Home | History | Annotate | Line # | Download | only in broadcom
bcm53xx_board.c revision 1.22
      1 /*	$NetBSD: bcm53xx_board.c,v 1.22 2014/09/14 21:06:37 skrll Exp $	*/
      2 /*-
      3  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas of 3am Software Foundry.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #include "opt_broadcom.h"
     32 #include "arml2cc.h"
     33 
     34 #define	_ARM32_BUS_DMA_PRIVATE
     35 
     36 #include <sys/cdefs.h>
     37 
     38 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.22 2014/09/14 21:06:37 skrll Exp $");
     39 
     40 #include <sys/param.h>
     41 #include <sys/bus.h>
     42 #include <sys/cpu.h>
     43 #include <sys/device.h>
     44 
     45 #include <prop/proplib.h>
     46 
     47 #include <net/if.h>
     48 #include <net/if_ether.h>
     49 
     50 #define CCA_PRIVATE
     51 #define CRU_PRIVATE
     52 #define DDR_PRIVATE
     53 #define DMU_PRIVATE
     54 #define ARMCORE_PRIVATE
     55 #define SRAB_PRIVATE
     56 
     57 #include <arm/cortex/a9tmr_var.h>
     58 #include <arm/cortex/pl310_var.h>
     59 #include <arm/mainbus/mainbus.h>
     60 
     61 #include <arm/broadcom/bcm53xx_reg.h>
     62 #include <arm/broadcom/bcm53xx_var.h>
     63 
     64 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
     65 bus_space_handle_t bcm53xx_ioreg_bsh;
     66 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
     67 bus_space_handle_t bcm53xx_armcore_bsh;
     68 
     69 static struct cpu_softc cpu_softc;
     70 
     71 struct arm32_dma_range bcm53xx_dma_ranges[] = {
     72 #ifdef BCM5301X
     73 	[0] = {
     74 		.dr_sysbase = 0x80000000,
     75 		.dr_busbase = 0x80000000,
     76 		.dr_len = 0x10000000,
     77 	}, [1] = {
     78 		.dr_sysbase = 0x90000000,
     79 		.dr_busbase = 0x90000000,
     80 	},
     81 #elif defined(BCM563XX)
     82 	[0] = {
     83 		.dr_sysbase = 0x60000000,
     84 		.dr_busbase = 0x60000000,
     85 		.dr_len = 0x20000000,
     86 	}, [1] = {
     87 		.dr_sysbase = 0x80000000,
     88 		.dr_busbase = 0x80000000,
     89 	},
     90 #endif
     91 };
     92 
     93 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
     94 	._ranges = bcm53xx_dma_ranges,
     95 	._nranges = __arraycount(bcm53xx_dma_ranges),
     96 	_BUS_DMAMAP_FUNCS,
     97 	_BUS_DMAMEM_FUNCS,
     98 	_BUS_DMATAG_FUNCS,
     99 };
    100 
    101 struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
    102 #ifdef BCM5301X
    103 	[0] = {
    104 		.dr_sysbase = 0x80000000,
    105 		.dr_busbase = 0x80000000,
    106 		.dr_len = 0x10000000,
    107 		.dr_flags = _BUS_DMAMAP_COHERENT,
    108 	}, [1] = {
    109 		.dr_sysbase = 0x90000000,
    110 		.dr_busbase = 0x90000000,
    111 	},
    112 #elif defined(BCM563XX)
    113 	[0] = {
    114 		.dr_sysbase = 0x60000000,
    115 		.dr_busbase = 0x60000000,
    116 		.dr_len = 0x20000000,
    117 		.dr_flags = _BUS_DMAMAP_COHERENT,
    118 	}, [1] = {
    119 		.dr_sysbase = 0x80000000,
    120 		.dr_busbase = 0x80000000,
    121 	},
    122 #endif
    123 };
    124 
    125 struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
    126 	._ranges = bcm53xx_coherent_dma_ranges,
    127 	._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
    128 	_BUS_DMAMAP_FUNCS,
    129 	_BUS_DMAMEM_FUNCS,
    130 	_BUS_DMATAG_FUNCS,
    131 };
    132 
    133 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    134 struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
    135 	._ranges = bcm53xx_coherent_dma_ranges,
    136 	._nranges = 1,
    137 	_BUS_DMAMAP_FUNCS,
    138 	_BUS_DMAMEM_FUNCS,
    139 	_BUS_DMATAG_FUNCS,
    140 };
    141 #endif
    142 
