bcm53xx_eth.c revision 1.24.2.1 1 /*-
2 * Copyright (c) 2012 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas of 3am Software Foundry.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #define _ARM32_BUS_DMA_PRIVATE
31 #define GMAC_PRIVATE
32
33 #include "locators.h"
34 #include "opt_broadcom.h"
35
36 #include <sys/cdefs.h>
37
38 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_eth.c,v 1.24.2.1 2014/05/18 17:44:57 rmind Exp $");
39
40 #include <sys/param.h>
41 #include <sys/atomic.h>
42 #include <sys/bus.h>
43 #include <sys/device.h>
44 #include <sys/ioctl.h>
45 #include <sys/intr.h>
46 #include <sys/kmem.h>
47 #include <sys/mutex.h>
48 #include <sys/socket.h>
49 #include <sys/systm.h>
50 #include <sys/workqueue.h>
51
52 #include <net/if.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55
56 #include <net/if_dl.h>
57
58 #include <net/bpf.h>
59
60 #include <dev/mii/miivar.h>
61
62 #include <arm/locore.h>
63
64 #include <arm/broadcom/bcm53xx_reg.h>
65 #include <arm/broadcom/bcm53xx_var.h>
66
67 //#define BCMETH_MPSAFE
68
69 #ifdef BCMETH_COUNTERS
70 #define BCMETH_EVCNT_ADD(a,b) ((void)((a).ev_count += (b)))
71 #else
72 #define BCMETH_EVCNT_ADD(a,b) do { } while (/*CONSTCOND*/0)
73 #endif
74 #define BCMETH_EVCNT_INCR(a) BCMETH_EVCNT_ADD((a), 1)
75
76 #define BCMETH_MAXTXMBUFS 128
77 #define BCMETH_NTXSEGS 30
78 #define BCMETH_MAXRXMBUFS 255
79 #define BCMETH_MINRXMBUFS 64
80 #define BCMETH_NRXSEGS 1
81 #define BCMETH_RINGSIZE PAGE_SIZE
82
83 #if 1
84 #define BCMETH_RCVMAGIC 0xfeedface
85 #endif
86
87 static int bcmeth_ccb_match(device_t, cfdata_t, void *);
88 static void bcmeth_ccb_attach(device_t, device_t, void *);
89
90 struct bcmeth_txqueue {
91 bus_dmamap_t txq_descmap;
92 struct gmac_txdb *txq_consumer;
93 struct gmac_txdb *txq_producer;
94 struct gmac_txdb *txq_first;
95 struct gmac_txdb *txq_last;
96 struct ifqueue txq_mbufs;
97 struct mbuf *txq_next;
98 size_t txq_free;
99 size_t txq_threshold;
100 size_t txq_lastintr;
101 bus_size_t txq_reg_xmtaddrlo;
102 bus_size_t txq_reg_xmtptr;
103 bus_size_t txq_reg_xmtctl;
104 bus_size_t txq_reg_xmtsts0;
105 bus_size_t txq_reg_xmtsts1;
106 bus_dma_segment_t txq_descmap_seg;
107 };
108
109 struct bcmeth_rxqueue {
110 bus_dmamap_t rxq_descmap;
111 struct gmac_rxdb *rxq_consumer;
112 struct gmac_rxdb *rxq_producer;
113 struct gmac_rxdb *rxq_first;
114 struct gmac_rxdb *rxq_last;
115 struct mbuf *rxq_mhead;
116 struct mbuf **rxq_mtail;
117 struct mbuf *rxq_mconsumer;
118 size_t rxq_inuse;
119 size_t rxq_threshold;
120 bus_size_t rxq_reg_rcvaddrlo;
121 bus_size_t rxq_reg_rcvptr;
122 bus_size_t rxq_reg_rcvctl;
123 bus_size_t rxq_reg_rcvsts0;
124 bus_size_t rxq_reg_rcvsts1;
125 bus_dma_segment_t rxq_descmap_seg;
126 };
127
128 struct bcmeth_mapcache {
129 u_int dmc_nmaps;
130 u_int dmc_maxseg;
131 u_int dmc_maxmaps;
132 u_int dmc_maxmapsize;
133 bus_dmamap_t dmc_maps[0];
134 };
135
136 struct bcmeth_softc {
137 device_t sc_dev;
138 bus_space_tag_t sc_bst;
139 bus_space_handle_t sc_bsh;
140 bus_dma_tag_t sc_dmat;
141 kmutex_t *sc_lock;
142 kmutex_t *sc_hwlock;
143 struct ethercom sc_ec;
144 #define sc_if sc_ec.ec_if
145 struct ifmedia sc_media;
146 void *sc_soft_ih;
147 void *sc_ih;
148
149 struct bcmeth_rxqueue sc_rxq;
150 struct bcmeth_txqueue sc_txq;
151
152 size_t sc_rcvoffset;
153 uint32_t sc_macaddr[2];
154 uint32_t sc_maxfrm;
155 uint32_t sc_cmdcfg;
156 uint32_t sc_intmask;
157 uint32_t sc_rcvlazy;
158 volatile uint32_t sc_soft_flags;
159 #define SOFT_RXINTR 0x01
160 #define SOFT_TXINTR 0x02
161
162 #ifdef BCMETH_COUNTERS
163 struct evcnt sc_ev_intr;
164 struct evcnt sc_ev_soft_intr;
165 struct evcnt sc_ev_work;
166 struct evcnt sc_ev_tx_stall;
167 struct evcnt sc_ev_rx_badmagic_lo;
168 struct evcnt sc_ev_rx_badmagic_hi;
169 #endif
170
171 struct ifqueue sc_rx_bufcache;
172 struct bcmeth_mapcache *sc_rx_mapcache;
