bcm53xx_board.c revision 1.17.2.2 1 /* $NetBSD: bcm53xx_board.c,v 1.17.2.2 2014/02/15 16:18:36 matt Exp $ */
2 /*-
3 * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas of 3am Software Foundry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include "opt_broadcom.h"
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include <sys/cdefs.h>
36
37 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.17.2.2 2014/02/15 16:18:36 matt Exp $");
38
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/cpu.h>
42 #include <sys/device.h>
43
44 #include <prop/proplib.h>
45
46 #include <net/if.h>
47 #include <net/if_ether.h>
48
49 #define CCA_PRIVATE
50 #define CRU_PRIVATE
51 #define DDR_PRIVATE
52 #define DMU_PRIVATE
53 #define ARMCORE_PRIVATE
54 #define SRAB_PRIVATE
55
56 #include <arm/cortex/a9tmr_var.h>
57 #include <arm/cortex/pl310_var.h>
58 #include <arm/mainbus/mainbus.h>
59
60 #include <arm/broadcom/bcm53xx_reg.h>
61 #include <arm/broadcom/bcm53xx_var.h>
62
63 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
64 bus_space_handle_t bcm53xx_ioreg_bsh;
65 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
66 bus_space_handle_t bcm53xx_armcore_bsh;
67
68 static struct cpu_softc cpu_softc;
69
70 struct arm32_dma_range bcm53xx_dma_ranges[] = {
71 #ifdef BCM5301X
72 [0] = {
73 .dr_sysbase = 0x80000000,
74 .dr_busbase = 0x80000000,
75 .dr_len = 0x10000000,
76 }, [1] = {
77 .dr_sysbase = 0x90000000,
78 .dr_busbase = 0x90000000,
79 },
80 #elif defined(BCM563XX)
81 [0] = {
82 .dr_sysbase = 0x60000000,
83 .dr_busbase = 0x60000000,
84 .dr_len = 0x20000000,
85 }, [1] = {
86 .dr_sysbase = 0xa0000000,
87 .dr_busbase = 0xa0000000,
88 },
89 #endif
90 };
91
92 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
93 ._ranges = bcm53xx_dma_ranges,
94 ._nranges = __arraycount(bcm53xx_dma_ranges),
95 _BUS_DMAMAP_FUNCS,
96 _BUS_DMAMEM_FUNCS,
97 _BUS_DMATAG_FUNCS,
98 };
99
100 struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
101 #ifdef BCM5301X
102 [0] = {
103 .dr_sysbase = 0x80000000,
104 .dr_busbase = 0x80000000,
105 .dr_len = 0x10000000,
106 .dr_flags = _BUS_DMAMAP_COHERENT,
107 }, [1] = {
108 .dr_sysbase = 0x90000000,
109 .dr_busbase = 0x90000000,
110 },
111 #elif defined(BCM563XX)
112 [0] = {
113 .dr_sysbase = 0x60000000,
114 .dr_busbase = 0x60000000,
115 .dr_len = 0x20000000,
116 .dr_flags = _BUS_DMAMAP_COHERENT,
117 }, [1] = {
118 .dr_sysbase = 0xa0000000,
119 .dr_busbase = 0xa0000000,
120 },
121 #endif
122 };
123
124 struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
125 ._ranges = bcm53xx_coherent_dma_ranges,
126 ._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
127 _BUS_DMAMAP_FUNCS,
128 _BUS_DMAMEM_FUNCS,
129 _BUS_DMATAG_FUNCS,
130 };
131
132 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
133 struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
134 ._ranges = bcm53xx_coherent_dma_ranges,
135 ._nranges = 1,
136 _BUS_DMAMAP_FUNCS,
137 _BUS_DMAMEM_FUNCS,
138 _BUS_DMATAG_FUNCS,
139 };
140 #endif
141
142 #ifdef BCM53XX_CONSOLE_EARLY
143 #include <dev/ic/ns16550reg.h>
144 #include <dev/ic/comreg.h>
145 #include <dev/cons.h>
146
147 static vaddr_t com_base;
148
149 static inline uint32_t
150 uart_read(bus_size_t o)
151 {
152 return *(volatile uint8_t *)(com_base + o);
153 }
154
155 static inline void
156 uart_write(bus_size_t o, uint32_t v)
157 {
158 *(volatile uint8_t *)(com_base + o) = v;
159 }
160
161 static int
162 bcm53xx_cngetc(dev_t dv)
163 {
164 if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
165 return -1;
166
167 return uart_read(com_data) & 0xff;
168 }
169
170 static void
171 bcm53xx_cnputc(dev_t dv, int c)
172 {
173 int timo = 150000;
174
175 while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
176 ;
177
178 uart_write(com_data, c);
179
180 timo = 150000;
181 while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
182 ;
183 }
184
185 static struct consdev bcm53xx_earlycons = {
186 .cn_putc = bcm53xx_cnputc,
187 .cn_getc = bcm53xx_cngetc,
188 .cn_pollc = nullcnpollc,
189 };
190 #endif /* BCM53XX_CONSOLE_EARLY */
191
192 psize_t
193 bcm53xx_memprobe(void)
194 {
195 bus_space_tag_t bst = bcm53xx_ioreg_bst;
196 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
197
198 /*
199 * First, let's read the magic DDR registers!
