Home | History | Annotate | Line # | Download | only in broadcom
bcm53xx_eth.c revision 1.26
      1   1.1  matt /*-
      2   1.1  matt  * Copyright (c) 2012 The NetBSD Foundation, Inc.
      3   1.1  matt  * All rights reserved.
      4   1.1  matt  *
      5   1.1  matt  * This code is derived from software contributed to The NetBSD Foundation
      6   1.1  matt  * by Matt Thomas of 3am Software Foundry.
      7   1.1  matt  *
      8   1.1  matt  * Redistribution and use in source and binary forms, with or without
      9   1.1  matt  * modification, are permitted provided that the following conditions
     10   1.1  matt  * are met:
     11   1.1  matt  * 1. Redistributions of source code must retain the above copyright
     12   1.1  matt  *    notice, this list of conditions and the following disclaimer.
     13   1.1  matt  * 2. Redistributions in binary form must reproduce the above copyright
     14   1.1  matt  *    notice, this list of conditions and the following disclaimer in the
     15   1.1  matt  *    documentation and/or other materials provided with the distribution.
     16   1.1  matt  *
     17   1.1  matt  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     18   1.1  matt  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     19   1.1  matt  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     20   1.1  matt  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     21   1.1  matt  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22   1.1  matt  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23   1.1  matt  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24   1.1  matt  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25   1.1  matt  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26   1.1  matt  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27   1.1  matt  * POSSIBILITY OF SUCH DAMAGE.
     28   1.1  matt  */
     29   1.1  matt 
     30  1.10  matt #define _ARM32_BUS_DMA_PRIVATE
     31   1.1  matt #define GMAC_PRIVATE
     32   1.1  matt 
     33   1.1  matt #include "locators.h"
     34  1.18  matt #include "opt_broadcom.h"
     35   1.1  matt 
     36   1.1  matt #include <sys/cdefs.h>
     37   1.1  matt 
     38  1.26  matt __KERNEL_RCSID(1, "$NetBSD: bcm53xx_eth.c,v 1.26 2014/02/23 21:19:06 matt Exp $");
     39   1.1  matt 
     40   1.1  matt #include <sys/param.h>
     41   1.2  matt #include <sys/atomic.h>
     42   1.1  matt #include <sys/bus.h>
     43   1.1  matt #include <sys/device.h>
     44   1.2  matt #include <sys/ioctl.h>
     45   1.1  matt #include <sys/intr.h>
     46   1.2  matt #include <sys/kmem.h>
     47   1.1  matt #include <sys/mutex.h>
     48   1.2  matt #include <sys/socket.h>
     49   1.1  matt #include <sys/systm.h>
     50   1.8  matt #include <sys/workqueue.h>
     51   1.1  matt 
     52   1.1  matt #include <net/if.h>
     53   1.1  matt #include <net/if_ether.h>
     54   1.1  matt #include <net/if_media.h>
     55   1.1  matt 
     56   1.2  matt #include <net/if_dl.h>
     57   1.2  matt 
     58   1.2  matt #include <net/bpf.h>
     59   1.2  matt 
     60   1.1  matt #include <dev/mii/miivar.h>
     61   1.1  matt 
     62  1.26  matt #include <arm/locore.h>
     63  1.26  matt 
     64   1.1  matt #include <arm/broadcom/bcm53xx_reg.h>
     65   1.1  matt #include <arm/broadcom/bcm53xx_var.h>
     66   1.1  matt 
     67  1.16  matt //#define BCMETH_MPSAFE
     68  1.16  matt 
     69  1.18  matt #ifdef BCMETH_COUNTERS
     70  1.18  matt #define	BCMETH_EVCNT_ADD(a,b)	((void)((a).ev_count += (b)))
     71  1.18  matt #else
     72  1.18  matt #define	BCMETH_EVCNT_ADD(a,b)	do { } while (/*CONSTCOND*/0)
     73  1.18  matt #endif
     74  1.18  matt #define	BCMETH_EVCNT_INCR(a)	BCMETH_EVCNT_ADD((a), 1)
     75  1.18  matt 
     76  1.10  matt #define	BCMETH_MAXTXMBUFS	128
     77   1.2  matt #define	BCMETH_NTXSEGS		30
     78   1.2  matt #define	BCMETH_MAXRXMBUFS	255
     79   1.8  matt #define	BCMETH_MINRXMBUFS	64
     80   1.2  matt #define	BCMETH_NRXSEGS		1
     81   1.8  matt #define	BCMETH_RINGSIZE		PAGE_SIZE
     82   1.2  matt 
     83  1.19  matt #if 1
     84  1.10  matt #define	BCMETH_RCVMAGIC		0xfeedface
     85  1.16  matt #endif
     86  1.10  matt 
     87   1.1  matt static int bcmeth_ccb_match(device_t, cfdata_t, void *);
     88   1.1  matt static void bcmeth_ccb_attach(device_t, device_t, void *);
     89   1.1  matt 
     90   1.2  matt struct bcmeth_txqueue {
     91   1.2  matt 	bus_dmamap_t txq_descmap;
     92   1.2  matt 	struct gmac_txdb *txq_consumer;
     93   1.2  matt 	struct gmac_txdb *txq_producer;
     94   1.2  matt 	struct gmac_txdb *txq_first;
     95   1.2  matt 	struct gmac_txdb *txq_last;
     96   1.2  matt 	struct ifqueue txq_mbufs;
     97   1.2  matt 	struct mbuf *txq_next;
     98   1.2  matt 	size_t txq_free;
     99   1.2  matt 	size_t txq_threshold;
    100   1.2  matt 	size_t txq_lastintr;
    101   1.2  matt 	bus_size_t txq_reg_xmtaddrlo;
    102   1.2  matt 	bus_size_t txq_reg_xmtptr;
    103   1.2  matt 	bus_size_t txq_reg_xmtctl;
    104   1.2  matt 	bus_size_t txq_reg_xmtsts0;
    105  1.10  matt 	bus_size_t txq_reg_xmtsts1;
    106   1.2  matt 	bus_dma_segment_t txq_descmap_seg;
    107   1.2  matt };
    108   1.2  matt 
    109   1.2  matt struct bcmeth_rxqueue {
    110   1.2  matt 	bus_dmamap_t rxq_descmap;
    111   1.2  matt 	struct gmac_rxdb *rxq_consumer;
    112   1.2  matt 	struct gmac_rxdb *rxq_producer;
    113   1.2  matt 	struct gmac_rxdb *rxq_first;
    114   1.2  matt 	struct gmac_rxdb *rxq_last;
    115   1.2  matt 	struct mbuf *rxq_mhead;
    116   1.2  matt 	struct mbuf **rxq_mtail;
    117   1.2  matt 	struct mbuf *rxq_mconsumer;
    118   1.2  matt 	size_t rxq_inuse;
    119   1.2  matt 	size_t rxq_threshold;
    120   1.2  matt 	bus_size_t rxq_reg_rcvaddrlo;
    121   1.2  matt 	bus_size_t rxq_reg_rcvptr;
    122   1.2  matt 	bus_size_t rxq_reg_rcvctl;
    123   1.2  matt 	bus_size_t rxq_reg_rcvsts0;
    124  1.10  matt 	bus_size_t rxq_reg_rcvsts1;
    125   1.2  matt 	bus_dma_segment_t rxq_descmap_seg;
    126   1.2  matt };
    127   1.2  matt 
    128   1.2  matt struct bcmeth_mapcache {
    129   1.2  matt 	u_int dmc_nmaps;
    130   1.2  matt 	u_int dmc_maxseg;
    131   1.2  matt 	u_int dmc_maxmaps;
    132   1.2  matt 	u_int dmc_maxmapsize;
    133   1.2  matt 	bus_dmamap_t dmc_maps[0];
    134   1.2  matt };
    135   1.2  matt 
    136   1.1  matt struct bcmeth_softc {
    137   1.1  matt 	device_t sc_dev;
    138   1.1  matt 	bus_space_tag_t sc_bst;
    139   1.1  matt 	bus_space_handle_t sc_bsh;
    140   1.1  matt 	bus_dma_tag_t sc_dmat;
    141   1.1  matt 	kmutex_t *sc_lock;
    142   1.1  matt 	kmutex_t *sc_hwlock;
    143   1.1  matt 	struct ethercom sc_ec;
    144   1.2  matt #define	sc_if		sc_ec.ec_if
    145   1.2  matt 	struct ifmedia sc_media;
    146   1.2  matt 	void *sc_soft_ih;
    147   1.1  matt 	void *sc_ih;
    148   1.2  matt 
    149   1.2  matt 	struct bcmeth_rxqueue sc_rxq;
    150   1.2  matt 	struct bcmeth_txqueue sc_txq;
    151   1.2  matt 
    152  1.19  matt 	size_t sc_rcvoffset;
    153  1.21  matt 	uint32_t sc_macaddr[2];
    154   1.2  matt 	uint32_t sc_maxfrm;
    155   1.2  matt 	uint32_t sc_cmdcfg;
    156  1.15  matt 	uint32_t sc_intmask;
    157   1.8  matt 	uint32_t sc_rcvlazy;
    158   1.2  matt 	volatile uint32_t sc_soft_flags;
    159   1.2  matt #define	SOFT_RXINTR		0x01
    160   1.8  matt #define	SOFT_TXINTR		0x02
    161   1.2  matt 
    162  1.18  matt #ifdef BCMETH_COUNTERS
    163   1.2  matt 	struct evcnt sc_ev_intr;
    164   1.2  matt 	struct evcnt sc_ev_soft_intr;
    165  1.10  matt 	struct evcnt sc_ev_work;
    166   1.2  matt 	struct evcnt sc_ev_tx_stall;
    167  1.10  matt 	struct evcnt sc_ev_rx_badmagic_lo;
    168  1.10  matt 	struct evcnt sc_ev_rx_badmagic_hi;
    169  1.18  matt #endif
    170   1.2  matt 
    171   1.2  matt 	struct ifqueue sc_rx_bufcache;
    172   1.2  matt 	struct bcmeth_mapcache *sc_rx_mapcache;
    173   1.2  matt 	struct bcmeth_mapcache *sc_tx_mapcache;
    174   1.2  matt 
    175   1.8  matt 	struct workqueue *sc_workq;
    176   1.8  matt 	struct work sc_work;
    177   1.8  matt 
    178   1.8  matt 	volatile uint32_t sc_work_flags;
    179   1.8  matt #define	WORK_RXINTR		0x01
    180   1.8  matt #define	WORK_RXUNDERFLOW	0x02
    181   1.8  matt #define	WORK_REINIT		0x04
    182   1.8  matt 
    183   1.2  matt 	uint8_t sc_enaddr[ETHER_ADDR_LEN];
    184   1.1  matt };
    185   1.1  matt 
    186   1.2  matt static void bcmeth_ifstart(struct ifnet *);
    187   1.2  matt static void bcmeth_ifwatchdog(struct ifnet *);
    188   1.2  matt static int bcmeth_ifinit(struct ifnet *);
    189   1.2  matt static void bcmeth_ifstop(struct ifnet *, int);
    190   1.2  matt static int bcmeth_ifioctl(struct ifnet *, u_long, void *);
    191   1.2  matt 
    192   1.2  matt static int bcmeth_mapcache_create(struct bcmeth_softc *,
    193   1.2  matt     struct bcmeth_mapcache **, size_t, size_t, size_t);
    194   1.2  matt static void bcmeth_mapcache_destroy(struct bcmeth_softc *,
    195   1.2  matt     struct bcmeth_mapcache *);
    196   1.2  matt static bus_dmamap_t bcmeth_mapcache_get(struct bcmeth_softc *,
    197   1.2  matt     struct bcmeth_mapcache *);
    198   1.2  matt static void bcmeth_mapcache_put(struct bcmeth_softc *,
    199   1.2  matt     struct bcmeth_mapcache *, bus_dmamap_t);
    200   1.2  matt 
    201   1.2  matt static int bcmeth_txq_attach(struct bcmeth_softc *,
    202   1.2  matt     struct bcmeth_txqueue *, u_int);
    203   1.2  matt static void bcmeth_txq_purge(struct bcmeth_softc *,
    204   1.2  matt     struct bcmeth_txqueue *);
    205   1.2  matt static void bcmeth_txq_reset(struct bcmeth_softc *,
    206   1.2  matt     struct bcmeth_txqueue *);
    207   1.2  matt static bool bcmeth_txq_consume(struct bcmeth_softc *,
    208   1.2  matt     struct bcmeth_txqueue *);
    209   1.2  matt static bool bcmeth_txq_produce(struct bcmeth_softc *,
    210   1.2  matt     struct bcmeth_txqueue *, struct mbuf *m);
    211   1.2  matt static bool bcmeth_txq_active_p(struct bcmeth_softc *,
    212   1.2  matt     struct bcmeth_txqueue *);
    213   1.2  matt 
    214   1.2  matt static int bcmeth_rxq_attach(struct bcmeth_softc *,
    215   1.2  matt     struct bcmeth_rxqueue *, u_int);
    216   1.2  matt static bool bcmeth_rxq_produce(struct bcmeth_softc *,
    217   1.2  matt     struct bcmeth_rxqueue *);
    218   1.2  matt static void bcmeth_rxq_purge(struct bcmeth_softc *,
    219   1.2  matt     struct bcmeth_rxqueue *, bool);
    220   1.2  matt static void bcmeth_rxq_reset(struct bcmeth_softc *,
    221   1.2  matt     struct bcmeth_rxqueue *);
    222   1.2  matt 
    223   1.1  matt static int bcmeth_intr(void *);
    224  1.16  matt #ifdef BCMETH_MPSAFETX
    225  1.16  matt static void bcmeth_soft_txintr(struct bcmeth_softc *);
    226  1.16  matt #endif
    227   1.2  matt static void bcmeth_soft_intr(void *);
    228   1.8  matt static void bcmeth_worker(struct work *, void *);
    229   1.2  matt 
    230   1.2  matt static int bcmeth_mediachange(struct ifnet *);
    231   1.2  matt static void bcmeth_mediastatus(struct ifnet *, struct ifmediareq *);
    232   1.1  matt 
    233   1.1  matt static inline uint32_t
    234   1.1  matt bcmeth_read_4(struct bcmeth_softc *sc, bus_size_t o)
    235   1.1  matt {
    236   1.1  matt 	return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
    237   1.1  matt }
    238   1.1  matt 
    239   1.1  matt static inline void
    240   1.1  matt bcmeth_write_4(struct bcmeth_softc *sc, bus_size_t o, uint32_t v)
    241   1.1  matt {
    242   1.1  matt 	bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v);
    243   1.1  matt }
    244   1.1  matt 
    245   1.1  matt CFATTACH_DECL_NEW(bcmeth_ccb, sizeof(struct bcmeth_softc),
    246   1.1  matt 	bcmeth_ccb_match, bcmeth_ccb_attach, NULL, NULL);
    247   1.1  matt 
    248   1.1  matt static int
    249   1.1  matt bcmeth_ccb_match(device_t parent, cfdata_t cf, void *aux)
    250   1.1  matt {
    251   1.1  matt 	struct bcmccb_attach_args * const ccbaa = aux;
    252   1.1  matt 	const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
    253   1.1  matt 
    254   1.1  matt 	if (strcmp(cf->cf_name, loc->loc_name))
    255   1.1  matt 		return 0;
    256   1.1  matt 
    257   1.1  matt #ifdef DIAGNOSTIC
    258   1.1  matt 	const int port = cf->cf_loc[BCMCCBCF_PORT];
    259   1.1  matt #endif
    260   1.1  matt 	KASSERT(port == BCMCCBCF_PORT_DEFAULT || port == loc->loc_port);
    261   1.1  matt 
    262   1.1  matt 	return 1;
    263   1.1  matt }
    264   1.1  matt 
    265   1.1  matt static void
    266   1.1  matt bcmeth_ccb_attach(device_t parent, device_t self, void *aux)
    267   1.1  matt {
    268   1.1  matt 	struct bcmeth_softc * const sc = device_private(self);
    269   1.2  matt 	struct ethercom * const ec = &sc->sc_ec;
    270   1.2  matt 	struct ifnet * const ifp = &ec->ec_if;
    271   1.1  matt 	struct bcmccb_attach_args * const ccbaa = aux;
    272   1.1  matt 	const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
    273   1.2  matt 	const char * const xname = device_xname(self);
    274   1.2  matt 	prop_dictionary_t dict = device_properties(self);
    275   1.2  matt 	int error;
    276   1.1  matt 
    277   1.1  matt 	sc->sc_bst = ccbaa->ccbaa_ccb_bst;
    278   1.1  matt 	sc->sc_dmat = ccbaa->ccbaa_dmat;
    279   1.1  matt 	bus_space_subregion(sc->sc_bst, ccbaa->ccbaa_ccb_bsh,
    280   1.1  matt 	    loc->loc_offset, loc->loc_size, &sc->sc_bsh);
    281   1.1  matt 
    282  1.10  matt 	/*
    283  1.11  matt 	 * We need to use the coherent dma tag for the GMAC.
