bcm53xx_board.c revision 1.22 1 /* $NetBSD: bcm53xx_board.c,v 1.22 2014/09/14 21:06:37 skrll Exp $ */
2 /*-
3 * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas of 3am Software Foundry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include "opt_broadcom.h"
32 #include "arml2cc.h"
33
34 #define _ARM32_BUS_DMA_PRIVATE
35
36 #include <sys/cdefs.h>
37
38 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.22 2014/09/14 21:06:37 skrll Exp $");
39
40 #include <sys/param.h>
41 #include <sys/bus.h>
42 #include <sys/cpu.h>
43 #include <sys/device.h>
44
45 #include <prop/proplib.h>
46
47 #include <net/if.h>
48 #include <net/if_ether.h>
49
50 #define CCA_PRIVATE
51 #define CRU_PRIVATE
52 #define DDR_PRIVATE
53 #define DMU_PRIVATE
54 #define ARMCORE_PRIVATE
55 #define SRAB_PRIVATE
56
57 #include <arm/cortex/a9tmr_var.h>
58 #include <arm/cortex/pl310_var.h>
59 #include <arm/mainbus/mainbus.h>
60
61 #include <arm/broadcom/bcm53xx_reg.h>
62 #include <arm/broadcom/bcm53xx_var.h>
63
64 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
65 bus_space_handle_t bcm53xx_ioreg_bsh;
66 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
67 bus_space_handle_t bcm53xx_armcore_bsh;
68
69 static struct cpu_softc cpu_softc;
70
71 struct arm32_dma_range bcm53xx_dma_ranges[] = {
72 #ifdef BCM5301X
73 [0] = {
74 .dr_sysbase = 0x80000000,
75 .dr_busbase = 0x80000000,
76 .dr_len = 0x10000000,
77 }, [1] = {
78 .dr_sysbase = 0x90000000,
79 .dr_busbase = 0x90000000,
80 },
81 #elif defined(BCM563XX)
82 [0] = {
83 .dr_sysbase = 0x60000000,
84 .dr_busbase = 0x60000000,
85 .dr_len = 0x20000000,
86 }, [1] = {
87 .dr_sysbase = 0x80000000,
88 .dr_busbase = 0x80000000,
89 },
90 #endif
91 };
92
93 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
94 ._ranges = bcm53xx_dma_ranges,
95 ._nranges = __arraycount(bcm53xx_dma_ranges),
96 _BUS_DMAMAP_FUNCS,
97 _BUS_DMAMEM_FUNCS,
98 _BUS_DMATAG_FUNCS,
99 };
100
101 struct arm32_dma_range bcm53xx_coherent_dma_ranges[] = {
102 #ifdef BCM5301X
103 [0] = {
104 .dr_sysbase = 0x80000000,
105 .dr_busbase = 0x80000000,
106 .dr_len = 0x10000000,
107 .dr_flags = _BUS_DMAMAP_COHERENT,
108 }, [1] = {
109 .dr_sysbase = 0x90000000,
110 .dr_busbase = 0x90000000,
111 },
112 #elif defined(BCM563XX)
113 [0] = {
114 .dr_sysbase = 0x60000000,
115 .dr_busbase = 0x60000000,
116 .dr_len = 0x20000000,
117 .dr_flags = _BUS_DMAMAP_COHERENT,
118 }, [1] = {
119 .dr_sysbase = 0x80000000,
120 .dr_busbase = 0x80000000,
121 },
122 #endif
123 };
124
125 struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
126 ._ranges = bcm53xx_coherent_dma_ranges,
127 ._nranges = __arraycount(bcm53xx_coherent_dma_ranges),
128 _BUS_DMAMAP_FUNCS,
129 _BUS_DMAMEM_FUNCS,
130 _BUS_DMATAG_FUNCS,
131 };
132
133 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
134 struct arm32_bus_dma_tag bcm53xx_bounce_dma_tag = {
135 ._ranges = bcm53xx_coherent_dma_ranges,
136 ._nranges = 1,
137 _BUS_DMAMAP_FUNCS,
138 _BUS_DMAMEM_FUNCS,
139 _BUS_DMATAG_FUNCS,
140 };
141 #endif
142
143 #ifdef BCM53XX_CONSOLE_EARLY
144 #include <dev/ic/ns16550reg.h>
145 #include <dev/ic/comreg.h>
146 #include <dev/cons.h>
147
148 static vaddr_t com_base;
149
150 static inline uint32_t
151 uart_read(bus_size_t o)
152 {
153 return *(volatile uint8_t *)(com_base + o);
154 }
155
156 static inline void
157 uart_write(bus_size_t o, uint32_t v)
158 {
159 *(volatile uint8_t *)(com_base + o) = v;
160 }
161
162 static int
163 bcm53xx_cngetc(dev_t dv)
164 {
165 if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
166 return -1;
167
168 return uart_read(com_data) & 0xff;
169 }
170
171 static void
172 bcm53xx_cnputc(dev_t dv, int c)
173 {
174 int timo = 150000;
175
176 while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
177 ;
178
179 uart_write(com_data, c);
180
181 timo = 150000;
182 while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
183 ;
184 }
185
186 static struct consdev bcm53xx_earlycons = {
187 .cn_putc = bcm53xx_cnputc,
188 .cn_getc = bcm53xx_cngetc,
189 .cn_pollc = nullcnpollc,
190 };
191 #endif /* BCM53XX_CONSOLE_EARLY */
192
193 psize_t
194 bcm53xx_memprobe(void)
195 {
196 bus_space_tag_t bst = bcm53xx_ioreg_bst;
197 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
198
199 /*
200 * First, let's read the magic DDR registers!
