1.4      matt bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
    668       1.4      matt {
    669       1.4      matt 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
    670       1.4      matt 		delay(10);
    671       1.4      matt 	}
    672       1.4      matt }
    673       1.4      matt 
    674       1.4      matt uint32_t
    675       1.4      matt bcm53xx_srab_read_4(u_int pageoffset)
    676       1.4      matt {
    677       1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    678       1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    679       1.4      matt 	uint32_t rv;
    680       1.4      matt 
    681       1.4      matt 	mutex_spin_enter(&srab_lock);
    682       1.4      matt 
    683       1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    684       1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    685       1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    686       1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    687       1.4      matt 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    688       1.4      matt 
    689       1.4      matt 	mutex_spin_exit(&srab_lock);
    690       1.4      matt 	return rv;
    691       1.4      matt }
    692       1.4      matt 
    693       1.4      matt uint64_t
    694       1.4      matt bcm53xx_srab_read_8(u_int pageoffset)
    695       1.4      matt {
    696       1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    697       1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    698       1.4      matt 	uint64_t rv;
    699       1.4      matt 
    700       1.4      matt 	mutex_spin_enter(&srab_lock);
    701       1.4      matt 
    702       1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    703       1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    704       1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    705       1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    706       1.4      matt 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
    707       1.4      matt 	rv <<= 32;
    708       1.4      matt 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    709       1.4      matt 
    710       1.4      matt 	mutex_spin_exit(&srab_lock);
    711       1.4      matt 	return rv;
    712       1.4      matt }
    713       1.4      matt 
    714       1.4      matt void
    715       1.4      matt bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
    716       1.4      matt {
    717       1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    718       1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    719       1.4      matt 
    720       1.4      matt 	mutex_spin_enter(&srab_lock);
    721       1.4      matt 
    722       1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    723       1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    724       1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    725       1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    726       1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    727       1.4      matt 
    728       1.4      matt 	mutex_spin_exit(&srab_lock);
    729       1.4      matt }
    730       1.4      matt 
    731       1.4      matt void
    732       1.4      matt bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
    733       1.4      matt {
    734       1.4      matt 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    735       1.4      matt 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    736       1.4      matt 
    737       1.4      matt 	mutex_spin_enter(&srab_lock);
    738       1.4      matt 
    739       1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    740       1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    741       1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
    742       1.4      matt 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    743       1.4      matt 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    744       1.4      matt 	bcm53xx_srab_busywait(bst, bsh);
    745       1.4      matt 	mutex_spin_exit(&srab_lock);
    746       1.1      matt }
    747      1.21      matt #endif
    748