bcm53xx_board.c revision 1.4 1 /* $NetBSD: bcm53xx_board.c,v 1.4 2012/10/03 19:18:40 matt Exp $ */
2 /*-
3 * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas of 3am Software Foundry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include "opt_broadcom.h"
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include <sys/cdefs.h>
36
37 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.4 2012/10/03 19:18:40 matt Exp $");
38
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/cpu.h>
42 #include <sys/device.h>
43
44 #include <prop/proplib.h>
45
46 #include <net/if.h>
47 #include <net/if_ether.h>
48
49 #define CRU_PRIVATE
50 #define DDR_PRIVATE
51 #define DMU_PRIVATE
52 #define ARMCORE_PRIVATE
53 #define SRAB_PRIVATE
54
55 #include <arm/cortex/a9tmr_var.h>
56 #include <arm/cortex/pl310_var.h>
57 #include <arm/mainbus/mainbus.h>
58
59 #include <arm/broadcom/bcm53xx_reg.h>
60 #include <arm/broadcom/bcm53xx_var.h>
61
62 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
63 bus_space_handle_t bcm53xx_ioreg_bsh;
64 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
65 bus_space_handle_t bcm53xx_armcore_bsh;
66
67 static struct cpu_softc cpu_softc;
68 static struct bcm53xx_clock_info clk_info;
69
70 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
71 _BUS_DMAMAP_FUNCS,
72 _BUS_DMAMEM_FUNCS,
73 _BUS_DMATAG_FUNCS,
74 };
75
76 #ifdef BCM53XX_CONSOLE_EARLY
77 #include <dev/ic/ns16550reg.h>
78 #include <dev/ic/comreg.h>
79 #include <dev/cons.h>
80
81 static vaddr_t com_base;
82
83 static inline uint32_t
84 uart_read(bus_size_t o)
85 {
86 return *(volatile uint8_t *)(com_base + o);
87 }
88
89 static inline void
90 uart_write(bus_size_t o, uint32_t v)
91 {
92 *(volatile uint8_t *)(com_base + o) = v;
93 }
94
95 static int
96 bcm53xx_cngetc(dev_t dv)
97 {
98 if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
99 return -1;
100
101 return uart_read(com_data) & 0xff;
102 }
103
104 static void
105 bcm53xx_cnputc(dev_t dv, int c)
106 {
107 int timo = 150000;
108
109 while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
110 ;
111
112 uart_write(com_data, c);
113
114 timo = 150000;
115 while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
116 ;
117 }
118
119 static struct consdev bcm53xx_earlycons = {
120 .cn_putc = bcm53xx_cnputc,
121 .cn_getc = bcm53xx_cngetc,
122 .cn_pollc = nullcnpollc,
123 };
124 #endif /* BCM53XX_CONSOLE_EARLY */
125
126 psize_t
127 bcm53xx_memprobe(void)
128 {
129 bus_space_tag_t bst = bcm53xx_ioreg_bst;
130 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
131
132 /*
133 * First, let's read the magic DDR registers!
134 */
135 const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
136 const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
137 const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
138 const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
139
140 /*
141 * Calculate chip parameters
142 * */
143 const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
144 - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
145 const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
146 - __SHIFTOUT(v82, CTL_82_COL_DIFF);
147 const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
148
149 /*
150 * For each chip select, increase the chip count if if is enabled.
151 */
152 const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
153 u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
154 u_int chips = 0;
155
156 for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
157 chips += (cs_map & 1);
158 }
159
160 /* get log2(ddr width) */
161
162 const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
163
164 /*
165 * Let's add up all the things that contribute to the size of a chip.
166 */
167 const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
168
169 /*
170 * Now our memory size is simply the number of chip shifted by the
171 * log2(chip_size).
172 */
173 return (psize_t) chips << chip_size_log2;
174 }
175
176 static inline uint32_t
177 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
178 uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
179 {
180 if (ndiv_frac == 0 && pdiv == 1)
181 return ndiv_int * clk->clk_ref;
182
183 uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
184 freq64 *= clk->clk_ref;
185 if (pdiv > 1)
186 freq64 /= pdiv;
187 return (uint32_t) (freq64 >> 30);
188 }
189
190 static uint32_t
191 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
192 {
193 /*
194 * n is n except when n is 0 then n = mask + 1.