173 struct bcmeth_mapcache *sc_tx_mapcache;
174
175 struct workqueue *sc_workq;
176 struct work sc_work;
177
178 volatile uint32_t sc_work_flags;
179 #define WORK_RXINTR 0x01
180 #define WORK_RXUNDERFLOW 0x02
181 #define WORK_REINIT 0x04
182
183 uint8_t sc_enaddr[ETHER_ADDR_LEN];
184 };
185
186 static void bcmeth_ifstart(struct ifnet *);
187 static void bcmeth_ifwatchdog(struct ifnet *);
188 static int bcmeth_ifinit(struct ifnet *);
189 static void bcmeth_ifstop(struct ifnet *, int);
190 static int bcmeth_ifioctl(struct ifnet *, u_long, void *);
191
192 static int bcmeth_mapcache_create(struct bcmeth_softc *,
193 struct bcmeth_mapcache **, size_t, size_t, size_t);
194 static void bcmeth_mapcache_destroy(struct bcmeth_softc *,
195 struct bcmeth_mapcache *);
196 static bus_dmamap_t bcmeth_mapcache_get(struct bcmeth_softc *,
197 struct bcmeth_mapcache *);
198 static void bcmeth_mapcache_put(struct bcmeth_softc *,
199 struct bcmeth_mapcache *, bus_dmamap_t);
200
201 static int bcmeth_txq_attach(struct bcmeth_softc *,
202 struct bcmeth_txqueue *, u_int);
203 static void bcmeth_txq_purge(struct bcmeth_softc *,
204 struct bcmeth_txqueue *);
205 static void bcmeth_txq_reset(struct bcmeth_softc *,
206 struct bcmeth_txqueue *);
207 static bool bcmeth_txq_consume(struct bcmeth_softc *,
208 struct bcmeth_txqueue *);
209 static bool bcmeth_txq_produce(struct bcmeth_softc *,
210 struct bcmeth_txqueue *, struct mbuf *m);
211 static bool bcmeth_txq_active_p(struct bcmeth_softc *,
212 struct bcmeth_txqueue *);
213
214 static int bcmeth_rxq_attach(struct bcmeth_softc *,
215 struct bcmeth_rxqueue *, u_int);
216 static bool bcmeth_rxq_produce(struct bcmeth_softc *,
217 struct bcmeth_rxqueue *);
218 static void bcmeth_rxq_purge(struct bcmeth_softc *,
219 struct bcmeth_rxqueue *, bool);
220 static void bcmeth_rxq_reset(struct bcmeth_softc *,
221 struct bcmeth_rxqueue *);
222
223 static int bcmeth_intr(void *);
224 #ifdef BCMETH_MPSAFETX
225 static void bcmeth_soft_txintr(struct bcmeth_softc *);
226 #endif
227 static void bcmeth_soft_intr(void *);
228 static void bcmeth_worker(struct work *, void *);
229
230 static int bcmeth_mediachange(struct ifnet *);
231 static void bcmeth_mediastatus(struct ifnet *, struct ifmediareq *);
232
233 static inline uint32_t
234 bcmeth_read_4(struct bcmeth_softc *sc, bus_size_t o)
235 {
236 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
237 }
238
239 static inline void
240 bcmeth_write_4(struct bcmeth_softc *sc, bus_size_t o, uint32_t v)
241 {
242 bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v);
243 }
244
245 CFATTACH_DECL_NEW(bcmeth_ccb, sizeof(struct bcmeth_softc),
246 bcmeth_ccb_match, bcmeth_ccb_attach, NULL, NULL);
247
248 static int
249 bcmeth_ccb_match(device_t parent, cfdata_t cf, void *aux)
250 {
251 struct bcmccb_attach_args * const ccbaa = aux;
252 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
253
254 if (strcmp(cf->cf_name, loc->loc_name))
255 return 0;
256
257 #ifdef DIAGNOSTIC
258 const int port = cf->cf_loc[BCMCCBCF_PORT];
259 #endif
260 KASSERT(port == BCMCCBCF_PORT_DEFAULT || port == loc->loc_port);
261
262 return 1;
263 }
264
265 static void
266 bcmeth_ccb_attach(device_t parent, device_t self, void *aux)
267 {
268 struct bcmeth_softc * const sc = device_private(self);
269 struct ethercom * const ec = &sc->sc_ec;
270 struct ifnet * const ifp = &ec->ec_if;
271 struct bcmccb_attach_args * const ccbaa = aux;
272 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
273 const char * const xname = device_xname(self);
274 prop_dictionary_t dict = device_properties(self);
275 int error;
276
277 sc->sc_bst = ccbaa->ccbaa_ccb_bst;
278 sc->sc_dmat = ccbaa->ccbaa_dmat;
279 bus_space_subregion(sc->sc_bst, ccbaa->ccbaa_ccb_bsh,
280 loc->loc_offset, loc->loc_size, &sc->sc_bsh);
281
282 /*
283 * We need to use the coherent dma tag for the GMAC.
