Home | History | Annotate | Line # | Download | only in broadcom
bcm53xx_board.c revision 1.17.2.2
      1 /*	$NetBSD: bcm53xx_board.c,v 1.17.2.2 2014/02/15 16:18:36 matt Exp $	*/
      2 /*-
      3  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas of 3am Software Foundry.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #include "opt_broadcom.h"
     32 
     33 #define	_ARM32_BUS_DMA_PRIVATE
     34 
     35 #include <sys/cdefs.h>
     36 
     37 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.17.2.2 2014/02/15 16:18:36 matt Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/bus.h>
     41 #include <sys/cpu.h>
     42 #include <sys/device.h>
     43 
     44 #include <prop/proplib.h>
     45 
     46 #include <net/if.h>
     47 #include <net/if_ether.h>
     48 
     49 #define CCA_PRIVATE
     50 #define CRU_PRIVATE
     51 #define DDR_PRIVATE
     52 #define DMU_PRIVATE
     53 #define ARMCORE_PRIVATE
     54 #define SRAB_PRIVATE
     55 
     56 #include <arm/cortex/a9tmr_var.h>
     57 #include <arm/cortex/pl310_var.h>
     58 #include <arm/mainbus/mainbus.h>
     59 
     60 #include <arm/broadcom/bcm53xx_reg.h>
     61 #include <arm/broadcom/bcm53xx_var.h>
     62 
     63 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
     64 bus_space_handle_t bcm53xx_ioreg_bsh;
     65 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
     66 bus_space_handle_t bcm53xx_armcore_bsh;
     67 
     68 static struct cpu_softc cpu_softc;
     69 
     70 struct arm32_dma_range bcm53xx_dma_ranges[] = {
     71 #ifdef BCM5301X
     72 	[0] = {
     73 		.dr_sysbase = 0x80000000,
     74 		.dr_busbase = 0x80000000,
     75 		.dr_len = 0x10000000,
     76 	}, [1] = {
     77 		.dr_sysbase = 0x90000000,
     78 		.dr_busbase = 0x90000000,
     79 	},
     80 #elif defined(BCM563XX)
     81 	[0] = {
     82 		.dr_sysbase = 0x60000000,
     83 		.dr_busbase = 0x60000000,
     84 		.dr_len = 0x20000000,
     85 	}, [1] = {
     86 		.dr_sysbase = 0xa0000000,
     87 		.dr_busbase = 0xa0000000,
     88 	},
     89 #endif
     90 };
     91 
     92 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
     93 	._ranges = bcm53xx_dma_ranges,
     94 	._nranges = __arraycount(bcm53xx_dma_ranges),
     95 	_BUS_DMAMAP_FUNCS,
     96 	_BUS_DMAMEM_FUNCS,
     97 	_BUS_DMATAG_FUNCS,
     98 };
     99 
    100 struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
    101 #ifdef BCM5301X
    102 	[0] = {
    103 		.dr_sysbase = 0x80000000,
    104 		.dr_busbase = 0x80000000,
    105 		.dr_len = 0x10000000,
    106 		.dr_flags = _BUS_DMAMAP_COHERENT,
    107 	}, [1] = {
    108 		.dr_sysbase = 0x90000000,
    109 		.dr_busbase = 0x90000000,
    110 	},
    111 #elif defined(BCM563XX)
    112 	[0] = {
    113 		.dr_sysbase = 0x60000000,
    114 		.dr_busbase = 0x60000000,
    115 		.dr_len = 0x20000000,
    116 		.dr_flags = _BUS_DMAMAP_COHERENT,
    117 	}, [1] = {
    118 		.dr_sysbase = 0xa0000000,
    119 		.dr_busbase = 0xa0000000,
    120 	},
    121 #endif
    122 };
    123 
    124 struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
    125 	._ranges = bcm53xx_coherent_dma_ranges,
    126 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
    127 	_BUS_DMAMAP_FUNCS,
    128 	_BUS_DMAMEM_FUNCS,
    129 	_BUS_DMATAG_FUNCS,
    130 };
    131 
    132 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    133 struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
    134 	._ranges = bcm53xx_coherent_dma_ranges,
    135 	._nranges = 1,
    136 	_BUS_DMAMAP_FUNCS,
    137 	_BUS_DMAMEM_FUNCS,
    138 	_BUS_DMATAG_FUNCS,
    139 };
    140 #endif
    141 
    142 #ifdef BCM53XX_CONSOLE_EARLY