    284  1.10  matt 	 */
    285  1.11  matt 	sc->sc_dmat = &bcm53xx_coherent_dma_tag;
    286  1.24  matt #if _ARM32_NEED_BUS_DMA_BOUNCE
    287  1.24  matt 	if (device_cfdata(self)->cf_flags & 2) {
    288  1.24  matt 		sc->sc_dmat = &bcm53xx_bounce_dma_tag;
    289  1.24  matt 	}
    290  1.24  matt #endif
    291  1.10  matt 
    292   1.2  matt 	prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
    293   1.2  matt         if (eaprop == NULL) {
    294   1.2  matt 		uint32_t mac0 = bcmeth_read_4(sc, UNIMAC_MAC_0);
    295   1.2  matt 		uint32_t mac1 = bcmeth_read_4(sc, UNIMAC_MAC_1);
    296   1.2  matt 		if ((mac0 == 0 && mac1 == 0) || (mac1 & 1)) {
    297   1.2  matt 			aprint_error(": mac-address property is missing\n");
    298   1.2  matt 			return;
    299   1.2  matt 		}
    300   1.5  matt 		sc->sc_enaddr[0] = (mac0 >> 0) & 0xff;
    301   1.5  matt 		sc->sc_enaddr[1] = (mac0 >> 8) & 0xff;
    302   1.5  matt 		sc->sc_enaddr[2] = (mac0 >> 16) & 0xff;
    303   1.5  matt 		sc->sc_enaddr[3] = (mac0 >> 24) & 0xff;
    304   1.5  matt 		sc->sc_enaddr[4] = (mac1 >> 0) & 0xff;
    305   1.5  matt 		sc->sc_enaddr[5] = (mac1 >> 8) & 0xff;
    306   1.2  matt 	} else {
    307   1.2  matt 		KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
    308   1.2  matt 		KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
    309   1.2  matt 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
    310   1.2  matt 		    ETHER_ADDR_LEN);
    311   1.2  matt 	}
    312   1.2  matt 	sc->sc_dev = self;
    313   1.2  matt 	sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
    314   1.2  matt 	sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
    315   1.2  matt 
    316   1.1  matt 	bcmeth_write_4(sc, GMAC_INTMASK, 0);	// disable interrupts
    317   1.1  matt 
    318   1.1  matt 	aprint_naive("\n");
    319   1.1  matt 	aprint_normal(": Gigabit Ethernet Controller\n");
    320   1.1  matt 
    321   1.2  matt 	error = bcmeth_rxq_attach(sc, &sc->sc_rxq, 0);
    322   1.2  matt 	if (error) {
    323   1.2  matt 		aprint_error(": failed to init rxq: %d\n", error);
    324   1.2  matt 		return;
    325   1.2  matt 	}
    326   1.2  matt 
    327   1.2  matt 	error = bcmeth_txq_attach(sc, &sc->sc_txq, 0);
    328   1.2  matt 	if (error) {
    329   1.2  matt 		aprint_error(": failed to init txq: %d\n", error);
    330   1.2  matt 		return;
    331   1.2  matt 	}
    332   1.2  matt 
    333   1.2  matt 	error = bcmeth_mapcache_create(sc, &sc->sc_rx_mapcache,
    334   1.2  matt 	    BCMETH_MAXRXMBUFS, MCLBYTES, BCMETH_NRXSEGS);
    335   1.2  matt 	if (error) {
    336   1.2  matt 		aprint_error(": failed to allocate rx dmamaps: %d\n", error);
    337   1.2  matt 		return;
    338   1.2  matt 	}
    339   1.2  matt 
    340   1.2  matt 	error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
    341   1.2  matt 	    BCMETH_MAXTXMBUFS, MCLBYTES, BCMETH_NTXSEGS);
    342   1.2  matt 	if (error) {
    343   1.2  matt 		aprint_error(": failed to allocate tx dmamaps: %d\n", error);
    344   1.2  matt 		return;
    345   1.2  matt 	}
    346   1.2  matt 
    347   1.8  matt 	error = workqueue_create(&sc->sc_workq, xname, bcmeth_worker, sc,
    348   1.9  matt 	    (PRI_USER + MAXPRI_USER) / 2, IPL_NET, WQ_MPSAFE|WQ_PERCPU);
    349   1.8  matt 	if (error) {
    350   1.8  matt 		aprint_error(": failed to create workqueue: %d\n", error);
    351   1.8  matt 		return;
    352   1.8  matt 	}
    353   1.8  matt 
    354   1.2  matt 	sc->sc_soft_ih = softint_establish(SOFTINT_MPSAFE | SOFTINT_NET,
    355   1.2  matt 	    bcmeth_soft_intr, sc);
    356   1.1  matt 
    357   1.1  matt 	sc->sc_ih = intr_establish(loc->loc_intrs[0], IPL_VM, IST_LEVEL,
    358   1.1  matt 	    bcmeth_intr, sc);
    359   1.1  matt 
    360   1.1  matt 	if (sc->sc_ih == NULL) {
    361   1.1  matt 		aprint_error_dev(self, "failed to establish interrupt %d\n",
    362   1.1  matt 		     loc->loc_intrs[0]);
    363   1.1  matt 	} else {
    364   1.1  matt 		aprint_normal_dev(self, "interrupting on irq %d\n",
    365   1.1  matt 		     loc->loc_intrs[0]);
    366   1.1  matt 	}
    367   1.2  matt 
    368   1.2  matt 	aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
    369   1.2  matt 	    ether_sprintf(sc->sc_enaddr));
    370   1.2  matt 
    371   1.2  matt 	/*
    372   1.2  matt 	 * Since each port in plugged into the switch/flow-accelerator,
    373   1.2  matt 	 * we hard code at Gige Full-Duplex with Flow Control enabled.
    374   1.2  matt 	 */
    375   1.2  matt 	int ifmedia = IFM_ETHER|IFM_1000_T|IFM_FDX;
    376   1.2  matt 	//ifmedia |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
    377   1.2  matt 	ifmedia_init(&sc->sc_media, IFM_IMASK, bcmeth_mediachange,
    378   1.2  matt 	    bcmeth_mediastatus);
    379   1.2  matt 	ifmedia_add(&sc->sc_media, ifmedia, 0, NULL);
    380   1.2  matt 	ifmedia_set(&sc->sc_media, ifmedia);
    381   1.2  matt 
    382   1.2  matt 	ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
    383   1.2  matt 
    384   1.2  matt 	strlcpy(ifp->if_xname, xname, IFNAMSIZ);
    385   1.2  matt 	ifp->if_softc = sc;
    386   1.2  matt 	ifp->if_baudrate = IF_Mbps(1000);
    387   1.2  matt 	ifp->if_capabilities = 0;
    388   1.2  matt 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    389  1.16  matt #ifdef BCMETH_MPSAFE
    390  1.16  matt 	ifp->if_flags2 = IFF2_MPSAFE;
    391  1.16  matt #endif
    392   1.2  matt 	ifp->if_ioctl = bcmeth_ifioctl;
    393   1.2  matt 	ifp->if_start = bcmeth_ifstart;
    394   1.2  matt 	ifp->if_watchdog = bcmeth_ifwatchdog;
    395   1.2  matt 	ifp->if_init = bcmeth_ifinit;
    396   1.2  matt 	ifp->if_stop = bcmeth_ifstop;
    397   1.2  matt 	IFQ_SET_READY(&ifp->if_snd);
    398   1.2  matt 
    399   1.2  matt 	bcmeth_ifstop(ifp, true);
    400   1.2  matt 
    401   1.2  matt 	/*
    402   1.2  matt 	 * Attach the interface.
    403   1.2  matt 	 */
    404   1.2  matt 	if_attach(ifp);
    405   1.2  matt 	ether_ifattach(ifp, sc->sc_enaddr);
    406   1.2  matt 
    407  1.18  matt #ifdef BCMETH_COUNTERS
    408   1.2  matt 	evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
    409   1.2  matt 	    NULL, xname, "intr");
    410   1.2  matt 	evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
    411   1.2  matt 	    NULL, xname, "soft intr");
    412   1.8  matt 	evcnt_attach_dynamic(&sc->sc_ev_work, EVCNT_TYPE_MISC,
    413   1.8  matt 	    NULL, xname, "work items");
    414   1.2  matt 	evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
    415   1.2  matt 	    NULL, xname, "tx stalls");
    416  1.10  matt 	evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_lo, EVCNT_TYPE_MISC,
    417  1.10  matt 	    NULL, xname, "rx badmagic lo");
    418  1.10  matt 	evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_hi, EVCNT_TYPE_MISC,
    419  1.10  matt 	    NULL, xname, "rx badmagic hi");
    420  1.18  matt #endif
    421   1.2  matt }
    422   1.2  matt 
    423   1.2  matt static int
    424   1.2  matt bcmeth_mediachange(struct ifnet *ifp)
    425   1.2  matt {
    426   1.2  matt 	//struct bcmeth_softc * const sc = ifp->if_softc;
    427   1.2  matt 	return 0;
    428   1.2  matt }
    429   1.2  matt 
    430   1.2  matt static void
    431   1.2  matt bcmeth_mediastatus(struct ifnet *ifp, struct ifmediareq *ifm)
    432   1.2  matt {
    433   1.2  matt 	//struct bcmeth_softc * const sc = ifp->if_softc;
    434   1.2  matt 
    435   1.2  matt 	ifm->ifm_status = IFM_AVALID | IFM_ACTIVE;
    436   1.2  matt 	ifm->ifm_active = IFM_ETHER | IFM_FDX | IFM_1000_T;
    437   1.2  matt }
    438   1.2  matt 
    439   1.2  matt static uint64_t
    440   1.2  matt bcmeth_macaddr_create(const uint8_t *enaddr)
    441   1.2  matt {
    442   1.5  matt 	return (enaddr[3] << 0)			// UNIMAC_MAC_0
    443   1.5  matt 	    |  (enaddr[2] << 8)			// UNIMAC_MAC_0
    444   1.5  matt 	    |  (enaddr[1] << 16)		// UNIMAC_MAC_0
    445  1.19  matt 	    |  ((uint64_t)enaddr[0] << 24)	// UNIMAC_MAC_0
    446   1.5  matt 	    |  ((uint64_t)enaddr[5] << 32)	// UNIMAC_MAC_1
    447   1.5  matt 	    |  ((uint64_t)enaddr[4] << 40);	// UNIMAC_MAC_1
    448   1.2  matt }
    449   1.2  matt 
    450   1.2  matt static int
    451   1.2  matt bcmeth_ifinit(struct ifnet *ifp)
    452   1.2  matt {
    453   1.2  matt 	struct bcmeth_softc * const sc = ifp->if_softc;
    454   1.2  matt 	int error = 0;
    455   1.2  matt 
    456   1.2  matt 	sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
    457   1.2  matt 	if (ifp->if_mtu > ETHERMTU_JUMBO)
    458   1.2  matt 		return error;
    459   1.2  matt 
    460   1.2  matt 	KASSERT(ifp->if_flags & IFF_UP);
    461   1.2  matt 
    462   1.2  matt 	/*
    463   1.2  matt 	 * Stop the interface
    464   1.2  matt 	 */
    465   1.2  matt 	bcmeth_ifstop(ifp, 0);
    466   1.2  matt 
    467   1.2  matt 	/*
    468  1.19  matt 	 * Reserve enough space at the front so that we can insert a maxsized
    469  1.19  matt 	 * link header and a VLAN tag.  Also make sure we have enough room for
    470  1.19  matt 	 * the rcvsts field as well.
    471  1.19  matt 	 */
    472  1.19  matt 	KASSERT(ALIGN(max_linkhdr) == max_linkhdr);
    473  1.19  matt 	KASSERTMSG(max_linkhdr > sizeof(struct ether_header), "%u > %zu",
    474  1.19  matt 	    max_linkhdr, sizeof(struct ether_header));
    475  1.19  matt 	sc->sc_rcvoffset = max_linkhdr + 4 - sizeof(struct ether_header);
    476  1.19  matt 	if (sc->sc_rcvoffset <= 4)
    477  1.19  matt 		sc->sc_rcvoffset += 4;
    478  1.19  matt 	KASSERT((sc->sc_rcvoffset & 3) == 2);
    479  1.19  matt 	KASSERT(sc->sc_rcvoffset <= __SHIFTOUT(RCVCTL_RCVOFFSET, RCVCTL_RCVOFFSET));
    480  1.19  matt 	KASSERT(sc->sc_rcvoffset >= 6);
    481  1.19  matt 
    482  1.19  matt 	/*
    483   1.2  matt 	 * If our frame size has changed (or it's our first time through)
    484   1.2  matt 	 * destroy the existing transmit mapcache.