284 */
285 sc->sc_dmat = &bcm53xx_coherent_dma_tag;
286 #if _ARM32_NEED_BUS_DMA_BOUNCE
287 if (device_cfdata(self)->cf_flags & 2) {
288 sc->sc_dmat = &bcm53xx_bounce_dma_tag;
289 }
290 #endif
291
292 prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
293 if (eaprop == NULL) {
294 uint32_t mac0 = bcmeth_read_4(sc, UNIMAC_MAC_0);
295 uint32_t mac1 = bcmeth_read_4(sc, UNIMAC_MAC_1);
296 if ((mac0 == 0 && mac1 == 0) || (mac1 & 1)) {
297 aprint_error(": mac-address property is missing\n");
298 return;
299 }
300 sc->sc_enaddr[0] = (mac0 >> 0) & 0xff;
301 sc->sc_enaddr[1] = (mac0 >> 8) & 0xff;
302 sc->sc_enaddr[2] = (mac0 >> 16) & 0xff;
303 sc->sc_enaddr[3] = (mac0 >> 24) & 0xff;
304 sc->sc_enaddr[4] = (mac1 >> 0) & 0xff;
305 sc->sc_enaddr[5] = (mac1 >> 8) & 0xff;
306 } else {
307 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
308 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
309 memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
310 ETHER_ADDR_LEN);
311 }
312 sc->sc_dev = self;
313 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
314 sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
315
316 bcmeth_write_4(sc, GMAC_INTMASK, 0); // disable interrupts
317
318 aprint_naive("\n");
319 aprint_normal(": Gigabit Ethernet Controller\n");
320
321 error = bcmeth_rxq_attach(sc, &sc->sc_rxq, 0);
322 if (error) {
323 aprint_error(": failed to init rxq: %d\n", error);
324 return;
325 }
326
327 error = bcmeth_txq_attach(sc, &sc->sc_txq, 0);
328 if (error) {
329 aprint_error(": failed to init txq: %d\n", error);
330 return;
331 }
332
333 error = bcmeth_mapcache_create(sc, &sc->sc_rx_mapcache,
334 BCMETH_MAXRXMBUFS, MCLBYTES, BCMETH_NRXSEGS);
335 if (error) {
336 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
337 return;
338 }
339
340 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
341 BCMETH_MAXTXMBUFS, MCLBYTES, BCMETH_NTXSEGS);
342 if (error) {
343 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
344 return;
345 }
346
347 error = workqueue_create(&sc->sc_workq, xname, bcmeth_worker, sc,
348 (PRI_USER + MAXPRI_USER) / 2, IPL_NET, WQ_MPSAFE|WQ_PERCPU);
349 if (error) {
350 aprint_error(": failed to create workqueue: %d\n", error);
351 return;
352 }
353
354 sc->sc_soft_ih = softint_establish(SOFTINT_MPSAFE | SOFTINT_NET,
355 bcmeth_soft_intr, sc);
356
357 sc->sc_ih = intr_establish(loc->loc_intrs[0], IPL_VM, IST_LEVEL,
358 bcmeth_intr, sc);
359
360 if (sc->sc_ih == NULL) {
361 aprint_error_dev(self, "failed to establish interrupt %d\n",
362 loc->loc_intrs[0]);
363 } else {
364 aprint_normal_dev(self, "interrupting on irq %d\n",
365 loc->loc_intrs[0]);
366 }
367
368 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
369 ether_sprintf(sc->sc_enaddr));
370
371 /*
372 * Since each port in plugged into the switch/flow-accelerator,
373 * we hard code at Gige Full-Duplex with Flow Control enabled.
374 */
375 int ifmedia = IFM_ETHER|IFM_1000_T|IFM_FDX;
376 //ifmedia |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
377 ifmedia_init(&sc->sc_media, IFM_IMASK, bcmeth_mediachange,
378 bcmeth_mediastatus);
379 ifmedia_add(&sc->sc_media, ifmedia, 0, NULL);
380 ifmedia_set(&sc->sc_media, ifmedia);
381
382 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
383
384 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
385 ifp->if_softc = sc;
386 ifp->if_baudrate = IF_Mbps(1000);
387 ifp->if_capabilities = 0;
388 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
389 #ifdef BCMETH_MPSAFE
390 ifp->if_flags2 = IFF2_MPSAFE;
391 #endif
392 ifp->if_ioctl = bcmeth_ifioctl;
393 ifp->if_start = bcmeth_ifstart;
394 ifp->if_watchdog = bcmeth_ifwatchdog;
395 ifp->if_init = bcmeth_ifinit;
396 ifp->if_stop = bcmeth_ifstop;
397 IFQ_SET_READY(&ifp->if_snd);
398
399 bcmeth_ifstop(ifp, true);
400
401 /*
402 * Attach the interface.
403 */
404 if_attach(ifp);
405 ether_ifattach(ifp, sc->sc_enaddr);
406
407 #ifdef BCMETH_COUNTERS
408 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
409 NULL, xname, "intr");
410 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
411 NULL, xname, "soft intr");
412 evcnt_attach_dynamic(&sc->sc_ev_work, EVCNT_TYPE_MISC,
413 NULL, xname, "work items");
414 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
415 NULL, xname, "tx stalls");
416 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_lo, EVCNT_TYPE_MISC,
417 NULL, xname, "rx badmagic lo");
418 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_hi, EVCNT_TYPE_MISC,
419 NULL, xname, "rx badmagic hi");
420 #endif
421 }
422
423 static int
424 bcmeth_mediachange(struct ifnet *ifp)
425 {
426 //struct bcmeth_softc * const sc = ifp->if_softc;
427 return 0;
428 }
429
430 static void
431 bcmeth_mediastatus(struct ifnet *ifp, struct ifmediareq *ifm)
432 {
433 //struct bcmeth_softc * const sc = ifp->if_softc;
434
435 ifm->ifm_status = IFM_AVALID | IFM_ACTIVE;
436 ifm->ifm_active = IFM_ETHER | IFM_FDX | IFM_1000_T;
437 }
438
439 static uint64_t
440 bcmeth_macaddr_create(const uint8_t *enaddr)
441 {
442 return (enaddr[3] << 0) // UNIMAC_MAC_0
443 | (enaddr[2] << 8) // UNIMAC_MAC_0
444 | (enaddr[1] << 16) // UNIMAC_MAC_0
445 | ((uint64_t)enaddr[0] << 24) // UNIMAC_MAC_0
446 | ((uint64_t)enaddr[5] << 32) // UNIMAC_MAC_1
447 | ((uint64_t)enaddr[4] << 40); // UNIMAC_MAC_1
448 }
449
450 static int
451 bcmeth_ifinit(struct ifnet *ifp)
452 {
453 struct bcmeth_softc * const sc = ifp->if_softc;
454 int error = 0;
455
456 sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
457 if (ifp->if_mtu > ETHERMTU_JUMBO)
458 return error;
459
460 KASSERT(ifp->if_flags & IFF_UP);
461
462 /*
463 * Stop the interface
464 */
465 bcmeth_ifstop(ifp, 0);
466
467 /*
468 * Reserve enough space at the front so that we can insert a maxsized
469 * link header and a VLAN tag. Also make sure we have enough room for
470 * the rcvsts field as well.
