Home | History | Annotate | Line # | Download | only in broadcom
bcm53xx_board.c revision 1.5
      1 /*	$NetBSD: bcm53xx_board.c,v 1.5 2012/10/07 19:16:39 matt Exp $	*/
      2 /*-
      3  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      4  * All rights reserved.
      5  *
      6  * This code is derived from software contributed to The NetBSD Foundation
      7  * by Matt Thomas of 3am Software Foundry.
      8  *
      9  * Redistribution and use in source and binary forms, with or without
     10  * modification, are permitted provided that the following conditions
     11  * are met:
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     19  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     20  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     21  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     22  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     23  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     24  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     25  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     26  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     27  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     28  * POSSIBILITY OF SUCH DAMAGE.
     29  */
     30 
     31 #include "opt_broadcom.h"
     32 
     33 #define	_ARM32_BUS_DMA_PRIVATE
     34 
     35 #include <sys/cdefs.h>
     36 
     37 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.5 2012/10/07 19:16:39 matt Exp $");
     38 
     39 #include <sys/param.h>
     40 #include <sys/bus.h>
     41 #include <sys/cpu.h>
     42 #include <sys/device.h>
     43 
     44 #include <prop/proplib.h>
     45 
     46 #include <net/if.h>
     47 #include <net/if_ether.h>
     48 
     49 #define CRU_PRIVATE
     50 #define DDR_PRIVATE
     51 #define DMU_PRIVATE
     52 #define ARMCORE_PRIVATE
     53 #define SRAB_PRIVATE
     54 
     55 #include <arm/cortex/a9tmr_var.h>
     56 #include <arm/cortex/pl310_var.h>
     57 #include <arm/mainbus/mainbus.h>
     58 
     59 #include <arm/broadcom/bcm53xx_reg.h>
     60 #include <arm/broadcom/bcm53xx_var.h>
     61 
     62 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
     63 bus_space_handle_t bcm53xx_ioreg_bsh;
     64 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
     65 bus_space_handle_t bcm53xx_armcore_bsh;
     66 
     67 static struct cpu_softc cpu_softc;
     68 static struct bcm53xx_clock_info clk_info;
     69 
     70 struct arm32_dma_range bcm53xx_dma_ranges[2];
     71 
     72 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
     73 	_BUS_DMAMAP_FUNCS,
     74 	_BUS_DMAMEM_FUNCS,
     75 	_BUS_DMATAG_FUNCS,
     76 };
     77 
     78 #ifdef BCM53XX_CONSOLE_EARLY
     79 #include <dev/ic/ns16550reg.h>
     80 #include <dev/ic/comreg.h>
     81 #include <dev/cons.h>
     82 
     83 static vaddr_t com_base;
     84 
     85 static inline uint32_t
     86 uart_read(bus_size_t o)
     87 {
     88 	return *(volatile uint8_t *)(com_base + o);
     89 }
     90 
     91 static inline void
     92 uart_write(bus_size_t o, uint32_t v)
     93 {
     94 	*(volatile uint8_t *)(com_base + o) = v;
     95 }
     96 
     97 static int
     98 bcm53xx_cngetc(dev_t dv)
     99 {
    100         if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
    101 		return -1;
    102 
    103 	return uart_read(com_data) & 0xff;
    104 }
    105 
    106 static void
    107 bcm53xx_cnputc(dev_t dv, int c)
    108 {
    109 	int timo = 150000;
    110 
    111         while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
    112 		;
    113 
    114 	uart_write(com_data, c);
    115 
    116 	timo = 150000;
    117         while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
    118 		;
    119 }
    120 
    121 static struct consdev bcm53xx_earlycons = {
    122 	.cn_putc = bcm53xx_cnputc,
    123 	.cn_getc = bcm53xx_cngetc,
    124 	.cn_pollc = nullcnpollc,
    125 };
    126 #endif /* BCM53XX_CONSOLE_EARLY */
    127 
    128 psize_t
    129 bcm53xx_memprobe(void)
    130 {
    131 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    132 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    133 
    134 	/*
    135 	 * First, let's read the magic DDR registers!
    136 	 */
    137 	const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
    138 	const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
    139 	const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
    140 	const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
    141 
    142 	/*
    143 	 * Calculate chip parameters
    144 	 * */
    145 	const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
    146 	    - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
    147 	const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
    148 	    - __SHIFTOUT(v82, CTL_82_COL_DIFF);
    149 	const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
    150 
    151 	/*
    152 	 * For each chip select, increase the chip count if if is enabled.