    485   1.2  matt 	 */
    486   1.2  matt 	if (sc->sc_tx_mapcache != NULL
    487   1.2  matt 	    && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
    488   1.2  matt 		bcmeth_mapcache_destroy(sc, sc->sc_tx_mapcache);
    489   1.2  matt 		sc->sc_tx_mapcache = NULL;
    490   1.2  matt 	}
    491   1.2  matt 
    492   1.2  matt 	if (sc->sc_tx_mapcache == NULL) {
    493   1.2  matt 		error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
    494   1.2  matt 		    BCMETH_MAXTXMBUFS, sc->sc_maxfrm, BCMETH_NTXSEGS);
    495   1.2  matt 		if (error)
    496   1.2  matt 			return error;
    497   1.2  matt 	}
    498   1.2  matt 
    499   1.2  matt 	sc->sc_cmdcfg = NO_LENGTH_CHECK | PAUSE_IGNORE
    500   1.2  matt 	    | __SHIFTIN(ETH_SPEED_1000, ETH_SPEED)
    501   1.2  matt 	    | RX_ENA | TX_ENA;
    502   1.2  matt 
    503   1.2  matt 	if (ifp->if_flags & IFF_PROMISC) {
    504   1.2  matt 		sc->sc_cmdcfg |= PROMISC_EN;
    505   1.2  matt 	} else {
    506   1.2  matt 		sc->sc_cmdcfg &= ~PROMISC_EN;
    507   1.2  matt 	}
    508   1.2  matt 
    509  1.21  matt 	const uint8_t * const lladdr = CLLADDR(ifp->if_sadl);
    510  1.21  matt 	const uint64_t macstnaddr = bcmeth_macaddr_create(lladdr);
    511  1.21  matt 
    512  1.21  matt 	/*
    513  1.21  matt 	 * We make sure that a received Ethernet packet start on a non-word
    514  1.21  matt 	 * boundary so that the packet payload will be on a word boundary.
    515  1.21  matt 	 * So to check the destination address we keep around two words to
    516  1.21  matt 	 * quickly compare with.
    517  1.21  matt 	 */
    518  1.21  matt #if __ARMEL__
    519  1.21  matt 	sc->sc_macaddr[0] = lladdr[0] | (lladdr[1] << 8);
    520  1.21  matt 	sc->sc_macaddr[1] = lladdr[2] | (lladdr[3] << 8)
    521  1.21  matt 	    | (lladdr[4] << 16) | (lladdr[5] << 24);
    522  1.21  matt #else
    523  1.21  matt 	sc->sc_macaddr[0] = lladdr[1] | (lladdr[0] << 8);
    524  1.21  matt 	sc->sc_macaddr[1] = lladdr[5] | (lladdr[4] << 8)
    525  1.21  matt 	    | (lladdr[1] << 16) | (lladdr[2] << 24);
    526  1.21  matt #endif
    527   1.2  matt 
    528   1.2  matt 	sc->sc_intmask = DESCPROTOERR|DATAERR|DESCERR;
    529   1.2  matt 
    530   1.2  matt 	/* 5. Load RCVADDR_LO with new pointer */
    531   1.2  matt 	bcmeth_rxq_reset(sc, &sc->sc_rxq);
    532   1.2  matt 
    533   1.4  matt 	bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
    534  1.19  matt 	    __SHIFTIN(sc->sc_rcvoffset, RCVCTL_RCVOFFSET)
    535   1.2  matt 	    | RCVCTL_PARITY_DIS
    536   1.2  matt 	    | RCVCTL_OFLOW_CONTINUE
    537  1.17  matt 	    | __SHIFTIN(3, RCVCTL_BURSTLEN));
    538   1.2  matt 
    539   1.2  matt 	/* 6. Load XMTADDR_LO with new pointer */
    540   1.2  matt 	bcmeth_txq_reset(sc, &sc->sc_txq);
    541   1.2  matt 
    542   1.2  matt 	bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl, XMTCTL_DMA_ACT_INDEX
    543   1.2  matt 	    | XMTCTL_PARITY_DIS
    544  1.17  matt 	    | __SHIFTIN(3, XMTCTL_BURSTLEN));
    545   1.2  matt 
    546   1.2  matt 	/* 7. Setup other UNIMAC registers */
    547   1.2  matt 	bcmeth_write_4(sc, UNIMAC_FRAME_LEN, sc->sc_maxfrm);
    548   1.2  matt 	bcmeth_write_4(sc, UNIMAC_MAC_0, (uint32_t)(macstnaddr >>  0));
    549   1.2  matt 	bcmeth_write_4(sc, UNIMAC_MAC_1, (uint32_t)(macstnaddr >> 32));
    550   1.2  matt 	bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, sc->sc_cmdcfg);
    551   1.2  matt 
    552   1.2  matt 	uint32_t devctl = bcmeth_read_4(sc, GMAC_DEVCONTROL);
    553   1.2  matt 	devctl |= RGMII_LINK_STATUS_SEL | NWAY_AUTO_POLL_EN | TXARB_STRICT_MODE;
    554   1.2  matt 	devctl &= ~FLOW_CTRL_MODE;
    555   1.2  matt 	devctl &= ~MIB_RD_RESET_EN;
    556   1.2  matt 	devctl &= ~RXQ_OVERFLOW_CTRL_SEL;
    557   1.2  matt 	devctl &= ~CPU_FLOW_CTRL_ON;
    558   1.2  matt 	bcmeth_write_4(sc, GMAC_DEVCONTROL, devctl);
    559   1.2  matt 
    560   1.3  matt 	/* Setup lazy receive (at most 1ms). */
    561  1.22  matt 	const struct cpu_softc * const cpu = curcpu()->ci_softc;
    562   1.8  matt 	sc->sc_rcvlazy =  __SHIFTIN(4, INTRCVLAZY_FRAMECOUNT)
    563  1.22  matt 	     | __SHIFTIN(cpu->cpu_clk.clk_apb / 1000, INTRCVLAZY_TIMEOUT);
    564   1.8  matt 	bcmeth_write_4(sc, GMAC_INTRCVLAZY, sc->sc_rcvlazy);
    565   1.3  matt 
    566   1.2  matt 	/* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
    567   1.2  matt 	sc->sc_intmask |= XMTINT_0|XMTUF;
    568   1.2  matt 	bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl,
    569   1.2  matt 	    bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl) | XMTCTL_ENABLE);
    570   1.2  matt 
    571   1.2  matt 
    572   1.2  matt 	/* 12. Enable receive queues in RQUEUE, */
    573   1.2  matt 	sc->sc_intmask |= RCVINT|RCVDESCUF|RCVFIFOOF;
    574   1.2  matt 	bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
    575   1.2  matt 	    bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl) | RCVCTL_ENABLE);
    576   1.2  matt 
    577   1.2  matt 	bcmeth_rxq_produce(sc, &sc->sc_rxq);	/* fill with rx buffers */
    578   1.3  matt 
    579   1.3  matt #if 0
    580   1.3  matt 	aprint_normal_dev(sc->sc_dev,
    581   1.3  matt 	    "devctl=%#x ucmdcfg=%#x xmtctl=%#x rcvctl=%#x\n",
    582   1.3  matt 	    devctl, sc->sc_cmdcfg,
    583   1.3  matt 	    bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl),
    584   1.3  matt 	    bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl));
    585   1.2  matt #endif
    586   1.2  matt 
    587   1.2  matt 	sc->sc_soft_flags = 0;
    588   1.2  matt 
    589   1.2  matt 	bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
    590   1.2  matt 
    591   1.2  matt 	ifp->if_flags |= IFF_RUNNING;
    592   1.2  matt 
    593   1.2  matt 	return error;
    594   1.2  matt }
    595   1.2  matt 
    596   1.2  matt static void
    597   1.2  matt bcmeth_ifstop(struct ifnet *ifp, int disable)
    598   1.2  matt {
    599   1.2  matt 	struct bcmeth_softc * const sc = ifp->if_softc;
    600   1.2  matt 	struct bcmeth_txqueue * const txq = &sc->sc_txq;
    601   1.2  matt 	struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
    602   1.2  matt 
    603   1.2  matt 	KASSERT(!cpu_intr_p());
    604   1.2  matt 
    605   1.2  matt 	sc->sc_soft_flags = 0;
    606  1.16  matt 	sc->sc_work_flags = 0;
    607   1.2  matt 
    608   1.2  matt 	/* Disable Rx processing */
    609   1.2  matt 	bcmeth_write_4(sc, rxq->rxq_reg_rcvctl,
    610   1.2  matt 	    bcmeth_read_4(sc, rxq->rxq_reg_rcvctl) & ~RCVCTL_ENABLE);
    611   1.2  matt 
    612   1.2  matt 	/* Disable Tx processing */
    613   1.2  matt 	bcmeth_write_4(sc, txq->txq_reg_xmtctl,
    614   1.2  matt 	    bcmeth_read_4(sc, txq->txq_reg_xmtctl) & ~XMTCTL_ENABLE);
    615   1.2  matt 
    616   1.2  matt 	/* Disable all interrupts */
    617   1.2  matt 	bcmeth_write_4(sc, GMAC_INTMASK, 0);
    618   1.2  matt 
    619   1.2  matt 	for (;;) {
    620   1.2  matt 		uint32_t tx0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
    621   1.2  matt 		uint32_t rx0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
    622   1.2  matt 		if (__SHIFTOUT(tx0, XMTSTATE) == XMTSTATE_DIS
    623   1.2  matt 		    && __SHIFTOUT(rx0, RCVSTATE) == RCVSTATE_DIS)
    624   1.2  matt 			break;
    625   1.2  matt 		delay(50);
    626   1.2  matt 	}
    627   1.2  matt 	/*
    628   1.2  matt 	 * Now reset the controller.
    629   1.2  matt 	 *
    630   1.2  matt 	 * 3. Set SW_RESET bit in UNIMAC_COMMAND_CONFIG register
    631   1.2  matt 	 * 4. Clear SW_RESET bit in UNIMAC_COMMAND_CONFIG register
    632   1.2  matt 	 */
    633   1.2  matt 	bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, SW_RESET);
    634   1.2  matt 	bcmeth_write_4(sc, GMAC_INTSTATUS, ~0);
    635   1.2  matt 	sc->sc_intmask = 0;
    636   1.2  matt 	ifp->if_flags &= ~IFF_RUNNING;
    637   1.2  matt 
    638   1.2  matt 	/*
    639   1.2  matt 	 * Let's consume any remaining transmitted packets.  And if we are
    640   1.2  matt 	 * disabling the interface, purge ourselves of any untransmitted
    641   1.2  matt 	 * packets.  But don't consume any received packets, just drop them.
    642   1.2  matt 	 * If we aren't disabling the interface, save the mbufs in the
    643   1.2  matt 	 * receive queue for reuse.
