bcm53xx_board.c revision 1.6 1 /* $NetBSD: bcm53xx_board.c,v 1.6 2012/10/17 20:18:55 matt Exp $ */
2 /*-
3 * Copyright (c) 2012 The NetBSD Foundation, Inc.
4 * All rights reserved.
5 *
6 * This code is derived from software contributed to The NetBSD Foundation
7 * by Matt Thomas of 3am Software Foundry.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
19 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
20 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
22 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
29 */
30
31 #include "opt_broadcom.h"
32
33 #define _ARM32_BUS_DMA_PRIVATE
34
35 #include <sys/cdefs.h>
36
37 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_board.c,v 1.6 2012/10/17 20:18:55 matt Exp $");
38
39 #include <sys/param.h>
40 #include <sys/bus.h>
41 #include <sys/cpu.h>
42 #include <sys/device.h>
43
44 #include <prop/proplib.h>
45
46 #include <net/if.h>
47 #include <net/if_ether.h>
48
49 #define CRU_PRIVATE
50 #define DDR_PRIVATE
51 #define DMU_PRIVATE
52 #define ARMCORE_PRIVATE
53 #define SRAB_PRIVATE
54
55 #include <arm/cortex/a9tmr_var.h>
56 #include <arm/cortex/pl310_var.h>
57 #include <arm/mainbus/mainbus.h>
58
59 #include <arm/broadcom/bcm53xx_reg.h>
60 #include <arm/broadcom/bcm53xx_var.h>
61
62 bus_space_tag_t bcm53xx_ioreg_bst = &bcmgen_bs_tag;
63 bus_space_handle_t bcm53xx_ioreg_bsh;
64 bus_space_tag_t bcm53xx_armcore_bst = &bcmgen_bs_tag;
65 bus_space_handle_t bcm53xx_armcore_bsh;
66
67 static struct cpu_softc cpu_softc;
68 static struct bcm53xx_clock_info clk_info;
69
70 struct arm32_dma_range bcm53xx_dma_ranges[2];
71
72 struct arm32_bus_dma_tag bcm53xx_dma_tag = {
73 _BUS_DMAMAP_FUNCS,
74 _BUS_DMAMEM_FUNCS,
75 _BUS_DMATAG_FUNCS,
76 };
77
78 struct arm32_dma_range bcm53xx_coherent_dma_ranges[2];
79
80 struct arm32_bus_dma_tag bcm53xx_coherent_dma_tag = {
81 _BUS_DMAMAP_FUNCS,
82 _BUS_DMAMEM_FUNCS,
83 _BUS_DMATAG_FUNCS,
84 };
85
86 #ifdef BCM53XX_CONSOLE_EARLY
87 #include <dev/ic/ns16550reg.h>
88 #include <dev/ic/comreg.h>
89 #include <dev/cons.h>
90
91 static vaddr_t com_base;
92
93 static inline uint32_t
94 uart_read(bus_size_t o)
95 {
96 return *(volatile uint8_t *)(com_base + o);
97 }
98
99 static inline void
100 uart_write(bus_size_t o, uint32_t v)
101 {
102 *(volatile uint8_t *)(com_base + o) = v;
103 }
104
105 static int
106 bcm53xx_cngetc(dev_t dv)
107 {
108 if ((uart_read(com_lsr) & LSR_RXRDY) == 0)
109 return -1;
110
111 return uart_read(com_data) & 0xff;
112 }
113
114 static void
115 bcm53xx_cnputc(dev_t dv, int c)
116 {
117 int timo = 150000;
118
119 while ((uart_read(com_lsr) & LSR_TXRDY) == 0 && --timo > 0)
120 ;
121
122 uart_write(com_data, c);
123
124 timo = 150000;
125 while ((uart_read(com_lsr) & LSR_TSRE) == 0 && --timo > 0)
126 ;
127 }
128
129 static struct consdev bcm53xx_earlycons = {
130 .cn_putc = bcm53xx_cnputc,
131 .cn_getc = bcm53xx_cngetc,
132 .cn_pollc = nullcnpollc,
133 };
134 #endif /* BCM53XX_CONSOLE_EARLY */
135
136 psize_t
137 bcm53xx_memprobe(void)
138 {
139 bus_space_tag_t bst = bcm53xx_ioreg_bst;
140 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
141
142 /*
143 * First, let's read the magic DDR registers!
