Home | History | Annotate | Line # | Download | only in broadcom
bcm53xx_board.c revision 1.10
      1 /*	$NetBSD: bcm53xx_board.c,v 1.10 2013/02/08 23:21:35 matt Exp $	*/
      2 /*-
      3  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas of 3am Software Foundry.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #include "opt_broadcom.h"
     32 
     33 #define	_ARM32_BUS_DMA_PRIVATE
     34 
     35 #include <sys/cdefs.h>
     36 
     37 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.10 2013/02/08 23:21:35 matt Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/bus.h>
     41 #include <sys/cpu.h>
     42 #include <sys/device.h>
     43 
     44 #include <prop/proplib.h>
     45 
     46 #include <net/if.h>
     47 #include <net/if_ether.h>
     48 
     49 #define CRU_PRIVATE
     50 #define DDR_PRIVATE
     51 #define DMU_PRIVATE
     52 #define ARMCORE_PRIVATE
     53 #define SRAB_PRIVATE
     54 
     55 #include <arm/cortex/a9tmr_var.h>
     56 #include <arm/cortex/pl310_var.h>
     57 #include <arm/mainbus/mainbus.h>
     58 
     59 #include <arm/broadcom/bcm53xx_reg.h>
     60 #include <arm/broadcom/bcm53xx_var.h>
     61 
     62 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
     63 bus_space_handle_t bcm53xx_ioreg_bsh;
     64 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
     65 bus_space_handle_t bcm53xx_armcore_bsh;
     66 
     67 static struct cpu_softc cpu_softc;
     68 
     69 struct arm32_dma_range bcm53xx_dma_ranges[2] = {
     70 	[0] = {
     71 		.dr_sysbase = 0x80000000,
     72 		.dr_busbase = 0x80000000,
     73 		.dr_len = 0x10000000,
     74 	}, [1] = {
     75 		.dr_sysbase = 0x90000000,
     76 		.dr_busbase = 0x90000000,
     77 	},
     78 };
     79 
     80 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
     81 	._ranges = bcm53xx_dma_ranges,
     82 	._nranges = __arraycount(bcm53xx_dma_ranges),
     83 	_BUS_DMAMAP_FUNCS,
     84 	_BUS_DMAMEM_FUNCS,
     85 	_BUS_DMATAG_FUNCS,
     86 };
     87 
     88 struct arm32_dma_range bcm53xx_coherent_dma_ranges[2] = {
     89 	[0] = {
     90 		.dr_sysbase = 0x80000000,
     91 		.dr_busbase = 0x80000000,
     92 		.dr_len = 0x10000000,
     93 		.dr_flags = _BUS_DMAMAP_COHERENT,
     94 #ifndef _ARM32_NEED_BUS_DMA_BOUNCE
     95 	}, [1] = {
     96 		.dr_sysbase = 0x90000000,
     97 		.dr_busbase = 0x90000000,
     98 #endif
     99 	},
    100 };
    101 
    102 struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
    103 	._ranges = bcm53xx_coherent_dma_ranges,
    104 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
    105 	_BUS_DMAMAP_FUNCS,
    106 	_BUS_DMAMEM_FUNCS,
    107 	_BUS_DMATAG_FUNCS,
    108 };
    109 
    110 #ifdef BCM53XX_CONSOLE_EARLY
    111 #include <dev/ic/ns16550reg.h>
    112 #include <dev/ic/comreg.h>
    113 #include <dev/cons.h>
    114 
    115 static vaddr_t com_base;
    116 
    117 static inline uint32_t
    118 uart_read(bus_size_t o)
    119 {
    120 	return *(volatile uint8_t *)(com_base + o);
    121 }
    122 
    123 static inline void
    124 uart_write(bus_size_t o, uint32_t v)
    125 {
    126 	*(volatile uint8_t *)(com_base + o) = v;
    127 }
    128 
    129 static int
    130 bcm53xx_cngetc(dev_t dv)
    131 {
    132         if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
    133 		return -1;
    134 
    135 	return uart_read(com_data) & 0xff;
    136 }
    137 
    138 static void
    139 bcm53xx_cnputc(dev_t dv, int c)
    140 {
    141 	int timo = 150000;
    142 
    143         while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
    144 		;
    145 
    146 	uart_write(com_data, c);
    147 
    148 	timo = 150000;
    149         while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
    150 		;
    151 }
    152 
    153 static struct consdev bcm53xx_earlycons = {
    154 	.cn_putc = bcm53xx_cnputc,
    155 	.cn_getc = bcm53xx_cngetc,
    156 	.cn_pollc = nullcnpollc,
    157 };
    158 #endif /* BCM53XX_CONSOLE_EARLY */
    159 
    160 psize_t
    161 bcm53xx_memprobe(void)
    162 {
    163 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    164 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    165 
    166 	/*
    167 	 * First, let's read the magic DDR registers!