    644   1.2  matt 	 */
    645   1.2  matt 	bcmeth_rxq_purge(sc, &sc->sc_rxq, disable);
    646   1.2  matt 	bcmeth_txq_consume(sc, &sc->sc_txq);
    647   1.2  matt 	if (disable) {
    648   1.2  matt 		bcmeth_txq_purge(sc, &sc->sc_txq);
    649   1.2  matt 		IF_PURGE(&ifp->if_snd);
    650   1.2  matt 	}
    651   1.2  matt 
    652   1.2  matt 	bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, 0);
    653   1.2  matt }
    654   1.2  matt 
    655   1.2  matt static void
    656   1.2  matt bcmeth_ifwatchdog(struct ifnet *ifp)
    657   1.2  matt {
    658   1.2  matt }
    659   1.2  matt 
    660   1.2  matt static int
    661   1.2  matt bcmeth_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
    662   1.2  matt {
    663   1.2  matt 	struct bcmeth_softc *sc  = ifp->if_softc;
    664   1.2  matt 	struct ifreq * const ifr = data;
    665   1.2  matt 	const int s = splnet();
    666   1.2  matt 	int error;
    667   1.2  matt 
    668   1.2  matt 	switch (cmd) {
    669   1.2  matt 	case SIOCSIFMEDIA:
    670   1.2  matt 	case SIOCGIFMEDIA:
    671   1.2  matt 		error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
    672   1.2  matt 		break;
    673   1.2  matt 
    674   1.2  matt 	default:
    675   1.2  matt 		error = ether_ioctl(ifp, cmd, data);
    676   1.2  matt 		if (error != ENETRESET)
    677   1.2  matt 			break;
    678   1.2  matt 
    679   1.2  matt 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
    680   1.2  matt 			error = 0;
    681   1.2  matt 			break;
    682   1.2  matt 		}
    683   1.2  matt 		error = bcmeth_ifinit(ifp);
    684   1.2  matt 		break;
    685   1.2  matt 	}
    686   1.2  matt 
    687   1.2  matt 	splx(s);
    688   1.2  matt 	return error;
    689   1.2  matt }
    690   1.2  matt 
    691   1.2  matt static void
    692   1.2  matt bcmeth_rxq_desc_presync(
    693   1.2  matt 	struct bcmeth_softc *sc,
    694   1.2  matt 	struct bcmeth_rxqueue *rxq,
    695   1.2  matt 	struct gmac_rxdb *rxdb,
    696   1.2  matt 	size_t count)
    697   1.2  matt {
    698   1.2  matt 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
    699   1.2  matt 	    (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
    700   1.2  matt 	    BUS_DMASYNC_PREWRITE);
    701   1.2  matt }
    702   1.2  matt 
    703   1.2  matt static void
    704   1.2  matt bcmeth_rxq_desc_postsync(
    705   1.2  matt 	struct bcmeth_softc *sc,
    706   1.2  matt 	struct bcmeth_rxqueue *rxq,
    707   1.2  matt 	struct gmac_rxdb *rxdb,
    708   1.2  matt 	size_t count)
    709   1.2  matt {
    710   1.2  matt 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
    711   1.2  matt 	    (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
    712   1.2  matt 	    BUS_DMASYNC_POSTWRITE);
    713   1.2  matt }
    714   1.2  matt 
    715   1.2  matt static void
    716   1.2  matt bcmeth_txq_desc_presync(
    717   1.2  matt 	struct bcmeth_softc *sc,
    718   1.2  matt 	struct bcmeth_txqueue *txq,
    719   1.2  matt 	struct gmac_txdb *txdb,
    720   1.2  matt 	size_t count)
    721   1.2  matt {
    722   1.2  matt 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
    723   1.2  matt 	    (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
    724   1.2  matt 	    BUS_DMASYNC_PREWRITE);
    725   1.2  matt }
    726   1.2  matt 
    727   1.2  matt static void
    728   1.2  matt bcmeth_txq_desc_postsync(
    729   1.2  matt 	struct bcmeth_softc *sc,
    730   1.2  matt 	struct bcmeth_txqueue *txq,
    731   1.2  matt 	struct gmac_txdb *txdb,
    732   1.2  matt 	size_t count)
    733   1.2  matt {
    734   1.2  matt 	bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
    735   1.2  matt 	    (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
    736   1.2  matt 	    BUS_DMASYNC_POSTWRITE);
    737   1.2  matt }
    738   1.2  matt 
    739   1.2  matt static bus_dmamap_t
    740   1.2  matt bcmeth_mapcache_get(
    741   1.2  matt 	struct bcmeth_softc *sc,
    742   1.2  matt 	struct bcmeth_mapcache *dmc)
    743   1.2  matt {
    744   1.2  matt 	KASSERT(dmc->dmc_nmaps > 0);
    745   1.2  matt 	KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
    746   1.2  matt 	return dmc->dmc_maps[--dmc->dmc_nmaps];
    747   1.2  matt }
    748   1.2  matt 
    749   1.2  matt static void
    750   1.2  matt bcmeth_mapcache_put(
    751   1.2  matt 	struct bcmeth_softc *sc,
    752   1.2  matt 	struct bcmeth_mapcache *dmc,
    753   1.2  matt 	bus_dmamap_t map)
    754   1.2  matt {
    755   1.2  matt 	KASSERT(map != NULL);
    756   1.2  matt 	KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
    757   1.2  matt 	dmc->dmc_maps[dmc->dmc_nmaps++] = map;
    758   1.2  matt }
    759   1.2  matt 
    760   1.2  matt static void
    761   1.2  matt bcmeth_mapcache_destroy(
    762   1.2  matt 	struct bcmeth_softc *sc,
    763   1.2  matt 	struct bcmeth_mapcache *dmc)
    764   1.2  matt {
    765   1.2  matt 	const size_t dmc_size =
    766   1.2  matt 	    offsetof(struct bcmeth_mapcache, dmc_maps[dmc->dmc_maxmaps]);
    767   1.2  matt 
    768   1.2  matt 	for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
    769   1.2  matt 		bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
    770   1.2  matt 	}
    771   1.2  matt 	kmem_intr_free(dmc, dmc_size);
    772   1.2  matt }
    773   1.2  matt 
    774   1.2  matt static int
    775   1.2  matt bcmeth_mapcache_create(
    776   1.2  matt 	struct bcmeth_softc *sc,
    777   1.2  matt 	struct bcmeth_mapcache **dmc_p,
    778   1.2  matt 	size_t maxmaps,
    779   1.2  matt 	size_t maxmapsize,
    780   1.2  matt 	size_t maxseg)
    781   1.2  matt {
    782   1.2  matt 	const size_t dmc_size =
    783   1.2  matt 	    offsetof(struct bcmeth_mapcache, dmc_maps[maxmaps]);
    784   1.2  matt 	struct bcmeth_mapcache * const dmc =
    785   1.2  matt 		kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
    786   1.2  matt 
    787   1.2  matt 	dmc->dmc_maxmaps = maxmaps;
    788   1.2  matt 	dmc->dmc_nmaps = maxmaps;
    789   1.2  matt 	dmc->dmc_maxmapsize = maxmapsize;
    790   1.2  matt 	dmc->dmc_maxseg = maxseg;
    791   1.2  matt 
    792   1.2  matt 	for (u_int i = 0; i < maxmaps; i++) {
    793   1.2  matt 		int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
    794   1.2  matt 		     dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
    795   1.2  matt 		     BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
    796   1.2  matt 		if (error) {
    797   1.2  matt 			aprint_error_dev(sc->sc_dev,
    798   1.2  matt 			    "failed to creat dma map cache "
    799   1.2  matt 			    "entry %u of %zu: %d\n",
    800   1.2  matt 			    i, maxmaps, error);
    801   1.2  matt 			while (i-- > 0) {
    802   1.2  matt 				bus_dmamap_destroy(sc->sc_dmat,
    803   1.2  matt 				    dmc->dmc_maps[i]);
    804   1.2  matt 			}
    805   1.2  matt 			kmem_intr_free(dmc, dmc_size);
    806   1.2  matt 			return error;
    807   1.2  matt 		}
    808   1.2  matt 		KASSERT(dmc->dmc_maps[i] != NULL);
    809   1.2  matt 	}
    810   1.2  matt 
    811   1.2  matt 	*dmc_p = dmc;
    812   1.2  matt 
    813   1.2  matt 	return 0;
    814   1.2  matt }
    815   1.2  matt 
    816   1.2  matt #if 0
    817   1.2  matt static void
    818   1.2  matt bcmeth_dmamem_free(
    819   1.2  matt 	bus_dma_tag_t dmat,
    820   1.2  matt 	size_t map_size,
    821   1.2  matt 	bus_dma_segment_t *seg,
    822   1.2  matt 	bus_dmamap_t map,
    823   1.2  matt 	void *kvap)
    824   1.2  matt {
    825   1.2  matt 	bus_dmamap_destroy(dmat, map);
    826   1.2  matt 	bus_dmamem_unmap(dmat, kvap, map_size);
    827   1.2  matt 	bus_dmamem_free(dmat, seg, 1);
    828   1.2  matt }
    829   1.2  matt #endif
    830   1.2  matt 
    831   1.2  matt static int
    832   1.2  matt bcmeth_dmamem_alloc(
    833   1.2  matt 	bus_dma_tag_t dmat,
    834   1.2  matt 	size_t map_size,
    835   1.2  matt 	bus_dma_segment_t *seg,
    836   1.2  matt 	bus_dmamap_t *map,
    837   1.2  matt 	void **kvap)
    838   1.2  matt {
    839   1.2  matt 	int error;
    840   1.2  matt 	int nseg;
    841   1.2  matt 
    842   1.2  matt 	*kvap = NULL;
    843   1.2  matt 	*map = NULL;
    844   1.2  matt 
    845  1.10  matt 	error = bus_dmamem_alloc(dmat, map_size, 2*PAGE_SIZE, 0,
    846   1.2  matt 	   seg, 1, &nseg, 0);
    847   1.2  matt 	if (error)
    848   1.2  matt 		return error;
    849   1.2  matt 
    850   1.2  matt 	KASSERT(nseg == 1);
    851   1.2  matt 
    852  1.10  matt 	error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap, 0);
    853   1.2  matt 	if (error == 0) {
    854   1.2  matt 		error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
    855   1.2  matt 		    map);
    856   1.2  matt 		if (error == 0) {
    857   1.2  matt 			error = bus_dmamap_load(dmat, *map, *kvap, map_size,
    858   1.2  matt 			    NULL, 0);
    859   1.2  matt 			if (error == 0)
    860   1.2  matt 				return 0;
    861   1.2  matt 			bus_dmamap_destroy(dmat, *map);
    862   1.2  matt 			*map = NULL;
    863   1.2  matt 		}
    864   1.2  matt 		bus_dmamem_unmap(dmat, *kvap, map_size);
    865   1.2  matt 		*kvap = NULL;
    866   1.2  matt 	}
    867   1.2  matt 	bus_dmamem_free(dmat, seg, nseg);
    868   1.2  matt 	return 0;
    869   1.2  matt }
    870   1.2  matt 
    871   1.2  matt static struct mbuf *
    872   1.2  matt bcmeth_rx_buf_alloc(
    873   1.2  matt 	struct bcmeth_softc *sc)
    874   1.2  matt {
    875   1.2  matt 	struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
    876   1.2  matt 	if (m == NULL) {
    877   1.2  matt 		printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
    878   1.2  matt 		return NULL;
    879   1.2  matt 	}
    880   1.2  matt 	MCLGET(m, M_DONTWAIT);
    881   1.2  matt 	if ((m->m_flags & M_EXT) == 0) {
    882   1.2  matt 		printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
    883   1.2  matt 		m_freem(m);
    884   1.2  matt 		return NULL;
    885   1.2  matt 	}
    886   1.2  matt 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
    887   1.2  matt 
    888   1.2  matt 	bus_dmamap_t map = bcmeth_mapcache_get(sc, sc->sc_rx_mapcache);
    889   1.2  matt 	if (map == NULL) {
    890   1.2  matt 		printf("%s:%d: %s\n", __func__, __LINE__, "map get");
    891   1.2  matt 		m_freem(m);
    892   1.2  matt 		return NULL;
    893   1.2  matt 	}
    894   1.2  matt 	M_SETCTX(m, map);
    895   1.2  matt 	m->m_len = m->m_pkthdr.len = MCLBYTES;
    896   1.2  matt 	int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
    897   1.2  matt 	    BUS_DMA_READ|BUS_DMA_NOWAIT);
    898   1.2  matt 	if (error) {
    899   1.2  matt 		aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
    900   1.2  matt 		    error);
    901   1.2  matt 		M_SETCTX(m, NULL);
    902   1.2  matt 		m_freem(m);
    903   1.2  matt 		bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
    904   1.2  matt 		return NULL;
    905   1.2  matt 	}
    906   1.2  matt 	KASSERT(map->dm_mapsize == MCLBYTES);
    907  1.16  matt #ifdef BCMETH_RCVMAGIC
    908  1.25  matt 	*mtod(m, uint32_t *) = htole32(BCMETH_RCVMAGIC);
    909  1.10  matt 	bus_dmamap_sync(sc->sc_dmat, map, 0, sizeof(uint32_t),
    910  1.10  matt 	    BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    911  1.10  matt 	bus_dmamap_sync(sc->sc_dmat, map, sizeof(uint32_t),
    912  1.10  matt 	    map->dm_mapsize - sizeof(uint32_t), BUS_DMASYNC_PREREAD);
    913  1.16  matt #else
    914  1.23  matt 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
    915  1.16  matt 	    BUS_DMASYNC_PREREAD);
    916  1.16  matt #endif
    917   1.2  matt 
    918   1.2  matt 	return m;
    919   1.2  matt }
    920   1.2  matt 
    921   1.2  matt static void
    922   1.2  matt bcmeth_rx_map_unload(
    923   1.2  matt 	struct bcmeth_softc *sc,
    924   1.2  matt 	struct mbuf *m)
    925   1.2  matt {
    926   1.2  matt 	KASSERT(m);
    927   1.2  matt 	for (; m != NULL; m = m->m_next) {
    928   1.2  matt 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
    929   1.2  matt 		KASSERT(map);
    930   1.2  matt 		KASSERT(map->dm_mapsize == MCLBYTES);
    931   1.2  matt 		bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
    932   1.2  matt 		    BUS_DMASYNC_POSTREAD);
    933   1.2  matt 		bus_dmamap_unload(sc->sc_dmat, map);
    934   1.2  matt 		bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
    935   1.2  matt 		M_SETCTX(m, NULL);
    936   1.2  matt 	}
    937   1.2  matt }
    938   1.2  matt 
    939   1.2  matt static bool
    940   1.2  matt bcmeth_rxq_produce(
    941   1.2  matt 	struct bcmeth_softc *sc,
    942   1.2  matt 	struct bcmeth_rxqueue *rxq)
    943   1.2  matt {
    944   1.2  matt 	struct gmac_rxdb *producer = rxq->rxq_producer;
    945   1.7  matt 	bool produced = false;
    946   1.7  matt 
    947   1.2  matt 	while (rxq->rxq_inuse < rxq->rxq_threshold) {
    948   1.2  matt 		struct mbuf *m;
    949   1.2  matt 		IF_DEQUEUE(&sc->sc_rx_bufcache, m);
    950   1.2  matt 		if (m == NULL) {
    951   1.2  matt 			m = bcmeth_rx_buf_alloc(sc);
    952   1.2  matt 			if (m == NULL) {
    953   1.2  matt 				printf("%s: bcmeth_rx_buf_alloc failed\n", __func__);
    954   1.2  matt 				break;
    955   1.2  matt 			}
    956   1.2  matt 		}
    957   1.2  matt 		bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
    958   1.2  matt 		KASSERT(map);
    959   1.2  matt 
    960  1.25  matt 		producer->rxdb_buflen = htole32(MCLBYTES);
    961  1.25  matt 		producer->rxdb_addrlo = htole32(map->dm_segs[0].ds_addr);
    962  1.25  matt 		producer->rxdb_flags &= htole32(RXDB_FLAG_ET);
    963   1.2  matt 		*rxq->rxq_mtail = m;
    964   1.2  matt 		rxq->rxq_mtail = &m->m_next;
    965   1.2  matt 		m->m_len = MCLBYTES;
    966   1.2  matt 		m->m_next = NULL;
    967   1.2  matt 		rxq->rxq_inuse++;
    968   1.2  matt 		if (++producer == rxq->rxq_last) {
    969   1.2  matt 			membar_producer();
    970   1.2  matt 			bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
    971   1.2  matt 			    rxq->rxq_last - rxq->rxq_producer);
    972   1.2  matt 			producer = rxq->rxq_producer = rxq->rxq_first;
    973   1.2  matt 		}
    974   1.7  matt 		produced = true;
    975   1.2  matt 	}
    976   1.7  matt 	if (produced) {
    977   1.2  matt 		membar_producer();
    978   1.7  matt 		if (producer != rxq->rxq_producer) {
    979   1.7  matt 			bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
    980   1.7  matt 			    producer - rxq->rxq_producer);
    981   1.7  matt 			rxq->rxq_producer = producer;
    982   1.7  matt 		}
    983   1.2  matt 		bcmeth_write_4(sc, rxq->rxq_reg_rcvptr,
    984   1.2  matt 		    rxq->rxq_descmap->dm_segs[0].ds_addr
    985   1.7  matt 		    + ((uintptr_t)producer & RCVPTR));
    986   1.2  matt 	}
    987   1.2  matt 	return true;
    988   1.2  matt }
    989   1.2  matt 
    990   1.2  matt static void
    991   1.2  matt bcmeth_rx_input(
    992   1.2  matt 	struct bcmeth_softc *sc,
    993   1.2  matt 	struct mbuf *m,
    994   1.2  matt 	uint32_t rxdb_flags)
    995   1.2  matt {
    996   1.2  matt 	struct ifnet * const ifp = &sc->sc_if;
    997   1.2  matt 
    998   1.2  matt 	bcmeth_rx_map_unload(sc, m);
    999   1.2  matt 
   1000  1.19  matt 	m_adj(m, sc->sc_rcvoffset);
   1001   1.2  matt 
   1002  1.21  matt 	/*
   1003  1.21  matt 	 * If we are in promiscuous mode and this isn't a multicast, check the
   1004  1.21  matt 	 * destination address to make sure it matches our own.  If it doesn't,
   1005  1.21  matt 	 * mark the packet as being received promiscuously.
   1006  1.21  matt 	 */
   1007  1.21  matt 	if ((sc->sc_cmdcfg & PROMISC_EN)
   1008  1.21  matt 	    && (m->m_data[0] & 1) == 0
   1009  1.21  matt 	    && (*(uint16_t *)&m->m_data[0] != sc->sc_macaddr[0]
   1010  1.21  matt 		|| *(uint32_t *)&m->m_data[2] != sc->sc_macaddr[1])) {
   1011  1.21  matt 		m->m_flags |= M_PROMISC;
   1012   1.2  matt 	}
   1013   1.2  matt 	m->m_pkthdr.rcvif = ifp;
   1014   1.2  matt 
   1015   1.2  matt 	ifp->if_ipackets++;
   1016   1.2  matt 	ifp->if_ibytes += m->m_pkthdr.len;
   1017   1.2  matt 
   1018   1.2  matt 	/*
   1019   1.2  matt 	 * Let's give it to the network subsystm to deal with.
