bcm53xx_board.c revision 1.5 1 1.5 matt /* $NetBSD: bcm53xx_board.c,v 1.5 2012/10/07 19:16:39 matt Exp $ */
2 1.1 matt /*-
3 1.1 matt * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 1.1 matt * All rights reserved.
5 1.1 matt *
6 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
7 1.1 matt * by Matt Thomas of 3am Software Foundry.
8 1.1 matt *
9 1.1 matt * Redistribution and use in source and binary forms, with or without
10 1.1 matt * modification, are permitted provided that the following conditions
11 1.1 matt * are met:
12 1.1 matt * 1. Redistributions of source code must retain the above copyright
13 1.1 matt * notice, this list of conditions and the following disclaimer.
14 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
15 1.1 matt * notice, this list of conditions and the following disclaimer in the
16 1.1 matt * documentation and/or other materials provided with the distribution.
17 1.1 matt *
18 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
29 1.1 matt */
30 1.1 matt
31 1.1 matt #include "opt_broadcom.h"
32 1.1 matt
33 1.1 matt #define _ARM32_BUS_DMA_PRIVATE
34 1.1 matt
35 1.1 matt #include <sys/cdefs.h>
36 1.1 matt
37 1.5 matt __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.5 2012/10/07 19:16:39 matt Exp $");
38 1.1 matt
39 1.1 matt #include <sys/param.h>
40 1.1 matt #include <sys/bus.h>
41 1.1 matt #include <sys/cpu.h>
42 1.1 matt #include <sys/device.h>
43 1.1 matt
44 1.1 matt #include <prop/proplib.h>
45 1.1 matt
46 1.4 matt #include <net/if.h>
47 1.4 matt #include <net/if_ether.h>
48 1.4 matt
49 1.1 matt #define CRU_PRIVATE
50 1.1 matt #define DDR_PRIVATE
51 1.1 matt #define DMU_PRIVATE
52 1.1 matt #define ARMCORE_PRIVATE
53 1.4 matt #define SRAB_PRIVATE
54 1.1 matt
55 1.1 matt #include <arm/cortex/a9tmr_var.h>
56 1.2 matt #include <arm/cortex/pl310_var.h>
57 1.1 matt #include <arm/mainbus/mainbus.h>
58 1.1 matt
59 1.1 matt #include <arm/broadcom/bcm53xx_reg.h>
60 1.1 matt #include <arm/broadcom/bcm53xx_var.h>
61 1.1 matt
62 1.1 matt bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
63 1.1 matt bus_space_handle_t bcm53xx_ioreg_bsh;
64 1.1 matt bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
65 1.1 matt bus_space_handle_t bcm53xx_armcore_bsh;
66 1.1 matt
67 1.1 matt static struct cpu_softc cpu_softc;
68 1.1 matt static struct bcm53xx_clock_info clk_info;
69 1.1 matt
70 1.5 matt struct arm32_dma_range bcm53xx_dma_ranges[2];
71 1.5 matt
72 1.1 matt struct arm32_bus_dma_tag bcm53xx_dma_tag = {
73 1.3 matt _BUS_DMAMAP_FUNCS,
74 1.3 matt _BUS_DMAMEM_FUNCS,
75 1.3 matt _BUS_DMATAG_FUNCS,
76 1.1 matt };
77 1.1 matt
78 1.1 matt #ifdef BCM53XX_CONSOLE_EARLY
79 1.1 matt #include <dev/ic/ns16550reg.h>
80 1.1 matt #include <dev/ic/comreg.h>
81 1.1 matt #include <dev/cons.h>
82 1.1 matt
83 1.1 matt static vaddr_t com_base;
84 1.1 matt
85 1.1 matt static inline uint32_t
86 1.1 matt uart_read(bus_size_t o)
87 1.1 matt {
88 1.1 matt return *(volatile uint8_t *)(com_base + o);
89 1.1 matt }
90 1.1 matt
91 1.1 matt static inline void
92 1.1 matt uart_write(bus_size_t o, uint32_t v)
93 1.1 matt {
94 1.1 matt *(volatile uint8_t *)(com_base + o) = v;
95 1.1 matt }
96 1.1 matt
97 1.1 matt static int
98 1.1 matt bcm53xx_cngetc(dev_t dv)
99 1.1 matt {
100 1.1 matt if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
101 1.1 matt return -1;
102 1.1 matt
103 1.1 matt return uart_read(com_data) & 0xff;
104 1.1 matt }
105 1.1 matt
106 1.1 matt static void
107 1.1 matt bcm53xx_cnputc(dev_t dv, int c)
108 1.1 matt {
109 1.1 matt int timo = 150000;
110 1.1 matt
111 1.1 matt while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
112 1.1 matt ;
113 1.1 matt
114 1.1 matt uart_write(com_data, c);
115 1.1 matt
116 1.1 matt timo = 150000;
117 1.1 matt while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
118 1.1 matt ;
119 1.1 matt }
120 1.1 matt
121 1.1 matt static struct consdev bcm53xx_earlycons = {
122 1.1 matt .cn_putc = bcm53xx_cnputc,
123 1.1 matt .cn_getc = bcm53xx_cngetc,
124 1.1 matt .cn_pollc = nullcnpollc,
125 1.1 matt };
126 1.1 matt #endif /* BCM53XX_CONSOLE_EARLY */
127 1.1 matt
128 1.1 matt psize_t
129 1.1 matt bcm53xx_memprobe(void)
130 1.1 matt {
131 1.1 matt bus_space_tag_t bst = bcm53xx_ioreg_bst;
132 1.1 matt bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
133 1.1 matt
134 1.1 matt /*
135 1.1 matt * First, let's read the magic DDR registers!