    168 	 */
    169 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
    170 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
    171 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
    172 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
    173 
    174 	/*
    175 	 * Calculate chip parameters
    176 	 * */
    177 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
    178 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
    179 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
    180 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
    181 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
    182 
    183 	/*
    184 	 * For each chip select, increase the chip count if if is enabled.
    185 	 */
    186 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
    187 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
    188 	u_int chips = 0;
    189 
    190 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
    191 		chips += (cs_map & 1);
    192 	}
    193 
    194 	/* get log2(ddr width) */
    195 
    196 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
    197 
    198 	/*
    199 	 * Let's add up all the things that contribute to the size of a chip.
    200 	 */
    201 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
    202 
    203 	/*
    204 	 * Now our memory size is simply the number of chip shifted by the
    205 	 * log2(chip_size).
    206 	 */
    207 	return (psize_t) chips << chip_size_log2;
    208 }
    209 
    210 static inline uint32_t
    211 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
    212 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
    213 {
    214 	if (ndiv_frac == 0 && pdiv == 1)
    215 		return ndiv_int * clk->clk_ref;
    216 
    217 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
    218 	freq64 *= clk->clk_ref;
    219 	if (pdiv > 1)
    220 		freq64 /= pdiv;
    221 	return (uint32_t) (freq64 >> 30);
    222 }
    223 
    224 static uint32_t
    225 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
    226 {
    227 	/*
    228 	 * n is n except when n is 0 then n = mask + 1.
    229 	 */
    230 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
    231 }
    232 
    233 static void
    234 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
    235 	uint32_t control6, uint32_t control7)
    236 {
    237 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
    238 	    GENPLL_CONTROL6_PDIV);
    239 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
    240 	    GENPLL_CONTROL5_NDIV_INT);
    241 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
    242 	    GENPLL_CONTROL5_NDIV_FRAC);
    243 
    244 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    245 
    246 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
    247 	    GENPLL_CONTROL6_CH0_MDIV);
    248 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
    249 	    GENPLL_CONTROL6_CH1_MDIV);
    250 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
    251 	    GENPLL_CONTROL6_CH2_MDIV);
    252 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
    253 	    GENPLL_CONTROL7_CH3_MDIV);
    254 
    255 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
    256 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
    257 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
    258 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
    259 }
    260 
    261 static void
    262 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
    263 	uint32_t control2)
    264 {
    265 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
    266 	    LCPLL_CONTROL1_PDIV);
    267 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
    268 	    LCPLL_CONTROL1_NDIV_INT);
    269 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
    270 	    LCPLL_CONTROL1_NDIV_FRAC);
    271 
    272 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    273 
    274 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
    275 	    LCPLL_CONTROL2_CH0_MDIV);
    276 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
    277 	    LCPLL_CONTROL2_CH1_MDIV);
    278 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
    279 	    LCPLL_CONTROL2_CH2_MDIV);
    280 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
    281 	    LCPLL_CONTROL2_CH3_MDIV);
    282 
    283 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
    284 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
    285 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
    286 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
    287 }
    288 
    289 static void
    290 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
    291 {
    292 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
    293 	    USB2_CONTROL_PDIV);
    294 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
    295 	    USB2_CONTROL_NDIV_INT);
    296 
    297 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
    298 	if (usb_ref != USB2_REF_CLK) {
    299 		/*
    300 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
    301 		 * USB2_CONTROL to produce it.