195 */
196 return ((__SHIFTOUT(value, mask) - 1) & __SHIFTOUT(mask, mask)) + 1;
197 }
198
199 static void
200 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
201 uint32_t control6, uint32_t control7)
202 {
203 const uint32_t pdiv = bcm53xx_value_wrap(control6,
204 GENPLL_CONTROL6_PDIV);
205 const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
206 GENPLL_CONTROL5_NDIV_INT);
207 const uint32_t ndiv_frac = __SHIFTOUT(control5,
208 GENPLL_CONTROL5_NDIV_FRAC);
209
210 clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
211
212 const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
213 GENPLL_CONTROL6_CH0_MDIV);
214 const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
215 GENPLL_CONTROL6_CH1_MDIV);
216 const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
217 GENPLL_CONTROL6_CH2_MDIV);
218 const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
219 GENPLL_CONTROL7_CH3_MDIV);
220
221 clk->clk_mac = clk->clk_genpll / ch0_mdiv; // GENPLL CH0
222 clk->clk_robo = clk->clk_genpll / ch1_mdiv; // GENPLL CH1
223 clk->clk_usb2 = clk->clk_genpll / ch2_mdiv; // GENPLL CH2
224 clk->clk_iproc = clk->clk_genpll / ch3_mdiv; // GENPLL CH3
225 }
226
227 static void
228 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
229 uint32_t control2)
230 {
231 const uint32_t pdiv = bcm53xx_value_wrap(control1,
232 LCPLL_CONTROL1_PDIV);
233 const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
234 LCPLL_CONTROL1_NDIV_INT);
235 const uint32_t ndiv_frac = __SHIFTOUT(control1,
236 LCPLL_CONTROL1_NDIV_FRAC);
237
238 clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
239
240 const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
241 LCPLL_CONTROL2_CH0_MDIV);
242 const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
243 LCPLL_CONTROL2_CH1_MDIV);
244 const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
245 LCPLL_CONTROL2_CH2_MDIV);
246 const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
247 LCPLL_CONTROL2_CH3_MDIV);
248
249 clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv; // LCPLL CH0
250 clk->clk_sdio = clk->clk_lcpll / ch1_mdiv; // LCPLL CH1
251 clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv; // LCPLL CH2
252 clk->clk_axi = clk->clk_lcpll / ch3_mdiv; // LCPLL CH3
253 }
254
255 static void
256 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
257 {
258 const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
259 USB2_CONTROL_PDIV);
260 const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
261 USB2_CONTROL_NDIV_INT);
262
263 uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
264 if (usb_ref != USB2_REF_CLK) {
265 /*
266 * USB Reference Clock isn't 1.92GHz. So we need to modify
267 * USB2_CONTROL to produce it.
268 */
269 uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
270 usb2_control &= ~USB2_CONTROL_NDIV_INT;
271 usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
272
273 // Allow Clocks to be modified
274 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
275 CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
276
277 // Update USB2 clock generator
278 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
279 CRU_BASE + CRU_USB2_CONTROL, usb2_control);
280
281 // Prevent Clock modification
282 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
283 CRU_BASE + CRU_CLKSET_KEY, 0);
284
285 usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
286 }
287
288 clk->clk_usb_ref = usb_ref;
289 }
290
291
292 static void
293 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
294 {
295 clk->clk_ref = BCM53XX_REF_CLK;
296 clk->clk_sys = 8*clk->clk_ref;
297 }
298
299 /*
300 * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
301 */
302 static void
303 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
304 uint32_t pll_dividers)
305 {
306 const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
307 u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
308 u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
309 u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
310
311 pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
312
313 clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
314 clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
315 }
316
317 /*
318 * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
319 */
320 static void
321 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
322 uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
323 {
324 policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
325
326 if (policy == CLK_POLICY_REF_CLK) {
327 clk->clk_cpu = clk->clk_ref;
328 clk->clk_apb = clk->clk_cpu;
329 return;
330 }
331
332 if (policy == CLK_POLICY_SYS_CLK) {
333 clk->clk_cpu = clk->clk_sys;
334 clk->clk_apb = clk->clk_cpu / 4;
335 return;
336 }
337
338 const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
339 const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
340 const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
341 // const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
342
343 const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
344
345 clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
346 clk->clk_apb = clk->clk_cpu / 4;
347 }
348
349 struct bcm53xx_chip_state {
350 uint32_t bcs_lcpll_control1;
351 uint32_t bcs_lcpll_control2;
352
353 uint32_t bcs_genpll_control5;
354 uint32_t bcs_genpll_control6;
355 uint32_t bcs_genpll_control7;
356
357 uint32_t bcs_usb2_control;
358
359 uint32_t bcs_ddr_phy_ctl_pll_status;
360 uint32_t bcs_ddr_phy_ctl_pll_dividers;
361
362 uint32_t bcs_armcore_clk_policy;
