Home | History | Annotate | Line # | Download | only in broadcom
bcm53xx_board.c revision 1.16
      1 /*	$NetBSD: bcm53xx_board.c,v 1.16 2013/08/29 15:46:17 riz Exp $	*/
      2 /*-
      3  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas of 3am Software Foundry.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #include "opt_broadcom.h"
     32 
     33 #define	_ARM32_BUS_DMA_PRIVATE
     34 
     35 #include <sys/cdefs.h>
     36 
     37 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.16 2013/08/29 15:46:17 riz Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/bus.h>
     41 #include <sys/cpu.h>
     42 #include <sys/device.h>
     43 
     44 #include <prop/proplib.h>
     45 
     46 #include <net/if.h>
     47 #include <net/if_ether.h>
     48 
     49 #define CRU_PRIVATE
     50 #define DDR_PRIVATE
     51 #define DMU_PRIVATE
     52 #define ARMCORE_PRIVATE
     53 #define SRAB_PRIVATE
     54 
     55 #include <arm/cortex/a9tmr_var.h>
     56 #include <arm/cortex/pl310_var.h>
     57 #include <arm/mainbus/mainbus.h>
     58 
     59 #include <arm/broadcom/bcm53xx_reg.h>
     60 #include <arm/broadcom/bcm53xx_var.h>
     61 
     62 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
     63 bus_space_handle_t bcm53xx_ioreg_bsh;
     64 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
     65 bus_space_handle_t bcm53xx_armcore_bsh;
     66 
     67 static struct cpu_softc cpu_softc;
     68 
     69 struct arm32_dma_range bcm53xx_dma_ranges[] = {
     70 	[0] = {
     71 		.dr_sysbase = 0x80000000,
     72 		.dr_busbase = 0x80000000,
     73 		.dr_len = 0x10000000,
     74 	}, [1] = {
     75 		.dr_sysbase = 0x90000000,
     76 		.dr_busbase = 0x90000000,
     77 	},
     78 };
     79 
     80 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
     81 	._ranges = bcm53xx_dma_ranges,
     82 	._nranges = __arraycount(bcm53xx_dma_ranges),
     83 	_BUS_DMAMAP_FUNCS,
     84 	_BUS_DMAMEM_FUNCS,
     85 	_BUS_DMATAG_FUNCS,
     86 };
     87 
     88 struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
     89 	[0] = {
     90 		.dr_sysbase = 0x80000000,
     91 		.dr_busbase = 0x80000000,
     92 		.dr_len = 0x10000000,
     93 		.dr_flags = _BUS_DMAMAP_COHERENT,
     94 	}, [1] = {
     95 		.dr_sysbase = 0x90000000,
     96 		.dr_busbase = 0x90000000,
     97 	},
     98 };
     99 
    100 struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
    101 	._ranges = bcm53xx_coherent_dma_ranges,
    102 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
    103 	_BUS_DMAMAP_FUNCS,
    104 	_BUS_DMAMEM_FUNCS,
    105 	_BUS_DMATAG_FUNCS,
    106 };
    107 
    108 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    109 struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
    110 	._ranges = bcm53xx_coherent_dma_ranges,
    111 	._nranges = 1,
    112 	_BUS_DMAMAP_FUNCS,
    113 	_BUS_DMAMEM_FUNCS,
    114 	_BUS_DMATAG_FUNCS,
    115 };
    116 #endif
    117 
    118 #ifdef BCM53XX_CONSOLE_EARLY
    119 #include <dev/ic/ns16550reg.h>
    120 #include <dev/ic/comreg.h>
    121 #include <dev/cons.h>
    122 
    123 static vaddr_t com_base;
    124 
    125 static inline uint32_t
    126 uart_read(bus_size_t o)
    127 {
    128 	return *(volatile uint8_t *)(com_base + o);
    129 }
    130 
    131 static inline void
    132 uart_write(bus_size_t o, uint32_t v)
    133 {
    134 	*(volatile uint8_t *)(com_base + o) = v;
    135 }
    136 
    137 static int
    138 bcm53xx_cngetc(dev_t dv)
    139 {
    140         if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
    141 		return -1;
    142 
    143 	return uart_read(com_data) & 0xff;
    144 }
    145 
    146 static void
    147 bcm53xx_cnputc(dev_t dv, int c)
    148 {
    149 	int timo = 150000;
    150 
    151         while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
    152 		;
    153 
    154 	uart_write(com_data, c);
    155 
    156 	timo = 150000;
    157         while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
    158 		;
    159 }
    160 
    161 static struct consdev bcm53xx_earlycons = {
    162 	.cn_putc = bcm53xx_cnputc,
    163 	.cn_getc = bcm53xx_cngetc,
    164 	.cn_pollc = nullcnpollc,
    165 };
    166 #endif /* BCM53XX_CONSOLE_EARLY */
    167 
    168 psize_t
    169 bcm53xx_memprobe(void)
    170 {
    171 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    172 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    173 
    174 	/*
    175 	 * First, let's read the magic DDR registers!