471 */
472 KASSERT(ALIGN(max_linkhdr) == max_linkhdr);
473 KASSERTMSG(max_linkhdr > sizeof(struct ether_header), "%u > %zu",
474 max_linkhdr, sizeof(struct ether_header));
475 sc->sc_rcvoffset = max_linkhdr + 4 - sizeof(struct ether_header);
476 if (sc->sc_rcvoffset <= 4)
477 sc->sc_rcvoffset += 4;
478 KASSERT((sc->sc_rcvoffset & 3) == 2);
479 KASSERT(sc->sc_rcvoffset <= __SHIFTOUT(RCVCTL_RCVOFFSET, RCVCTL_RCVOFFSET));
480 KASSERT(sc->sc_rcvoffset >= 6);
481
482 /*
483 * If our frame size has changed (or it's our first time through)
484 * destroy the existing transmit mapcache.
485 */
486 if (sc->sc_tx_mapcache != NULL
487 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
488 bcmeth_mapcache_destroy(sc, sc->sc_tx_mapcache);
489 sc->sc_tx_mapcache = NULL;
490 }
491
492 if (sc->sc_tx_mapcache == NULL) {
493 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
494 BCMETH_MAXTXMBUFS, sc->sc_maxfrm, BCMETH_NTXSEGS);
495 if (error)
496 return error;
497 }
498
499 sc->sc_cmdcfg = NO_LENGTH_CHECK | PAUSE_IGNORE
500 | __SHIFTIN(ETH_SPEED_1000, ETH_SPEED)
501 | RX_ENA | TX_ENA;
502
503 if (ifp->if_flags & IFF_PROMISC) {
504 sc->sc_cmdcfg |= PROMISC_EN;
505 } else {
506 sc->sc_cmdcfg &= ~PROMISC_EN;
507 }
508
509 const uint8_t * const lladdr = CLLADDR(ifp->if_sadl);
510 const uint64_t macstnaddr = bcmeth_macaddr_create(lladdr);
511
512 /*
513 * We make sure that a received Ethernet packet start on a non-word
514 * boundary so that the packet payload will be on a word boundary.
515 * So to check the destination address we keep around two words to
516 * quickly compare with.
517 */
518 #if __ARMEL__
519 sc->sc_macaddr[0] = lladdr[0] | (lladdr[1] << 8);
520 sc->sc_macaddr[1] = lladdr[2] | (lladdr[3] << 8)
521 | (lladdr[4] << 16) | (lladdr[5] << 24);
522 #else
523 sc->sc_macaddr[0] = lladdr[1] | (lladdr[0] << 8);
524 sc->sc_macaddr[1] = lladdr[5] | (lladdr[4] << 8)
525 | (lladdr[1] << 16) | (lladdr[2] << 24);
526 #endif
527
528 sc->sc_intmask = DESCPROTOERR|DATAERR|DESCERR;
529
530 /* 5. Load RCVADDR_LO with new pointer */
531 bcmeth_rxq_reset(sc, &sc->sc_rxq);
532
533 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
534 __SHIFTIN(sc->sc_rcvoffset, RCVCTL_RCVOFFSET)
535 | RCVCTL_PARITY_DIS
536 | RCVCTL_OFLOW_CONTINUE
537 | __SHIFTIN(3, RCVCTL_BURSTLEN));
538
539 /* 6. Load XMTADDR_LO with new pointer */
540 bcmeth_txq_reset(sc, &sc->sc_txq);
541
542 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl, XMTCTL_DMA_ACT_INDEX
543 | XMTCTL_PARITY_DIS
544 | __SHIFTIN(3, XMTCTL_BURSTLEN));
545
546 /* 7. Setup other UNIMAC registers */
547 bcmeth_write_4(sc, UNIMAC_FRAME_LEN, sc->sc_maxfrm);
548 bcmeth_write_4(sc, UNIMAC_MAC_0, (uint32_t)(macstnaddr >> 0));
549 bcmeth_write_4(sc, UNIMAC_MAC_1, (uint32_t)(macstnaddr >> 32));
550 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, sc->sc_cmdcfg);
551
552 uint32_t devctl = bcmeth_read_4(sc, GMAC_DEVCONTROL);
553 devctl |= RGMII_LINK_STATUS_SEL | NWAY_AUTO_POLL_EN | TXARB_STRICT_MODE;
554 devctl &= ~FLOW_CTRL_MODE;
555 devctl &= ~MIB_RD_RESET_EN;
556 devctl &= ~RXQ_OVERFLOW_CTRL_SEL;
557 devctl &= ~CPU_FLOW_CTRL_ON;
558 bcmeth_write_4(sc, GMAC_DEVCONTROL, devctl);
559
560 /* Setup lazy receive (at most 1ms). */
561 const struct cpu_softc * const cpu = curcpu()->ci_softc;
562 sc->sc_rcvlazy = __SHIFTIN(4, INTRCVLAZY_FRAMECOUNT)
563 | __SHIFTIN(cpu->cpu_clk.clk_apb / 1000, INTRCVLAZY_TIMEOUT);
564 bcmeth_write_4(sc, GMAC_INTRCVLAZY, sc->sc_rcvlazy);
565
566 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
567 sc->sc_intmask |= XMTINT_0|XMTUF;
568 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl,
569 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl) | XMTCTL_ENABLE);
570
571
572 /* 12. Enable receive queues in RQUEUE, */
573 sc->sc_intmask |= RCVINT|RCVDESCUF|RCVFIFOOF;
574 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
575 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl) | RCVCTL_ENABLE);
576
577 bcmeth_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
578
579 #if 0
580 aprint_normal_dev(sc->sc_dev,
581 "devctl=%#x ucmdcfg=%#x xmtctl=%#x rcvctl=%#x\n",
582 devctl, sc->sc_cmdcfg,
583 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl),
584 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl));
585 #endif
586
587 sc->sc_soft_flags = 0;
588
589 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
590
591 ifp->if_flags |= IFF_RUNNING;
592
593 return error;
594 }
595
596 static void
597 bcmeth_ifstop(struct ifnet *ifp, int disable)
598 {
599 struct bcmeth_softc * const sc = ifp->if_softc;
600 struct bcmeth_txqueue * const txq = &sc->sc_txq;
601 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
602
603 KASSERT(!cpu_intr_p());
604
605 sc->sc_soft_flags = 0;
606 sc->sc_work_flags = 0;
607
608 /* Disable Rx processing */
609 bcmeth_write_4(sc, rxq->rxq_reg_rcvctl,
610 bcmeth_read_4(sc, rxq->rxq_reg_rcvctl) & ~RCVCTL_ENABLE);
611
612 /* Disable Tx processing */
613 bcmeth_write_4(sc, txq->txq_reg_xmtctl,
614 bcmeth_read_4(sc, txq->txq_reg_xmtctl) & ~XMTCTL_ENABLE);
615
616 /* Disable all interrupts */
617 bcmeth_write_4(sc, GMAC_INTMASK, 0);
618
619 for (;;) {
620 uint32_t tx0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
621 uint32_t rx0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
622 if (__SHIFTOUT(tx0, XMTSTATE) == XMTSTATE_DIS
623 && __SHIFTOUT(rx0, RCVSTATE) == RCVSTATE_DIS)
624 break;
625 delay(50);
626 }
627 /*
628 * Now reset the controller.