    302 		 */
    303 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
    304 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
    305 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
    306 
    307 		// Allow Clocks to be modified
    308 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    309 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
    310 
    311 		// Update USB2 clock generator
    312 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    313 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
    314 
    315 		// Prevent Clock modification
    316 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    317 		    CRU_BASE + CRU_CLKSET_KEY, 0);
    318 
    319 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
    320 	}
    321 
    322 	clk->clk_usb_ref = usb_ref;
    323 }
    324 
    325 
    326 static void
    327 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
    328 {
    329 	clk->clk_ref = BCM53XX_REF_CLK;
    330 	clk->clk_sys = 8*clk->clk_ref;
    331 }
    332 
    333 /*
    334  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
    335  */
    336 static void
    337 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
    338     uint32_t pll_dividers)
    339 {
    340 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
    341 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
    342 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
    343 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
    344 
    345 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
    346 
    347 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
    348 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
    349 }
    350 
    351 /*
    352  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
    353  */
    354 static void
    355 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
    356 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
    357 {
    358 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
    359 
    360 	if (policy == CLK_POLICY_REF_CLK) {
    361 		clk->clk_cpu = clk->clk_ref;
    362 		clk->clk_apb = clk->clk_cpu;
    363 		return;
    364 	}
    365 
    366 	if (policy == CLK_POLICY_SYS_CLK) {
    367 		clk->clk_cpu = clk->clk_sys;
    368 		clk->clk_apb = clk->clk_cpu / 4;
    369 		return;
    370 	}
    371 
    372 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
    373 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
    374 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
    375 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
    376 
    377 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
    378 
    379 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
    380 	clk->clk_apb = clk->clk_cpu / 4;
    381 }
    382 
    383 struct bcm53xx_chip_state {
    384 	uint32_t bcs_lcpll_control1;
    385 	uint32_t bcs_lcpll_control2;
    386 
    387 	uint32_t bcs_genpll_control5;
    388 	uint32_t bcs_genpll_control6;
    389 	uint32_t bcs_genpll_control7;
    390 
    391 	uint32_t bcs_usb2_control;
    392 
    393 	uint32_t bcs_ddr_phy_ctl_pll_status;
    394 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
    395 
    396 	uint32_t bcs_armcore_clk_policy;
    397 	uint32_t bcs_armcore_clk_pllarma;
    398 	uint32_t bcs_armcore_clk_pllarmb;
    399 };
    400 
    401 static void
    402 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
    403 	bus_space_tag_t bst, bus_space_handle_t bsh)
    404 {
    405 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
    406 	    DMU_BASE + DMU_LCPLL_CONTROL1);
    407 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
    408 	    DMU_BASE + DMU_LCPLL_CONTROL2);
    409 
    410 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
    411 	    CRU_BASE + CRU_GENPLL_CONTROL5);
    412 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
    413 	    CRU_BASE + CRU_GENPLL_CONTROL6);
    414 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
    415 	    CRU_BASE + CRU_GENPLL_CONTROL7);
    416 
    417 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
    418 	    CRU_BASE + CRU_USB2_CONTROL);
    419 
    420 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
    421 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
    422 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
    423 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
    424 }
    425 
    426 static void
    427 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
    428 	bus_space_tag_t bst, bus_space_handle_t bsh)
    429 {
    430 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
    431 	    ARMCORE_CLK_POLICY_FREQ);
    432 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
    433 	    ARMCORE_CLK_PLLARMA);
    434 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
    435 	    ARMCORE_CLK_PLLARMB);
    436 }
    437 
    438 void
    439 bcm53xx_cpu_softc_init(struct cpu_info *ci)
    440 {
    441 	struct cpu_softc * const cpu = ci->ci_softc;
    442 
    443 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
    444 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
    445 
    446 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
    447 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
    448 }
    449 
    450 void
    451 bcm53xx_print_clocks(void)
    452 {
    453 #if defined(VERBOSE_ARM_INIT)
    454 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    455 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
    456 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
    457 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
    458 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
    459 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
    460 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
    461 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
    462 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
    463 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
    464 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
    465 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
    466 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
    467 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
    468 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
    469 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
    470 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
    471 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
    472 #endif
    473 }
    474 
    475 void
    476 bcm53xx_bootstrap(vaddr_t iobase)
    477 {
    478 	struct bcm53xx_chip_state bcs;
    479 	int error;
    480 
    481 #ifdef BCM53XX_CONSOLE_EARLY
    482 	com_base = iobase + CCA_UART0_BASE;
    483 	cn_tab = &bcm53xx_earlycons;
    484 #endif
    485 
    486 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
    487 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
    488 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
    489 	if (error)
    490 		panic("%s: failed to map BCM53xx %s registers: %d",
    491 		    __func__, "io", error);
    492 
    493 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
    494 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
    495 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
    496 	if (error)
    497 		panic("%s: failed to map BCM53xx %s registers: %d",
    498 		    __func__, "armcore", error);
    499 
    500 	curcpu()->ci_softc = &cpu_softc;
    501 
    502 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
    503 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
    504 
    505 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    506 
    507 	bcm53xx_clock_init(clk);
    508 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
    509 	    bcs.bcs_lcpll_control2);
    510 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
    511 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
    512 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
    513 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
    514 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
    515 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
    516 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
    517 
    518 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
    519 
    520 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, ARMCORE_L2C_BASE);
    521 }
    522 
    523 void
    524 bcm53xx_dma_bootstrap(psize_t memsize)
    525 {
    526 	if (memsize < 256*1024*1024) {
    527 		bcm53xx_dma_ranges[0].dr_len = memsize;
    528 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
    529 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    530 		bcm53xx_dma_tag._nranges = 1;
    531 		bcm53xx_coherent_dma_tag._nranges = 1;
    532 	} else {
    533 		/*
    534 		 * By setting up two ranges, bus_dmamem_alloc will always
    535 		 * try to allocate from range 0 first resulting in allocations
    536 		 * below 256MB which for PCI and GMAC are coherent.