200 */
201 const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
202 const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
203 const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
204 const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
205
206 /*
207 * Calculate chip parameters
208 * */
209 const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
210 - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
211 const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
212 - __SHIFTOUT(v82, CTL_82_COL_DIFF);
213 const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
214
215 /*
216 * For each chip select, increase the chip count if if is enabled.
217 */
218 const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
219 u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
220 u_int chips = 0;
221
222 for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
223 chips += (cs_map & 1);
224 }
225
226 /* get log2(ddr width) */
227
228 const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
229
230 /*
231 * Let's add up all the things that contribute to the size of a chip.
232 */
233 const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
234
235 /*
236 * Now our memory size is simply the number of chip shifted by the
237 * log2(chip_size).
238 */
239 return (psize_t) chips << chip_size_log2;
240 }
241
242 static inline uint32_t
243 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
244 uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
245 {
246 if (ndiv_frac == 0 && pdiv == 1)
247 return ndiv_int * clk->clk_ref;
248
249 uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
250 freq64 *= clk->clk_ref;
251 if (pdiv > 1)
252 freq64 /= pdiv;
253 return (uint32_t) (freq64 >> 30);
254 }
255
256 static uint32_t
257 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
258 {
259 /*
260 * n is n except when n is 0 then n = mask + 1.
261 */
262 return ((__SHIFTOUT(value, mask) - 1) & __SHIFTOUT(mask, mask)) + 1;
263 }
264
265 static void
266 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
267 uint32_t control6, uint32_t control7)
268 {
269 const uint32_t pdiv = bcm53xx_value_wrap(control6,
270 GENPLL_CONTROL6_PDIV);
271 const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
272 GENPLL_CONTROL5_NDIV_INT);
273 const uint32_t ndiv_frac = __SHIFTOUT(control5,
274 GENPLL_CONTROL5_NDIV_FRAC);
275
276 clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
277
278 const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
279 GENPLL_CONTROL6_CH0_MDIV);
280 const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
281 GENPLL_CONTROL6_CH1_MDIV);
282 const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
283 GENPLL_CONTROL6_CH2_MDIV);
284 const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
285 GENPLL_CONTROL7_CH3_MDIV);
286
287 clk->clk_mac = clk->clk_genpll / ch0_mdiv; // GENPLL CH0
288 clk->clk_robo = clk->clk_genpll / ch1_mdiv; // GENPLL CH1
289 clk->clk_usb2 = clk->clk_genpll / ch2_mdiv; // GENPLL CH2
290 clk->clk_iproc = clk->clk_genpll / ch3_mdiv; // GENPLL CH3
291 }
292
293 static void
294 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
295 uint32_t control2)
296 {
297 const uint32_t pdiv = bcm53xx_value_wrap(control1,
298 LCPLL_CONTROL1_PDIV);
299 const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
300 LCPLL_CONTROL1_NDIV_INT);
301 const uint32_t ndiv_frac = __SHIFTOUT(control1,
302 LCPLL_CONTROL1_NDIV_FRAC);
303
304 clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
305
306 const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
307 LCPLL_CONTROL2_CH0_MDIV);
308 const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
309 LCPLL_CONTROL2_CH1_MDIV);
310 const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
311 LCPLL_CONTROL2_CH2_MDIV);
312 const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
313 LCPLL_CONTROL2_CH3_MDIV);
314
315 clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv; // LCPLL CH0
316 clk->clk_sdio = clk->clk_lcpll / ch1_mdiv; // LCPLL CH1
317 clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv; // LCPLL CH2
318 clk->clk_axi = clk->clk_lcpll / ch3_mdiv; // LCPLL CH3
319 }
320
321 static void
322 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
323 {
324 const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
325 USB2_CONTROL_PDIV);
326 const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
327 USB2_CONTROL_NDIV_INT);
328
329 uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
330 if (usb_ref != USB2_REF_CLK) {
331 /*
332 * USB Reference Clock isn't 1.92GHz. So we need to modify
333 * USB2_CONTROL to produce it.