136 1.1 matt */
137 1.1 matt const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
138 1.1 matt const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
139 1.1 matt const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
140 1.1 matt const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
141 1.1 matt
142 1.1 matt /*
143 1.1 matt * Calculate chip parameters
144 1.1 matt * */
145 1.1 matt const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
146 1.1 matt - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
147 1.1 matt const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
148 1.1 matt - __SHIFTOUT(v82, CTL_82_COL_DIFF);
149 1.1 matt const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
150 1.1 matt
151 1.1 matt /*
152 1.1 matt * For each chip select, increase the chip count if if is enabled.
153 1.1 matt */
154 1.1 matt const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
155 1.1 matt u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
156 1.1 matt u_int chips = 0;
157 1.1 matt
158 1.1 matt for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
159 1.1 matt chips += (cs_map & 1);
160 1.1 matt }
161 1.1 matt
162 1.1 matt /* get log2(ddr width) */
163 1.1 matt
164 1.1 matt const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
165 1.1 matt
166 1.1 matt /*
167 1.1 matt * Let's add up all the things that contribute to the size of a chip.
168 1.1 matt */
169 1.1 matt const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
170 1.1 matt
171 1.1 matt /*
172 1.1 matt * Now our memory size is simply the number of chip shifted by the
173 1.1 matt * log2(chip_size).
174 1.1 matt */
175 1.1 matt return (psize_t) chips << chip_size_log2;
176 1.1 matt }
177 1.1 matt
178 1.1 matt static inline uint32_t
179 1.1 matt bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
180 1.1 matt uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
181 1.1 matt {
182 1.1 matt if (ndiv_frac == 0 && pdiv == 1)
183 1.1 matt return ndiv_int * clk->clk_ref;
184 1.1 matt
185 1.1 matt uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
186 1.1 matt freq64 *= clk->clk_ref;
187 1.1 matt if (pdiv > 1)
188 1.1 matt freq64 /= pdiv;
189 1.1 matt return (uint32_t) (freq64 >> 30);
190 1.1 matt }
191 1.1 matt
192 1.1 matt static uint32_t
193 1.1 matt bcm53xx_value_wrap(uint32_t value, uint32_t mask)
194 1.1 matt {
195 1.1 matt /*
196 1.1 matt * n is n except when n is 0 then n = mask + 1.