201 */
202 const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
203 const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
204 const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
205 const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
206
207 /*
208 * Calculate chip parameters
209 * */
210 const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
211 - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
212 const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
213 - __SHIFTOUT(v82, CTL_82_COL_DIFF);
214 const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
215
216 /*
217 * For each chip select, increase the chip count if if is enabled.
218 */
219 const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
220 u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
221 u_int chips = 0;
222
223 for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
224 chips += (cs_map & 1);
225 }
226
227 /* get log2(ddr width) */
228
229 const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
230
231 /*
232 * Let's add up all the things that contribute to the size of a chip.
233 */
234 const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
235
236 /*
237 * Now our memory size is simply the number of chip shifted by the
238 * log2(chip_size).
239 */
240 return (psize_t) chips << chip_size_log2;
241 }
242
243 static inline uint32_t
244 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
245 uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
246 {
247 if (ndiv_frac == 0 && pdiv == 1)
248 return ndiv_int * clk->clk_ref;
249
250 uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
251 freq64 *= clk->clk_ref;
252 if (pdiv > 1)
253 freq64 /= pdiv;
254 return (uint32_t) (freq64 >> 30);
255 }
256
257 static uint32_t
258 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
259 {
260 /*
261 * n is n except when n is 0 then n = mask + 1.
262 */
263 return ((__SHIFTOUT(value, mask) - 1) & __SHIFTOUT(mask, mask)) + 1;
264 }
265
266 static void
267 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
268 uint32_t control6, uint32_t control7)
269 {
270 const uint32_t pdiv = bcm53xx_value_wrap(control6,
271 GENPLL_CONTROL6_PDIV);
272 const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
273 GENPLL_CONTROL5_NDIV_INT);
274 const uint32_t ndiv_frac = __SHIFTOUT(control5,
275 GENPLL_CONTROL5_NDIV_FRAC);
276
277 clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
278
279 const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
280 GENPLL_CONTROL6_CH0_MDIV);
281 const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
282 GENPLL_CONTROL6_CH1_MDIV);
283 const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
284 GENPLL_CONTROL6_CH2_MDIV);
285 const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
286 GENPLL_CONTROL7_CH3_MDIV);
287
288 clk->clk_mac = clk->clk_genpll / ch0_mdiv; // GENPLL CH0
289 clk->clk_robo = clk->clk_genpll / ch1_mdiv; // GENPLL CH1
290 clk->clk_usb2 = clk->clk_genpll / ch2_mdiv; // GENPLL CH2
291 clk->clk_iproc = clk->clk_genpll / ch3_mdiv; // GENPLL CH3
292 }
293
294 static void
295 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
296 uint32_t control2)
297 {
298 const uint32_t pdiv = bcm53xx_value_wrap(control1,
299 LCPLL_CONTROL1_PDIV);
300 const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
301 LCPLL_CONTROL1_NDIV_INT);
302 const uint32_t ndiv_frac = __SHIFTOUT(control1,
303 LCPLL_CONTROL1_NDIV_FRAC);
304
305 clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
306
307 const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
308 LCPLL_CONTROL2_CH0_MDIV);
309 const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
310 LCPLL_CONTROL2_CH1_MDIV);
311 const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
312 LCPLL_CONTROL2_CH2_MDIV);
313 const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
314 LCPLL_CONTROL2_CH3_MDIV);
315
316 clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv; // LCPLL CH0
317 clk->clk_sdio = clk->clk_lcpll / ch1_mdiv; // LCPLL CH1
318 clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv; // LCPLL CH2
319 clk->clk_axi = clk->clk_lcpll / ch3_mdiv; // LCPLL CH3
320 }
321
322 static void
323 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
324 {
325 const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
326 USB2_CONTROL_PDIV);
327 const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
328 USB2_CONTROL_NDIV_INT);
329
330 uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
331 if (usb_ref != USB2_REF_CLK) {
332 /*
333 * USB Reference Clock isn't 1.92GHz. So we need to modify
334 * USB2_CONTROL to produce it.