    143 #include <dev/ic/ns16550reg.h>
    144 #include <dev/ic/comreg.h>
    145 #include <dev/cons.h>
    146 
    147 static vaddr_t com_base;
    148 
    149 static inline uint32_t
    150 uart_read(bus_size_t o)
    151 {
    152 	return *(volatile uint8_t *)(com_base + o);
    153 }
    154 
    155 static inline void
    156 uart_write(bus_size_t o, uint32_t v)
    157 {
    158 	*(volatile uint8_t *)(com_base + o) = v;
    159 }
    160 
    161 static int
    162 bcm53xx_cngetc(dev_t dv)
    163 {
    164         if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
    165 		return -1;
    166 
    167 	return uart_read(com_data) & 0xff;
    168 }
    169 
    170 static void
    171 bcm53xx_cnputc(dev_t dv, int c)
    172 {
    173 	int timo = 150000;
    174 
    175         while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
    176 		;
    177 
    178 	uart_write(com_data, c);
    179 
    180 	timo = 150000;
    181         while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
    182 		;
    183 }
    184 
    185 static struct consdev bcm53xx_earlycons = {
    186 	.cn_putc = bcm53xx_cnputc,
    187 	.cn_getc = bcm53xx_cngetc,
    188 	.cn_pollc = nullcnpollc,
    189 };
    190 #endif /* BCM53XX_CONSOLE_EARLY */
    191 
    192 psize_t
    193 bcm53xx_memprobe(void)
    194 {
    195 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    196 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    197 
    198 	/*
    199 	 * First, let's read the magic DDR registers!
    200 	 */
    201 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
    202 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
    203 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
    204 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
    205 
    206 	/*
    207 	 * Calculate chip parameters
    208 	 * */
    209 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
    210 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
    211 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
    212 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
    213 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
    214 
    215 	/*
    216 	 * For each chip select, increase the chip count if if is enabled.
    217 	 */
    218 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
    219 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
    220 	u_int chips = 0;
    221 
    222 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
    223 		chips += (cs_map & 1);
    224 	}
    225 
    226 	/* get log2(ddr width) */
    227 
    228 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
    229 
    230 	/*
    231 	 * Let's add up all the things that contribute to the size of a chip.
    232 	 */
    233 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
    234 
    235 	/*
    236 	 * Now our memory size is simply the number of chip shifted by the
    237 	 * log2(chip_size).
    238 	 */
    239 	return (psize_t) chips << chip_size_log2;
    240 }
    241 
    242 static inline uint32_t
    243 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
    244 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
    245 {
    246 	if (ndiv_frac == 0 && pdiv == 1)
    247 		return ndiv_int * clk->clk_ref;
    248 
    249 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
    250 	freq64 *= clk->clk_ref;
    251 	if (pdiv > 1)
    252 		freq64 /= pdiv;
    253 	return (uint32_t) (freq64 >> 30);
    254 }
    255 
    256 static uint32_t
    257 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
    258 {
    259 	/*
    260 	 * n is n except when n is 0 then n = mask + 1.