197 1.1 matt */
198 1.1 matt return ((__SHIFTOUT(value, mask) - 1) & __SHIFTOUT(mask, mask)) + 1;
199 1.1 matt }
200 1.1 matt
201 1.1 matt static void
202 1.1 matt bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
203 1.1 matt uint32_t control6, uint32_t control7)
204 1.1 matt {
205 1.1 matt const uint32_t pdiv = bcm53xx_value_wrap(control6,
206 1.1 matt GENPLL_CONTROL6_PDIV);
207 1.1 matt const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
208 1.1 matt GENPLL_CONTROL5_NDIV_INT);
209 1.1 matt const uint32_t ndiv_frac = __SHIFTOUT(control5,
210 1.1 matt GENPLL_CONTROL5_NDIV_FRAC);
211 1.1 matt
212 1.1 matt clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
213 1.1 matt
214 1.1 matt const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
215 1.1 matt GENPLL_CONTROL6_CH0_MDIV);
216 1.1 matt const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
217 1.1 matt GENPLL_CONTROL6_CH1_MDIV);
218 1.1 matt const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
219 1.1 matt GENPLL_CONTROL6_CH2_MDIV);
220 1.1 matt const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
221 1.1 matt GENPLL_CONTROL7_CH3_MDIV);
222 1.1 matt
223 1.1 matt clk->clk_mac = clk->clk_genpll / ch0_mdiv; // GENPLL CH0
224 1.1 matt clk->clk_robo = clk->clk_genpll / ch1_mdiv; // GENPLL CH1
225 1.1 matt clk->clk_usb2 = clk->clk_genpll / ch2_mdiv; // GENPLL CH2
226 1.1 matt clk->clk_iproc = clk->clk_genpll / ch3_mdiv; // GENPLL CH3
227 1.1 matt }
228 1.1 matt
229 1.1 matt static void
230 1.1 matt bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
231 1.1 matt uint32_t control2)
232 1.1 matt {
233 1.1 matt const uint32_t pdiv = bcm53xx_value_wrap(control1,
234 1.1 matt LCPLL_CONTROL1_PDIV);
235 1.1 matt const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
236 1.1 matt LCPLL_CONTROL1_NDIV_INT);
237 1.1 matt const uint32_t ndiv_frac = __SHIFTOUT(control1,
238 1.1 matt LCPLL_CONTROL1_NDIV_FRAC);
239 1.1 matt
240 1.1 matt clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
241 1.1 matt
242 1.1 matt const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
243 1.1 matt LCPLL_CONTROL2_CH0_MDIV);
244 1.1 matt const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
245 1.1 matt LCPLL_CONTROL2_CH1_MDIV);
246 1.1 matt const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
247 1.1 matt LCPLL_CONTROL2_CH2_MDIV);
248 1.1 matt const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
249 1.1 matt LCPLL_CONTROL2_CH3_MDIV);
250 1.1 matt
251 1.1 matt clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv; // LCPLL CH0
252 1.1 matt clk->clk_sdio = clk->clk_lcpll / ch1_mdiv; // LCPLL CH1
253 1.1 matt clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv; // LCPLL CH2
254 1.1 matt clk->clk_axi = clk->clk_lcpll / ch3_mdiv; // LCPLL CH3
255 1.1 matt }
256 1.1 matt
257 1.1 matt static void
258 1.1 matt bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
259 1.1 matt {
260 1.1 matt const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
261 1.1 matt USB2_CONTROL_PDIV);
262 1.1 matt const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
263 1.1 matt USB2_CONTROL_NDIV_INT);
264 1.1 matt
265 1.1 matt uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
266 1.1 matt if (usb_ref != USB2_REF_CLK) {
267 1.1 matt /*
268 1.1 matt * USB Reference Clock isn't 1.92GHz. So we need to modify
269 1.1 matt * USB2_CONTROL to produce it.
270 1.1 matt */
271 1.1 matt uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
272 1.1 matt usb2_control &= ~USB2_CONTROL_NDIV_INT;
273 1.1 matt usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
274 1.1 matt
275 1.1 matt // Allow Clocks to be modified
276 1.1 matt bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
277 1.1 matt CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
278 1.1 matt
279 1.1 matt // Update USB2 clock generator
280 1.1 matt bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
281 1.1 matt CRU_BASE + CRU_USB2_CONTROL, usb2_control);
282 1.1 matt
283 1.1 matt // Prevent Clock modification
284 1.1 matt bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
285 1.1 matt CRU_BASE + CRU_CLKSET_KEY, 0);
286 1.1 matt
287 1.1 matt usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
288 1.1 matt }
289 1.1 matt
290 1.1 matt clk->clk_usb_ref = usb_ref;
291 1.1 matt }
292 1.1 matt
293 1.1 matt
294 1.1 matt static void
295 1.1 matt bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
296 1.1 matt {
297 1.1 matt clk->clk_ref = BCM53XX_REF_CLK;
298 1.1 matt clk->clk_sys = 8*clk->clk_ref;