    143 #ifdef BCM53XX_CONSOLE_EARLY
    144 #include <dev/ic/ns16550reg.h>
    145 #include <dev/ic/comreg.h>
    146 #include <dev/cons.h>
    147 
    148 static vaddr_t com_base;
    149 
    150 static inline uint32_t
    151 uart_read(bus_size_t o)
    152 {
    153 	return *(volatile uint8_t *)(com_base + o);
    154 }
    155 
    156 static inline void
    157 uart_write(bus_size_t o, uint32_t v)
    158 {
    159 	*(volatile uint8_t *)(com_base + o) = v;
    160 }
    161 
    162 static int
    163 bcm53xx_cngetc(dev_t dv)
    164 {
    165         if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
    166 		return -1;
    167 
    168 	return uart_read(com_data) & 0xff;
    169 }
    170 
    171 static void
    172 bcm53xx_cnputc(dev_t dv, int c)
    173 {
    174 	int timo = 150000;
    175 
    176         while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
    177 		;
    178 
    179 	uart_write(com_data, c);
    180 
    181 	timo = 150000;
    182         while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
    183 		;
    184 }
    185 
    186 static struct consdev bcm53xx_earlycons = {
    187 	.cn_putc = bcm53xx_cnputc,
    188 	.cn_getc = bcm53xx_cngetc,
    189 	.cn_pollc = nullcnpollc,
    190 };
    191 #endif /* BCM53XX_CONSOLE_EARLY */
    192 
    193 psize_t
    194 bcm53xx_memprobe(void)
    195 {
    196 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    197 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    198 
    199 	/*
    200 	 * First, let's read the magic DDR registers!
    201 	 */
    202 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
    203 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
    204 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
    205 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
    206 
    207 	/*
    208 	 * Calculate chip parameters
    209 	 * */
    210 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
    211 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
    212 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
    213 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
    214 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
    215 
    216 	/*
    217 	 * For each chip select, increase the chip count if if is enabled.
    218 	 */
    219 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
    220 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
    221 	u_int chips = 0;
    222 
    223 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
    224 		chips += (cs_map & 1);
    225 	}
    226 
    227 	/* get log2(ddr width) */
    228 
    229 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
    230 
    231 	/*
    232 	 * Let's add up all the things that contribute to the size of a chip.
    233 	 */
    234 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
    235 
    236 	/*
    237 	 * Now our memory size is simply the number of chip shifted by the
    238 	 * log2(chip_size).
    239 	 */
    240 	return (psize_t) chips << chip_size_log2;
    241 }
    242 
    243 static inline uint32_t
    244 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
    245 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
    246 {
    247 	if (ndiv_frac == 0 && pdiv == 1)
    248 		return ndiv_int * clk->clk_ref;
    249 
    250 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
    251 	freq64 *= clk->clk_ref;
    252 	if (pdiv > 1)
    253 		freq64 /= pdiv;
    254 	return (uint32_t) (freq64 >> 30);
    255 }
    256 
    257 static uint32_t
    258 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
    259 {
    260 	/*
    261 	 * n is n except when n is 0 then n = mask + 1.