334 */
335 uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
336 usb2_control &= ~USB2_CONTROL_NDIV_INT;
337 usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
338
339 // Allow Clocks to be modified
340 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
341 CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
342
343 // Update USB2 clock generator
344 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
345 CRU_BASE + CRU_USB2_CONTROL, usb2_control);
346
347 // Prevent Clock modification
348 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
349 CRU_BASE + CRU_CLKSET_KEY, 0);
350
351 usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
352 }
353
354 clk->clk_usb_ref = usb_ref;
355 }
356
357
358 static void
359 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
360 {
361 clk->clk_ref = BCM53XX_REF_CLK;
362 clk->clk_sys = 8*clk->clk_ref;
363 }
364
365 /*
366 * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
367 */
368 static void
369 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
370 uint32_t pll_dividers)
371 {
372 const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
373 u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
374 u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
375 u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
376
377 pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
378
379 clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
380 clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
381 }
382
383 /*
384 * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
385 */
386 static void
387 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
388 uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
389 {
390 policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
391
392 if (policy == CLK_POLICY_REF_CLK) {
393 clk->clk_cpu = clk->clk_ref;
394 clk->clk_apb = clk->clk_cpu;
395 return;
396 }
397
398 if (policy == CLK_POLICY_SYS_CLK) {
399 clk->clk_cpu = clk->clk_sys;
400 clk->clk_apb = clk->clk_cpu / 4;
401 return;
402 }
403
404 const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
405 const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
406 const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
407 // const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
408
409 const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
410
411 clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
412 clk->clk_apb = clk->clk_cpu / 4;
413 }
414
415 struct bcm53xx_chip_state {
416 uint32_t bcs_lcpll_control1;
417 uint32_t bcs_lcpll_control2;
418
419 uint32_t bcs_genpll_control5;
420 uint32_t bcs_genpll_control6;
421 uint32_t bcs_genpll_control7;
422
423 uint32_t bcs_usb2_control;
424
425 uint32_t bcs_ddr_phy_ctl_pll_status;
426 uint32_t bcs_ddr_phy_ctl_pll_dividers;
427
428 uint32_t bcs_armcore_clk_policy;
429 uint32_t bcs_armcore_clk_pllarma;
430 uint32_t bcs_armcore_clk_pllarmb;
431 };
432
433 static void
434 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
435 bus_space_tag_t bst, bus_space_handle_t bsh)
436 {
437 bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
438 DMU_BASE + DMU_LCPLL_CONTROL1);
439 bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
440 DMU_BASE + DMU_LCPLL_CONTROL2);
441
442 bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
443 CRU_BASE + CRU_GENPLL_CONTROL5);
444 bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
445 CRU_BASE + CRU_GENPLL_CONTROL6);
446 bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
447 CRU_BASE + CRU_GENPLL_CONTROL7);
448
449 bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
450 CRU_BASE + CRU_USB2_CONTROL);
451
452 bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
453 DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
454 bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
455 DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
456 }
457
458 static void
459 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
460 bus_space_tag_t bst, bus_space_handle_t bsh)
461 {
462 bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
463 ARMCORE_CLK_POLICY_FREQ);
464 bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
465 ARMCORE_CLK_PLLARMA);
466 bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
467 ARMCORE_CLK_PLLARMB);
468 }
469
470 void
471 bcm53xx_cpu_softc_init(struct cpu_info *ci)
472 {
473 struct cpu_softc * const cpu = ci->ci_softc;
474
475 cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
476 cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
477
478 cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
479 cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
480
481 const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