299 1.1 matt }
300 1.1 matt
301 1.1 matt /*
302 1.1 matt * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
303 1.1 matt */
304 1.1 matt static void
305 1.1 matt bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
306 1.1 matt uint32_t pll_dividers)
307 1.1 matt {
308 1.1 matt const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
309 1.1 matt u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
310 1.1 matt u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
311 1.1 matt u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
312 1.1 matt
313 1.1 matt pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
314 1.1 matt
315 1.1 matt clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
316 1.1 matt clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
317 1.1 matt }
318 1.1 matt
319 1.1 matt /*
320 1.1 matt * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
321 1.1 matt */
322 1.1 matt static void
323 1.1 matt bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
324 1.1 matt uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
325 1.1 matt {
326 1.1 matt policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
327 1.1 matt
328 1.1 matt if (policy == CLK_POLICY_REF_CLK) {
329 1.1 matt clk->clk_cpu = clk->clk_ref;
330 1.1 matt clk->clk_apb = clk->clk_cpu;
331 1.1 matt return;
332 1.1 matt }
333 1.1 matt
334 1.1 matt if (policy == CLK_POLICY_SYS_CLK) {
335 1.1 matt clk->clk_cpu = clk->clk_sys;
336 1.1 matt clk->clk_apb = clk->clk_cpu / 4;
337 1.1 matt return;
338 1.1 matt }
339 1.1 matt
340 1.1 matt const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
341 1.1 matt const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
342 1.1 matt const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
343 1.1 matt // const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
344 1.1 matt
345 1.1 matt const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
346 1.1 matt
347 1.1 matt clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
348 1.1 matt clk->clk_apb = clk->clk_cpu / 4;
349 1.1 matt }
350 1.1 matt
351 1.1 matt struct bcm53xx_chip_state {
352 1.1 matt uint32_t bcs_lcpll_control1;
353 1.1 matt uint32_t bcs_lcpll_control2;
354 1.1 matt
355 1.1 matt uint32_t bcs_genpll_control5;
356 1.1 matt uint32_t bcs_genpll_control6;
357 1.1 matt uint32_t bcs_genpll_control7;
358 1.1 matt
359 1.1 matt uint32_t bcs_usb2_control;
360 1.1 matt
361 1.1 matt uint32_t bcs_ddr_phy_ctl_pll_status;
362 1.1 matt uint32_t bcs_ddr_phy_ctl_pll_dividers;
363 1.1 matt
364 1.1 matt uint32_t bcs_armcore_clk_policy;
365 1.1 matt uint32_t bcs_armcore_clk_pllarma;
366 1.1 matt uint32_t bcs_armcore_clk_pllarmb;
367 1.1 matt };
368 1.1 matt
369 1.1 matt static void
370 1.1 matt bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
371 1.1 matt bus_space_tag_t bst, bus_space_handle_t bsh)
372 1.1 matt {
373 1.1 matt bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
374 1.1 matt DMU_BASE + DMU_LCPLL_CONTROL1);
375 1.1 matt bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
376 1.1 matt DMU_BASE + DMU_LCPLL_CONTROL2);
377 1.1 matt
378 1.1 matt bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
379 1.1 matt CRU_BASE + CRU_GENPLL_CONTROL5);
380 1.1 matt bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
381 1.1 matt CRU_BASE + CRU_GENPLL_CONTROL6);
382 1.1 matt bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
383 1.1 matt CRU_BASE + CRU_GENPLL_CONTROL7);
384 1.1 matt
385 1.1 matt bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
386 1.1 matt CRU_BASE + CRU_USB2_CONTROL);
387 1.1 matt
388 1.1 matt bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
389 1.1 matt DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
390 1.1 matt bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
391 1.1 matt DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
392 1.1 matt }
393 1.1 matt
394 1.1 matt static void
395 1.1 matt bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
396 1.1 matt bus_space_tag_t bst, bus_space_handle_t bsh)
397 1.1 matt {
398 1.1 matt bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
399 1.1 matt ARMCORE_CLK_POLICY_FREQ);
400 1.1 matt bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
401 1.1 matt ARMCORE_CLK_PLLARMA);
402 1.1 matt bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
403 1.1 matt ARMCORE_CLK_PLLARMB);
404 1.1 matt }
405 1.1 matt
406 1.1 matt void
407 1.1 matt bcm53xx_cpu_softc_init(struct cpu_info *ci)
408 1.1 matt {