    153 	 */
    154 	const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
    155 	u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
    156 	u_int chips = 0;
    157 
    158 	for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
    159 		chips += (cs_map & 1);
    160 	}
    161 
    162 	/* get log2(ddr width) */
    163 
    164 	const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
    165 
    166 	/*
    167 	 * Let's add up all the things that contribute to the size of a chip.
    168 	 */
    169 	const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
    170 
    171 	/*
    172 	 * Now our memory size is simply the number of chip shifted by the
    173 	 * log2(chip_size).
    174 	 */
    175 	return (psize_t) chips << chip_size_log2;
    176 }
    177 
    178 static inline uint32_t
    179 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
    180 	uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
    181 {
    182 	if (ndiv_frac == 0 && pdiv == 1)
    183 		return ndiv_int * clk->clk_ref;
    184 
    185 	uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
    186 	freq64 *= clk->clk_ref;
    187 	if (pdiv > 1)
    188 		freq64 /= pdiv;
    189 	return (uint32_t) (freq64 >> 30);
    190 }
    191 
    192 static uint32_t
    193 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
    194 {
    195 	/*
    196 	 * n is n except when n is 0 then n = mask + 1.
    197 	 */
    198 	return ((__SHIFTOUT(value, mask) - 1) &  __SHIFTOUT(mask, mask)) + 1;
    199 }
    200 
    201 static void
    202 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
    203 	uint32_t control6, uint32_t control7)
    204 {
    205 	const uint32_t pdiv = bcm53xx_value_wrap(control6,
    206 	    GENPLL_CONTROL6_PDIV);
    207 	const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
    208 	    GENPLL_CONTROL5_NDIV_INT);
    209 	const uint32_t ndiv_frac = __SHIFTOUT(control5,
    210 	    GENPLL_CONTROL5_NDIV_FRAC);
    211 
    212 	clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    213 
    214 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
    215 	    GENPLL_CONTROL6_CH0_MDIV);
    216 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
    217 	    GENPLL_CONTROL6_CH1_MDIV);
    218 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
    219 	    GENPLL_CONTROL6_CH2_MDIV);
    220 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
    221 	    GENPLL_CONTROL7_CH3_MDIV);
    222 
    223 	clk->clk_mac = clk->clk_genpll / ch0_mdiv;	// GENPLL CH0
    224 	clk->clk_robo = clk->clk_genpll / ch1_mdiv;	// GENPLL CH1
    225 	clk->clk_usb2 = clk->clk_genpll / ch2_mdiv;	// GENPLL CH2
    226 	clk->clk_iproc = clk->clk_genpll / ch3_mdiv;	// GENPLL CH3
    227 }
    228 
    229 static void
    230 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
    231 	uint32_t control2)
    232 {
    233 	const uint32_t pdiv = bcm53xx_value_wrap(control1,
    234 	    LCPLL_CONTROL1_PDIV);
    235 	const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
    236 	    LCPLL_CONTROL1_NDIV_INT);
    237 	const uint32_t ndiv_frac = __SHIFTOUT(control1,
    238 	    LCPLL_CONTROL1_NDIV_FRAC);
    239 
    240 	clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
    241 
    242 	const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
    243 	    LCPLL_CONTROL2_CH0_MDIV);
    244 	const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
    245 	    LCPLL_CONTROL2_CH1_MDIV);
    246 	const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
    247 	    LCPLL_CONTROL2_CH2_MDIV);
    248 	const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
    249 	    LCPLL_CONTROL2_CH3_MDIV);
    250 
    251 	clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv;	// LCPLL CH0
    252 	clk->clk_sdio = clk->clk_lcpll / ch1_mdiv;	// LCPLL CH1
    253 	clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv;	// LCPLL CH2
    254 	clk->clk_axi = clk->clk_lcpll / ch3_mdiv;	// LCPLL CH3
    255 }
    256 
    257 static void
    258 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
    259 {
    260 	const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
    261 	    USB2_CONTROL_PDIV);
    262 	const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
    263 	    USB2_CONTROL_NDIV_INT);
    264 
    265 	uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
    266 	if (usb_ref != USB2_REF_CLK) {
    267 		/*
    268 		 * USB Reference Clock isn't 1.92GHz.  So we need to modify
    269 		 * USB2_CONTROL to produce it.