    262 	 */
    263 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
    264 }
    265 
    266 static void
    267 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
    268 	uint32_t control6, uint32_t control7)
    269 {
    270 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
    271 	    GENPLL_CONTROL6_PDIV);
    272 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
    273 	    GENPLL_CONTROL5_NDIV_INT);
    274 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
    275 	    GENPLL_CONTROL5_NDIV_FRAC);
    276 
    277 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    278 
    279 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
    280 	    GENPLL_CONTROL6_CH0_MDIV);
    281 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
    282 	    GENPLL_CONTROL6_CH1_MDIV);
    283 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
    284 	    GENPLL_CONTROL6_CH2_MDIV);
    285 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
    286 	    GENPLL_CONTROL7_CH3_MDIV);
    287 
    288 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
    289 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
    290 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
    291 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
    292 }
    293 
    294 static void
    295 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
    296 	uint32_t control2)
    297 {
    298 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
    299 	    LCPLL_CONTROL1_PDIV);
    300 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
    301 	    LCPLL_CONTROL1_NDIV_INT);
    302 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
    303 	    LCPLL_CONTROL1_NDIV_FRAC);
    304 
    305 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    306 
    307 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
    308 	    LCPLL_CONTROL2_CH0_MDIV);
    309 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
    310 	    LCPLL_CONTROL2_CH1_MDIV);
    311 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
    312 	    LCPLL_CONTROL2_CH2_MDIV);
    313 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
    314 	    LCPLL_CONTROL2_CH3_MDIV);
    315 
    316 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
    317 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
    318 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
    319 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
    320 }
    321 
    322 static void
    323 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
    324 {
    325 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
    326 	    USB2_CONTROL_PDIV);
    327 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
    328 	    USB2_CONTROL_NDIV_INT);
    329 
    330 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
    331 	if (usb_ref != USB2_REF_CLK) {
    332 		/*
    333 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
    334 		 * USB2_CONTROL to produce it.
    335 		 */
    336 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
    337 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
    338 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
    339 
    340 		// Allow Clocks to be modified
    341 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    342 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
    343 
    344 		// Update USB2 clock generator
    345 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    346 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
    347 
    348 		// Prevent Clock modification
    349 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    350 		    CRU_BASE + CRU_CLKSET_KEY, 0);
    351 
    352 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
    353 	}
    354 
    355 	clk->clk_usb_ref = usb_ref;
    356 }
    357 
    358 
    359 static void
    360 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
    361 {
    362 	clk->clk_ref = BCM53XX_REF_CLK;
    363 	clk->clk_sys = 8*clk->clk_ref;
    364 }
    365 
    366 /*
    367  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
    368  */
    369 static void
    370 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
    371     uint32_t pll_dividers)
    372 {
    373 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
    374 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
    375 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
    376 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
    377 
    378 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
    379 
    380 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
    381 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
    382 }
    383 
    384 /*
    385  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
    386  */
    387 static void
    388 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
    389 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
    390 {
    391 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
    392 
    393 	if (policy == CLK_POLICY_REF_CLK) {
    394 		clk->clk_cpu = clk->clk_ref;
    395 		clk->clk_apb = clk->clk_cpu;
    396 		return;
    397 	}
    398 
    399 	if (policy == CLK_POLICY_SYS_CLK) {
    400 		clk->clk_cpu = clk->clk_sys;
    401 		clk->clk_apb = clk->clk_cpu / 4;
    402 		return;
    403 	}
    404 
    405 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
    406 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
    407 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
    408 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
    409 
    410 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
    411 
    412 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
    413 	clk->clk_apb = clk->clk_cpu / 4;
    414 }
    415 
    416 struct bcm53xx_chip_state {
    417 	uint32_t bcs_lcpll_control1;
    418 	uint32_t bcs_lcpll_control2;
    419 
    420 	uint32_t bcs_genpll_control5;
    421 	uint32_t bcs_genpll_control6;
    422 	uint32_t bcs_genpll_control7;
    423 
    424 	uint32_t bcs_usb2_control;
    425 
    426 	uint32_t bcs_ddr_phy_ctl_pll_status;
    427 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
    428 
    429 	uint32_t bcs_armcore_clk_policy;
    430 	uint32_t bcs_armcore_clk_pllarma;