409 1.1 matt struct cpu_softc * const cpu = ci->ci_softc;
410 1.1 matt
411 1.1 matt cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
412 1.1 matt cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
413 1.1 matt
414 1.1 matt cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
415 1.1 matt cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
416 1.1 matt }
417 1.1 matt
418 1.1 matt void
419 1.1 matt bcm53xx_print_clocks(void)
420 1.1 matt {
421 1.1 matt #if defined(VERBOSE_ARM_INIT)
422 1.1 matt printf("ref clk = %u (%#x)\n", clk_info.clk_ref, clk_info.clk_ref);
423 1.1 matt printf("sys clk = %u (%#x)\n", clk_info.clk_sys, clk_info.clk_sys);
424 1.1 matt printf("lcpll clk = %u (%#x)\n", clk_info.clk_lcpll, clk_info.clk_lcpll);
425 1.1 matt printf("pcie ref clk = %u (%#x) [CH0]\n", clk_info.clk_pcie_ref, clk_info.clk_pcie_ref);
426 1.1 matt printf("sdio clk = %u (%#x) [CH1]\n", clk_info.clk_sdio, clk_info.clk_sdio);
427 1.1 matt printf("ddr ref clk = %u (%#x) [CH2]\n", clk_info.clk_ddr_ref, clk_info.clk_ddr_ref);
428 1.1 matt printf("axi clk = %u (%#x) [CH3]\n", clk_info.clk_axi, clk_info.clk_axi);
429 1.1 matt printf("genpll clk = %u (%#x)\n", clk_info.clk_genpll, clk_info.clk_genpll);
430 1.1 matt printf("mac clk = %u (%#x) [CH0]\n", clk_info.clk_mac, clk_info.clk_mac);
431 1.1 matt printf("robo clk = %u (%#x) [CH1]\n", clk_info.clk_robo, clk_info.clk_robo);
432 1.1 matt printf("usb2 clk = %u (%#x) [CH2]\n", clk_info.clk_usb2, clk_info.clk_usb2);
433 1.1 matt printf("iproc clk = %u (%#x) [CH3]\n", clk_info.clk_iproc, clk_info.clk_iproc);
434 1.1 matt printf("ddr clk = %u (%#x)\n", clk_info.clk_ddr, clk_info.clk_ddr);
435 1.1 matt printf("ddr mhz = %u (%#x)\n", clk_info.clk_ddr_mhz, clk_info.clk_ddr_mhz);
436 1.1 matt printf("cpu clk = %u (%#x)\n", clk_info.clk_cpu, clk_info.clk_cpu);
437 1.1 matt printf("apb clk = %u (%#x)\n", clk_info.clk_apb, clk_info.clk_apb);
438 1.1 matt printf("usb ref clk = %u (%#x)\n", clk_info.clk_usb_ref, clk_info.clk_usb_ref);
439 1.1 matt #endif
440 1.1 matt }
441 1.1 matt
442 1.1 matt void
443 1.1 matt bcm53xx_bootstrap(vaddr_t iobase)
444 1.1 matt {
445 1.1 matt struct bcm53xx_chip_state bcs;
446 1.1 matt int error;
447 1.1 matt
448 1.1 matt #ifdef BCM53XX_CONSOLE_EARLY
449 1.1 matt com_base = iobase + CCA_UART0_BASE;
450 1.1 matt cn_tab = &bcm53xx_earlycons;
451 1.1 matt #endif
452 1.1 matt
453 1.1 matt bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
454 1.1 matt error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
455 1.1 matt BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
456 1.1 matt if (error)
457 1.1 matt panic("%s: failed to map BCM53xx %s registers: %d",
458 1.1 matt __func__, "io", error);
459 1.1 matt
460 1.1 matt bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
461 1.1 matt error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
462 1.1 matt BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
463 1.1 matt if (error)
464 1.1 matt panic("%s: failed to map BCM53xx %s registers: %d",
465 1.1 matt __func__, "armcore", error);
466 1.1 matt
467 1.1 matt curcpu()->ci_softc = &cpu_softc;
468 1.1 matt
469 1.1 matt bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
470 1.1 matt bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
471 1.1 matt
472 1.1 matt struct bcm53xx_clock_info * const clk = &clk_info;
473 1.1 matt
474 1.1 matt bcm53xx_clock_init(clk);
475 1.1 matt bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
476 1.1 matt bcs.bcs_lcpll_control2);
477 1.1 matt bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
478 1.1 matt bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
479 1.1 matt bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
480 1.1 matt bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
481 1.1 matt bcs.bcs_ddr_phy_ctl_pll_dividers);
482 1.1 matt bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
483 1.1 matt bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
484 1.1 matt
485 1.1 matt curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
486 1.2 matt
487 1.2 matt arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, ARMCORE_L2C_BASE);
488 1.1 matt }
489 1.1 matt
490 1.5 matt void
491 1.5 matt bcm53xx_dma_bootstrap(psize_t memsize)
492 1.5 matt {
493 1.5 matt if (memsize > 256*1024*1024) {
494 1.5 matt /*
495 1.5 matt * By setting up two ranges, bus_dmamem_alloc will always
496 1.5 matt * try to allocate from range 0 first resulting in allocations
497 1.5 matt * below 256MB which for PCI and GMAC are coherent.