629 *
630 * 3. Set SW_RESET bit in UNIMAC_COMMAND_CONFIG register
631 * 4. Clear SW_RESET bit in UNIMAC_COMMAND_CONFIG register
632 */
633 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, SW_RESET);
634 bcmeth_write_4(sc, GMAC_INTSTATUS, ~0);
635 sc->sc_intmask = 0;
636 ifp->if_flags &= ~IFF_RUNNING;
637
638 /*
639 * Let's consume any remaining transmitted packets. And if we are
640 * disabling the interface, purge ourselves of any untransmitted
641 * packets. But don't consume any received packets, just drop them.
642 * If we aren't disabling the interface, save the mbufs in the
643 * receive queue for reuse.
644 */
645 bcmeth_rxq_purge(sc, &sc->sc_rxq, disable);
646 bcmeth_txq_consume(sc, &sc->sc_txq);
647 if (disable) {
648 bcmeth_txq_purge(sc, &sc->sc_txq);
649 IF_PURGE(&ifp->if_snd);
650 }
651
652 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, 0);
653 }
654
655 static void
656 bcmeth_ifwatchdog(struct ifnet *ifp)
657 {
658 }
659
660 static int
661 bcmeth_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
662 {
663 struct bcmeth_softc *sc = ifp->if_softc;
664 struct ifreq * const ifr = data;
665 const int s = splnet();
666 int error;
667
668 switch (cmd) {
669 case SIOCSIFMEDIA:
670 case SIOCGIFMEDIA:
671 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
672 break;
673
674 default:
675 error = ether_ioctl(ifp, cmd, data);
676 if (error != ENETRESET)
677 break;
678
679 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
680 error = 0;
681 break;
682 }
683 error = bcmeth_ifinit(ifp);
684 break;
685 }
686
687 splx(s);
688 return error;
689 }
690
691 static void
692 bcmeth_rxq_desc_presync(
693 struct bcmeth_softc *sc,
694 struct bcmeth_rxqueue *rxq,
695 struct gmac_rxdb *rxdb,
696 size_t count)
697 {
698 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
699 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
700 BUS_DMASYNC_PREWRITE);
701 }
702
703 static void
704 bcmeth_rxq_desc_postsync(
705 struct bcmeth_softc *sc,
706 struct bcmeth_rxqueue *rxq,
707 struct gmac_rxdb *rxdb,
708 size_t count)
709 {
710 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
711 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
712 BUS_DMASYNC_POSTWRITE);
713 }
714
715 static void
716 bcmeth_txq_desc_presync(
717 struct bcmeth_softc *sc,
718 struct bcmeth_txqueue *txq,
719 struct gmac_txdb *txdb,
720 size_t count)
721 {
722 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
723 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
724 BUS_DMASYNC_PREWRITE);
725 }
726
727 static void
728 bcmeth_txq_desc_postsync(
729 struct bcmeth_softc *sc,
730 struct bcmeth_txqueue *txq,
731 struct gmac_txdb *txdb,
732 size_t count)
733 {
734 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
735 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
736 BUS_DMASYNC_POSTWRITE);
737 }
738
739 static bus_dmamap_t
740 bcmeth_mapcache_get(
741 struct bcmeth_softc *sc,
742 struct bcmeth_mapcache *dmc)
743 {
744 KASSERT(dmc->dmc_nmaps > 0);
745 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
746 return dmc->dmc_maps[--dmc->dmc_nmaps];
747 }
748
749 static void
750 bcmeth_mapcache_put(
751 struct bcmeth_softc *sc,
752 struct bcmeth_mapcache *dmc,
753 bus_dmamap_t map)
754 {
755 KASSERT(map != NULL);
756 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
757 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
758 }
759
760 static void
761 bcmeth_mapcache_destroy(
762 struct bcmeth_softc *sc,
763 struct bcmeth_mapcache *dmc)
764 {
765 const size_t dmc_size =
766 offsetof(struct bcmeth_mapcache, dmc_maps[dmc->dmc_maxmaps]);
767
768 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
769 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
770 }
771 kmem_intr_free(dmc, dmc_size);
772 }
773
774 static int
775 bcmeth_mapcache_create(
776 struct bcmeth_softc *sc,
777 struct bcmeth_mapcache **dmc_p,
778 size_t maxmaps,
779 size_t maxmapsize,
780 size_t maxseg)
781 {
782 const size_t dmc_size =
783 offsetof(struct bcmeth_mapcache, dmc_maps[maxmaps]);
784 struct bcmeth_mapcache * const dmc =
785 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
786
787 dmc->dmc_maxmaps = maxmaps;
788 dmc->dmc_nmaps = maxmaps;
789 dmc->dmc_maxmapsize = maxmapsize;
790 dmc->dmc_maxseg = maxseg;
791
792 for (u_int i = 0; i < maxmaps; i++) {
793 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
794 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
795 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
796 if (error) {
797 aprint_error_dev(sc->sc_dev,
798 "failed to creat dma map cache "
799 "entry %u of %zu: %d\n",
800 i, maxmaps, error);
801 while (i-- > 0) {
802 bus_dmamap_destroy(sc->sc_dmat,
803 dmc->dmc_maps[i]);
804 }
805 kmem_intr_free(dmc, dmc_size);
806 return error;
807 }
808 KASSERT(dmc->dmc_maps[i] != NULL);
809 }
810
811 *dmc_p = dmc;
812
813 return 0;
814 }
815
816 #if 0
817 static void
818 bcmeth_dmamem_free(
819 bus_dma_tag_t dmat,
820 size_t map_size,