335 */
336 uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
337 usb2_control &= ~USB2_CONTROL_NDIV_INT;
338 usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
339
340 // Allow Clocks to be modified
341 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
342 CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
343
344 // Update USB2 clock generator
345 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
346 CRU_BASE + CRU_USB2_CONTROL, usb2_control);
347
348 // Prevent Clock modification
349 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
350 CRU_BASE + CRU_CLKSET_KEY, 0);
351
352 usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
353 }
354
355 clk->clk_usb_ref = usb_ref;
356 }
357
358
359 static void
360 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
361 {
362 clk->clk_ref = BCM53XX_REF_CLK;
363 clk->clk_sys = 8*clk->clk_ref;
364 }
365
366 /*
367 * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
368 */
369 static void
370 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
371 uint32_t pll_dividers)
372 {
373 const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
374 u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
375 u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
376 u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
377
378 pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
379
380 clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
381 clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
382 }
383
384 /*
385 * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
386 */
387 static void
388 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
389 uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
390 {
391 policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
392
393 if (policy == CLK_POLICY_REF_CLK) {
394 clk->clk_cpu = clk->clk_ref;
395 clk->clk_apb = clk->clk_cpu;
396 return;
397 }
398
399 if (policy == CLK_POLICY_SYS_CLK) {
400 clk->clk_cpu = clk->clk_sys;
401 clk->clk_apb = clk->clk_cpu / 4;
402 return;
403 }
404
405 const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
406 const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
407 const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
408 // const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
409
410 const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
411
412 clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
413 clk->clk_apb = clk->clk_cpu / 4;
414 }
415
416 struct bcm53xx_chip_state {
417 uint32_t bcs_lcpll_control1;
418 uint32_t bcs_lcpll_control2;
419
420 uint32_t bcs_genpll_control5;
421 uint32_t bcs_genpll_control6;
422 uint32_t bcs_genpll_control7;
423
424 uint32_t bcs_usb2_control;
425
426 uint32_t bcs_ddr_phy_ctl_pll_status;
427 uint32_t bcs_ddr_phy_ctl_pll_dividers;
428
429 uint32_t bcs_armcore_clk_policy;
430 uint32_t bcs_armcore_clk_pllarma;
431 uint32_t bcs_armcore_clk_pllarmb;
432 };
433
434 static void
435 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
436 bus_space_tag_t bst, bus_space_handle_t bsh)
437 {
438 bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
439 DMU_BASE + DMU_LCPLL_CONTROL1);
440 bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
441 DMU_BASE + DMU_LCPLL_CONTROL2);
442
443 bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
444 CRU_BASE + CRU_GENPLL_CONTROL5);
445 bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
446 CRU_BASE + CRU_GENPLL_CONTROL6);
447 bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
448 CRU_BASE + CRU_GENPLL_CONTROL7);
449
450 bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
451 CRU_BASE + CRU_USB2_CONTROL);
452
453 bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
454 DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
455 bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
456 DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
457 }
458
459 static void
460 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
461 bus_space_tag_t bst, bus_space_handle_t bsh)
462 {
463 bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
464 ARMCORE_CLK_POLICY_FREQ);
465 bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
466 ARMCORE_CLK_PLLARMA);
467 bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
468 ARMCORE_CLK_PLLARMB);
469 }
470
471 void
472 bcm53xx_cpu_softc_init(struct cpu_info *ci)
473 {
474 struct cpu_softc * const cpu = ci->ci_softc;
475
476 cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
477 cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
478
479 cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
480 cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
481
482 const uint32_t chipid = bus_space_read_4(cpu->cpu_ioreg_bst,