144 */
145 const uint32_t v01 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_01);
146 const uint32_t v82 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_82);
147 const uint32_t v86 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_86);
148 const uint32_t v87 = bus_space_read_4(bst, bsh, DDR_BASE + DDR_CTL_87);
149
150 /*
151 * Calculate chip parameters
152 * */
153 const u_int rows = __SHIFTOUT(v01, CTL_01_MAX_ROW)
154 - __SHIFTOUT(v82, CTL_82_ROW_DIFF);
155 const u_int cols = __SHIFTOUT(v01, CTL_01_MAX_COL)
156 - __SHIFTOUT(v82, CTL_82_COL_DIFF);
157 const u_int banks_log2 = 3 - __SHIFTOUT(v82, CTL_82_BANK_DIFF);
158
159 /*
160 * For each chip select, increase the chip count if if is enabled.
161 */
162 const u_int max_chips = __SHIFTOUT(v01, CTL_01_MAX_CHIP_SEL);
163 u_int cs_map = __SHIFTOUT(v86, CTL_86_CS_MAP);
164 u_int chips = 0;
165
166 for (u_int i = 0; cs_map != 0 && i < max_chips; i++, cs_map >>= 1) {
167 chips += (cs_map & 1);
168 }
169
170 /* get log2(ddr width) */
171
172 const u_int ddr_width_log2 = (v87 & CTL_87_REDUC) ? 1 : 2;
173
174 /*
175 * Let's add up all the things that contribute to the size of a chip.
176 */
177 const u_int chip_size_log2 = cols + rows + banks_log2 + ddr_width_log2;
178
179 /*
180 * Now our memory size is simply the number of chip shifted by the
181 * log2(chip_size).
182 */
183 return (psize_t) chips << chip_size_log2;
184 }
185
186 static inline uint32_t
187 bcm53xx_freq_calc(struct bcm53xx_clock_info *clk,
188 uint32_t pdiv, uint32_t ndiv_int, uint32_t ndiv_frac)
189 {
190 if (ndiv_frac == 0 && pdiv == 1)
191 return ndiv_int * clk->clk_ref;
192
193 uint64_t freq64 = ((uint64_t)ndiv_int << 30) + ndiv_frac;
194 freq64 *= clk->clk_ref;
195 if (pdiv > 1)
196 freq64 /= pdiv;
197 return (uint32_t) (freq64 >> 30);
198 }
199
200 static uint32_t
201 bcm53xx_value_wrap(uint32_t value, uint32_t mask)
202 {
203 /*
204 * n is n except when n is 0 then n = mask + 1.