    261 	 */
    262 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
    263 }
    264 
    265 static void
    266 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
    267 	uint32_t control6, uint32_t control7)
    268 {
    269 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
    270 	    GENPLL_CONTROL6_PDIV);
    271 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
    272 	    GENPLL_CONTROL5_NDIV_INT);
    273 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
    274 	    GENPLL_CONTROL5_NDIV_FRAC);
    275 
    276 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    277 
    278 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
    279 	    GENPLL_CONTROL6_CH0_MDIV);
    280 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
    281 	    GENPLL_CONTROL6_CH1_MDIV);
    282 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
    283 	    GENPLL_CONTROL6_CH2_MDIV);
    284 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
    285 	    GENPLL_CONTROL7_CH3_MDIV);
    286 
    287 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
    288 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
    289 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
    290 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
    291 }
    292 
    293 static void
    294 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
    295 	uint32_t control2)
    296 {
    297 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
    298 	    LCPLL_CONTROL1_PDIV);
    299 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
    300 	    LCPLL_CONTROL1_NDIV_INT);
    301 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
    302 	    LCPLL_CONTROL1_NDIV_FRAC);
    303 
    304 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    305 
    306 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
    307 	    LCPLL_CONTROL2_CH0_MDIV);
    308 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
    309 	    LCPLL_CONTROL2_CH1_MDIV);
    310 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
    311 	    LCPLL_CONTROL2_CH2_MDIV);
    312 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
    313 	    LCPLL_CONTROL2_CH3_MDIV);
    314 
    315 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
    316 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
    317 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
    318 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
    319 }
    320 
    321 static void
    322 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
    323 {
    324 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
    325 	    USB2_CONTROL_PDIV);
    326 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
    327 	    USB2_CONTROL_NDIV_INT);
    328 
    329 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
    330 	if (usb_ref != USB2_REF_CLK) {
    331 		/*
    332 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
    333 		 * USB2_CONTROL to produce it.
    334 		 */
    335 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
    336 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
    337 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
    338 
    339 		// Allow Clocks to be modified
    340 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    341 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
    342 
    343 		// Update USB2 clock generator
    344 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    345 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
    346 
    347 		// Prevent Clock modification
    348 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    349 		    CRU_BASE + CRU_CLKSET_KEY, 0);
    350 
    351 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
    352 	}
    353 
    354 	clk->clk_usb_ref = usb_ref;
    355 }
    356 
    357 
    358 static void
    359 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
    360 {
    361 	clk->clk_ref = BCM53XX_REF_CLK;
    362 	clk->clk_sys = 8*clk->clk_ref;
    363 }
    364 
    365 /*
    366  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
    367  */
    368 static void
    369 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
    370     uint32_t pll_dividers)
    371 {
    372 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
    373 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
    374 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
    375 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
    376 
    377 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
    378 
    379 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
    380 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
    381 }
    382 
    383 /*
    384  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
    385  */
    386 static void
    387 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
    388 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
    389 {
    390 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
    391 
    392 	if (policy == CLK_POLICY_REF_CLK) {
    393 		clk->clk_cpu = clk->clk_ref;
    394 		clk->clk_apb = clk->clk_cpu;
    395 		return;
    396 	}
    397 
    398 	if (policy == CLK_POLICY_SYS_CLK) {
    399 		clk->clk_cpu = clk->clk_sys;
    400 		clk->clk_apb = clk->clk_cpu / 4;
    401 		return;
    402 	}
    403 
    404 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
    405 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
    406 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
    407 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
    408 
    409 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
    410 
    411 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
    412 	clk->clk_apb = clk->clk_cpu / 4;
    413 }
    414 
    415 struct bcm53xx_chip_state {
    416 	uint32_t bcs_lcpll_control1;
    417 	uint32_t bcs_lcpll_control2;
    418 
    419 	uint32_t bcs_genpll_control5;
    420 	uint32_t bcs_genpll_control6;
    421 	uint32_t bcs_genpll_control7;
    422 
    423 	uint32_t bcs_usb2_control;
    424 
    425 	uint32_t bcs_ddr_phy_ctl_pll_status;
    426 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
    427 
    428 	uint32_t bcs_armcore_clk_policy;
    429 	uint32_t bcs_armcore_clk_pllarma;
    430 	uint32_t bcs_armcore_clk_pllarmb;
    431 };
    432 
    433 static void
    434 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
    435 	bus_space_tag_t bst, bus_space_handle_t bsh)
    436 {
    437 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
    438 	    DMU_BASE + DMU_LCPLL_CONTROL1);
    439 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