483 cpu->cpu_ioreg_bsh, CCA_MISC_BASE + MISC_CHIPID);
484
485 cpu->cpu_chipid = __SHIFTOUT(chipid, CHIPID_ID);
486 }
487
488 void
489 bcm53xx_print_clocks(void)
490 {
491 #if defined(VERBOSE_INIT_ARM)
492 const struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
493 printf("ref clk = %u (%#x)\n", clk->clk_ref, clk->clk_ref);
494 printf("sys clk = %u (%#x)\n", clk->clk_sys, clk->clk_sys);
495 printf("lcpll clk = %u (%#x)\n", clk->clk_lcpll, clk->clk_lcpll);
496 printf("pcie ref clk = %u (%#x) [CH0]\n", clk->clk_pcie_ref, clk->clk_pcie_ref);
497 printf("sdio clk = %u (%#x) [CH1]\n", clk->clk_sdio, clk->clk_sdio);
498 printf("ddr ref clk = %u (%#x) [CH2]\n", clk->clk_ddr_ref, clk->clk_ddr_ref);
499 printf("axi clk = %u (%#x) [CH3]\n", clk->clk_axi, clk->clk_axi);
500 printf("genpll clk = %u (%#x)\n", clk->clk_genpll, clk->clk_genpll);
501 printf("mac clk = %u (%#x) [CH0]\n", clk->clk_mac, clk->clk_mac);
502 printf("robo clk = %u (%#x) [CH1]\n", clk->clk_robo, clk->clk_robo);
503 printf("usb2 clk = %u (%#x) [CH2]\n", clk->clk_usb2, clk->clk_usb2);
504 printf("iproc clk = %u (%#x) [CH3]\n", clk->clk_iproc, clk->clk_iproc);
505 printf("ddr clk = %u (%#x)\n", clk->clk_ddr, clk->clk_ddr);
506 printf("ddr mhz = %u (%#x)\n", clk->clk_ddr_mhz, clk->clk_ddr_mhz);
507 printf("cpu clk = %u (%#x)\n", clk->clk_cpu, clk->clk_cpu);
508 printf("apb clk = %u (%#x)\n", clk->clk_apb, clk->clk_apb);
509 printf("usb ref clk = %u (%#x)\n", clk->clk_usb_ref, clk->clk_usb_ref);
510 #endif
511 }
512
513 void
514 bcm53xx_bootstrap(vaddr_t iobase)
515 {
516 struct bcm53xx_chip_state bcs;
517 int error;
518
519 #ifdef BCM53XX_CONSOLE_EARLY
520 com_base = iobase + CCA_UART0_BASE;
521 cn_tab = &bcm53xx_earlycons;
522 #endif
523
524 bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
525 error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
526 BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
527 if (error)
528 panic("%s: failed to map BCM53xx %s registers: %d",
529 __func__, "io", error);
530
531 bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
532 error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
533 BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
534 if (error)
535 panic("%s: failed to map BCM53xx %s registers: %d",
536 __func__, "armcore", error);
537
538 curcpu()->ci_softc = &cpu_softc;
539
540 bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
541 bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
542
543 struct bcm53xx_clock_info * const clk = &cpu_softc.cpu_clk;
544
545 bcm53xx_clock_init(clk);
546 bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
547 bcs.bcs_lcpll_control2);
548 bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
549 bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
550 bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
551 bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
552 bcs.bcs_ddr_phy_ctl_pll_dividers);
553 bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
554 bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
555
556 curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
557
558 #if NARML2CC > 0
559 arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh,
560 ARMCORE_L2C_BASE);
561 #endif
562 }
563
564 void
565 bcm53xx_dma_bootstrap(psize_t memsize)
566 {
567 if (memsize <= 256*1024*1024) {
568 bcm53xx_dma_ranges[0].dr_len = memsize;
569 bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
570 bcm53xx_dma_tag._nranges = 1;
571 bcm53xx_coherent_dma_tag._nranges = 1;
572 } else {
573 /*
574 * By setting up two ranges, bus_dmamem_alloc will always
575 * try to allocate from range 0 first resulting in allocations
576 * below 256MB which for PCI and GMAC are coherent.
577 */
578 bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
579 bcm53xx_coherent_dma_ranges[1].dr_len = memsize - 0x10000000;
580 }
581 KASSERT(bcm53xx_dma_tag._ranges[0].dr_flags == 0);
582 KASSERT(bcm53xx_coherent_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
583 #ifdef _ARM32_NEED_BUS_DMA_BOUNCE
584 KASSERT(bcm53xx_bounce_dma_tag._ranges[0].dr_flags == _BUS_DMAMAP_COHERENT);
585 #endif
586 }
587
588 #ifdef MULTIPROCESSOR
589 void
590 bcm53xx_cpu_hatch(struct cpu_info *ci)
591 {
592 a9tmr_init_cpu_clock(ci);
593 }
594 #endif
595
596 void
597 bcm53xx_device_register(device_t self, void *aux)
598 {
599 prop_dictionary_t dict = device_properties(self);
600
601 if (device_is_a(self, "armperiph")
602 && device_is_a(device_parent(self), "mainbus")) {
603 /*
604 * XXX KLUDGE ALERT XXX
605 * The iot mainbus supplies is completely wrong since it scales
606 * addresses by 2. The simplest remedy is to replace with our
607 * bus space used for the armcore regisers (which armperiph uses).