    270 		 */
    271 		uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
    272 		usb2_control &= ~USB2_CONTROL_NDIV_INT;
    273 		usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
    274 
    275 		// Allow Clocks to be modified
    276 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    277 		    CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
    278 
    279 		// Update USB2 clock generator
    280 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    281 		    CRU_BASE + CRU_USB2_CONTROL, usb2_control);
    282 
    283 		// Prevent Clock modification
    284 		bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
    285 		    CRU_BASE + CRU_CLKSET_KEY, 0);
    286 
    287 		usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
    288 	}
    289 
    290 	clk->clk_usb_ref = usb_ref;
    291 }
    292 
    293 
    294 static void
    295 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
    296 {
    297 	clk->clk_ref = BCM53XX_REF_CLK;
    298 	clk->clk_sys = 8*clk->clk_ref;
    299 }
    300 
    301 /*
    302  * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
    303  */
    304 static void
    305 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
    306     uint32_t pll_dividers)
    307 {
    308 	const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
    309 	u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
    310 	u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
    311 	u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
    312 
    313 	pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
    314 
    315 	clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
    316 	clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
    317 }
    318 
    319 /*
    320  * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
    321  */
    322 static void
    323 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
    324 	uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
    325 {
    326 	policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
    327 
    328 	if (policy == CLK_POLICY_REF_CLK) {
    329 		clk->clk_cpu = clk->clk_ref;
    330 		clk->clk_apb = clk->clk_cpu;
    331 		return;
    332 	}
    333 
    334 	if (policy == CLK_POLICY_SYS_CLK) {
    335 		clk->clk_cpu = clk->clk_sys;
    336 		clk->clk_apb = clk->clk_cpu / 4;
    337 		return;
    338 	}
    339 
    340 	const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
    341 	const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
    342 	const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
    343 	// const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
    344 
    345 	const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
    346 
    347 	clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
    348 	clk->clk_apb = clk->clk_cpu / 4;
    349 }
    350 
    351 struct bcm53xx_chip_state {
    352 	uint32_t bcs_lcpll_control1;
    353 	uint32_t bcs_lcpll_control2;
    354 
    355 	uint32_t bcs_genpll_control5;
    356 	uint32_t bcs_genpll_control6;
    357 	uint32_t bcs_genpll_control7;
    358 
    359 	uint32_t bcs_usb2_control;
    360 
    361 	uint32_t bcs_ddr_phy_ctl_pll_status;
    362 	uint32_t bcs_ddr_phy_ctl_pll_dividers;
    363 
    364 	uint32_t bcs_armcore_clk_policy;
    365 	uint32_t bcs_armcore_clk_pllarma;
    366 	uint32_t bcs_armcore_clk_pllarmb;
    367 };
    368 
    369 static void
    370 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
    371 	bus_space_tag_t bst, bus_space_handle_t bsh)
    372 {
    373 	bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
    374 	    DMU_BASE + DMU_LCPLL_CONTROL1);
    375 	bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
    376 	    DMU_BASE + DMU_LCPLL_CONTROL2);
    377 
    378 	bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
    379 	    CRU_BASE + CRU_GENPLL_CONTROL5);
    380 	bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
    381 	    CRU_BASE + CRU_GENPLL_CONTROL6);
    382 	bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
    383 	    CRU_BASE + CRU_GENPLL_CONTROL7);
    384 
    385 	bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
    386 	    CRU_BASE + CRU_USB2_CONTROL);
    387 
    388 	bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
    389 	    DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
    390 	bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
    391 	    DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
    392 }
    393 
    394 static void
    395 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
    396 	bus_space_tag_t bst, bus_space_handle_t bsh)
    397 {
    398 	bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
    399 	    ARMCORE_CLK_POLICY_FREQ);
    400 	bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
    401 	    ARMCORE_CLK_PLLARMA);
    402 	bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
    403 	    ARMCORE_CLK_PLLARMB);
    404 }
    405 
    406 void
    407 bcm53xx_cpu_softc_init(struct cpu_info *ci)
    408 {
    409 	struct cpu_softc * const cpu = ci->ci_softc;
    410 
    411 	cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
    412 	cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