205 */
206 return ((__SHIFTOUT(value, mask) - 1) & __SHIFTOUT(mask, mask)) + 1;
207 }
208
209 static void
210 bcm53xx_genpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control5,
211 uint32_t control6, uint32_t control7)
212 {
213 const uint32_t pdiv = bcm53xx_value_wrap(control6,
214 GENPLL_CONTROL6_PDIV);
215 const uint32_t ndiv_int = bcm53xx_value_wrap(control5,
216 GENPLL_CONTROL5_NDIV_INT);
217 const uint32_t ndiv_frac = __SHIFTOUT(control5,
218 GENPLL_CONTROL5_NDIV_FRAC);
219
220 clk->clk_genpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
221
222 const uint32_t ch0_mdiv = bcm53xx_value_wrap(control6,
223 GENPLL_CONTROL6_CH0_MDIV);
224 const uint32_t ch1_mdiv = bcm53xx_value_wrap(control6,
225 GENPLL_CONTROL6_CH1_MDIV);
226 const uint32_t ch2_mdiv = bcm53xx_value_wrap(control6,
227 GENPLL_CONTROL6_CH2_MDIV);
228 const uint32_t ch3_mdiv = bcm53xx_value_wrap(control7,
229 GENPLL_CONTROL7_CH3_MDIV);
230
231 clk->clk_mac = clk->clk_genpll / ch0_mdiv; // GENPLL CH0
232 clk->clk_robo = clk->clk_genpll / ch1_mdiv; // GENPLL CH1
233 clk->clk_usb2 = clk->clk_genpll / ch2_mdiv; // GENPLL CH2
234 clk->clk_iproc = clk->clk_genpll / ch3_mdiv; // GENPLL CH3
235 }
236
237 static void
238 bcm53xx_lcpll_clock_init(struct bcm53xx_clock_info *clk, uint32_t control1,
239 uint32_t control2)
240 {
241 const uint32_t pdiv = bcm53xx_value_wrap(control1,
242 LCPLL_CONTROL1_PDIV);
243 const uint32_t ndiv_int = bcm53xx_value_wrap(control1,
244 LCPLL_CONTROL1_NDIV_INT);
245 const uint32_t ndiv_frac = __SHIFTOUT(control1,
246 LCPLL_CONTROL1_NDIV_FRAC);
247
248 clk->clk_lcpll = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac);
249
250 const uint32_t ch0_mdiv = bcm53xx_value_wrap(control2,
251 LCPLL_CONTROL2_CH0_MDIV);
252 const uint32_t ch1_mdiv = bcm53xx_value_wrap(control2,
253 LCPLL_CONTROL2_CH1_MDIV);
254 const uint32_t ch2_mdiv = bcm53xx_value_wrap(control2,
255 LCPLL_CONTROL2_CH2_MDIV);
256 const uint32_t ch3_mdiv = bcm53xx_value_wrap(control2,
257 LCPLL_CONTROL2_CH3_MDIV);
258
259 clk->clk_pcie_ref = clk->clk_lcpll / ch0_mdiv; // LCPLL CH0
260 clk->clk_sdio = clk->clk_lcpll / ch1_mdiv; // LCPLL CH1
261 clk->clk_ddr_ref = clk->clk_lcpll / ch2_mdiv; // LCPLL CH2
262 clk->clk_axi = clk->clk_lcpll / ch3_mdiv; // LCPLL CH3
263 }
264
265 static void
266 bcm53xx_usb_clock_init(struct bcm53xx_clock_info *clk, uint32_t usb2_control)
267 {
268 const uint32_t pdiv = bcm53xx_value_wrap(usb2_control,
269 USB2_CONTROL_PDIV);
270 const uint32_t ndiv = bcm53xx_value_wrap(usb2_control,
271 USB2_CONTROL_NDIV_INT);
272
273 uint32_t usb_ref = (clk->clk_usb2 / pdiv) * ndiv;
274 if (usb_ref != USB2_REF_CLK) {
275 /*
276 * USB Reference Clock isn't 1.92GHz. So we need to modify
277 * USB2_CONTROL to produce it.