    440 	    DMU_BASE + DMU_LCPLL_CONTROL2);
    441 
    442 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
    443 	    CRU_BASE + CRU_GENPLL_CONTROL5);
    444 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
    445 	    CRU_BASE + CRU_GENPLL_CONTROL6);
    446 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
    447 	    CRU_BASE + CRU_GENPLL_CONTROL7);
    448 
    449 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
    450 	    CRU_BASE + CRU_USB2_CONTROL);
    451 
    452 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
    453 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
    454 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
    455 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
    456 }
    457 
    458 static void
    459 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
    460 	bus_space_tag_t bst, bus_space_handle_t bsh)
    461 {
    462 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
    463 	    ARMCORE_CLK_POLICY_FREQ);
    464 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
    465 	    ARMCORE_CLK_PLLARMA);
    466 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
    467 	    ARMCORE_CLK_PLLARMB);
    468 }
    469 
    470 void
    471 bcm53xx_cpu_softc_init(struct cpu_info *ci)
    472 {
    473 	struct cpu_softc * const cpu = ci->ci_softc;
    474 
    475 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
    476 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
    477 
    478 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
    479 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
    480 
    481 	const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
    482 	    cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
    483 
    484 	cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
    485 }
    486 
    487 void
    488 bcm53xx_print_clocks(void)
    489 {
    490 #if defined(VERBOSE_INIT_ARM)
    491 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    492 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
    493 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
    494 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
    495 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
    496 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
    497 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
    498 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
    499 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
    500 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
    501 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
    502 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
    503 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
    504 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
    505 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
    506 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
    507 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
    508 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
    509 #endif
    510 }
    511 
    512 void
    513 bcm53xx_bootstrap(vaddr_t iobase)
    514 {
    515 	struct bcm53xx_chip_state bcs;
    516 	int error;
    517 
    518 #ifdef BCM53XX_CONSOLE_EARLY
    519 	com_base = iobase + CCA_UART0_BASE;
    520 	cn_tab = &bcm53xx_earlycons;
    521 #endif
    522 
    523 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
    524 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
    525 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
    526 	if (error)
    527 		panic("%s: failed to map BCM53xx %s registers: %d",
    528 		    __func__, "io", error);
    529 
    530 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
    531 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
    532 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
    533 	if (error)
    534 		panic("%s: failed to map BCM53xx %s registers: %d",
    535 		    __func__, "armcore", error);
    536 
    537 	curcpu()->ci_softc = &cpu_softc;
    538 
    539 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
    540 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
    541 
    542 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    543 
    544 	bcm53xx_clock_init(clk);
    545 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
    546 	    bcs.bcs_lcpll_control2);
    547 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
    548 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
    549 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
    550 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
    551 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
    552 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
    553 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
    554 
    555 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
    556 
    557 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
    558 	    ARMCORE_L2C_BASE);
    559 }
    560 
    561 void
    562 bcm53xx_dma_bootstrap(psize_t memsize)
    563 {
    564 	if (memsize <= 256*1024*1024) {
    565 		bcm53xx_dma_ranges[0].dr_len = memsize;
    566 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
    567 		bcm53xx_dma_tag._nranges = 1;
    568 		bcm53xx_coherent_dma_tag._nranges = 1;
    569 	} else {
    570 		/*
    571 		 * By setting up two ranges, bus_dmamem_alloc will always
    572 		 * try to allocate from range 0 first resulting in allocations
    573 		 * below 256MB which for PCI and GMAC are coherent.
    574 		 */
    575 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
    576 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
    577 	}
    578 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
    579 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    580 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    581 	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    582 #endif
    583 }
    584 
    585 #ifdef MULTIPROCESSOR
    586 void
    587 bcm53xx_cpu_hatch(struct cpu_info *ci)
    588 {
    589 	a9tmr_init_cpu_clock(ci);
    590 }
    591 #endif
    592 
    593 void
    594 bcm53xx_device_register(device_t self, void *aux)
    595 {
    596 	prop_dictionary_t dict = device_properties(self);
    597 
    598 	if (device_is_a(self, "armperiph")
    599 	    && device_is_a(device_parent(self), "mainbus")) {
    600 		/*
    601 		 * XXX KLUDGE ALERT XXX
    602 		 * The iot mainbus supplies is completely wrong since it scales
    603 		 * addresses by 2.  The simpliest remedy is to replace with our
    604 		 * bus space used for the armcore regisers (which armperiph uses).