   1020   1.2  matt 	 */
   1021  1.16  matt #ifdef BCMETH_MPSAFE
   1022  1.16  matt 	mutex_exit(sc->sc_lock);
   1023  1.16  matt 	(*ifp->if_input)(ifp, m);
   1024  1.16  matt 	mutex_enter(sc->sc_lock);
   1025  1.16  matt #else
   1026   1.2  matt 	int s = splnet();
   1027   1.2  matt 	bpf_mtap(ifp, m);
   1028   1.2  matt 	(*ifp->if_input)(ifp, m);
   1029   1.2  matt 	splx(s);
   1030  1.16  matt #endif
   1031   1.2  matt }
   1032   1.2  matt 
   1033  1.20  matt static bool
   1034   1.2  matt bcmeth_rxq_consume(
   1035   1.2  matt 	struct bcmeth_softc *sc,
   1036  1.20  matt 	struct bcmeth_rxqueue *rxq,
   1037  1.20  matt 	size_t atmost)
   1038   1.2  matt {
   1039   1.2  matt 	struct ifnet * const ifp = &sc->sc_if;
   1040   1.2  matt 	struct gmac_rxdb *consumer = rxq->rxq_consumer;
   1041   1.2  matt 	size_t rxconsumed = 0;
   1042  1.20  matt 	bool didconsume = false;
   1043   1.2  matt 
   1044  1.20  matt 	while (atmost-- > 0) {
   1045   1.2  matt 		if (consumer == rxq->rxq_producer) {
   1046   1.2  matt 			KASSERT(rxq->rxq_inuse == 0);
   1047  1.20  matt 			break;
   1048   1.2  matt 		}
   1049   1.2  matt 
   1050   1.8  matt 		uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
   1051   1.2  matt 		uint32_t currdscr = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
   1052   1.2  matt 		if (consumer == rxq->rxq_first + currdscr) {
   1053  1.20  matt 			break;
   1054   1.2  matt 		}
   1055   1.2  matt 		bcmeth_rxq_desc_postsync(sc, rxq, consumer, 1);
   1056   1.2  matt 
   1057   1.2  matt 		/*
   1058   1.2  matt 		 * We own this packet again.  Copy the rxsts word from it.
   1059   1.2  matt 		 */
   1060   1.2  matt 		rxconsumed++;
   1061  1.20  matt 		didconsume = true;
   1062   1.2  matt 		uint32_t rxsts;
   1063   1.2  matt 		KASSERT(rxq->rxq_mhead != NULL);
   1064   1.2  matt 		bus_dmamap_t map = M_GETCTX(rxq->rxq_mhead, bus_dmamap_t);
   1065   1.2  matt 		bus_dmamap_sync(sc->sc_dmat, map, 0, arm_dcache_align,
   1066   1.2  matt 		    BUS_DMASYNC_POSTREAD);
   1067   1.2  matt 		memcpy(&rxsts, rxq->rxq_mhead->m_data, 4);
   1068  1.25  matt 		rxsts = le32toh(rxsts);
   1069  1.10  matt #if 0
   1070  1.10  matt 		KASSERTMSG(rxsts != BCMETH_RCVMAGIC, "currdscr=%u consumer=%zd",
   1071  1.10  matt 		    currdscr, consumer - rxq->rxq_first);
   1072  1.10  matt #endif
   1073   1.2  matt 
   1074   1.2  matt 		/*
   1075   1.2  matt 		 * Get the count of descriptors.  Fetch the correct number
   1076   1.2  matt 		 * of mbufs.
   1077   1.2  matt 		 */
   1078  1.16  matt #ifdef BCMETH_RCVMAGIC
   1079  1.10  matt 		size_t desc_count = rxsts != BCMETH_RCVMAGIC ? __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1 : 1;
   1080  1.16  matt #else
   1081  1.16  matt 		size_t desc_count = __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1;
   1082  1.16  matt #endif
   1083   1.2  matt 		struct mbuf *m = rxq->rxq_mhead;
   1084   1.2  matt 		struct mbuf *m_last = m;
   1085   1.2  matt 		for (size_t i = 1; i < desc_count; i++) {
   1086   1.2  matt 			if (++consumer == rxq->rxq_last) {
   1087   1.2  matt 				consumer = rxq->rxq_first;
   1088   1.2  matt 			}
   1089  1.10  matt 			KASSERTMSG(consumer != rxq->rxq_first + currdscr,
   1090  1.10  matt 			    "i=%zu rxsts=%#x desc_count=%zu currdscr=%u consumer=%zd",
   1091  1.10  matt 			    i, rxsts, desc_count, currdscr,
   1092  1.10  matt 			    consumer - rxq->rxq_first);
   1093   1.2  matt 			m_last = m_last->m_next;
   1094   1.2  matt 		}
   1095   1.2  matt 
   1096   1.2  matt 		/*
   1097   1.2  matt 		 * Now remove it/them from the list of enqueued mbufs.
   1098   1.2  matt 		 */
   1099   1.2  matt 		if ((rxq->rxq_mhead = m_last->m_next) == NULL)
   1100   1.2  matt 			rxq->rxq_mtail = &rxq->rxq_mhead;
   1101   1.2  matt 		m_last->m_next = NULL;
   1102   1.2  matt 
   1103  1.16  matt #ifdef BCMETH_RCVMAGIC
   1104  1.10  matt 		if (rxsts == BCMETH_RCVMAGIC) {
   1105  1.10  matt 			ifp->if_ierrors++;
   1106  1.10  matt 			if ((m->m_ext.ext_paddr >> 28) == 8) {
   1107  1.18  matt 				BCMETH_EVCNT_INCR(sc->sc_ev_rx_badmagic_lo);
   1108  1.10  matt 			} else {
   1109  1.18  matt 				BCMETH_EVCNT_INCR( sc->sc_ev_rx_badmagic_hi);
   1110  1.10  matt 			}
   1111  1.10  matt 			IF_ENQUEUE(&sc->sc_rx_bufcache, m);
   1112  1.16  matt 		} else
   1113  1.16  matt #endif /* BCMETH_RCVMAGIC */
   1114  1.16  matt 		if (rxsts & (RXSTS_CRC_ERROR|RXSTS_OVERSIZED|RXSTS_PKT_OVERFLOW)) {
   1115   1.2  matt 			aprint_error_dev(sc->sc_dev, "[%zu]: count=%zu rxsts=%#x\n",
   1116   1.2  matt 			    consumer - rxq->rxq_first, desc_count, rxsts);
   1117   1.2  matt 			/*
   1118   1.2  matt 			 * We encountered an error, take the mbufs and add them
   1119   1.2  matt 			 * to the rx bufcache so we can quickly reuse them.
   1120   1.2  matt 			 */
   1121   1.2  matt 			ifp->if_ierrors++;
   1122   1.2  matt 			do {
   1123   1.2  matt 				struct mbuf *m0 = m->m_next;
   1124   1.2  matt 				m->m_next = NULL;
   1125   1.2  matt 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
   1126   1.2  matt 				m = m0;
   1127   1.2  matt 			} while (m);
   1128   1.2  matt 		} else {
   1129   1.2  matt 			uint32_t framelen = __SHIFTOUT(rxsts, RXSTS_FRAMELEN);
   1130  1.19  matt 			framelen += sc->sc_rcvoffset;
   1131   1.2  matt 			m->m_pkthdr.len = framelen;
   1132   1.2  matt 			if (desc_count == 1) {
   1133   1.2  matt 				KASSERT(framelen <= MCLBYTES);
   1134   1.2  matt 				m->m_len = framelen;
   1135   1.2  matt 			} else {
   1136   1.2  matt 				m_last->m_len = framelen & (MCLBYTES - 1);
   1137   1.2  matt 			}
   1138  1.16  matt 
   1139  1.16  matt #ifdef BCMETH_MPSAFE
   1140  1.16  matt 			/*
   1141  1.16  matt 			 * Wrap at the last entry!
   1142  1.16  matt 			 */
   1143  1.16  matt 			if (++consumer == rxq->rxq_last) {
   1144  1.25  matt 				KASSERT(consumer[-1].rxdb_flags & htole32(RXDB_FLAG_ET));
   1145  1.16  matt 				rxq->rxq_consumer = rxq->rxq_first;
   1146  1.16  matt 			} else {
   1147  1.16  matt 				rxq->rxq_consumer = consumer;
   1148  1.16  matt 			}
   1149  1.16  matt 			rxq->rxq_inuse -= rxconsumed;
   1150  1.16  matt #endif /* BCMETH_MPSAFE */
   1151  1.16  matt 
   1152  1.16  matt 			/*
   1153  1.16  matt 			 * Receive the packet (which releases our lock)
   1154  1.16  matt 			 */
   1155   1.2  matt 			bcmeth_rx_input(sc, m, rxsts);
   1156  1.16  matt 
   1157  1.16  matt #ifdef BCMETH_MPSAFE
   1158  1.16  matt 			/*
   1159  1.16  matt 			 * Since we had to give up our lock, we need to
   1160  1.16  matt 			 * refresh these.
   1161  1.16  matt 			 */
   1162  1.16  matt 			consumer = rxq->rxq_consumer;
   1163  1.16  matt 			rxconsumed = 0;
   1164  1.16  matt 			continue;
   1165  1.16  matt #endif /* BCMETH_MPSAFE */
   1166   1.2  matt 		}
   1167   1.2  matt 
   1168   1.2  matt 		/*
   1169   1.2  matt 		 * Wrap at the last entry!
   1170   1.2  matt 		 */
   1171   1.2  matt 		if (++consumer == rxq->rxq_last) {
   1172  1.25  matt 			KASSERT(consumer[-1].rxdb_flags & htole32(RXDB_FLAG_ET));
   1173   1.2  matt 			consumer = rxq->rxq_first;
   1174   1.2  matt 		}
   1175   1.2  matt 	}
   1176  1.20  matt 
   1177  1.20  matt 	/*
   1178  1.20  matt 	 * Update queue info.
   1179  1.20  matt 	 */
   1180  1.20  matt 	rxq->rxq_consumer = consumer;
   1181  1.20  matt 	rxq->rxq_inuse -= rxconsumed;
   1182  1.20  matt 
   1183  1.20  matt 	/*
   1184  1.20  matt 	 * Did we consume anything?
   1185  1.20  matt 	 */
   1186  1.20  matt 	return didconsume;
   1187   1.2  matt }
   1188   1.2  matt 
   1189   1.2  matt static void
   1190   1.2  matt bcmeth_rxq_purge(
   1191   1.2  matt 	struct bcmeth_softc *sc,
   1192   1.2  matt 	struct bcmeth_rxqueue *rxq,
   1193   1.2  matt 	bool discard)
   1194   1.2  matt {
   1195   1.2  matt 	struct mbuf *m;
   1196   1.2  matt 
   1197   1.2  matt 	if ((m = rxq->rxq_mhead) != NULL) {
   1198   1.2  matt 		if (discard) {
   1199   1.2  matt 			bcmeth_rx_map_unload(sc, m);
   1200   1.2  matt 			m_freem(m);
   1201   1.2  matt 		} else {
   1202   1.2  matt 			while (m != NULL) {
   1203   1.2  matt 				struct mbuf *m0 = m->m_next;
   1204   1.2  matt 				m->m_next = NULL;
   1205   1.2  matt 				IF_ENQUEUE(&sc->sc_rx_bufcache, m);
   1206   1.2  matt 				m = m0;
   1207   1.2  matt 			}
   1208   1.2  matt 		}
   1209   1.2  matt 
   1210   1.2  matt 	}
   1211   1.2  matt 
   1212   1.2  matt 	rxq->rxq_mhead = NULL;
   1213   1.2  matt 	rxq->rxq_mtail = &rxq->rxq_mhead;
   1214   1.2  matt 	rxq->rxq_inuse = 0;
   1215   1.1  matt }
   1216   1.1  matt 
   1217   1.1  matt static void
   1218   1.2  matt bcmeth_rxq_reset(
   1219   1.2  matt 	struct bcmeth_softc *sc,
   1220   1.2  matt 	struct bcmeth_rxqueue *rxq)
   1221   1.2  matt {
   1222   1.2  matt 	/*
   1223   1.3  matt 	 * sync all the descriptors
   1224   1.3  matt 	 */
   1225   1.3  matt 	bcmeth_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
   1226   1.3  matt 	    rxq->rxq_last - rxq->rxq_first);
   1227   1.3  matt 
   1228   1.3  matt 	/*
   1229   1.3  matt 	 * Make sure we own all descriptors in the ring.
   1230   1.3  matt 	 */
   1231   1.3  matt 	struct gmac_rxdb *rxdb;
   1232   1.3  matt 	for (rxdb = rxq->rxq_first; rxdb < rxq->rxq_last - 1; rxdb++) {
   1233  1.25  matt 		rxdb->rxdb_flags = htole32(RXDB_FLAG_IC);
   1234   1.3  matt 	}
   1235   1.3  matt 
   1236   1.3  matt 	/*
   1237   1.3  matt 	 * Last descriptor has the wrap flag.
   1238   1.3  matt 	 */
   1239  1.25  matt 	rxdb->rxdb_flags = htole32(RXDB_FLAG_ET|RXDB_FLAG_IC);
   1240   1.3  matt 
   1241   1.3  matt 	/*
   1242   1.2  matt 	 * Reset the producer consumer indexes.