278 */
279 uint32_t new_ndiv = (USB2_REF_CLK / clk->clk_usb2) * pdiv;
280 usb2_control &= ~USB2_CONTROL_NDIV_INT;
281 usb2_control |= __SHIFTIN(new_ndiv, USB2_CONTROL_NDIV_INT);
282
283 // Allow Clocks to be modified
284 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
285 CRU_BASE + CRU_CLKSET_KEY, CRU_CLKSET_KEY_MAGIC);
286
287 // Update USB2 clock generator
288 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
289 CRU_BASE + CRU_USB2_CONTROL, usb2_control);
290
291 // Prevent Clock modification
292 bus_space_write_4(bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh,
293 CRU_BASE + CRU_CLKSET_KEY, 0);
294
295 usb_ref = (clk->clk_usb2 / pdiv) * new_ndiv;
296 }
297
298 clk->clk_usb_ref = usb_ref;
299 }
300
301
302 static void
303 bcm53xx_clock_init(struct bcm53xx_clock_info *clk)
304 {
305 clk->clk_ref = BCM53XX_REF_CLK;
306 clk->clk_sys = 8*clk->clk_ref;
307 }
308
309 /*
310 * F(ddr) = ((1 / pdiv) * ndiv * CH2) / (post_div * 2)
311 */
312 static void
313 bcm53xx_get_ddr_freq(struct bcm53xx_clock_info *clk, uint32_t pll_status,
314 uint32_t pll_dividers)
315 {
316 const bool clocking_4x = (pll_status & PLL_STATUS_CLOCKING_4X) != 0;
317 u_int post_div = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_POST_DIV);
318 u_int pdiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_PDIV);
319 u_int ndiv = __SHIFTOUT(pll_dividers, PLL_DIVIDERS_NDIV);
320
321 pdiv = ((pdiv - (clocking_4x ? 1 : 5)) & 7) + 1;
322
323 clk->clk_ddr_mhz = __SHIFTOUT(pll_status, PLL_STATUS_MHZ);
324 clk->clk_ddr = (clk->clk_ddr_ref / pdiv) * ndiv / (2 + post_div);
325 }
326
327 /*
328 * CPU_CLK = (1 / pdiv) * (ndiv_int + (ndiv_frac / 0x40000000)) x F(ref)
329 */
330 static void
331 bcm53xx_get_cpu_freq(struct bcm53xx_clock_info *clk,
332 uint32_t pllarma, uint32_t pllarmb, uint32_t policy)
333 {
334 policy = __SHIFTOUT(policy, CLK_POLICY_FREQ_POLICY2);
335
336 if (policy == CLK_POLICY_REF_CLK) {
337 clk->clk_cpu = clk->clk_ref;
338 clk->clk_apb = clk->clk_cpu;
339 return;
340 }
341
342 if (policy == CLK_POLICY_SYS_CLK) {
343 clk->clk_cpu = clk->clk_sys;
344 clk->clk_apb = clk->clk_cpu / 4;
345 return;
346 }
347
348 const u_int pdiv = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_PDIV);
349 const u_int ndiv_int = bcm53xx_value_wrap(pllarma, CLK_PLLARMA_NDIV_INT);
350 const u_int ndiv_frac = __SHIFTOUT(pllarmb, CLK_PLLARMB_NDIV_FRAC);
351 // const u_int apb_clk_div = __SHIFTOUT(apb_clk_div, CLK_APB_DIV_VALUE)+1;
352
353 const u_int cpu_div = (policy == CLK_POLICY_ARM_PLL_CH0) ? 4 : 2;
354
355 clk->clk_cpu = bcm53xx_freq_calc(clk, pdiv, ndiv_int, ndiv_frac) / cpu_div;
356 clk->clk_apb = clk->clk_cpu / 4;
357 }
358
359 struct bcm53xx_chip_state {
360 uint32_t bcs_lcpll_control1;
361 uint32_t bcs_lcpll_control2;