482 cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
483
484 cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
485 }
486
487 void
488 bcm53xx_print_clocks(void)
489 {
490 #if defined(VERBOSE_INIT_ARM)
491 const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
492 printf("ref clk = %u (%#x)\n", clk->clk_ref, clk->clk_ref);
493 printf("sys clk = %u (%#x)\n", clk->clk_sys, clk->clk_sys);
494 printf("lcpll clk = %u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
495 printf("pcie ref clk = %u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
496 printf("sdio clk = %u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
497 printf("ddr ref clk = %u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
498 printf("axi clk = %u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
499 printf("genpll clk = %u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
500 printf("mac clk = %u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
501 printf("robo clk = %u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
502 printf("usb2 clk = %u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
503 printf("iproc clk = %u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
504 printf("ddr clk = %u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
505 printf("ddr mhz = %u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
506 printf("cpu clk = %u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
507 printf("apb clk = %u (%#x)\n", clk->clk_apb, clk->clk_apb);
508 printf("usb ref clk = %u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
509 #endif
510 }
511
512 void
513 bcm53xx_bootstrap(vaddr_t iobase)
514 {
515 struct bcm53xx_chip_state bcs;
516 int error;
517
518 #ifdef BCM53XX_CONSOLE_EARLY
519 com_base = iobase + CCA_UART0_BASE;
520 cn_tab = &bcm53xx_earlycons;
521 #endif
522
523 bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
524 error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
525 BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
526 if (error)
527 panic("%s: failed to map BCM53xx %s registers: %d",
528 __func__, "io", error);
529
530 bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
531 error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
532 BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
533 if (error)
534 panic("%s: failed to map BCM53xx %s registers: %d",
535 __func__, "armcore", error);
536
537 curcpu()->ci_softc = &cpu_softc;
538
539 bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
540 bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
541
542 struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
543
544 bcm53xx_clock_init(clk);
545 bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
546 bcs.bcs_lcpll_control2);
547 bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
548 bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
549 bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
550 bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
551 bcs.bcs_ddr_phy_ctl_pll_dividers);
552 bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
553 bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
554
555 curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
556
557 arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
558 ARMCORE_L2C_BASE);
559 }
560
561 void
562 bcm53xx_dma_bootstrap(psize_t memsize)
563 {
564 if (memsize <= 256*1024*1024) {
565 bcm53xx_dma_ranges[0].dr_len = memsize;
566 bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
567 bcm53xx_dma_tag._nranges = 1;
568 bcm53xx_coherent_dma_tag._nranges = 1;
569 } else {
570 /*
571 * By setting up two ranges, bus_dmamem_alloc will always
572 * try to allocate from range 0 first resulting in allocations
573 * below 256MB which for PCI and GMAC are coherent.
574 */
575 bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
576 bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
577 }
578 KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
579 KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
580 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
581 KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
582 #endif
583 }
584
585 #ifdef MULTIPROCESSOR
586 void
587 bcm53xx_cpu_hatch(struct cpu_info *ci)
588 {
589 a9tmr_init_cpu_clock(ci);
590 }
591 #endif
592
593 void
594 bcm53xx_device_register(device_t self, void *aux)
595 {
596 prop_dictionary_t dict = device_properties(self);
597
598 if (device_is_a(self, "armperiph")
599 && device_is_a(device_parent(self), "mainbus")) {
600 /*
601 * XXX KLUDGE ALERT XXX
602 * The iot mainbus supplies is completely wrong since it scales
603 * addresses by 2. The simpliest remedy is to replace with our
604 * bus space used for the armcore regisers (which armperiph uses).