    431 	uint32_t bcs_armcore_clk_pllarmb;
    432 };
    433 
    434 static void
    435 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
    436 	bus_space_tag_t bst, bus_space_handle_t bsh)
    437 {
    438 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
    439 	    DMU_BASE + DMU_LCPLL_CONTROL1);
    440 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
    441 	    DMU_BASE + DMU_LCPLL_CONTROL2);
    442 
    443 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
    444 	    CRU_BASE + CRU_GENPLL_CONTROL5);
    445 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
    446 	    CRU_BASE + CRU_GENPLL_CONTROL6);
    447 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
    448 	    CRU_BASE + CRU_GENPLL_CONTROL7);
    449 
    450 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
    451 	    CRU_BASE + CRU_USB2_CONTROL);
    452 
    453 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
    454 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
    455 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
    456 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
    457 }
    458 
    459 static void
    460 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
    461 	bus_space_tag_t bst, bus_space_handle_t bsh)
    462 {
    463 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
    464 	    ARMCORE_CLK_POLICY_FREQ);
    465 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
    466 	    ARMCORE_CLK_PLLARMA);
    467 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
    468 	    ARMCORE_CLK_PLLARMB);
    469 }
    470 
    471 void
    472 bcm53xx_cpu_softc_init(struct cpu_info *ci)
    473 {
    474 	struct cpu_softc * const cpu = ci->ci_softc;
    475 
    476 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
    477 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
    478 
    479 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
    480 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
    481 
    482 	const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
    483 	    cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
    484 
    485 	cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
    486 }
    487 
    488 void
    489 bcm53xx_print_clocks(void)
    490 {
    491 #if defined(VERBOSE_INIT_ARM)
    492 	const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    493 	printf("ref clk =	%u (%#x)\n", clk->clk_ref, clk->clk_ref);
    494 	printf("sys clk =	%u (%#x)\n", clk->clk_sys, clk->clk_sys);
    495 	printf("lcpll clk =	%u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
    496 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
    497 	printf("sdio clk =	%u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
    498 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
    499 	printf("axi clk =	%u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
    500 	printf("genpll clk =	%u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
    501 	printf("mac clk =	%u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
    502 	printf("robo clk =	%u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
    503 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
    504 	printf("iproc clk =	%u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
    505 	printf("ddr clk =	%u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
    506 	printf("ddr mhz =	%u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
    507 	printf("cpu clk =	%u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
    508 	printf("apb clk =	%u (%#x)\n", clk->clk_apb, clk->clk_apb);
    509 	printf("usb ref clk =	%u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
    510 #endif
    511 }
    512 
    513 void
    514 bcm53xx_bootstrap(vaddr_t iobase)
    515 {
    516 	struct bcm53xx_chip_state bcs;
    517 	int error;
    518 
    519 #ifdef BCM53XX_CONSOLE_EARLY
    520 	com_base = iobase + CCA_UART0_BASE;
    521 	cn_tab = &bcm53xx_earlycons;
    522 #endif
    523 
    524 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
    525 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
    526 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
    527 	if (error)
    528 		panic("%s: failed to map BCM53xx %s registers: %d",
    529 		    __func__, "io", error);
    530 
    531 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
    532 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
    533 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
    534 	if (error)
    535 		panic("%s: failed to map BCM53xx %s registers: %d",
    536 		    __func__, "armcore", error);
    537 
    538 	curcpu()->ci_softc = &cpu_softc;
    539 
    540 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
    541 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
    542 
    543 	struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
    544 
    545 	bcm53xx_clock_init(clk);
    546 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
    547 	    bcs.bcs_lcpll_control2);
    548 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
    549 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
    550 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
    551 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
    552 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
    553 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
    554 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
    555 
    556 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
    557 
    558 #if NARML2CC > 0
    559 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
    560 	    ARMCORE_L2C_BASE);
    561 #endif
    562 }
    563 
    564 void
    565 bcm53xx_dma_bootstrap(psize_t memsize)
    566 {
    567 	if (memsize <= 256*1024*1024) {
    568 		bcm53xx_dma_ranges[0].dr_len = memsize;
    569 		bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
    570 		bcm53xx_dma_tag._nranges = 1;
    571 		bcm53xx_coherent_dma_tag._nranges = 1;
    572 	} else {
    573 		/*
    574 		 * By setting up two ranges, bus_dmamem_alloc will always
    575 		 * try to allocate from range 0 first resulting in allocations
    576 		 * below 256MB which for PCI and GMAC are coherent.