362
363 uint32_t bcs_genpll_control5;
364 uint32_t bcs_genpll_control6;
365 uint32_t bcs_genpll_control7;
366
367 uint32_t bcs_usb2_control;
368
369 uint32_t bcs_ddr_phy_ctl_pll_status;
370 uint32_t bcs_ddr_phy_ctl_pll_dividers;
371
372 uint32_t bcs_armcore_clk_policy;
373 uint32_t bcs_armcore_clk_pllarma;
374 uint32_t bcs_armcore_clk_pllarmb;
375 };
376
377 static void
378 bcm53xx_get_chip_ioreg_state(struct bcm53xx_chip_state *bcs,
379 bus_space_tag_t bst, bus_space_handle_t bsh)
380 {
381 bcs->bcs_lcpll_control1 = bus_space_read_4(bst, bsh,
382 DMU_BASE + DMU_LCPLL_CONTROL1);
383 bcs->bcs_lcpll_control2 = bus_space_read_4(bst, bsh,
384 DMU_BASE + DMU_LCPLL_CONTROL2);
385
386 bcs->bcs_genpll_control5 = bus_space_read_4(bst, bsh,
387 CRU_BASE + CRU_GENPLL_CONTROL5);
388 bcs->bcs_genpll_control6 = bus_space_read_4(bst, bsh,
389 CRU_BASE + CRU_GENPLL_CONTROL6);
390 bcs->bcs_genpll_control7 = bus_space_read_4(bst, bsh,
391 CRU_BASE + CRU_GENPLL_CONTROL7);
392
393 bcs->bcs_usb2_control = bus_space_read_4(bst, bsh,
394 CRU_BASE + CRU_USB2_CONTROL);
395
396 bcs->bcs_ddr_phy_ctl_pll_status = bus_space_read_4(bst, bsh,
397 DDR_BASE + DDR_PHY_CTL_PLL_STATUS);
398 bcs->bcs_ddr_phy_ctl_pll_dividers = bus_space_read_4(bst, bsh,
399 DDR_BASE + DDR_PHY_CTL_PLL_DIVIDERS);
400 }
401
402 static void
403 bcm53xx_get_chip_armcore_state(struct bcm53xx_chip_state *bcs,
404 bus_space_tag_t bst, bus_space_handle_t bsh)
405 {
406 bcs->bcs_armcore_clk_policy = bus_space_read_4(bst, bsh,
407 ARMCORE_CLK_POLICY_FREQ);
408 bcs->bcs_armcore_clk_pllarma = bus_space_read_4(bst, bsh,
409 ARMCORE_CLK_PLLARMA);
410 bcs->bcs_armcore_clk_pllarmb = bus_space_read_4(bst, bsh,
411 ARMCORE_CLK_PLLARMB);
412 }
413
414 void
415 bcm53xx_cpu_softc_init(struct cpu_info *ci)
416 {
417 struct cpu_softc * const cpu = ci->ci_softc;
418
419 cpu->cpu_ioreg_bst = bcm53xx_ioreg_bst;
420 cpu->cpu_ioreg_bsh = bcm53xx_ioreg_bsh;
421
422 cpu->cpu_armcore_bst = bcm53xx_armcore_bst;
423 cpu->cpu_armcore_bsh = bcm53xx_armcore_bsh;
424 }
425
426 void
427 bcm53xx_print_clocks(void)
428 {
429 #if defined(VERBOSE_ARM_INIT)
430 printf("ref clk = %u (%#x)\n", clk_info.clk_ref, clk_info.clk_ref);
431 printf("sys clk = %u (%#x)\n", clk_info.clk_sys, clk_info.clk_sys);
432 printf("lcpll clk = %u (%#x)\n", clk_info.clk_lcpll, clk_info.clk_lcpll);
433 printf("pcie ref clk = %u (%#x) [CH0]\n", clk_info.clk_pcie_ref, clk_info.clk_pcie_ref);
434 printf("sdio clk = %u (%#x) [CH1]\n", clk_info.clk_sdio, clk_info.clk_sdio);
435 printf("ddr ref clk = %u (%#x) [CH2]\n", clk_info.clk_ddr_ref, clk_info.clk_ddr_ref);
436 printf("axi clk = %u (%#x) [CH3]\n", clk_info.clk_axi, clk_info.clk_axi);
437 printf("genpll clk = %u (%#x)\n", clk_info.clk_genpll, clk_info.clk_genpll);