    413 
    414 	cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
    415 	cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
    416 }
    417 
    418 void
    419 bcm53xx_print_clocks(void)
    420 {
    421 #if defined(VERBOSE_ARM_INIT)
    422 	printf("ref clk =	%u (%#x)\n", clk_info.clk_ref, clk_info.clk_ref);
    423 	printf("sys clk =	%u (%#x)\n", clk_info.clk_sys, clk_info.clk_sys);
    424 	printf("lcpll clk =	%u (%#x)\n", clk_info.clk_lcpll, clk_info.clk_lcpll);
    425 	printf("pcie ref clk =	%u (%#x) [CH0]\n", clk_info.clk_pcie_ref, clk_info.clk_pcie_ref);
    426 	printf("sdio clk =	%u (%#x) [CH1]\n", clk_info.clk_sdio, clk_info.clk_sdio);
    427 	printf("ddr ref clk =	%u (%#x) [CH2]\n", clk_info.clk_ddr_ref, clk_info.clk_ddr_ref);
    428 	printf("axi clk =	%u (%#x) [CH3]\n", clk_info.clk_axi, clk_info.clk_axi);
    429 	printf("genpll clk =	%u (%#x)\n", clk_info.clk_genpll, clk_info.clk_genpll);
    430 	printf("mac clk =	%u (%#x) [CH0]\n", clk_info.clk_mac, clk_info.clk_mac);
    431 	printf("robo clk =	%u (%#x) [CH1]\n", clk_info.clk_robo, clk_info.clk_robo);
    432 	printf("usb2 clk =	%u (%#x) [CH2]\n", clk_info.clk_usb2, clk_info.clk_usb2);
    433 	printf("iproc clk =	%u (%#x) [CH3]\n", clk_info.clk_iproc, clk_info.clk_iproc);
    434 	printf("ddr clk =	%u (%#x)\n", clk_info.clk_ddr, clk_info.clk_ddr);
    435 	printf("ddr mhz =	%u (%#x)\n", clk_info.clk_ddr_mhz, clk_info.clk_ddr_mhz);
    436 	printf("cpu clk =	%u (%#x)\n", clk_info.clk_cpu, clk_info.clk_cpu);
    437 	printf("apb clk =	%u (%#x)\n", clk_info.clk_apb, clk_info.clk_apb);
    438 	printf("usb ref clk =	%u (%#x)\n", clk_info.clk_usb_ref, clk_info.clk_usb_ref);
    439 #endif
    440 }
    441 
    442 void
    443 bcm53xx_bootstrap(vaddr_t iobase)
    444 {
    445 	struct bcm53xx_chip_state bcs;
    446 	int error;
    447 
    448 #ifdef BCM53XX_CONSOLE_EARLY
    449 	com_base = iobase + CCA_UART0_BASE;
    450 	cn_tab = &bcm53xx_earlycons;
    451 #endif
    452 
    453 	bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
    454 	error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
    455 	    BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
    456 	if (error)
    457 		panic("%s: failed to map BCM53xx %s registers: %d",
    458 		    __func__, "io", error);
    459 
    460 	bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
    461 	error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
    462 	    BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
    463 	if (error)
    464 		panic("%s: failed to map BCM53xx %s registers: %d",
    465 		    __func__, "armcore", error);
    466 
    467 	curcpu()->ci_softc = &cpu_softc;
    468 
    469 	bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
    470 	bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
    471 
    472 	struct bcm53xx_clock_info * const clk = &clk_info;
    473 
    474 	bcm53xx_clock_init(clk);
    475 	bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
    476 	    bcs.bcs_lcpll_control2);
    477 	bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
    478 	    bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
    479 	bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
    480 	bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
    481 	    bcs.bcs_ddr_phy_ctl_pll_dividers);
    482 	bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
    483 	    bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
    484 
    485 	curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
    486 
    487 	arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, ARMCORE_L2C_BASE);
    488 }
    489 
    490 void
    491 bcm53xx_dma_bootstrap(psize_t memsize)
    492 {
    493 	if (memsize > 256*1024*1024) {
    494 		/*
    495 		 * By setting up two ranges, bus_dmamem_alloc will always
    496 		 * try to allocate from range 0 first resulting in allocations
    497 		 * below 256MB which for PCI and GMAC are coherent.
    498 		 */
    499 		bcm53xx_dma_ranges[0].dr_sysbase = 0x80000000;
    500 		bcm53xx_dma_ranges[0].dr_busbase = 0x80000000;
    501 		bcm53xx_dma_ranges[0].dr_len = 0x10000000;
    502 		bcm53xx_dma_ranges[1].dr_sysbase = 0x90000000;
    503 		bcm53xx_dma_ranges[1].dr_busbase = 0x90000000;
    504 		bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
    505 		bcm53xx_dma_tag._ranges = bcm53xx_dma_ranges;
    506 		bcm53xx_dma_tag._nranges = __arraycount(bcm53xx_dma_ranges);
    507 	}
    508 }
    509 
    510 #ifdef MULTIPROCESSOR
    511 void
    512 bcm53xx_cpu_hatch(struct cpu_info *ci)
    513 {
    514 	a9tmr_init_cpu_clock(ci);
    515 }
    516 #endif
    517 
    518 void
    519 bcm53xx_device_register(device_t self, void *aux)
    520 {
    521 	prop_dictionary_t dict = device_properties(self);
    522 
    523 	if (device_is_a(self, "armperiph")
    524 	    && device_is_a(device_parent(self), "mainbus")) {
    525 		/*
    526 		 * XXX KLUDGE ALERT XXX
    527 		 * The iot mainbus supplies is completely wrong since it scales
    528 		 * addresses by 2.  The simpliest remedy is to replace with our
    529 		 * bus space used for the armcore regisers (which armperiph uses).