    537 		 */
    538 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
    539 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
    540 #endif
    541 	}
    542 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
    543 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    544 }
    545 
    546 #ifdef MULTIPROCESSOR
    547 void
    548 bcm53xx_cpu_hatch(struct cpu_info *ci)
    549 {
    550 	a9tmr_init_cpu_clock(ci);
    551 }
    552 #endif
    553 
    554 void
    555 bcm53xx_device_register(device_t self, void *aux)
    556 {
    557 	prop_dictionary_t dict = device_properties(self);
    558 
    559 	if (device_is_a(self, "armperiph")
    560 	    && device_is_a(device_parent(self), "mainbus")) {
    561 		/*
    562 		 * XXX KLUDGE ALERT XXX
    563 		 * The iot mainbus supplies is completely wrong since it scales
    564 		 * addresses by 2.  The simpliest remedy is to replace with our
    565 		 * bus space used for the armcore regisers (which armperiph uses).
    566 		 */
    567 		struct mainbus_attach_args * const mb = aux;
    568 		mb->mb_iot = bcm53xx_armcore_bst;
    569 		return;
    570 	}
    571 
    572 	/*
    573 	 * We need to tell the A9 Global/Watchdog Timer
    574 	 * what frequency it runs at.
    575 	 */
    576 	if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
    577 		/*
    578 		 * This clock always runs at (arm_clk div 2) and only goes
    579 		 * to timers that are part of the A9 MP core subsystem.
    580 		 */
    581                 prop_dictionary_set_uint32(dict, "frequency",
    582 		    cpu_softc.cpu_clk.clk_cpu / 2);
    583 		return;
    584 	}
    585 
    586 	if (device_is_a(self, "bcmeth")) {
    587 		const struct bcmccb_attach_args * const ccbaa = aux;
    588 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
    589 			0x00, 0x01, 0x02, 0x03, 0x04,
    590 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
    591 		};
    592 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
    593 		KASSERT(pd != NULL);
    594 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
    595 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
    596 		}
    597 		prop_object_release(pd);
    598 	}
    599 }
    600 
    601 static kmutex_t srab_lock __cacheline_aligned;
    602 
    603 void
    604 bcm53xx_srab_init(void)
    605 {
    606 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
    607 
    608 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
    609 	for (u_int port = 0; port < 8; port++) {
    610 		/* per port control: no stp */
    611 		bcm53xx_srab_write_4(port, 0x00);
    612 	}
    613 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
    614 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
    615 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
    616 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
    617 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
    618 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
    619 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
    620 }
    621 
    622 static inline void
    623 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
    624 {
    625 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
    626 		delay(10);
    627 	}
    628 }
    629 
    630 uint32_t
    631 bcm53xx_srab_read_4(u_int pageoffset)
    632 {
    633 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    634 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    635 	uint32_t rv;
    636 
    637 	mutex_spin_enter(&srab_lock);
    638 
    639 	bcm53xx_srab_busywait(bst, bsh);
    640 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    641 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    642 	bcm53xx_srab_busywait(bst, bsh);
    643 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    644 
    645 	mutex_spin_exit(&srab_lock);
    646 	return rv;
    647 }
    648 
    649 uint64_t
    650 bcm53xx_srab_read_8(u_int pageoffset)
    651 {
    652 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    653 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    654 	uint64_t rv;
    655 
    656 	mutex_spin_enter(&srab_lock);
    657 
    658 	bcm53xx_srab_busywait(bst, bsh);
    659 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    660 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    661 	bcm53xx_srab_busywait(bst, bsh);
    662 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
    663 	rv <<= 32;
    664 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    665 
    666 	mutex_spin_exit(&srab_lock);
    667 	return rv;
    668 }
    669 
    670 void
    671 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
    672 {
    673 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    674 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    675 
    676 	mutex_spin_enter(&srab_lock);
    677 
    678 	bcm53xx_srab_busywait(bst, bsh);
    679 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    680 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    681 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    682 	bcm53xx_srab_busywait(bst, bsh);
    683 
    684 	mutex_spin_exit(&srab_lock);
    685 }
    686 
    687 void
    688 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
    689 {
    690 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    691 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    692 
    693 	mutex_spin_enter(&srab_lock);
    694 
    695 	bcm53xx_srab_busywait(bst, bsh);
    696 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    697 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
    698 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    699 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    700 	bcm53xx_srab_busywait(bst, bsh);
    701 	mutex_spin_exit(&srab_lock);
    702 }
    703