438 printf("mac clk = %u (%#x) [CH0]\n", clk_info.clk_mac, clk_info.clk_mac);
439 printf("robo clk = %u (%#x) [CH1]\n", clk_info.clk_robo, clk_info.clk_robo);
440 printf("usb2 clk = %u (%#x) [CH2]\n", clk_info.clk_usb2, clk_info.clk_usb2);
441 printf("iproc clk = %u (%#x) [CH3]\n", clk_info.clk_iproc, clk_info.clk_iproc);
442 printf("ddr clk = %u (%#x)\n", clk_info.clk_ddr, clk_info.clk_ddr);
443 printf("ddr mhz = %u (%#x)\n", clk_info.clk_ddr_mhz, clk_info.clk_ddr_mhz);
444 printf("cpu clk = %u (%#x)\n", clk_info.clk_cpu, clk_info.clk_cpu);
445 printf("apb clk = %u (%#x)\n", clk_info.clk_apb, clk_info.clk_apb);
446 printf("usb ref clk = %u (%#x)\n", clk_info.clk_usb_ref, clk_info.clk_usb_ref);
447 #endif
448 }
449
450 void
451 bcm53xx_bootstrap(vaddr_t iobase)
452 {
453 struct bcm53xx_chip_state bcs;
454 int error;
455
456 #ifdef BCM53XX_CONSOLE_EARLY
457 com_base = iobase + CCA_UART0_BASE;
458 cn_tab = &bcm53xx_earlycons;
459 #endif
460
461 bcm53xx_ioreg_bsh = (bus_space_handle_t) iobase;
462 error = bus_space_map(bcm53xx_ioreg_bst, BCM53XX_IOREG_PBASE,
463 BCM53XX_IOREG_SIZE, 0, &bcm53xx_ioreg_bsh);
464 if (error)
465 panic("%s: failed to map BCM53xx %s registers: %d",
466 __func__, "io", error);
467
468 bcm53xx_armcore_bsh = (bus_space_handle_t) iobase + BCM53XX_IOREG_SIZE;
469 error = bus_space_map(bcm53xx_armcore_bst, BCM53XX_ARMCORE_PBASE,
470 BCM53XX_ARMCORE_SIZE, 0, &bcm53xx_armcore_bsh);
471 if (error)
472 panic("%s: failed to map BCM53xx %s registers: %d",
473 __func__, "armcore", error);
474
475 curcpu()->ci_softc = &cpu_softc;
476
477 bcm53xx_get_chip_ioreg_state(&bcs, bcm53xx_ioreg_bst, bcm53xx_ioreg_bsh);
478 bcm53xx_get_chip_armcore_state(&bcs, bcm53xx_armcore_bst, bcm53xx_armcore_bsh);
479
480 struct bcm53xx_clock_info * const clk = &clk_info;
481
482 bcm53xx_clock_init(clk);
483 bcm53xx_lcpll_clock_init(clk, bcs.bcs_lcpll_control1,
484 bcs.bcs_lcpll_control2);
485 bcm53xx_genpll_clock_init(clk, bcs.bcs_genpll_control5,
486 bcs.bcs_genpll_control6, bcs.bcs_genpll_control7);
487 bcm53xx_usb_clock_init(clk, bcs.bcs_usb2_control);
488 bcm53xx_get_ddr_freq(clk, bcs.bcs_ddr_phy_ctl_pll_status,
489 bcs.bcs_ddr_phy_ctl_pll_dividers);
490 bcm53xx_get_cpu_freq(clk, bcs.bcs_armcore_clk_pllarma,
491 bcs.bcs_armcore_clk_pllarmb, bcs.bcs_armcore_clk_policy);
492
493 curcpu()->ci_data.cpu_cc_freq = clk->clk_cpu;
494
495 arml2cc_init(bcm53xx_armcore_bst, bcm53xx_armcore_bsh, ARMCORE_L2C_BASE);
496 }
497
498 void
499 bcm53xx_dma_bootstrap(psize_t memsize)
500 {
501 if (memsize > 256*1024*1024) {
502 /*
503 * By setting up two ranges, bus_dmamem_alloc will always
504 * try to allocate from range 0 first resulting in allocations
505 * below 256MB which for PCI and GMAC are coherent.