   1243   1.2  matt 	 */
   1244   1.2  matt 	rxq->rxq_consumer = rxq->rxq_first;
   1245   1.2  matt 	rxq->rxq_producer = rxq->rxq_first;
   1246   1.2  matt 	rxq->rxq_inuse = 0;
   1247   1.2  matt 	if (rxq->rxq_threshold < BCMETH_MINRXMBUFS)
   1248   1.2  matt 		rxq->rxq_threshold = BCMETH_MINRXMBUFS;
   1249   1.2  matt 
   1250   1.2  matt 	sc->sc_intmask |= RCVINT|RCVFIFOOF|RCVDESCUF;
   1251   1.2  matt 
   1252   1.2  matt 	/*
   1253   1.2  matt 	 * Restart the receiver at the first descriptor
   1254   1.2  matt 	 */
   1255   1.2  matt 	bcmeth_write_4(sc, rxq->rxq_reg_rcvaddrlo,
   1256   1.2  matt 	    rxq->rxq_descmap->dm_segs[0].ds_addr);
   1257   1.2  matt }
   1258   1.2  matt 
   1259   1.2  matt static int
   1260   1.2  matt bcmeth_rxq_attach(
   1261   1.2  matt 	struct bcmeth_softc *sc,
   1262   1.2  matt 	struct bcmeth_rxqueue *rxq,
   1263   1.2  matt 	u_int qno)
   1264   1.2  matt {
   1265   1.8  matt 	size_t desc_count = BCMETH_RINGSIZE / sizeof(rxq->rxq_first[0]);
   1266   1.2  matt 	int error;
   1267   1.2  matt 	void *descs;
   1268   1.2  matt 
   1269   1.2  matt 	KASSERT(desc_count == 256 || desc_count == 512);
   1270   1.2  matt 
   1271   1.8  matt 	error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
   1272   1.2  matt 	   &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
   1273   1.2  matt 	if (error)
   1274   1.2  matt 		return error;
   1275   1.2  matt 
   1276   1.8  matt 	memset(descs, 0, BCMETH_RINGSIZE);
   1277   1.2  matt 	rxq->rxq_first = descs;
   1278   1.2  matt 	rxq->rxq_last = rxq->rxq_first + desc_count;
   1279   1.2  matt 	rxq->rxq_consumer = descs;
   1280   1.2  matt 	rxq->rxq_producer = descs;
   1281   1.2  matt 
   1282   1.2  matt 	bcmeth_rxq_purge(sc, rxq, true);
   1283   1.2  matt 	bcmeth_rxq_reset(sc, rxq);
   1284   1.2  matt 
   1285   1.2  matt 	rxq->rxq_reg_rcvaddrlo = GMAC_RCVADDR_LOW;
   1286   1.2  matt 	rxq->rxq_reg_rcvctl = GMAC_RCVCONTROL;
   1287   1.2  matt 	rxq->rxq_reg_rcvptr = GMAC_RCVPTR;
   1288   1.2  matt 	rxq->rxq_reg_rcvsts0 = GMAC_RCVSTATUS0;
   1289  1.10  matt 	rxq->rxq_reg_rcvsts1 = GMAC_RCVSTATUS1;
   1290   1.2  matt 
   1291   1.2  matt 	return 0;
   1292   1.2  matt }
   1293   1.2  matt 
   1294   1.2  matt static bool
   1295   1.2  matt bcmeth_txq_active_p(
   1296   1.2  matt 	struct bcmeth_softc * const sc,
   1297   1.2  matt 	struct bcmeth_txqueue *txq)
   1298   1.1  matt {
   1299   1.2  matt 	return !IF_IS_EMPTY(&txq->txq_mbufs);
   1300   1.2  matt }
   1301   1.2  matt 
   1302   1.2  matt static bool
   1303   1.2  matt bcmeth_txq_fillable_p(
   1304   1.2  matt 	struct bcmeth_softc * const sc,
   1305   1.2  matt 	struct bcmeth_txqueue *txq)
   1306   1.2  matt {
   1307   1.2  matt 	return txq->txq_free >= txq->txq_threshold;
   1308   1.2  matt }
   1309   1.2  matt 
   1310   1.2  matt static int
   1311   1.2  matt bcmeth_txq_attach(
   1312   1.2  matt 	struct bcmeth_softc *sc,
   1313   1.2  matt 	struct bcmeth_txqueue *txq,
   1314   1.2  matt 	u_int qno)
   1315   1.2  matt {
   1316   1.8  matt 	size_t desc_count = BCMETH_RINGSIZE / sizeof(txq->txq_first[0]);
   1317   1.2  matt 	int error;
   1318   1.2  matt 	void *descs;
   1319   1.2  matt 
   1320   1.2  matt 	KASSERT(desc_count == 256 || desc_count == 512);
   1321   1.2  matt 
   1322   1.8  matt 	error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
   1323   1.2  matt 	   &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
   1324   1.2  matt 	if (error)
   1325   1.2  matt 		return error;
   1326   1.2  matt 
   1327   1.8  matt 	memset(descs, 0, BCMETH_RINGSIZE);
   1328   1.2  matt 	txq->txq_first = descs;
   1329   1.2  matt 	txq->txq_last = txq->txq_first + desc_count;
   1330   1.2  matt 	txq->txq_consumer = descs;
   1331   1.2  matt 	txq->txq_producer = descs;
   1332   1.2  matt 
   1333   1.2  matt 	IFQ_SET_MAXLEN(&txq->txq_mbufs, BCMETH_MAXTXMBUFS);
   1334   1.2  matt 
   1335   1.2  matt 	txq->txq_reg_xmtaddrlo = GMAC_XMTADDR_LOW;
   1336   1.2  matt 	txq->txq_reg_xmtctl = GMAC_XMTCONTROL;
   1337   1.2  matt 	txq->txq_reg_xmtptr = GMAC_XMTPTR;
   1338   1.2  matt 	txq->txq_reg_xmtsts0 = GMAC_XMTSTATUS0;
   1339  1.10  matt 	txq->txq_reg_xmtsts1 = GMAC_XMTSTATUS1;
   1340   1.2  matt 
   1341   1.2  matt 	bcmeth_txq_reset(sc, txq);
   1342   1.1  matt 
   1343   1.2  matt 	return 0;
   1344   1.1  matt }
   1345   1.1  matt 
   1346   1.1  matt static int
   1347   1.2  matt bcmeth_txq_map_load(
   1348   1.2  matt 	struct bcmeth_softc *sc,
   1349   1.2  matt 	struct bcmeth_txqueue *txq,
   1350   1.2  matt 	struct mbuf *m)
   1351   1.2  matt {
   1352   1.2  matt 	bus_dmamap_t map;
   1353   1.2  matt 	int error;
   1354   1.2  matt 
   1355   1.2  matt 	map = M_GETCTX(m, bus_dmamap_t);
   1356   1.2  matt 	if (map != NULL)
   1357   1.2  matt 		return 0;
   1358   1.2  matt 
   1359   1.2  matt 	map = bcmeth_mapcache_get(sc, sc->sc_tx_mapcache);
   1360   1.2  matt 	if (map == NULL)
   1361   1.2  matt 		return ENOMEM;
   1362   1.2  matt 
   1363   1.2  matt 	error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
   1364   1.2  matt 	    BUS_DMA_WRITE | BUS_DMA_NOWAIT);
   1365   1.2  matt 	if (error)
   1366   1.2  matt 		return error;
   1367   1.2  matt 
   1368   1.2  matt 	bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
   1369   1.2  matt 	    BUS_DMASYNC_PREWRITE);
   1370   1.2  matt 	M_SETCTX(m, map);
   1371   1.2  matt 	return 0;
   1372   1.2  matt }
   1373   1.2  matt 
   1374   1.2  matt static void
   1375   1.2  matt bcmeth_txq_map_unload(
   1376   1.2  matt 	struct bcmeth_softc *sc,
   1377   1.2  matt 	struct bcmeth_txqueue *txq,
   1378   1.2  matt 	struct mbuf *m)
   1379   1.2  matt {
   1380   1.2  matt 	KASSERT(m);
   1381   1.2  matt 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
   1382   1.2  matt 	bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
   1383   1.2  matt 	    BUS_DMASYNC_POSTWRITE);
   1384   1.2  matt 	bus_dmamap_unload(sc->sc_dmat, map);
   1385   1.2  matt 	bcmeth_mapcache_put(sc, sc->sc_tx_mapcache, map);
   1386   1.2  matt }
   1387   1.2  matt 
   1388   1.2  matt static bool
   1389   1.2  matt bcmeth_txq_produce(
   1390   1.2  matt 	struct bcmeth_softc *sc,
   1391   1.2  matt 	struct bcmeth_txqueue *txq,
   1392   1.2  matt 	struct mbuf *m)
   1393   1.2  matt {
   1394   1.2  matt 	bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
   1395   1.2  matt 
   1396   1.2  matt 	if (map->dm_nsegs > txq->txq_free)
   1397   1.2  matt 		return false;
   1398   1.2  matt 
   1399   1.2  matt 	/*
   1400   1.2  matt 	 * TCP Offload flag must be set in the first descriptor.
   1401   1.2  matt 	 */
   1402   1.2  matt 	struct gmac_txdb *producer = txq->txq_producer;
   1403   1.2  matt 	uint32_t first_flags = TXDB_FLAG_SF;
   1404   1.2  matt 	uint32_t last_flags = TXDB_FLAG_EF;
   1405   1.2  matt 
   1406   1.2  matt 	/*
   1407   1.2  matt 	 * If we've produced enough descriptors without consuming any
   1408   1.2  matt 	 * we need to ask for an interrupt to reclaim some.
   1409   1.2  matt 	 */
   1410   1.2  matt 	txq->txq_lastintr += map->dm_nsegs;
   1411   1.2  matt 	if (txq->txq_lastintr >= txq->txq_threshold
   1412   1.2  matt 	    || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
   1413   1.2  matt 		txq->txq_lastintr = 0;
   1414   1.2  matt 		last_flags |= TXDB_FLAG_IC;
   1415   1.2  matt 	}
   1416   1.2  matt 
   1417   1.2  matt 	KASSERT(producer != txq->txq_last);
   1418   1.2  matt 
   1419   1.2  matt 	struct gmac_txdb *start = producer;
   1420   1.2  matt 	size_t count = map->dm_nsegs;
   1421  1.25  matt 	producer->txdb_flags |= htole32(first_flags);
   1422  1.25  matt 	producer->txdb_addrlo = htole32(map->dm_segs[0].ds_addr);
   1423  1.25  matt 	producer->txdb_buflen = htole32(map->dm_segs[0].ds_len);
   1424   1.2  matt 	for (u_int i = 1; i < map->dm_nsegs; i++) {
   1425   1.2  matt #if 0
   1426   1.2  matt 		printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
   1427  1.25  matt 		    le32toh(producer->txdb_flags),
   1428  1.25  matt 		    le32toh(producer->txdb_buflen),
   1429  1.25  matt 		    le32toh(producer->txdb_addrlo),
   1430  1.25  matt 		    le32toh(producer->txdb_addrhi));
   1431   1.2  matt #endif
   1432   1.2  matt 		if (__predict_false(++producer == txq->txq_last)) {
   1433   1.2  matt 			bcmeth_txq_desc_presync(sc, txq, start,
   1434   1.2  matt 			    txq->txq_last - start);
   1435   1.2  matt 			count -= txq->txq_last - start;
   1436   1.2  matt 			producer = txq->txq_first;
   1437   1.2  matt 			start = txq->txq_first;
   1438   1.2  matt 		}
   1439  1.25  matt 		producer->txdb_addrlo = htole32(map->dm_segs[i].ds_addr);
   1440  1.25  matt 		producer->txdb_buflen = htole32(map->dm_segs[i].ds_len);
   1441   1.2  matt 	}
   1442  1.25  matt 	producer->txdb_flags |= htole32(last_flags);
   1443   1.2  matt #if 0
   1444   1.2  matt 	printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
   1445  1.25  matt 	    le32toh(producer->txdb_flags), le32toh(producer->txdb_buflen),
   1446  1.25  matt 	    le32toh(producer->txdb_addrlo), le32toh(producer->txdb_addrhi));
   1447   1.2  matt #endif
   1448  1.10  matt 	if (count)
   1449  1.10  matt 		bcmeth_txq_desc_presync(sc, txq, start, count);
   1450   1.2  matt 
   1451   1.2  matt 	/*
   1452   1.2  matt 	 * Reduce free count by the number of segments we consumed.
   1453   1.2  matt 	 */
   1454   1.2  matt 	txq->txq_free -= map->dm_nsegs;
   1455   1.2  matt 	KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
   1456  1.25  matt 	KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txdb_flags & htole32(TXDB_FLAG_EF)) == 0);
   1457  1.25  matt 	KASSERT(producer->txdb_flags & htole32(TXDB_FLAG_EF));
   1458   1.2  matt 
   1459   1.2  matt #if 0
   1460   1.2  matt 	printf("%s: mbuf %p: produced a %u byte packet in %u segments (%zd..%zd)\n",
   1461   1.2  matt 	    __func__, m, m->m_pkthdr.len, map->dm_nsegs,
   1462   1.2  matt 	    txq->txq_producer - txq->txq_first, producer - txq->txq_first);
   1463   1.2  matt #endif
   1464   1.2  matt 
   1465  1.10  matt 	if (producer + 1 == txq->txq_last)
   1466   1.2  matt 		txq->txq_producer = txq->txq_first;
   1467   1.2  matt 	else
   1468  1.10  matt 		txq->txq_producer = producer + 1;
   1469   1.2  matt 	IF_ENQUEUE(&txq->txq_mbufs, m);
   1470   1.2  matt 
   1471   1.2  matt 	/*
   1472   1.2  matt 	 * Let the transmitter know there's more to do
   1473   1.2  matt 	 */
   1474   1.2  matt 	bcmeth_write_4(sc, txq->txq_reg_xmtptr,
   1475   1.2  matt 	    txq->txq_descmap->dm_segs[0].ds_addr
   1476   1.2  matt 	    + ((uintptr_t)txq->txq_producer & XMT_LASTDSCR));
   1477   1.2  matt 
   1478   1.2  matt 	return true;
   1479   1.2  matt }
   1480   1.2  matt 
   1481  1.16  matt static struct mbuf *
   1482  1.16  matt bcmeth_copy_packet(struct mbuf *m)
   1483  1.16  matt {
   1484  1.16  matt 	struct mbuf *mext = NULL;
   1485  1.16  matt 	size_t misalignment = 0;
   1486  1.16  matt 	size_t hlen = 0;
   1487  1.16  matt 
   1488  1.16  matt 	for (mext = m; mext != NULL; mext = mext->m_next) {
   1489  1.16  matt 		if (mext->m_flags & M_EXT) {
   1490  1.16  matt 			misalignment = mtod(mext, vaddr_t) & arm_dcache_align;
   1491  1.16  matt 			break;
   1492  1.16  matt 		}
   1493  1.16  matt 		hlen += m->m_len;
   1494  1.16  matt 	}
   1495  1.16  matt 
   1496  1.16  matt 	struct mbuf *n = m->m_next;
   1497  1.16  matt 	if (m != mext && hlen + misalignment <= MHLEN && false) {
   1498  1.16  matt 		KASSERT(m->m_pktdat <= m->m_data && m->m_data <= &m->m_pktdat[MHLEN - m->m_len]);
   1499  1.16  matt 		size_t oldoff = m->m_data - m->m_pktdat;
   1500  1.16  matt 		size_t off;
   1501  1.16  matt 		if (mext == NULL) {
   1502  1.16  matt 			off = (oldoff + hlen > MHLEN) ? 0 : oldoff;
   1503  1.16  matt 		} else {
   1504  1.16  matt 			off = MHLEN - (hlen + misalignment);
   1505  1.16  matt 		}
   1506  1.16  matt 		KASSERT(off + hlen + misalignment <= MHLEN);
   1507  1.16  matt 		if (((oldoff ^ off) & arm_dcache_align) != 0 || off < oldoff) {
   1508  1.16  matt 			memmove(&m->m_pktdat[off], m->m_data, m->m_len);
   1509  1.16  matt 			m->m_data = &m->m_pktdat[off];
   1510  1.16  matt 		}
   1511  1.16  matt 		m_copydata(n, 0, hlen - m->m_len, &m->m_data[m->m_len]);
   1512  1.16  matt 		m->m_len = hlen;
   1513  1.16  matt 		m->m_next = mext;
   1514  1.16  matt 		while (n != mext) {
   1515  1.16  matt 			n = m_free(n);
   1516  1.16  matt 		}
   1517  1.16  matt 		return m;
   1518  1.16  matt 	}
   1519  1.16  matt 
   1520  1.16  matt 	struct mbuf *m0 = m_gethdr(M_DONTWAIT, m->m_type);
   1521  1.16  matt 	if (m0 == NULL) {
   1522  1.16  matt 		return NULL;
   1523  1.16  matt 	}
   1524  1.16  matt 	M_COPY_PKTHDR(m0, m);
   1525  1.16  matt 	MCLAIM(m0, m->m_owner);
   1526  1.16  matt 	if (m0->m_pkthdr.len > MHLEN) {
   1527  1.16  matt 		MCLGET(m0, M_DONTWAIT);
   1528  1.16  matt 		if ((m0->m_flags & M_EXT) == 0) {
   1529  1.16  matt 			m_freem(m0);
   1530  1.16  matt 			return NULL;
   1531  1.16  matt 		}
   1532  1.16  matt 	}
   1533  1.16  matt 	m0->m_len = m->m_pkthdr.len;
   1534  1.16  matt 	m_copydata(m, 0, m0->m_len, mtod(m0, void *));
   1535  1.16  matt 	m_freem(m);
   1536  1.16  matt 	return m0;
   1537  1.16  matt }
   1538  1.16  matt 
   1539   1.2  matt static bool
   1540   1.2  matt bcmeth_txq_enqueue(
   1541   1.2  matt 	struct bcmeth_softc *sc,
   1542   1.2  matt 	struct bcmeth_txqueue *txq)
   1543   1.2  matt {
   1544   1.2  matt 	for (;;) {
   1545   1.2  matt 		if (IF_QFULL(&txq->txq_mbufs))
   1546   1.2  matt 			return false;
   1547   1.2  matt 		struct mbuf *m = txq->txq_next;
   1548   1.2  matt 		if (m == NULL) {
   1549   1.2  matt 			int s = splnet();
   1550   1.2  matt 			IF_DEQUEUE(&sc->sc_if.if_snd, m);
   1551   1.2  matt 			splx(s);
   1552   1.2  matt 			if (m == NULL)
   1553   1.2  matt 				return true;
   1554   1.2  matt 			M_SETCTX(m, NULL);
   1555   1.2  matt 		} else {
   1556   1.2  matt 			txq->txq_next = NULL;
   1557   1.2  matt 		}
   1558  1.15  matt 		/*
   1559  1.15  matt 		 * If LINK2 is set and this packet uses multiple mbufs,
   1560  1.15  matt 		 * consolidate it into a single mbuf.