    176 	 */
    177 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
    178 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
    179 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
    180 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
    181 
    182 	/*
    183 	 * Calculate chip parameters
    184 	 * */
    185 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
    186 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
    187 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
    188 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
    189 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
    190 
    191 	/*
    192 	 * For each chip select, increase the chip count if if is enabled.
    193 	 */
    194 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
    195 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
    196 	u_int chips = 0;
    197 
    198 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
    199 		chips += (cs_map & 1);
    200 	}
    201 
    202 	/* get log2(ddr width) */
    203 
    204 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
    205 
    206 	/*
    207 	 * Let's add up all the things that contribute to the size of a chip.
    208 	 */
    209 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
    210 
    211 	/*
    212 	 * Now our memory size is simply the number of chip shifted by the
    213 	 * log2(chip_size).
    214 	 */
    215 	return (psize_t) chips << chip_size_log2;
    216 }
    217 
    218 static inline uint32_t
    219 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
    220 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
    221 {
    222 	if (ndiv_frac == 0 && pdiv == 1)
    223 		return ndiv_int * clk->clk_ref;
    224 
    225 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
    226 	freq64 *= clk->clk_ref;
    227 	if (pdiv > 1)
    228 		freq64 /= pdiv;
    229 	return (uint32_t) (freq64 >> 30);
    230 }
    231 
    232 static uint32_t
    233 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
    234 {
    235 	/*
    236 	 * n is n except when n is 0 then n = mask + 1.
    237 	 */
    238 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
    239 }
    240 
    241 static void
    242 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
    243 	uint32_t control6, uint32_t control7)
    244 {
    245 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
    246 	    GENPLL_CONTROL6_PDIV);
    247 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
    248 	    GENPLL_CONTROL5_NDIV_INT);
    249 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
    250 	    GENPLL_CONTROL5_NDIV_FRAC);
    251 
    252 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    253 
    254 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
    255 	    GENPLL_CONTROL6_CH0_MDIV);
    256 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
    257 	    GENPLL_CONTROL6_CH1_MDIV);
    258 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
    259 	    GENPLL_CONTROL6_CH2_MDIV);
    260 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
    261 	    GENPLL_CONTROL7_CH3_MDIV);
    262 
    263 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
    264 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
    265 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
    266 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
    267 }
    268 
    269 static void
    270 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
    271 	uint32_t control2)
    272 {
    273 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
    274 	    LCPLL_CONTROL1_PDIV);
    275 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
    276 	    LCPLL_CONTROL1_NDIV_INT);
    277 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
    278 	    LCPLL_CONTROL1_NDIV_FRAC);
    279 
    280 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    281 
    282 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
    283 	    LCPLL_CONTROL2_CH0_MDIV);
    284 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
    285 	    LCPLL_CONTROL2_CH1_MDIV);
    286 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
    287 	    LCPLL_CONTROL2_CH2_MDIV);
    288 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
    289 	    LCPLL_CONTROL2_CH3_MDIV);
    290 
    291 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
    292 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
    293 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
    294 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
    295 }
    296 
    297 static void
    298 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
    299 {
    300 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
    301 	    USB2_CONTROL_PDIV);
    302 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
    303 	    USB2_CONTROL_NDIV_INT);
    304 
    305 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
    306 	if (usb_ref != USB2_REF_CLK) {
    307 		/*
    308 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
    309 		 * USB2_CONTROL to produce it.