498 1.5 matt */
499 1.5 matt bcm53xx_dma_ranges[0].dr_sysbase = 0x80000000;
500 1.5 matt bcm53xx_dma_ranges[0].dr_busbase = 0x80000000;
501 1.5 matt bcm53xx_dma_ranges[0].dr_len = 0x10000000;
502 1.5 matt bcm53xx_dma_ranges[1].dr_sysbase = 0x90000000;
503 1.5 matt bcm53xx_dma_ranges[1].dr_busbase = 0x90000000;
504 1.5 matt bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
505 1.5 matt bcm53xx_dma_tag._ranges = bcm53xx_dma_ranges;
506 1.5 matt bcm53xx_dma_tag._nranges = __arraycount(bcm53xx_dma_ranges);
507 1.5 matt }
508 1.5 matt }
509 1.5 matt
510 1.1 matt #ifdef MULTIPROCESSOR
511 1.1 matt void
512 1.1 matt bcm53xx_cpu_hatch(struct cpu_info *ci)
513 1.1 matt {
514 1.1 matt a9tmr_init_cpu_clock(ci);
515 1.1 matt }
516 1.1 matt #endif
517 1.1 matt
518 1.1 matt void
519 1.1 matt bcm53xx_device_register(device_t self, void *aux)
520 1.1 matt {
521 1.1 matt prop_dictionary_t dict = device_properties(self);
522 1.1 matt
523 1.1 matt if (device_is_a(self, "armperiph")
524 1.1 matt && device_is_a(device_parent(self), "mainbus")) {
525 1.1 matt /*
526 1.1 matt * XXX KLUDGE ALERT XXX
527 1.1 matt * The iot mainbus supplies is completely wrong since it scales
528 1.1 matt * addresses by 2. The simpliest remedy is to replace with our
529 1.1 matt * bus space used for the armcore regisers (which armperiph uses).
530 1.1 matt */
531 1.1 matt struct mainbus_attach_args * const mb = aux;
532 1.1 matt mb->mb_iot = bcm53xx_armcore_bst;
533 1.1 matt return;
534 1.1 matt }
535 1.1 matt
536 1.1 matt /*
537 1.1 matt * We need to tell the A9 Global/Watchdog Timer
538 1.1 matt * what frequency it runs at.
539 1.1 matt */
540 1.1 matt if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
541 1.1 matt /*
542 1.1 matt * This clock always runs at (arm_clk div 2) and only goes
543 1.1 matt * to timers that are part of the A9 MP core subsystem.