506 */
507 bcm53xx_dma_ranges[0].dr_sysbase = 0x80000000;
508 bcm53xx_dma_ranges[0].dr_busbase = 0x80000000;
509 bcm53xx_dma_ranges[0].dr_len = 0x10000000;
510 bcm53xx_dma_ranges[1].dr_sysbase = 0x90000000;
511 bcm53xx_dma_ranges[1].dr_busbase = 0x90000000;
512 bcm53xx_dma_ranges[1].dr_len = memsize - 0x10000000;
513 bcm53xx_dma_tag._ranges = bcm53xx_dma_ranges;
514 bcm53xx_dma_tag._nranges = __arraycount(bcm53xx_dma_ranges);
515 bcm53xx_coherent_dma_ranges[0] = bcm53xx_dma_ranges[0];
516 bcm53xx_coherent_dma_ranges[0].dr_flags = _BUS_DMAMAP_COHERENT;
517 bcm53xx_coherent_dma_ranges[1] = bcm53xx_dma_ranges[1];
518 bcm53xx_coherent_dma_tag._ranges = bcm53xx_coherent_dma_ranges;
519 bcm53xx_coherent_dma_tag._nranges =
520 __arraycount(bcm53xx_coherent_dma_ranges);
521 } else {
522 bcm53xx_coherent_dma_ranges[0].dr_sysbase = 0x80000000;
523 bcm53xx_coherent_dma_ranges[0].dr_busbase = 0x80000000;
524 bcm53xx_coherent_dma_ranges[0].dr_len = memsize;
525 bcm53xx_coherent_dma_ranges[0].dr_flags = _BUS_DMAMAP_COHERENT;
526 bcm53xx_coherent_dma_tag._ranges = bcm53xx_coherent_dma_ranges;
527 bcm53xx_coherent_dma_tag._nranges = 1;
528 }
529 }
530
531 #ifdef MULTIPROCESSOR
532 void
533 bcm53xx_cpu_hatch(struct cpu_info *ci)
534 {
535 a9tmr_init_cpu_clock(ci);
536 }
537 #endif
538
539 void
540 bcm53xx_device_register(device_t self, void *aux)
541 {
542 prop_dictionary_t dict = device_properties(self);
543
544 if (device_is_a(self, "armperiph")
545 && device_is_a(device_parent(self), "mainbus")) {
546 /*
547 * XXX KLUDGE ALERT XXX
548 * The iot mainbus supplies is completely wrong since it scales
549 * addresses by 2. The simpliest remedy is to replace with our
550 * bus space used for the armcore regisers (which armperiph uses).
551 */
552 struct mainbus_attach_args * const mb = aux;
553 mb->mb_iot = bcm53xx_armcore_bst;
554 return;
555 }
556
557 /*
558 * We need to tell the A9 Global/Watchdog Timer
559 * what frequency it runs at.
560 */
561 if (device_is_a(self, "a9tmr") || device_is_a(self, "a9wdt")) {
562 /*
563 * This clock always runs at (arm_clk div 2) and only goes
564 * to timers that are part of the A9 MP core subsystem.