821 bus_dma_segment_t *seg,
822 bus_dmamap_t map,
823 void *kvap)
824 {
825 bus_dmamap_destroy(dmat, map);
826 bus_dmamem_unmap(dmat, kvap, map_size);
827 bus_dmamem_free(dmat, seg, 1);
828 }
829 #endif
830
831 static int
832 bcmeth_dmamem_alloc(
833 bus_dma_tag_t dmat,
834 size_t map_size,
835 bus_dma_segment_t *seg,
836 bus_dmamap_t *map,
837 void **kvap)
838 {
839 int error;
840 int nseg;
841
842 *kvap = NULL;
843 *map = NULL;
844
845 error = bus_dmamem_alloc(dmat, map_size, 2*PAGE_SIZE, 0,
846 seg, 1, &nseg, 0);
847 if (error)
848 return error;
849
850 KASSERT(nseg == 1);
851
852 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap, 0);
853 if (error == 0) {
854 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
855 map);
856 if (error == 0) {
857 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
858 NULL, 0);
859 if (error == 0)
860 return 0;
861 bus_dmamap_destroy(dmat, *map);
862 *map = NULL;
863 }
864 bus_dmamem_unmap(dmat, *kvap, map_size);
865 *kvap = NULL;
866 }
867 bus_dmamem_free(dmat, seg, nseg);
868 return 0;
869 }
870
871 static struct mbuf *
872 bcmeth_rx_buf_alloc(
873 struct bcmeth_softc *sc)
874 {
875 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
876 if (m == NULL) {
877 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
878 return NULL;
879 }
880 MCLGET(m, M_DONTWAIT);
881 if ((m->m_flags & M_EXT) == 0) {
882 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
883 m_freem(m);
884 return NULL;
885 }
886 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
887
888 bus_dmamap_t map = bcmeth_mapcache_get(sc, sc->sc_rx_mapcache);
889 if (map == NULL) {
890 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
891 m_freem(m);
892 return NULL;
893 }
894 M_SETCTX(m, map);
895 m->m_len = m->m_pkthdr.len = MCLBYTES;
896 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
897 BUS_DMA_READ|BUS_DMA_NOWAIT);
898 if (error) {
899 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
900 error);
901 M_SETCTX(m, NULL);
902 m_freem(m);
903 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
904 return NULL;
905 }
906 KASSERT(map->dm_mapsize == MCLBYTES);
907 #ifdef BCMETH_RCVMAGIC
908 *mtod(m, uint32_t *) = htole32(BCMETH_RCVMAGIC);
909 bus_dmamap_sync(sc->sc_dmat, map, 0, sizeof(uint32_t),
910 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
911 bus_dmamap_sync(sc->sc_dmat, map, sizeof(uint32_t),
912 map->dm_mapsize - sizeof(uint32_t), BUS_DMASYNC_PREREAD);
913 #else
914 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
915 BUS_DMASYNC_PREREAD);
916 #endif
917
918 return m;
919 }
920
921 static void
922 bcmeth_rx_map_unload(
923 struct bcmeth_softc *sc,
924 struct mbuf *m)
925 {
926 KASSERT(m);
927 for (; m != NULL; m = m->m_next) {
928 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
929 KASSERT(map);
930 KASSERT(map->dm_mapsize == MCLBYTES);
931 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
932 BUS_DMASYNC_POSTREAD);
933 bus_dmamap_unload(sc->sc_dmat, map);
934 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
935 M_SETCTX(m, NULL);
936 }
937 }
938
939 static bool
940 bcmeth_rxq_produce(
941 struct bcmeth_softc *sc,
942 struct bcmeth_rxqueue *rxq)
943 {
944 struct gmac_rxdb *producer = rxq->rxq_producer;
945 bool produced = false;
946
947 while (rxq->rxq_inuse < rxq->rxq_threshold) {
948 struct mbuf *m;
949 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
950 if (m == NULL) {
951 m = bcmeth_rx_buf_alloc(sc);
952 if (m == NULL) {
953 printf("%s: bcmeth_rx_buf_alloc failed\n", __func__);
954 break;
955 }
956 }
957 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
958 KASSERT(map);
959
960 producer->rxdb_buflen = htole32(MCLBYTES);
961 producer->rxdb_addrlo = htole32(map->dm_segs[0].ds_addr);
962 producer->rxdb_flags &= htole32(RXDB_FLAG_ET);
963 *rxq->rxq_mtail = m;
964 rxq->rxq_mtail = &m->m_next;
965 m->m_len = MCLBYTES;
966 m->m_next = NULL;
967 rxq->rxq_inuse++;
968 if (++producer == rxq->rxq_last) {
969 membar_producer();
970 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
971 rxq->rxq_last - rxq->rxq_producer);
972 producer = rxq->rxq_producer = rxq->rxq_first;
973 }
974 produced = true;
975 }
976 if (produced) {
977 membar_producer();
978 if (producer != rxq->rxq_producer) {
979 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
980 producer - rxq->rxq_producer);
981 rxq->rxq_producer = producer;
982 }
983 bcmeth_write_4(sc, rxq->rxq_reg_rcvptr,
984 rxq->rxq_descmap->dm_segs[0].ds_addr
985 + ((uintptr_t)producer & RCVPTR));
986 }
987 return true;
988 }
989
990 static void
991 bcmeth_rx_input(
992 struct bcmeth_softc *sc,
993 struct mbuf *m,
994 uint32_t rxdb_flags)
995 {
996 struct ifnet * const ifp = &sc->sc_if;
997
998 bcmeth_rx_map_unload(sc, m);
999
1000 m_adj(m, sc->sc_rcvoffset);
1001
1002 /*
1003 * If we are in promiscuous mode and this isn't a multicast, check the
1004 * destination address to make sure it matches our own. If it doesn't,
1005 * mark the packet as being received promiscuously.