    530 		 */
    531 		struct mainbus_attach_args * const mb = aux;
    532 		mb->mb_iot = bcm53xx_armcore_bst;
    533 		return;
    534 	}
    535 
    536 	/*
    537 	 * We need to tell the A9 Global/Watchdog Timer
    538 	 * what frequency it runs at.
    539 	 */
    540 	if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
    541 		/*
    542 		 * This clock always runs at (arm_clk div 2) and only goes
    543 		 * to timers that are part of the A9 MP core subsystem.
    544 		 */
    545                 prop_dictionary_set_uint32(dict, "frequency",
    546 		    clk_info.clk_cpu / 2);
    547 		return;
    548 	}
    549 
    550 	if (device_is_a(self, "bcmeth")) {
    551 		const struct bcmccb_attach_args * const ccbaa = aux;
    552 		const uint8_t enaddr[ETHER_ADDR_LEN] = {
    553 			0x00, 0x01, 0x02, 0x03, 0x04,
    554 			0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
    555 		};
    556 		prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
    557 		KASSERT(pd != NULL);
    558 		if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
    559 			printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
    560 		}
    561 		prop_object_release(pd);
    562 	}
    563 }
    564 
    565 static kmutex_t srab_lock __cacheline_aligned;
    566 
    567 void
    568 bcm53xx_srab_init(void)
    569 {
    570 	mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
    571 
    572 	bcm53xx_srab_write_4(0x0079, 0x90);	// reset switch
    573 	for (u_int port = 0; port < 8; port++) {
    574 		/* per port control: no stp */
    575 		bcm53xx_srab_write_4(port, 0x00);
    576 	}
    577 	bcm53xx_srab_write_4(0x0008, 0x1c);	// IMP port (enab UC/MC/BC)
    578 	bcm53xx_srab_write_4(0x000e, 0xbb);	// IMP port force-link 1G
    579 	bcm53xx_srab_write_4(0x005d, 0x7b);	// port5 force-link 1G
    580 	bcm53xx_srab_write_4(0x005f, 0x7b);	// port7 force-link 1G
    581 	bcm53xx_srab_write_4(0x000b, 0x7);	// management mode
    582 	bcm53xx_srab_write_4(0x0203, 0x0);	// disable BRCM tag
    583 	bcm53xx_srab_write_4(0x0200, 0x80);	// enable IMP=port8
    584 }
    585 
    586 static inline void
    587 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
    588 {
    589 	while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
    590 		delay(10);
    591 	}
    592 }
    593 
    594 uint32_t
    595 bcm53xx_srab_read_4(u_int pageoffset)
    596 {
    597 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    598 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    599 	uint32_t rv;
    600 
    601 	mutex_spin_enter(&srab_lock);
    602 
    603 	bcm53xx_srab_busywait(bst, bsh);
    604 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    605 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    606 	bcm53xx_srab_busywait(bst, bsh);
    607 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    608 
    609 	mutex_spin_exit(&srab_lock);
    610 	return rv;
    611 }
    612 
    613 uint64_t
    614 bcm53xx_srab_read_8(u_int pageoffset)
    615 {
    616 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    617 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    618 	uint64_t rv;
    619 
    620 	mutex_spin_enter(&srab_lock);
    621 
    622 	bcm53xx_srab_busywait(bst, bsh);
    623 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    624 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
    625 	bcm53xx_srab_busywait(bst, bsh);
    626 	rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
    627 	rv <<= 32;
    628 	rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
    629 
    630 	mutex_spin_exit(&srab_lock);
    631 	return rv;
    632 }
    633 
    634 void
    635 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
    636 {
    637 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    638 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    639 
    640 	mutex_spin_enter(&srab_lock);
    641 
    642 	bcm53xx_srab_busywait(bst, bsh);
    643 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    644 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    645 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    646 	bcm53xx_srab_busywait(bst, bsh);
    647 
    648 	mutex_spin_exit(&srab_lock);
    649 }
    650 
    651 void
    652 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
    653 {
    654 	bus_space_tag_t bst = bcm53xx_ioreg_bst;
    655 	bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
    656 
    657 	mutex_spin_enter(&srab_lock);
    658 
    659 	bcm53xx_srab_busywait(bst, bsh);
    660 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
    661 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
    662 	bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
    663 	    __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
    664 	bcm53xx_srab_busywait(bst, bsh);
    665 	mutex_spin_exit(&srab_lock);
    666 }
    667