544 1.1 matt */
545 1.1 matt prop_dictionary_set_uint32(dict, "frequency",
546 1.1 matt clk_info.clk_cpu / 2);
547 1.1 matt return;
548 1.4 matt }
549 1.4 matt
550 1.4 matt if (device_is_a(self, "bcmeth")) {
551 1.4 matt const struct bcmccb_attach_args * const ccbaa = aux;
552 1.4 matt const uint8_t enaddr[ETHER_ADDR_LEN] = {
553 1.4 matt 0x00, 0x01, 0x02, 0x03, 0x04,
554 1.4 matt 0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
555 1.4 matt };
556 1.4 matt prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
557 1.4 matt KASSERT(pd != NULL);
558 1.4 matt if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
559 1.4 matt printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
560 1.4 matt }
561 1.4 matt prop_object_release(pd);
562 1.4 matt }
563 1.4 matt }
564 1.4 matt
565 1.4 matt static kmutex_t srab_lock __cacheline_aligned;
566 1.4 matt
567 1.4 matt void
568 1.4 matt bcm53xx_srab_init(void)
569 1.4 matt {
570 1.4 matt mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
571 1.4 matt
572 1.4 matt bcm53xx_srab_write_4(0x0079, 0x90); // reset switch
573 1.4 matt for (u_int port = 0; port < 8; port++) {
574 1.4 matt /* per port control: no stp */
575 1.4 matt bcm53xx_srab_write_4(port, 0x00);
576 1.4 matt }
577 1.4 matt bcm53xx_srab_write_4(0x0008, 0x1c); // IMP port (enab UC/MC/BC)
578 1.4 matt bcm53xx_srab_write_4(0x000e, 0xbb); // IMP port force-link 1G
579 1.4 matt bcm53xx_srab_write_4(0x005d, 0x7b); // port5 force-link 1G
580 1.4 matt bcm53xx_srab_write_4(0x005f, 0x7b); // port7 force-link 1G
581 1.4 matt bcm53xx_srab_write_4(0x000b, 0x7); // management mode
582 1.4 matt bcm53xx_srab_write_4(0x0203, 0x0); // disable BRCM tag
583 1.4 matt bcm53xx_srab_write_4(0x0200, 0x80); // enable IMP=port8
584 1.4 matt }
585 1.4 matt
586 1.4 matt static inline void
587 1.4 matt bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
588 1.4 matt {
589 1.4 matt while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
590 1.4 matt delay(10);
591 1.4 matt }
592 1.4 matt }
593 1.4 matt
594 1.4 matt uint32_t
595 1.4 matt bcm53xx_srab_read_4(u_int pageoffset)
596 1.4 matt {
597 1.4 matt bus_space_tag_t bst = bcm53xx_ioreg_bst;
598 1.4 matt bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
599 1.4 matt uint32_t rv;
600 1.4 matt
601 1.4 matt mutex_spin_enter(&srab_lock);
602 1.4 matt
603 1.4 matt bcm53xx_srab_busywait(bst, bsh);
604 1.4 matt bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
605 1.4 matt __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
606 1.4 matt bcm53xx_srab_busywait(bst, bsh);
607 1.4 matt rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
608 1.4 matt
609 1.4 matt mutex_spin_exit(&srab_lock);
610 1.4 matt return rv;
611 1.4 matt }
612 1.4 matt
613 1.4 matt uint64_t
614 1.4 matt bcm53xx_srab_read_8(u_int pageoffset)
615 1.4 matt {
616 1.4 matt bus_space_tag_t bst = bcm53xx_ioreg_bst;
617 1.4 matt bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
618 1.4 matt uint64_t rv;
619 1.4 matt
620 1.4 matt mutex_spin_enter(&srab_lock);
621 1.4 matt
622 1.4 matt bcm53xx_srab_busywait(bst, bsh);
623 1.4 matt bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
624 1.4 matt __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
625 1.4 matt bcm53xx_srab_busywait(bst, bsh);
626 1.4 matt rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
627 1.4 matt rv <<= 32;
628 1.4 matt rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
629 1.4 matt
630 1.4 matt mutex_spin_exit(&srab_lock);
631 1.4 matt return rv;
632 1.4 matt }
633 1.4 matt
634 1.4 matt void
635 1.4 matt bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
636 1.4 matt {
637 1.4 matt bus_space_tag_t bst = bcm53xx_ioreg_bst;
638 1.4 matt bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
639 1.4 matt
640 1.4 matt mutex_spin_enter(&srab_lock);
641 1.4 matt
642 1.4 matt bcm53xx_srab_busywait(bst, bsh);
643 1.4 matt bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
644 1.4 matt bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
645 1.4 matt __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
646 1.4 matt bcm53xx_srab_busywait(bst, bsh);
647 1.4 matt
648 1.4 matt mutex_spin_exit(&srab_lock);
649 1.4 matt }
650 1.4 matt
651 1.4 matt void
652 1.4 matt bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
653 1.4 matt {
654 1.4 matt bus_space_tag_t bst = bcm53xx_ioreg_bst;
655 1.4 matt bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
656 1.4 matt
657 1.4 matt mutex_spin_enter(&srab_lock);
658 1.4 matt
659 1.4 matt bcm53xx_srab_busywait(bst, bsh);
660 1.4 matt bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
661 1.4 matt bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
662 1.4 matt bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
663 1.4 matt __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
664 1.4 matt bcm53xx_srab_busywait(bst, bsh);
665 1.4 matt mutex_spin_exit(&srab_lock);
666 1.1 matt }
667