   1561  1.15  matt 		 */
   1562  1.15  matt 		if (m->m_next != NULL && (sc->sc_if.if_flags & IFF_LINK2)) {
   1563  1.16  matt 			struct mbuf *m0 = bcmeth_copy_packet(m);
   1564  1.15  matt 			if (m0 == NULL) {
   1565  1.15  matt 				txq->txq_next = m;
   1566  1.15  matt 				return true;
   1567  1.15  matt 			}
   1568  1.15  matt 			m = m0;
   1569  1.15  matt 		}
   1570   1.2  matt 		int error = bcmeth_txq_map_load(sc, txq, m);
   1571   1.2  matt 		if (error) {
   1572   1.2  matt 			aprint_error_dev(sc->sc_dev,
   1573   1.2  matt 			    "discarded packet due to "
   1574   1.2  matt 			    "dmamap load failure: %d\n", error);
   1575   1.2  matt 			m_freem(m);
   1576   1.2  matt 			continue;
   1577   1.2  matt 		}
   1578   1.2  matt 		KASSERT(txq->txq_next == NULL);
   1579   1.2  matt 		if (!bcmeth_txq_produce(sc, txq, m)) {
   1580   1.2  matt 			txq->txq_next = m;
   1581   1.2  matt 			return false;
   1582   1.2  matt 		}
   1583   1.2  matt 		KASSERT(txq->txq_next == NULL);
   1584   1.2  matt 	}
   1585   1.2  matt }
   1586   1.2  matt 
   1587   1.2  matt static bool
   1588   1.2  matt bcmeth_txq_consume(
   1589   1.2  matt 	struct bcmeth_softc *sc,
   1590   1.2  matt 	struct bcmeth_txqueue *txq)
   1591   1.2  matt {
   1592   1.2  matt 	struct ifnet * const ifp = &sc->sc_if;
   1593   1.2  matt 	struct gmac_txdb *consumer = txq->txq_consumer;
   1594   1.2  matt 	size_t txfree = 0;
   1595   1.2  matt 
   1596   1.2  matt #if 0
   1597   1.2  matt 	printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
   1598   1.2  matt #endif
   1599   1.2  matt 
   1600   1.2  matt 	for (;;) {
   1601   1.2  matt 		if (consumer == txq->txq_producer) {
   1602   1.2  matt 			txq->txq_consumer = consumer;
   1603   1.2  matt 			txq->txq_free += txfree;
   1604   1.2  matt 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
   1605   1.2  matt #if 0
   1606   1.5  matt 			printf("%s: empty: freed %zu descriptors going from %zu to %zu\n",
   1607   1.2  matt 			    __func__, txfree, txq->txq_free - txfree, txq->txq_free);
   1608   1.2  matt #endif
   1609   1.2  matt 			KASSERT(txq->txq_lastintr == 0);
   1610   1.2  matt 			KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
   1611   1.2  matt 			return true;
   1612   1.2  matt 		}
   1613   1.2  matt 		bcmeth_txq_desc_postsync(sc, txq, consumer, 1);
   1614   1.2  matt 		uint32_t s0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
   1615   1.2  matt 		if (consumer == txq->txq_first + __SHIFTOUT(s0, XMT_CURRDSCR)) {
   1616   1.2  matt 			txq->txq_consumer = consumer;
   1617   1.2  matt 			txq->txq_free += txfree;
   1618   1.2  matt 			txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
   1619   1.2  matt #if 0
   1620   1.2  matt 			printf("%s: freed %zu descriptors\n",
   1621   1.2  matt 			    __func__, txfree);
   1622   1.2  matt #endif
   1623   1.2  matt 			return bcmeth_txq_fillable_p(sc, txq);
   1624   1.2  matt 		}
   1625   1.2  matt 
   1626   1.2  matt 		/*
   1627   1.2  matt 		 * If this is the last descriptor in the chain, get the
   1628   1.2  matt 		 * mbuf, free its dmamap, and free the mbuf chain itself.
   1629   1.2  matt 		 */
   1630  1.25  matt 		const uint32_t txdb_flags = le32toh(consumer->txdb_flags);
   1631   1.2  matt 		if (txdb_flags & TXDB_FLAG_EF) {
   1632   1.2  matt 			struct mbuf *m;
   1633   1.2  matt 
   1634   1.2  matt 			IF_DEQUEUE(&txq->txq_mbufs, m);
   1635   1.2  matt 			KASSERT(m);
   1636   1.2  matt 			bcmeth_txq_map_unload(sc, txq, m);
   1637   1.2  matt #if 0
   1638   1.2  matt 			printf("%s: mbuf %p: consumed a %u byte packet\n",
   1639   1.2  matt 			    __func__, m, m->m_pkthdr.len);
   1640   1.2  matt #endif
   1641  1.10  matt 			bpf_mtap(ifp, m);
   1642   1.2  matt 			ifp->if_opackets++;
   1643   1.2  matt 			ifp->if_obytes += m->m_pkthdr.len;
   1644   1.2  matt 			if (m->m_flags & M_MCAST)
   1645   1.2  matt 				ifp->if_omcasts++;
   1646   1.2  matt 			m_freem(m);
   1647   1.2  matt 		}
   1648   1.2  matt 
   1649   1.2  matt 		/*
   1650   1.2  matt 		 * We own this packet again.  Clear all flags except wrap.
   1651   1.2  matt 		 */
   1652   1.2  matt 		txfree++;
   1653   1.2  matt 
   1654   1.2  matt 		/*
   1655   1.2  matt 		 * Wrap at the last entry!
   1656   1.2  matt 		 */
   1657   1.2  matt 		if (txdb_flags & TXDB_FLAG_ET) {
   1658  1.25  matt 			consumer->txdb_flags = htole32(TXDB_FLAG_ET);
   1659   1.2  matt 			KASSERT(consumer + 1 == txq->txq_last);
   1660   1.2  matt 			consumer = txq->txq_first;
   1661   1.2  matt 		} else {
   1662   1.2  matt 			consumer->txdb_flags = 0;
   1663   1.2  matt 			consumer++;
   1664   1.2  matt 			KASSERT(consumer < txq->txq_last);
   1665   1.2  matt 		}
   1666   1.2  matt 	}
   1667   1.2  matt }
   1668   1.2  matt 
   1669   1.2  matt static void
   1670   1.2  matt bcmeth_txq_purge(
   1671   1.2  matt 	struct bcmeth_softc *sc,
   1672   1.2  matt 	struct bcmeth_txqueue *txq)
   1673   1.2  matt {
   1674   1.2  matt 	struct mbuf *m;
   1675   1.2  matt 	KASSERT((bcmeth_read_4(sc, UNIMAC_COMMAND_CONFIG) & TX_ENA) == 0);
   1676   1.2  matt 
   1677   1.2  matt 	for (;;) {
   1678   1.2  matt 		IF_DEQUEUE(&txq->txq_mbufs, m);
   1679   1.2  matt 		if (m == NULL)
   1680   1.2  matt 			break;
   1681   1.2  matt 		bcmeth_txq_map_unload(sc, txq, m);
   1682   1.2  matt 		m_freem(m);
   1683   1.2  matt 	}
   1684   1.2  matt 	if ((m = txq->txq_next) != NULL) {
   1685   1.2  matt 		txq->txq_next = NULL;
   1686   1.2  matt 		bcmeth_txq_map_unload(sc, txq, m);
   1687   1.2  matt 		m_freem(m);
   1688   1.2  matt 	}
   1689   1.2  matt }
   1690   1.2  matt 
   1691   1.2  matt static void
   1692   1.2  matt bcmeth_txq_reset(
   1693   1.2  matt 	struct bcmeth_softc *sc,
   1694   1.2  matt 	struct bcmeth_txqueue *txq)
   1695   1.2  matt {
   1696   1.2  matt 	/*
   1697   1.2  matt 	 * sync all the descriptors
   1698   1.2  matt 	 */
   1699   1.2  matt 	bcmeth_txq_desc_postsync(sc, txq, txq->txq_first,
   1700   1.2  matt 	    txq->txq_last - txq->txq_first);
   1701   1.2  matt 
   1702   1.2  matt 	/*
   1703   1.2  matt 	 * Make sure we own all descriptors in the ring.
   1704   1.2  matt 	 */
   1705   1.2  matt 	struct gmac_txdb *txdb;
   1706   1.2  matt 	for (txdb = txq->txq_first; txdb < txq->txq_last - 1; txdb++) {
   1707   1.2  matt 		txdb->txdb_flags = 0;
   1708   1.2  matt 	}
   1709   1.2  matt 
   1710   1.2  matt 	/*
   1711   1.2  matt 	 * Last descriptor has the wrap flag.
   1712   1.2  matt 	 */
   1713  1.25  matt 	txdb->txdb_flags = htole32(TXDB_FLAG_ET);
   1714   1.2  matt 
   1715   1.2  matt 	/*
   1716   1.2  matt 	 * Reset the producer consumer indexes.
   1717   1.2  matt 	 */
   1718   1.2  matt 	txq->txq_consumer = txq->txq_first;
   1719   1.2  matt 	txq->txq_producer = txq->txq_first;
   1720   1.2  matt 	txq->txq_free = txq->txq_last - txq->txq_first - 1;
   1721   1.2  matt 	txq->txq_threshold = txq->txq_free / 2;
   1722   1.2  matt 	txq->txq_lastintr = 0;
   1723   1.2  matt 
   1724   1.2  matt 	/*
   1725   1.2  matt 	 * What do we want to get interrupted on?
   1726   1.2  matt 	 */
   1727   1.2  matt 	sc->sc_intmask |= XMTINT_0 | XMTUF;
   1728   1.2  matt 
   1729   1.2  matt 	/*
   1730   1.2  matt 	 * Restart the transmiter at the first descriptor
   1731   1.2  matt 	 */
   1732   1.2  matt 	bcmeth_write_4(sc, txq->txq_reg_xmtaddrlo,
   1733   1.2  matt 	    txq->txq_descmap->dm_segs->ds_addr);
   1734   1.2  matt }
   1735   1.2  matt 
   1736   1.2  matt static void
   1737   1.2  matt bcmeth_ifstart(struct ifnet *ifp)
   1738   1.2  matt {
   1739   1.2  matt 	struct bcmeth_softc * const sc = ifp->if_softc;
   1740   1.2  matt 
   1741  1.16  matt 	if (__predict_false((ifp->if_flags & IFF_RUNNING) == 0)) {
   1742  1.16  matt 		return;
   1743  1.16  matt 	}
   1744  1.16  matt 
   1745  1.16  matt #ifdef BCMETH_MPSAFETX
   1746  1.16  matt 	if (cpu_intr_p()) {
   1747  1.16  matt #endif
   1748  1.16  matt 		atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
   1749  1.16  matt 		softint_schedule(sc->sc_soft_ih);
   1750  1.16  matt #ifdef BCMETH_MPSAFETX
   1751  1.16  matt 	} else {
   1752  1.16  matt 		/*
   1753  1.16  matt 		 * Either we are in a softintr thread already or some other
   1754  1.16  matt 		 * thread so just borrow it to do the send and save ourselves
   1755  1.16  matt 		 * the overhead of a fast soft int.