608 */
609 struct mainbus_attach_args * const mb = aux;
610 mb->mb_iot = bcm53xx_armcore_bst;
611 return;
612 }
613
614 /*
615 * We need to tell the A9 Global/Watchdog Timer
616 * what frequency it runs at.
617 */
618 if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
619 /*
620 * This clock always runs at (arm_clk div 2) and only goes
621 * to timers that are part of the A9 MP core subsystem.
622 */
623 prop_dictionary_set_uint32(dict, "frequency",
624 cpu_softc.cpu_clk.clk_cpu / 2);
625 return;
626 }
627
628 if (device_is_a(self, "bcmeth")) {
629 const struct bcmccb_attach_args * const ccbaa = aux;
630 const uint8_t enaddr[ETHER_ADDR_LEN] = {
631 0x00, 0x01, 0x02, 0x03, 0x04,
632 0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
633 };
634 prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
635 KASSERT(pd != NULL);
636 if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
637 printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
638 }
639 prop_object_release(pd);
640 }
641 }
642
643 #ifdef SRAB_BASE
644 static kmutex_t srab_lock __cacheline_aligned;
645
646 void
647 bcm53xx_srab_init(void)
648 {
649 mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
650
651 bcm53xx_srab_write_4(0x0079, 0x90); // reset switch
652 for (u_int port = 0; port < 8; port++) {
653 /* per port control: no stp */
654 bcm53xx_srab_write_4(port, 0x00);
655 }
656 bcm53xx_srab_write_4(0x0008, 0x1c); // IMP port (enab UC/MC/BC)
657 bcm53xx_srab_write_4(0x000e, 0xbb); // IMP port force-link 1G
658 bcm53xx_srab_write_4(0x005d, 0x7b); // port5 force-link 1G
659 bcm53xx_srab_write_4(0x005f, 0x7b); // port7 force-link 1G
660 bcm53xx_srab_write_4(0x000b, 0x7); // management mode
661 bcm53xx_srab_write_4(0x0203, 0x0); // disable BRCM tag
662 bcm53xx_srab_write_4(0x0200, 0x80); // enable IMP=port8
663 }
664
665 static inline void
666 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
667 {
668 while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
669 delay(10);
670 }
671 }
672
673 uint32_t
674 bcm53xx_srab_read_4(u_int pageoffset)
675 {
676 bus_space_tag_t bst = bcm53xx_ioreg_bst;
677 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
678 uint32_t rv;
679
680 mutex_spin_enter(&srab_lock);
681
682 bcm53xx_srab_busywait(bst, bsh);
683 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
684 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
685 bcm53xx_srab_busywait(bst, bsh);
686 rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
687
688 mutex_spin_exit(&srab_lock);
689 return rv;
690 }
691
692 uint64_t
693 bcm53xx_srab_read_8(u_int pageoffset)
694 {
695 bus_space_tag_t bst = bcm53xx_ioreg_bst;
696 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
697 uint64_t rv;
698
699 mutex_spin_enter(&srab_lock);
700
701 bcm53xx_srab_busywait(bst, bsh);
702 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
703 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
704 bcm53xx_srab_busywait(bst, bsh);
705 rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
706 rv <<= 32;
707 rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
708
709 mutex_spin_exit(&srab_lock);
710 return rv;
711 }
712
713 void
714 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
715 {
716 bus_space_tag_t bst = bcm53xx_ioreg_bst;
717 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
718
719 mutex_spin_enter(&srab_lock);
720
721 bcm53xx_srab_busywait(bst, bsh);
722 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
723 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
724 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
725 bcm53xx_srab_busywait(bst, bsh);
726
727 mutex_spin_exit(&srab_lock);
728 }
729
730 void
731 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
732 {
733 bus_space_tag_t bst = bcm53xx_ioreg_bst;
734 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
735
736 mutex_spin_enter(&srab_lock);
737
738 bcm53xx_srab_busywait(bst, bsh);
739 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
740 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
741 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
742 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
743 bcm53xx_srab_busywait(bst, bsh);
744 mutex_spin_exit(&srab_lock);
745 }
746 #endif
747