1006 */
1007 if ((sc->sc_cmdcfg & PROMISC_EN)
1008 && (m->m_data[0] & 1) == 0
1009 && (*(uint16_t *)&m->m_data[0] != sc->sc_macaddr[0]
1010 || *(uint32_t *)&m->m_data[2] != sc->sc_macaddr[1])) {
1011 m->m_flags |= M_PROMISC;
1012 }
1013 m->m_pkthdr.rcvif = ifp;
1014
1015 ifp->if_ipackets++;
1016 ifp->if_ibytes += m->m_pkthdr.len;
1017
1018 /*
1019 * Let's give it to the network subsystm to deal with.
1020 */
1021 #ifdef BCMETH_MPSAFE
1022 mutex_exit(sc->sc_lock);
1023 (*ifp->if_input)(ifp, m);
1024 mutex_enter(sc->sc_lock);
1025 #else
1026 int s = splnet();
1027 bpf_mtap(ifp, m);
1028 (*ifp->if_input)(ifp, m);
1029 splx(s);
1030 #endif
1031 }
1032
1033 static bool
1034 bcmeth_rxq_consume(
1035 struct bcmeth_softc *sc,
1036 struct bcmeth_rxqueue *rxq,
1037 size_t atmost)
1038 {
1039 struct ifnet * const ifp = &sc->sc_if;
1040 struct gmac_rxdb *consumer = rxq->rxq_consumer;
1041 size_t rxconsumed = 0;
1042 bool didconsume = false;
1043
1044 while (atmost-- > 0) {
1045 if (consumer == rxq->rxq_producer) {
1046 KASSERT(rxq->rxq_inuse == 0);
1047 break;
1048 }
1049
1050 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1051 uint32_t currdscr = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1052 if (consumer == rxq->rxq_first + currdscr) {
1053 break;
1054 }
1055 bcmeth_rxq_desc_postsync(sc, rxq, consumer, 1);
1056
1057 /*
1058 * We own this packet again. Copy the rxsts word from it.
1059 */
1060 rxconsumed++;
1061 didconsume = true;
1062 uint32_t rxsts;
1063 KASSERT(rxq->rxq_mhead != NULL);
1064 bus_dmamap_t map = M_GETCTX(rxq->rxq_mhead, bus_dmamap_t);
1065 bus_dmamap_sync(sc->sc_dmat, map, 0, arm_dcache_align,
1066 BUS_DMASYNC_POSTREAD);
1067 memcpy(&rxsts, rxq->rxq_mhead->m_data, 4);
1068 rxsts = le32toh(rxsts);
1069 #if 0
1070 KASSERTMSG(rxsts != BCMETH_RCVMAGIC, "currdscr=%u consumer=%zd",
1071 currdscr, consumer - rxq->rxq_first);
1072 #endif
1073
1074 /*
1075 * Get the count of descriptors. Fetch the correct number
1076 * of mbufs.
1077 */
1078 #ifdef BCMETH_RCVMAGIC
1079 size_t desc_count = rxsts != BCMETH_RCVMAGIC ? __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1 : 1;
1080 #else
1081 size_t desc_count = __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1;
1082 #endif
1083 struct mbuf *m = rxq->rxq_mhead;
1084 struct mbuf *m_last = m;
1085 for (size_t i = 1; i < desc_count; i++) {
1086 if (++consumer == rxq->rxq_last) {
1087 consumer = rxq->rxq_first;
1088 }
1089 KASSERTMSG(consumer != rxq->rxq_first + currdscr,
1090 "i=%zu rxsts=%#x desc_count=%zu currdscr=%u consumer=%zd",
1091 i, rxsts, desc_count, currdscr,
1092 consumer - rxq->rxq_first);
1093 m_last = m_last->m_next;
1094 }
1095
1096 /*
1097 * Now remove it/them from the list of enqueued mbufs.
1098 */
1099 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1100 rxq->rxq_mtail = &rxq->rxq_mhead;
1101 m_last->m_next = NULL;
1102
1103 #ifdef BCMETH_RCVMAGIC
1104 if (rxsts == BCMETH_RCVMAGIC) {
1105 ifp->if_ierrors++;
1106 if ((m->m_ext.ext_paddr >> 28) == 8) {
1107 BCMETH_EVCNT_INCR(sc->sc_ev_rx_badmagic_lo);
1108 } else {
1109 BCMETH_EVCNT_INCR( sc->sc_ev_rx_badmagic_hi);
1110 }
1111 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1112 } else
1113 #endif /* BCMETH_RCVMAGIC */
1114 if (rxsts & (RXSTS_CRC_ERROR|RXSTS_OVERSIZED|RXSTS_PKT_OVERFLOW)) {
1115 aprint_error_dev(sc->sc_dev, "[%zu]: count=%zu rxsts=%#x\n",
1116 consumer - rxq->rxq_first, desc_count, rxsts);
1117 /*
1118 * We encountered an error, take the mbufs and add them
1119 * to the rx bufcache so we can quickly reuse them.
1120 */
1121 ifp->if_ierrors++;
1122 do {
1123 struct mbuf *m0 = m->m_next;
1124 m->m_next = NULL;
1125 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1126 m = m0;
1127 } while (m);
1128 } else {
1129 uint32_t framelen = __SHIFTOUT(rxsts, RXSTS_FRAMELEN);
1130 framelen += sc->sc_rcvoffset;
1131 m->m_pkthdr.len = framelen;
1132 if (desc_count == 1) {
1133 KASSERT(framelen <= MCLBYTES);
1134 m->m_len = framelen;
1135 } else {
1136 m_last->m_len = framelen & (MCLBYTES - 1);
1137 }
1138
1139 #ifdef BCMETH_MPSAFE
1140 /*
1141 * Wrap at the last entry!