565 */
566 prop_dictionary_set_uint32(dict, "frequency",
567 clk_info.clk_cpu / 2);
568 return;
569 }
570
571 if (device_is_a(self, "bcmeth")) {
572 const struct bcmccb_attach_args * const ccbaa = aux;
573 const uint8_t enaddr[ETHER_ADDR_LEN] = {
574 0x00, 0x01, 0x02, 0x03, 0x04,
575 0x05 + 2 * ccbaa->ccbaa_loc.loc_port,
576 };
577 prop_data_t pd = prop_data_create_data(enaddr, ETHER_ADDR_LEN);
578 KASSERT(pd != NULL);
579 if (prop_dictionary_set(device_properties(self), "mac-address", pd) == false) {
580 printf("WARNING: Unable to set mac-address property for %s\n", device_xname(self));
581 }
582 prop_object_release(pd);
583 }
584 }
585
586 static kmutex_t srab_lock __cacheline_aligned;
587
588 void
589 bcm53xx_srab_init(void)
590 {
591 mutex_init(&srab_lock, MUTEX_DEFAULT, IPL_VM);
592
593 bcm53xx_srab_write_4(0x0079, 0x90); // reset switch
594 for (u_int port = 0; port < 8; port++) {
595 /* per port control: no stp */
596 bcm53xx_srab_write_4(port, 0x00);
597 }
598 bcm53xx_srab_write_4(0x0008, 0x1c); // IMP port (enab UC/MC/BC)
599 bcm53xx_srab_write_4(0x000e, 0xbb); // IMP port force-link 1G
600 bcm53xx_srab_write_4(0x005d, 0x7b); // port5 force-link 1G
601 bcm53xx_srab_write_4(0x005f, 0x7b); // port7 force-link 1G
602 bcm53xx_srab_write_4(0x000b, 0x7); // management mode
603 bcm53xx_srab_write_4(0x0203, 0x0); // disable BRCM tag
604 bcm53xx_srab_write_4(0x0200, 0x80); // enable IMP=port8
605 }
606
607 static inline void
608 bcm53xx_srab_busywait(bus_space_tag_t bst, bus_space_handle_t bsh)
609 {
610 while (bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT) & SRA_GORDYN) {
611 delay(10);
612 }
613 }
614
615 uint32_t
616 bcm53xx_srab_read_4(u_int pageoffset)
617 {
618 bus_space_tag_t bst = bcm53xx_ioreg_bst;
619 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
620 uint32_t rv;
621
622 mutex_spin_enter(&srab_lock);
623
624 bcm53xx_srab_busywait(bst, bsh);
625 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
626 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
627 bcm53xx_srab_busywait(bst, bsh);
628 rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
629
630 mutex_spin_exit(&srab_lock);
631 return rv;
632 }
633
634 uint64_t
635 bcm53xx_srab_read_8(u_int pageoffset)
636 {
637 bus_space_tag_t bst = bcm53xx_ioreg_bst;
638 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
639 uint64_t rv;
640
641 mutex_spin_enter(&srab_lock);
642
643 bcm53xx_srab_busywait(bst, bsh);
644 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
645 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_GORDYN);
646 bcm53xx_srab_busywait(bst, bsh);
647 rv = bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDH);
648 rv <<= 32;
649 rv |= bus_space_read_4(bst, bsh, SRAB_BASE + SRAB_RDL);
650
651 mutex_spin_exit(&srab_lock);
652 return rv;
653 }
654
655 void
656 bcm53xx_srab_write_4(u_int pageoffset, uint32_t val)
657 {
658 bus_space_tag_t bst = bcm53xx_ioreg_bst;
659 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
660
661 mutex_spin_enter(&srab_lock);
662
663 bcm53xx_srab_busywait(bst, bsh);
664 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
665 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
666 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
667 bcm53xx_srab_busywait(bst, bsh);
668
669 mutex_spin_exit(&srab_lock);
670 }
671
672 void
673 bcm53xx_srab_write_8(u_int pageoffset, uint64_t val)
674 {
675 bus_space_tag_t bst = bcm53xx_ioreg_bst;
676 bus_space_handle_t bsh = bcm53xx_ioreg_bsh;
677
678 mutex_spin_enter(&srab_lock);
679
680 bcm53xx_srab_busywait(bst, bsh);
681 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDL, val);
682 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_WDH, val >> 32);
683 bus_space_write_4(bst, bsh, SRAB_BASE + SRAB_CMDSTAT,
684 __SHIFTIN(pageoffset, SRA_PAGEOFFSET) | SRA_WRITE | SRA_GORDYN);
685 bcm53xx_srab_busywait(bst, bsh);
686 mutex_spin_exit(&srab_lock);
687 }
688