    605 		 */
    606 		struct mainbus_attach_args * const mb = aux;
    607 		mb->mb_iot = bcm53xx_armcore_bst;
    608 		return;
    609 	}
    610 
    611 	/*
    612 	 * We need to tell the A9 Global/Watchdog Timer
    613 	 * what frequency it runs at.
    614 	 */
    615 	if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
    616 		/*
    617 		 * This clock always runs at (arm_clk div 2) and only goes
    618 		 * to timers that are part of the A9 MP core subsystem.
    619 		 */
    620                 prop_dictionary_set_uint32(dict, "frequency",
    621 		    cpu_softc.cpu_clk.clk_cpu / 2);
    622 		return;
    623 	}
    624 
    625 	if (device_is_a(self, "bcmeth")) {
    626 		const struct bcmccb_attach_args * const ccbaa = aux;
    627 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
    628 			0x00, 0x01, 0x02, 0x03, 0x04,
    629 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
    630 		};
    631 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
    632 		KASSERT(pd != NULL);
    633 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
    634 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
    635 		}
    636 		prop_object_release(pd);
    637 	}
    638 }
    639 
    640 static kmutex_t srab_lock __cacheline_aligned;
    641 
    642 void
    643 bcm53xx_srab_init(void)
    644 {
    645 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
    646 
    647 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
    648 	for (u_int port = 0; port < 8; port++) {
    649 		/* per port control: no stp */
    650 		bcm53xx_srab_write_4(port, 0x00);
    651 	}
    652 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
    653 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
    654 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
    655 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
    656 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
    657 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
    658 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
    659 }
    660 
    661 static inline void
    662 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
    663 {
    664 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
    665 		delay(10);
    666 	}
    667 }
    668 
    669 uint32_t
    670 bcm53xx_srab_read_4(u_int pageoffset)
    671 {
    672 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    673 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    674 	uint32_t rv;
    675 
    676 	mutex_spin_enter(&srab_lock);
    677 
    678 	bcm53xx_srab_busywait(bst, bsh);
    679 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    680 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    681 	bcm53xx_srab_busywait(bst, bsh);
    682 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    683 
    684 	mutex_spin_exit(&srab_lock);
    685 	return rv;
    686 }
    687 
    688 uint64_t
    689 bcm53xx_srab_read_8(u_int pageoffset)
    690 {
    691 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    692 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    693 	uint64_t rv;
    694 
    695 	mutex_spin_enter(&srab_lock);
    696 
    697 	bcm53xx_srab_busywait(bst, bsh);
    698 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    699 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    700 	bcm53xx_srab_busywait(bst, bsh);
    701 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
    702 	rv <<= 32;
    703 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    704 
    705 	mutex_spin_exit(&srab_lock);
    706 	return rv;
    707 }
    708 
    709 void
    710 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
    711 {
    712 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    713 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    714 
    715 	mutex_spin_enter(&srab_lock);
    716 
    717 	bcm53xx_srab_busywait(bst, bsh);
    718 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    719 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    720 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    721 	bcm53xx_srab_busywait(bst, bsh);
    722 
    723 	mutex_spin_exit(&srab_lock);
    724 }
    725 
    726 void
    727 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
    728 {
    729 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    730 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    731 
    732 	mutex_spin_enter(&srab_lock);
    733 
    734 	bcm53xx_srab_busywait(bst, bsh);
    735 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    736 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
    737 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    738 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    739 	bcm53xx_srab_busywait(bst, bsh);
    740 	mutex_spin_exit(&srab_lock);
    741 }
    742