   1756  1.16  matt 		 */
   1757  1.16  matt 		bcmeth_soft_txintr(sc);
   1758  1.16  matt 	}
   1759  1.16  matt #endif
   1760   1.2  matt }
   1761   1.2  matt 
   1762   1.2  matt int
   1763   1.1  matt bcmeth_intr(void *arg)
   1764   1.1  matt {
   1765   1.1  matt 	struct bcmeth_softc * const sc = arg;
   1766   1.2  matt 	uint32_t soft_flags = 0;
   1767   1.8  matt 	uint32_t work_flags = 0;
   1768   1.1  matt 	int rv = 0;
   1769   1.1  matt 
   1770   1.1  matt 	mutex_enter(sc->sc_hwlock);
   1771   1.1  matt 
   1772  1.15  matt 	uint32_t intmask = sc->sc_intmask;
   1773  1.18  matt 	BCMETH_EVCNT_INCR(sc->sc_ev_intr);
   1774   1.2  matt 
   1775   1.2  matt 	for (;;) {
   1776   1.2  matt 		uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
   1777  1.15  matt 		intstatus &= intmask;
   1778   1.2  matt 		bcmeth_write_4(sc, GMAC_INTSTATUS, intstatus);	/* write 1 to clear */
   1779   1.2  matt 		if (intstatus == 0) {
   1780   1.2  matt 			break;
   1781   1.2  matt 		}
   1782   1.2  matt #if 0
   1783   1.8  matt 		aprint_normal_dev(sc->sc_dev, "%s: intstatus=%#x intmask=%#x\n",
   1784   1.8  matt 		    __func__, intstatus, bcmeth_read_4(sc, GMAC_INTMASK));
   1785   1.2  matt #endif
   1786   1.2  matt 		if (intstatus & RCVINT) {
   1787   1.8  matt 			struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
   1788  1.15  matt 			intmask &= ~RCVINT;
   1789   1.8  matt 
   1790   1.8  matt 			uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
   1791   1.8  matt 			uint32_t descs = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
   1792   1.8  matt 			if (descs < rxq->rxq_consumer - rxq->rxq_first) {
   1793   1.8  matt 				/*
   1794   1.8  matt 				 * We wrapped at the end so count how far
   1795   1.8  matt 				 * we are from the end.
   1796   1.8  matt 				 */
   1797   1.8  matt 				descs += rxq->rxq_last - rxq->rxq_consumer;
   1798   1.8  matt 			} else {
   1799   1.8  matt 				descs -= rxq->rxq_consumer - rxq->rxq_first;
   1800   1.8  matt 			}
   1801   1.8  matt 			/*
   1802   1.8  matt 			 * If we "timedout" we can't be hogging so use
   1803   1.8  matt 			 * softints.  If we exceeded then we might hogging
   1804   1.8  matt 			 * so let the workqueue deal with them.
   1805   1.8  matt 			 */
   1806   1.8  matt 			const uint32_t framecount = __SHIFTOUT(sc->sc_rcvlazy, INTRCVLAZY_FRAMECOUNT);
   1807   1.9  matt 			if (descs < framecount
   1808   1.9  matt 			    || (curcpu()->ci_curlwp->l_flag & LW_IDLE)) {
   1809   1.8  matt 				soft_flags |= SOFT_RXINTR;
   1810   1.8  matt 			} else {
   1811   1.8  matt 				work_flags |= WORK_RXINTR;
   1812   1.8  matt 			}
   1813   1.2  matt 		}
   1814   1.2  matt 
   1815   1.2  matt 		if (intstatus & XMTINT_0) {
   1816  1.15  matt 			intmask &= ~XMTINT_0;
   1817   1.2  matt 			soft_flags |= SOFT_TXINTR;
   1818   1.2  matt 		}
   1819   1.2  matt 
   1820   1.2  matt 		if (intstatus & RCVDESCUF) {
   1821  1.15  matt 			intmask &= ~RCVDESCUF;
   1822   1.8  matt 			work_flags |= WORK_RXUNDERFLOW;
   1823   1.2  matt 		}
   1824   1.2  matt 
   1825  1.15  matt 		intstatus &= intmask;
   1826   1.2  matt 		if (intstatus) {
   1827  1.10  matt 			aprint_error_dev(sc->sc_dev,
   1828  1.10  matt 			    "intr: intstatus=%#x\n", intstatus);
   1829  1.10  matt 			aprint_error_dev(sc->sc_dev,
   1830  1.10  matt 			    "rcvbase=%p/%#lx rcvptr=%#x rcvsts=%#x/%#x\n",
   1831  1.10  matt 			    sc->sc_rxq.rxq_first,
   1832  1.10  matt 			    sc->sc_rxq.rxq_descmap->dm_segs[0].ds_addr,
   1833  1.10  matt 			    bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvptr),
   1834  1.10  matt 			    bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts0),
   1835  1.10  matt 			    bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts1));
   1836  1.10  matt 			aprint_error_dev(sc->sc_dev,
   1837  1.10  matt 			    "xmtbase=%p/%#lx xmtptr=%#x xmtsts=%#x/%#x\n",
   1838  1.10  matt 			    sc->sc_txq.txq_first,
   1839  1.10  matt 			    sc->sc_txq.txq_descmap->dm_segs[0].ds_addr,
   1840  1.10  matt 			    bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtptr),
   1841  1.10  matt 			    bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts0),
   1842  1.10  matt 			    bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts1));
   1843  1.15  matt 			intmask &= ~intstatus;
   1844   1.8  matt 			work_flags |= WORK_REINIT;
   1845   1.2  matt 			break;
   1846   1.2  matt 		}
   1847   1.2  matt 	}
   1848   1.2  matt 
   1849  1.15  matt 	if (intmask != sc->sc_intmask) {
   1850   1.8  matt 		bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
   1851   1.8  matt 	}
   1852   1.8  matt 
   1853   1.8  matt 	if (work_flags) {
   1854   1.8  matt 		if (sc->sc_work_flags == 0) {
   1855   1.8  matt 			workqueue_enqueue(sc->sc_workq, &sc->sc_work, NULL);
   1856   1.8  matt 		}
   1857   1.8  matt 		atomic_or_32(&sc->sc_work_flags, work_flags);
   1858   1.8  matt 		rv = 1;
   1859   1.8  matt 	}
   1860   1.8  matt 
   1861   1.2  matt 	if (soft_flags) {
   1862   1.8  matt 		if (sc->sc_soft_flags == 0) {
   1863   1.8  matt 			softint_schedule(sc->sc_soft_ih);
   1864   1.8  matt 		}
   1865   1.8  matt 		atomic_or_32(&sc->sc_soft_flags, soft_flags);
   1866   1.2  matt 		rv = 1;
   1867   1.2  matt 	}
   1868   1.1  matt 
   1869   1.1  matt 	mutex_exit(sc->sc_hwlock);
   1870   1.1  matt 
   1871   1.1  matt 	return rv;
   1872   1.1  matt }
   1873   1.2  matt 
   1874  1.16  matt #ifdef BCMETH_MPSAFETX
   1875  1.16  matt void
   1876  1.16  matt bcmeth_soft_txintr(struct bcmeth_softc *sc)
   1877  1.16  matt {
   1878  1.16  matt 	mutex_enter(sc->sc_lock);
   1879  1.16  matt 	/*
   1880  1.16  matt 	 * Let's do what we came here for.  Consume transmitted
   1881  1.16  matt 	 * packets off the the transmit ring.
   1882  1.16  matt 	 */
   1883  1.16  matt 	if (!bcmeth_txq_consume(sc, &sc->sc_txq)
   1884  1.16  matt 	    || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
   1885  1.18  matt 		BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
   1886  1.16  matt 		sc->sc_if.if_flags |= IFF_OACTIVE;
   1887  1.16  matt 	} else {
   1888  1.16  matt 		sc->sc_if.if_flags &= ~IFF_OACTIVE;
   1889  1.16  matt 	}
   1890  1.16  matt 	if (sc->sc_if.if_flags & IFF_RUNNING) {
   1891  1.16  matt 		mutex_spin_enter(sc->sc_hwlock);
   1892  1.16  matt 		sc->sc_intmask |= XMTINT_0;
   1893  1.16  matt 		bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
   1894  1.16  matt 		mutex_spin_exit(sc->sc_hwlock);
   1895  1.16  matt 	}
   1896  1.16  matt 	mutex_exit(sc->sc_lock);
   1897  1.16  matt }
   1898  1.16  matt #endif /* BCMETH_MPSAFETX */
   1899  1.16  matt 
   1900   1.2  matt void
   1901   1.2  matt bcmeth_soft_intr(void *arg)
   1902   1.2  matt {
   1903   1.2  matt 	struct bcmeth_softc * const sc = arg;
   1904   1.2  matt 	struct ifnet * const ifp = &sc->sc_if;
   1905  1.15  matt 	uint32_t intmask = 0;
   1906   1.2  matt 
   1907   1.2  matt 	mutex_enter(sc->sc_lock);
   1908   1.2  matt 
   1909   1.2  matt 	u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
   1910   1.2  matt 
   1911  1.18  matt 	BCMETH_EVCNT_INCR(sc->sc_ev_soft_intr);
   1912   1.2  matt 
   1913   1.8  matt 	if ((soft_flags & SOFT_TXINTR)
   1914   1.8  matt 	    || bcmeth_txq_active_p(sc, &sc->sc_txq)) {
   1915   1.8  matt 		/*
   1916   1.8  matt 		 * Let's do what we came here for.  Consume transmitted
   1917   1.8  matt 		 * packets off the the transmit ring.
   1918   1.8  matt 		 */
   1919   1.8  matt 		if (!bcmeth_txq_consume(sc, &sc->sc_txq)
   1920   1.8  matt 		    || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
   1921  1.18  matt 			BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
   1922   1.8  matt 			ifp->if_flags |= IFF_OACTIVE;
   1923   1.8  matt 		} else {
   1924   1.8  matt 			ifp->if_flags &= ~IFF_OACTIVE;
   1925   1.8  matt 		}
   1926  1.15  matt 		intmask |= XMTINT_0;
   1927   1.8  matt 	}
   1928   1.8  matt 
   1929   1.8  matt 	if (soft_flags & SOFT_RXINTR) {
   1930   1.8  matt 		/*
   1931   1.8  matt 		 * Let's consume
   1932   1.8  matt 		 */
   1933  1.20  matt 		while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
   1934  1.20  matt 		    sc->sc_rxq.rxq_threshold / 4)) {
   1935  1.20  matt 			/*
   1936  1.20  matt 			 * We've consumed a quarter of the ring and still have
   1937  1.20  matt 			 * more to do.  Refill the ring.
   1938  1.20  matt 			 */
   1939  1.20  matt 			bcmeth_rxq_produce(sc, &sc->sc_rxq);
   1940  1.20  matt 		}
   1941  1.15  matt 		intmask |= RCVINT;
   1942   1.8  matt 	}
   1943   1.8  matt 
   1944   1.8  matt 	if (ifp->if_flags & IFF_RUNNING) {
   1945   1.8  matt 		bcmeth_rxq_produce(sc, &sc->sc_rxq);
   1946  1.14  matt 		mutex_spin_enter(sc->sc_hwlock);
   1947  1.15  matt 		sc->sc_intmask |= intmask;
   1948   1.8  matt 		bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
   1949  1.14  matt 		mutex_spin_exit(sc->sc_hwlock);
   1950   1.8  matt 	}
   1951   1.8  matt 
   1952   1.8  matt 	mutex_exit(sc->sc_lock);
   1953   1.8  matt }
   1954   1.8  matt 
   1955   1.8  matt void
   1956   1.8  matt bcmeth_worker(struct work *wk, void *arg)
   1957   1.8  matt {
   1958   1.8  matt 	struct bcmeth_softc * const sc = arg;
   1959   1.8  matt 	struct ifnet * const ifp = &sc->sc_if;
   1960  1.15  matt 	uint32_t intmask = 0;
   1961   1.8  matt 
   1962   1.8  matt 	mutex_enter(sc->sc_lock);
   1963   1.8  matt 
   1964  1.18  matt 	BCMETH_EVCNT_INCR(sc->sc_ev_work);
   1965   1.8  matt 
   1966   1.8  matt 	uint32_t work_flags = atomic_swap_32(&sc->sc_work_flags, 0);
   1967   1.8  matt 	if (work_flags & WORK_REINIT) {
   1968   1.2  matt 		int s = splnet();
   1969   1.8  matt 		sc->sc_soft_flags = 0;
   1970   1.2  matt 		bcmeth_ifinit(ifp);
   1971   1.2  matt 		splx(s);
   1972   1.8  matt 		work_flags &= ~WORK_RXUNDERFLOW;
   1973   1.2  matt 	}
   1974   1.2  matt 
   1975   1.8  matt 	if (work_flags & WORK_RXUNDERFLOW) {
   1976   1.2  matt 		struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
   1977   1.2  matt 		size_t threshold = 5 * rxq->rxq_threshold / 4;
   1978   1.2  matt 		if (threshold >= rxq->rxq_last - rxq->rxq_first) {
   1979   1.2  matt 			threshold = rxq->rxq_last - rxq->rxq_first - 1;
   1980   1.2  matt 		} else {
   1981  1.15  matt 			intmask |= RCVDESCUF;
   1982   1.2  matt 		}
   1983   1.2  matt 		aprint_normal_dev(sc->sc_dev,
   1984   1.2  matt 		    "increasing receive buffers from %zu to %zu\n",
   1985   1.2  matt 		    rxq->rxq_threshold, threshold);
   1986   1.2  matt 		rxq->rxq_threshold = threshold;
   1987   1.2  matt 	}
   1988   1.2  matt 
   1989   1.8  matt 	if (work_flags & WORK_RXINTR) {
   1990   1.2  matt 		/*
   1991   1.2  matt 		 * Let's consume
   1992   1.2  matt 		 */
   1993  1.20  matt 		while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
   1994  1.20  matt 		    sc->sc_rxq.rxq_threshold / 4)) {
   1995  1.20  matt 			/*
   1996  1.20  matt 			 * We've consumed a quarter of the ring and still have
   1997  1.20  matt 			 * more to do.  Refill the ring.
   1998  1.20  matt 			 */
   1999  1.20  matt 			bcmeth_rxq_produce(sc, &sc->sc_rxq);
   2000  1.20  matt 		}
   2001  1.15  matt 		intmask |= RCVINT;
   2002   1.2  matt 	}
   2003   1.2  matt 
   2004   1.2  matt 	if (ifp->if_flags & IFF_RUNNING) {
   2005   1.2  matt 		bcmeth_rxq_produce(sc, &sc->sc_rxq);
   2006  1.16  matt #if 0
   2007  1.16  matt 		uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
   2008  1.16  matt 		if (intstatus & RCVINT) {
   2009  1.16  matt 			bcmeth_write_4(sc, GMAC_INTSTATUS, RCVINT);
   2010  1.16  matt 			work_flags |= WORK_RXINTR;
   2011  1.16  matt 			continue;
   2012  1.16  matt 		}
   2013  1.16  matt #endif
   2014  1.14  matt 		mutex_spin_enter(sc->sc_hwlock);
   2015  1.15  matt 		sc->sc_intmask |= intmask;
   2016   1.2  matt 		bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
   2017  1.14  matt 		mutex_spin_exit(sc->sc_hwlock);
   2018   1.2  matt 	}
   2019   1.2  matt 
   2020   1.2  matt 	mutex_exit(sc->sc_lock);
   2021   1.2  matt }
   2022