605 */
606 struct mainbus_attach_args * const mb = aux;
607 mb->mb_iot = bcm53xx_armcore_bst;
608 return;
609 }
610
611 /*
612 * We need to tell the A9 Global/Watchdog Timer
613 * what frequency it runs at.
614 */
615 if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
616 /*
617 * This clock always runs at (arm_clk div 2) and only goes
618 * to timers that are part of the A9 MP core subsystem.
619 */
620 prop_dictionary_set_uint32(dict, "frequency",
621 cpu_softc.cpu_clk.clk_cpu / 2);
622 return;
623 }
624
625 if (device_is_a(self, "bcmeth")) {
626 const struct bcmccb_attach_args * const ccbaa = aux;
627 const uint8_t enaddr[ETHER_ADDR_LEN] = {
628 0x00, 0x01, 0x02, 0x03, 0x04,
629 0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
630 };
631 prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
632 KASSERT(pd != NULL);
633 if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
634 printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
635 }
636 prop_object_release(pd);
637 }
638 }
639
640 static kmutex_t srab_lock __cacheline_aligned;
641
642 void
643 bcm53xx_srab_init(void)
644 {
645 mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
646
647 bcm53xx_srab_write_4(0x0079, 0x90); // reset switch
648 for (u_int port = 0; port < 8; port++) {
649 /* per port control: no stp */
650 bcm53xx_srab_write_4(port, 0x00);
651 }
652 bcm53xx_srab_write_4(0x0008, 0x1c); // IMP port (enab UC/MC/BC)
653 bcm53xx_srab_write_4(0x000e, 0xbb); // IMP port force-link 1G
654 bcm53xx_srab_write_4(0x005d, 0x7b); // port5 force-link 1G
655 bcm53xx_srab_write_4(0x005f, 0x7b); // port7 force-link 1G
656 bcm53xx_srab_write_4(0x000b, 0x7); // management mode
657 bcm53xx_srab_write_4(0x0203, 0x0); // disable BRCM tag
658 bcm53xx_srab_write_4(0x0200, 0x80); // enable IMP=port8
659 }
660
661 static inline void
662 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
663 {
664 while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
665 delay(10);
666 }
667 }
668
669 uint32_t
670 bcm53xx_srab_read_4(u_int pageoffset)
671 {
672 bus_space_tag_t bst = bcm53xx_ioreg_bst;
673 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
674 uint32_t rv;
675
676 mutex_spin_enter(&srab_lock);
677
678 bcm53xx_srab_busywait(bst, bsh);
679 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
680 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
681 bcm53xx_srab_busywait(bst, bsh);
682 rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
683
684 mutex_spin_exit(&srab_lock);
685 return rv;
686 }
687
688 uint64_t
689 bcm53xx_srab_read_8(u_int pageoffset)
690 {
691 bus_space_tag_t bst = bcm53xx_ioreg_bst;
692 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
693 uint64_t rv;
694
695 mutex_spin_enter(&srab_lock);
696
697 bcm53xx_srab_busywait(bst, bsh);
698 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
699 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
700 bcm53xx_srab_busywait(bst, bsh);
701 rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
702 rv <<= 32;
703 rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
704
705 mutex_spin_exit(&srab_lock);
706 return rv;
707 }
708
709 void
710 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
711 {
712 bus_space_tag_t bst = bcm53xx_ioreg_bst;
713 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
714
715 mutex_spin_enter(&srab_lock);
716
717 bcm53xx_srab_busywait(bst, bsh);
718 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
719 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
720 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
721 bcm53xx_srab_busywait(bst, bsh);
722
723 mutex_spin_exit(&srab_lock);
724 }
725
726 void
727 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
728 {
729 bus_space_tag_t bst = bcm53xx_ioreg_bst;
730 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
731
732 mutex_spin_enter(&srab_lock);
733
734 bcm53xx_srab_busywait(bst, bsh);
735 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
736 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
737 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
738 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
739 bcm53xx_srab_busywait(bst, bsh);
740 mutex_spin_exit(&srab_lock);
741 }
742