    310 		 */
    311 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
    312 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
    313 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
    314 
    315 		// Allow Clocks to be modified
    316 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    317 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
    318 
    319 		// Update USB2 clock generator
    320 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    321 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
    322 
    323 		// Prevent Clock modification
    324 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    325 		    CRU_BASE + CRU_CLKSET_KEY, 0);
    326 
    327 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
    328 	}
    329 
    330 	clk->clk_usb_ref = usb_ref;
    331 }
    332 
    333 
    334 static void
    335 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
    336 {
    337 	clk->clk_ref = BCM53XX_REF_CLK;
    338 	clk->clk_sys = 8*clk->clk_ref;
    339 }
    340 
    341 /*
    342  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
    343  */
    344 static void
    345 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
    346     uint32_t pll_dividers)
    347 {
    348 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
    349 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
    350 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
    351 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
    352 
    353 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
    354 
    355 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
    356 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
    357 }
    358 
    359 /*
    360  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
    361  */
    362 static void
    363 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
    364 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
    365 {
    366 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
    367 
    368 	if (policy == CLK_POLICY_REF_CLK) {
    369 		clk->clk_cpu = clk->clk_ref;
    370 		clk->clk_apb = clk->clk_cpu;
    371 		return;
    372 	}
    373 
    374 	if (policy == CLK_POLICY_SYS_CLK) {
    375 		clk->clk_cpu = clk->clk_sys;
    376 		clk->clk_apb = clk->clk_cpu / 4;
    377 		return;
    378 	}
    379 
    380 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
    381 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
    382 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
    383 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
    384 
    385 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
    386 
    387 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
    388 	clk->clk_apb = clk->clk_cpu / 4;
    389 }
    390 
    391 struct bcm53xx_chip_state {
    392 	uint32_t bcs_lcpll_control1;
    393 	uint32_t bcs_lcpll_control2;
    394 
    395 	uint32_t bcs_genpll_control5;
    396 	uint32_t bcs_genpll_control6;
    397 	uint32_t bcs_genpll_control7;
    398 
    399 	uint32_t bcs_usb2_control;
    400 
    401 	uint32_t bcs_ddr_phy_ctl_pll_status;
    402 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
    403 
    404 	uint32_t bcs_armcore_clk_policy;
    405 	uint32_t bcs_armcore_clk_pllarma;
    406 	uint32_t bcs_armcore_clk_pllarmb;
    407 };
    408 
    409 static void
    410 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
    411 	bus_space_tag_t bst, bus_space_handle_t bsh)
    412 {
    413 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
    414 	    DMU_BASE + DMU_LCPLL_CONTROL1);
    415 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
    416 	    DMU_BASE + DMU_LCPLL_CONTROL2);
    417 
    418 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
    419 	    CRU_BASE + CRU_GENPLL_CONTROL5);
    420 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
    421 	    CRU_BASE + CRU_GENPLL_CONTROL6);
    422 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
    423 	    CRU_BASE + CRU_GENPLL_CONTROL7);
    424 
    425 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
    426 	    CRU_BASE + CRU_USB2_CONTROL);
    427 
    428 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
    429 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
    430 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
    431 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
    432 }
    433 
    434 static void
    435 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
    436 	bus_space_tag_t bst, bus_space_handle_t bsh)
    437 {
    438 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
    439 	    ARMCORE_CLK_POLICY_FREQ);
    440 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
    441 	    ARMCORE_CLK_PLLARMA);
    442 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
    443 	    ARMCORE_CLK_PLLARMB);
    444 }
    445 
    446 void
    447 bcm53xx_cpu_softc_init(struct cpu_info *ci)
    448 {
    449 	struct cpu_softc * const cpu = ci->ci_softc;
    450 
    451 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
    452 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
    453 
    454 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
    455 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
    456 }
    457 
    458 void
    459 bcm53xx_print_clocks(void)
    460 {
    461 #if defined(VERBOSE_INIT_ARM)
    462 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    463 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
    464 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
    465 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
    466 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
    467 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
    468 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
    469 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
    470 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
    471 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
    472 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
    473 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
    474 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
    475 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
    476 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
    477 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
    478 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
    479 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
    480 #endif
    481 }
    482 
    483 void
    484 bcm53xx_bootstrap(vaddr_t iobase)
    485 {
    486 	struct bcm53xx_chip_state bcs;
    487 	int error;
    488 
    489 #ifdef BCM53XX_CONSOLE_EARLY
    490 	com_base = iobase + CCA_UART0_BASE;
    491 	cn_tab = &bcm53xx_earlycons;
    492 #endif
    493 
    494 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
    495 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
    496 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
    497 	if (error)
    498 		panic("%s: failed to map BCM53xx %s registers: %d",
    499 		    __func__, "io", error);
    500 
    501 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
    502 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
    503 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
    504 	if (error)
    505 		panic("%s: failed to map BCM53xx %s registers: %d",
    506 		    __func__, "armcore", error);
    507 
    508 	curcpu()->ci_softc = &cpu_softc;
    509 
    510 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
    511 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
    512 
    513 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    514 
    515 	bcm53xx_clock_init(clk);
    516 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
    517 	    bcs.bcs_lcpll_control2);
    518 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
    519 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
    520 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
    521 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
    522 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
    523 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
    524 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
    525 
    526 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
    527 
    528 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, ARMCORE_L2C_BASE);
    529 }
    530 
    531 void
    532 bcm53xx_dma_bootstrap(psize_t memsize)
    533 {
    534 	if (memsize <= 256*1024*1024) {
    535 		bcm53xx_dma_ranges[0].dr_len = memsize;
    536 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
    537 		bcm53xx_dma_tag._nranges = 1;
    538 		bcm53xx_coherent_dma_tag._nranges = 1;
    539 	} else {
    540 		/*
    541 		 * By setting up two ranges, bus_dmamem_alloc will always
    542 		 * try to allocate from range 0 first resulting in allocations
    543 		 * below 256MB which for PCI and GMAC are coherent.