363 uint32_t bcs_armcore_clk_pllarma;
364 uint32_t bcs_armcore_clk_pllarmb;
365 };
366
367 static void
368 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
369 bus_space_tag_t bst, bus_space_handle_t bsh)
370 {
371 bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
372 DMU_BASE + DMU_LCPLL_CONTROL1);
373 bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
374 DMU_BASE + DMU_LCPLL_CONTROL2);
375
376 bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
377 CRU_BASE + CRU_GENPLL_CONTROL5);
378 bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
379 CRU_BASE + CRU_GENPLL_CONTROL6);
380 bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
381 CRU_BASE + CRU_GENPLL_CONTROL7);
382
383 bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
384 CRU_BASE + CRU_USB2_CONTROL);
385
386 bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
387 DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
388 bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
389 DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
390 }
391
392 static void
393 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
394 bus_space_tag_t bst, bus_space_handle_t bsh)
395 {
396 bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
397 ARMCORE_CLK_POLICY_FREQ);
398 bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
399 ARMCORE_CLK_PLLARMA);
400 bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
401 ARMCORE_CLK_PLLARMB);
402 }
403
404 void
405 bcm53xx_cpu_softc_init(struct cpu_info *ci)
406 {
407 struct cpu_softc * const cpu = ci->ci_softc;
408
409 cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
410 cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
411
412 cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
413 cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
414 }
415
416 void
417 bcm53xx_print_clocks(void)
418 {
419 #if defined(VERBOSE_ARM_INIT)
420 printf("ref clk = %u (%#x)\n", clk_info.clk_ref, clk_info.clk_ref);
421 printf("sys clk = %u (%#x)\n", clk_info.clk_sys, clk_info.clk_sys);
422 printf("lcpll clk = %u (%#x)\n", clk_info.clk_lcpll, clk_info.clk_lcpll);
423 printf("pcie ref clk = %u (%#x) [CH0]\n", clk_info.clk_pcie_ref, clk_info.clk_pcie_ref);
424 printf("sdio clk = %u (%#x) [CH1]\n", clk_info.clk_sdio, clk_info.clk_sdio);
425 printf("ddr ref clk = %u (%#x) [CH2]\n", clk_info.clk_ddr_ref, clk_info.clk_ddr_ref);
426 printf("axi clk = %u (%#x) [CH3]\n", clk_info.clk_axi, clk_info.clk_axi);
427 printf("genpll clk = %u (%#x)\n", clk_info.clk_genpll, clk_info.clk_genpll);
428 printf("mac clk = %u (%#x) [CH0]\n", clk_info.clk_mac, clk_info.clk_mac);
429 printf("robo clk = %u (%#x) [CH1]\n", clk_info.clk_robo, clk_info.clk_robo);
430 printf("usb2 clk = %u (%#x) [CH2]\n", clk_info.clk_usb2, clk_info.clk_usb2);
431 printf("iproc clk = %u (%#x) [CH3]\n", clk_info.clk_iproc, clk_info.clk_iproc);
432 printf("ddr clk = %u (%#x)\n", clk_info.clk_ddr, clk_info.clk_ddr);
433 printf("ddr mhz = %u (%#x)\n", clk_info.clk_ddr_mhz, clk_info.clk_ddr_mhz);
434 printf("cpu clk = %u (%#x)\n", clk_info.clk_cpu, clk_info.clk_cpu);
435 printf("apb clk = %u (%#x)\n", clk_info.clk_apb, clk_info.clk_apb);
436 printf("usb ref clk = %u (%#x)\n", clk_info.clk_usb_ref, clk_info.clk_usb_ref);
437 #endif
438 }
439
440 void
441 bcm53xx_bootstrap(vaddr_t iobase)
442 {
443 struct bcm53xx_chip_state bcs;
444 int error;
445
446 #ifdef BCM53XX_CONSOLE_EARLY
447 com_base = iobase + CCA_UART0_BASE;
448 cn_tab = &bcm53xx_earlycons;
449 #endif
450
451 bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
452 error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
453 BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
454 if (error)
455 panic("%s: failed to map BCM53xx %s registers: %d",
456 __func__, "io", error);
457
458 bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
459 error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
460 BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
461 if (error)
462 panic("%s: failed to map BCM53xx %s registers: %d",
463 __func__, "armcore", error);
464
465 curcpu()->ci_softc = &cpu_softc;
466
467 bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
468 bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
469
470 struct bcm53xx_clock_info * const clk = &clk_info;
471
472 bcm53xx_clock_init(clk);
473 bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
474 bcs.bcs_lcpll_control2);
475 bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
476 bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
477 bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
478 bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
479 bcs.bcs_ddr_phy_ctl_pll_dividers);
480 bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
481 bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
482
483 curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
484
485 arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, ARMCORE_L2C_BASE);
486 }
487
488 #ifdef MULTIPROCESSOR
489 void
490 bcm53xx_cpu_hatch(struct cpu_info *ci)
491 {
492 a9tmr_init_cpu_clock(ci);
493 }
494 #endif
495
496 void
497 bcm53xx_device_register(device_t self, void *aux)
498 {
499 prop_dictionary_t dict = device_properties(self);
500
501 if (device_is_a(self, "armperiph")
502 && device_is_a(device_parent(self), "mainbus")) {
503 /*
504 * XXX KLUDGE ALERT XXX
505 * The iot mainbus supplies is completely wrong since it scales
506 * addresses by 2. The simpliest remedy is to replace with our
507 * bus space used for the armcore regisers (which armperiph uses).