    577 		 */
    578 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
    579 		bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
    580 	}
    581 	KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
    582 	KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    583 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
    584 	KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
    585 #endif
    586 }
    587 
    588 #ifdef MULTIPROCESSOR
    589 void
    590 bcm53xx_cpu_hatch(struct cpu_info *ci)
    591 {
    592 	a9tmr_init_cpu_clock(ci);
    593 }
    594 #endif
    595 
    596 void
    597 bcm53xx_device_register(device_t self, void *aux)
    598 {
    599 	prop_dictionary_t dict = device_properties(self);
    600 
    601 	if (device_is_a(self, "armperiph")
    602 	    && device_is_a(device_parent(self), "mainbus")) {
    603 		/*
    604 		 * XXX KLUDGE ALERT XXX
    605 		 * The iot mainbus supplies is completely wrong since it scales
    606 		 * addresses by 2.  The simplest remedy is to replace with our
    607 		 * bus space used for the armcore regisers (which armperiph uses).
    608 		 */
    609 		struct mainbus_attach_args * const mb = aux;
    610 		mb->mb_iot = bcm53xx_armcore_bst;
    611 		return;
    612 	}
    613 
    614 	/*
    615 	 * We need to tell the A9 Global/Watchdog Timer
    616 	 * what frequency it runs at.
    617 	 */
    618 	if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
    619 		/*
    620 		 * This clock always runs at (arm_clk div 2) and only goes
    621 		 * to timers that are part of the A9 MP core subsystem.
    622 		 */
    623                 prop_dictionary_set_uint32(dict, "frequency",
    624 		    cpu_softc.cpu_clk.clk_cpu / 2);
    625 		return;
    626 	}
    627 
    628 	if (device_is_a(self, "bcmeth")) {
    629 		const struct bcmccb_attach_args * const ccbaa = aux;
    630 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
    631 			0x00, 0x01, 0x02, 0x03, 0x04,
    632 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
    633 		};
    634 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
    635 		KASSERT(pd != NULL);
    636 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
    637 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
    638 		}
    639 		prop_object_release(pd);
    640 	}
    641 }
    642 
    643 #ifdef SRAB_BASE
    644 static kmutex_t srab_lock __cacheline_aligned;
    645 
    646 void
    647 bcm53xx_srab_init(void)
    648 {
    649 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
    650 
    651 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
    652 	for (u_int port = 0; port < 8; port++) {
    653 		/* per port control: no stp */
    654 		bcm53xx_srab_write_4(port, 0x00);
    655 	}
    656 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
    657 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
    658 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
    659 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
    660 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
    661 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
    662 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
    663 }
    664 
    665 static inline void
    666 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
    667 {
    668 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
    669 		delay(10);
    670 	}
    671 }
    672 
    673 uint32_t
    674 bcm53xx_srab_read_4(u_int pageoffset)
    675 {
    676 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    677 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    678 	uint32_t rv;
    679 
    680 	mutex_spin_enter(&srab_lock);
    681 
    682 	bcm53xx_srab_busywait(bst, bsh);
    683 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    684 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    685 	bcm53xx_srab_busywait(bst, bsh);
    686 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    687 
    688 	mutex_spin_exit(&srab_lock);
    689 	return rv;
    690 }
    691 
    692 uint64_t
    693 bcm53xx_srab_read_8(u_int pageoffset)
    694 {
    695 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    696 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    697 	uint64_t rv;
    698 
    699 	mutex_spin_enter(&srab_lock);
    700 
    701 	bcm53xx_srab_busywait(bst, bsh);
    702 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    703 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    704 	bcm53xx_srab_busywait(bst, bsh);
    705 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
    706 	rv <<= 32;
    707 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    708 
    709 	mutex_spin_exit(&srab_lock);
    710 	return rv;
    711 }
    712 
    713 void
    714 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
    715 {
    716 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    717 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    718 
    719 	mutex_spin_enter(&srab_lock);
    720 
    721 	bcm53xx_srab_busywait(bst, bsh);
    722 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    723 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    724 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    725 	bcm53xx_srab_busywait(bst, bsh);
    726 
    727 	mutex_spin_exit(&srab_lock);
    728 }
    729 
    730 void
    731 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
    732 {
    733 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    734 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    735 
    736 	mutex_spin_enter(&srab_lock);
    737 
    738 	bcm53xx_srab_busywait(bst, bsh);
    739 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    740 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
    741 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    742 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    743 	bcm53xx_srab_busywait(bst, bsh);
    744 	mutex_spin_exit(&srab_lock);
    745 }
    746 #endif
    747