    544 		 */
    545 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
    546 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
    547 	}
    548 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
    549 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    550 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    551 	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    552 #endif
    553 }
    554 
    555 #ifdef MULTIPROCESSOR
    556 void
    557 bcm53xx_cpu_hatch(struct cpu_info *ci)
    558 {
    559 	a9tmr_init_cpu_clock(ci);
    560 }
    561 #endif
    562 
    563 void
    564 bcm53xx_device_register(device_t self, void *aux)
    565 {
    566 	prop_dictionary_t dict = device_properties(self);
    567 
    568 	if (device_is_a(self, "armperiph")
    569 	    && device_is_a(device_parent(self), "mainbus")) {
    570 		/*
    571 		 * XXX KLUDGE ALERT XXX
    572 		 * The iot mainbus supplies is completely wrong since it scales
    573 		 * addresses by 2.  The simpliest remedy is to replace with our
    574 		 * bus space used for the armcore regisers (which armperiph uses).
    575 		 */
    576 		struct mainbus_attach_args * const mb = aux;
    577 		mb->mb_iot = bcm53xx_armcore_bst;
    578 		return;
    579 	}
    580 
    581 	/*
    582 	 * We need to tell the A9 Global/Watchdog Timer
    583 	 * what frequency it runs at.
    584 	 */
    585 	if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
    586 		/*
    587 		 * This clock always runs at (arm_clk div 2) and only goes
    588 		 * to timers that are part of the A9 MP core subsystem.
    589 		 */
    590                 prop_dictionary_set_uint32(dict, "frequency",
    591 		    cpu_softc.cpu_clk.clk_cpu / 2);
    592 		return;
    593 	}
    594 
    595 	if (device_is_a(self, "bcmeth")) {
    596 		const struct bcmccb_attach_args * const ccbaa = aux;
    597 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
    598 			0x00, 0x01, 0x02, 0x03, 0x04,
    599 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
    600 		};
    601 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
    602 		KASSERT(pd != NULL);
    603 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
    604 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
    605 		}
    606 		prop_object_release(pd);
    607 	}
    608 }
    609 
    610 static kmutex_t srab_lock __cacheline_aligned;
    611 
    612 void
    613 bcm53xx_srab_init(void)
    614 {
    615 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
    616 
    617 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
    618 	for (u_int port = 0; port < 8; port++) {
    619 		/* per port control: no stp */
    620 		bcm53xx_srab_write_4(port, 0x00);
    621 	}
    622 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
    623 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
    624 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
    625 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
    626 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
    627 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
    628 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
    629 }
    630 
    631 static inline void
    632 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
    633 {
    634 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
    635 		delay(10);
    636 	}
    637 }
    638 
    639 uint32_t
    640 bcm53xx_srab_read_4(u_int pageoffset)
    641 {
    642 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    643 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    644 	uint32_t rv;
    645 
    646 	mutex_spin_enter(&srab_lock);
    647 
    648 	bcm53xx_srab_busywait(bst, bsh);
    649 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    650 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    651 	bcm53xx_srab_busywait(bst, bsh);
    652 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    653 
    654 	mutex_spin_exit(&srab_lock);
    655 	return rv;
    656 }
    657 
    658 uint64_t
    659 bcm53xx_srab_read_8(u_int pageoffset)
    660 {
    661 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    662 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    663 	uint64_t rv;
    664 
    665 	mutex_spin_enter(&srab_lock);
    666 
    667 	bcm53xx_srab_busywait(bst, bsh);
    668 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    669 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    670 	bcm53xx_srab_busywait(bst, bsh);
    671 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
    672 	rv <<= 32;
    673 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    674 
    675 	mutex_spin_exit(&srab_lock);
    676 	return rv;
    677 }
    678 
    679 void
    680 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
    681 {
    682 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    683 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    684 
    685 	mutex_spin_enter(&srab_lock);
    686 
    687 	bcm53xx_srab_busywait(bst, bsh);
    688 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    689 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    690 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    691 	bcm53xx_srab_busywait(bst, bsh);
    692 
    693 	mutex_spin_exit(&srab_lock);
    694 }
    695 
    696 void
    697 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
    698 {
    699 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    700 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    701 
    702 	mutex_spin_enter(&srab_lock);
    703 
    704 	bcm53xx_srab_busywait(bst, bsh);
    705 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    706 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
    707 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    708 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    709 	bcm53xx_srab_busywait(bst, bsh);
    710 	mutex_spin_exit(&srab_lock);
    711 }
    712