508 */
509 struct mainbus_attach_args * const mb = aux;
510 mb->mb_iot = bcm53xx_armcore_bst;
511 return;
512 }
513
514 /*
515 * We need to tell the A9 Global/Watchdog Timer
516 * what frequency it runs at.
517 */
518 if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
519 /*
520 * This clock always runs at (arm_clk div 2) and only goes
521 * to timers that are part of the A9 MP core subsystem.
522 */
523 prop_dictionary_set_uint32(dict, "frequency",
524 clk_info.clk_cpu / 2);
525 return;
526 }
527
528 if (device_is_a(self, "bcmeth")) {
529 const struct bcmccb_attach_args * const ccbaa = aux;
530 const uint8_t enaddr[ETHER_ADDR_LEN] = {
531 0x00, 0x01, 0x02, 0x03, 0x04,
532 0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
533 };
534 prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
535 KASSERT(pd != NULL);
536 if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
537 printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
538 }
539 prop_object_release(pd);
540 }
541 }
542
543 static kmutex_t srab_lock __cacheline_aligned;
544
545 void
546 bcm53xx_srab_init(void)
547 {
548 mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
549
550 bcm53xx_srab_write_4(0x0079, 0x90); // reset switch
551 for (u_int port = 0; port < 8; port++) {
552 /* per port control: no stp */
553 bcm53xx_srab_write_4(port, 0x00);
554 }
555 bcm53xx_srab_write_4(0x0008, 0x1c); // IMP port (enab UC/MC/BC)
556 bcm53xx_srab_write_4(0x000e, 0xbb); // IMP port force-link 1G
557 bcm53xx_srab_write_4(0x005d, 0x7b); // port5 force-link 1G
558 bcm53xx_srab_write_4(0x005f, 0x7b); // port7 force-link 1G
559 bcm53xx_srab_write_4(0x000b, 0x7); // management mode
560 bcm53xx_srab_write_4(0x0203, 0x0); // disable BRCM tag
561 bcm53xx_srab_write_4(0x0200, 0x80); // enable IMP=port8
562 }
563
564 static inline void
565 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
566 {
567 while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
568 delay(10);
569 }
570 }
571
572 uint32_t
573 bcm53xx_srab_read_4(u_int pageoffset)
574 {
575 bus_space_tag_t bst = bcm53xx_ioreg_bst;
576 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
577 uint32_t rv;
578
579 mutex_spin_enter(&srab_lock);
580
581 bcm53xx_srab_busywait(bst, bsh);
582 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
583 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
584 bcm53xx_srab_busywait(bst, bsh);
585 rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
586
587 mutex_spin_exit(&srab_lock);
588 return rv;
589 }
590
591 uint64_t
592 bcm53xx_srab_read_8(u_int pageoffset)
593 {
594 bus_space_tag_t bst = bcm53xx_ioreg_bst;
595 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
596 uint64_t rv;
597
598 mutex_spin_enter(&srab_lock);
599
600 bcm53xx_srab_busywait(bst, bsh);
601 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
602 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
603 bcm53xx_srab_busywait(bst, bsh);
604 rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
605 rv <<= 32;
606 rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
607
608 mutex_spin_exit(&srab_lock);
609 return rv;
610 }
611
612 void
613 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
614 {
615 bus_space_tag_t bst = bcm53xx_ioreg_bst;
616 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
617
618 mutex_spin_enter(&srab_lock);
619
620 bcm53xx_srab_busywait(bst, bsh);
621 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
622 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
623 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
624 bcm53xx_srab_busywait(bst, bsh);
625
626 mutex_spin_exit(&srab_lock);
627 }
628
629 void
630 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
631 {
632 bus_space_tag_t bst = bcm53xx_ioreg_bst;
633 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
634
635 mutex_spin_enter(&srab_lock);
636
637 bcm53xx_srab_busywait(bst, bsh);
638 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
639 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
640 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
641 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
642 bcm53xx_srab_busywait(bst, bsh);
643 mutex_spin_exit(&srab_lock);
644 }
645