1142 */
1143 if (++consumer == rxq->rxq_last) {
1144 KASSERT(consumer[-1].rxdb_flags & htole32(RXDB_FLAG_ET));
1145 rxq->rxq_consumer = rxq->rxq_first;
1146 } else {
1147 rxq->rxq_consumer = consumer;
1148 }
1149 rxq->rxq_inuse -= rxconsumed;
1150 #endif /* BCMETH_MPSAFE */
1151
1152 /*
1153 * Receive the packet (which releases our lock)
1154 */
1155 bcmeth_rx_input(sc, m, rxsts);
1156
1157 #ifdef BCMETH_MPSAFE
1158 /*
1159 * Since we had to give up our lock, we need to
1160 * refresh these.
1161 */
1162 consumer = rxq->rxq_consumer;
1163 rxconsumed = 0;
1164 continue;
1165 #endif /* BCMETH_MPSAFE */
1166 }
1167
1168 /*
1169 * Wrap at the last entry!
1170 */
1171 if (++consumer == rxq->rxq_last) {
1172 KASSERT(consumer[-1].rxdb_flags & htole32(RXDB_FLAG_ET));
1173 consumer = rxq->rxq_first;
1174 }
1175 }
1176
1177 /*
1178 * Update queue info.
1179 */
1180 rxq->rxq_consumer = consumer;
1181 rxq->rxq_inuse -= rxconsumed;
1182
1183 /*
1184 * Did we consume anything?
1185 */
1186 return didconsume;
1187 }
1188
1189 static void
1190 bcmeth_rxq_purge(
1191 struct bcmeth_softc *sc,
1192 struct bcmeth_rxqueue *rxq,
1193 bool discard)
1194 {
1195 struct mbuf *m;
1196
1197 if ((m = rxq->rxq_mhead) != NULL) {
1198 if (discard) {
1199 bcmeth_rx_map_unload(sc, m);
1200 m_freem(m);
1201 } else {
1202 while (m != NULL) {
1203 struct mbuf *m0 = m->m_next;
1204 m->m_next = NULL;
1205 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1206 m = m0;
1207 }
1208 }
1209
1210 }
1211
1212 rxq->rxq_mhead = NULL;
1213 rxq->rxq_mtail = &rxq->rxq_mhead;
1214 rxq->rxq_inuse = 0;
1215 }
1216
1217 static void
1218 bcmeth_rxq_reset(
1219 struct bcmeth_softc *sc,
1220 struct bcmeth_rxqueue *rxq)
1221 {
1222 /*
1223 * sync all the descriptors
1224 */
1225 bcmeth_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1226 rxq->rxq_last - rxq->rxq_first);
1227
1228 /*
1229 * Make sure we own all descriptors in the ring.
1230 */
1231 struct gmac_rxdb *rxdb;
1232 for (rxdb = rxq->rxq_first; rxdb < rxq->rxq_last - 1; rxdb++) {
1233 rxdb->rxdb_flags = htole32(RXDB_FLAG_IC);
1234 }
1235
1236 /*
1237 * Last descriptor has the wrap flag.
1238 */
1239 rxdb->rxdb_flags = htole32(RXDB_FLAG_ET|RXDB_FLAG_IC);
1240
1241 /*
1242 * Reset the producer consumer indexes.
1243 */
1244 rxq->rxq_consumer = rxq->rxq_first;
1245 rxq->rxq_producer = rxq->rxq_first;
1246 rxq->rxq_inuse = 0;
1247 if (rxq->rxq_threshold < BCMETH_MINRXMBUFS)
1248 rxq->rxq_threshold = BCMETH_MINRXMBUFS;
1249
1250 sc->sc_intmask |= RCVINT|RCVFIFOOF|RCVDESCUF;
1251
1252 /*
1253 * Restart the receiver at the first descriptor
1254 */
1255 bcmeth_write_4(sc, rxq->rxq_reg_rcvaddrlo,
1256 rxq->rxq_descmap->dm_segs[0].ds_addr);
1257 }
1258
1259 static int
1260 bcmeth_rxq_attach(
1261 struct bcmeth_softc *sc,
1262 struct bcmeth_rxqueue *rxq,
1263 u_int qno)
1264 {
1265 size_t desc_count = BCMETH_RINGSIZE / sizeof(rxq->rxq_first[0]);
1266 int error;
1267 void *descs;
1268
1269 KASSERT(desc_count == 256 || desc_count == 512);
1270
1271 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1272 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1273 if (error)
1274 return error;
1275
1276 memset(descs, 0, BCMETH_RINGSIZE);
1277 rxq->rxq_first = descs;
1278 rxq->rxq_last = rxq->rxq_first + desc_count;
1279 rxq->rxq_consumer = descs;
1280 rxq->rxq_producer = descs;
1281
1282 bcmeth_rxq_purge(sc, rxq, true);
1283 bcmeth_rxq_reset(sc, rxq);
1284
1285 rxq->rxq_reg_rcvaddrlo = GMAC_RCVADDR_LOW;
1286 rxq->rxq_reg_rcvctl = GMAC_RCVCONTROL;
1287 rxq->rxq_reg_rcvptr = GMAC_RCVPTR;
1288 rxq->rxq_reg_rcvsts0 = GMAC_RCVSTATUS0;
1289 rxq->rxq_reg_rcvsts1 = GMAC_RCVSTATUS1;
1290
1291 return 0;
1292 }
1293
1294 static bool
1295 bcmeth_txq_active_p(
1296 struct bcmeth_softc * const sc,
1297 struct bcmeth_txqueue *txq)
1298 {
1299 return !IF_IS_EMPTY(&txq->txq_mbufs);
1300 }
1301
1302 static bool
1303 bcmeth_txq_fillable_p(
1304 struct bcmeth_softc * const sc,
1305 struct bcmeth_txqueue *txq)
1306 {
1307 return txq->txq_free >= txq->txq_threshold;
1308 }
1309
1310 static int
1311 bcmeth_txq_attach(
1312 struct bcmeth_softc *sc,
1313 struct bcmeth_txqueue *txq,
1314 u_int qno)
1315 {
1316 size_t desc_count = BCMETH_RINGSIZE / sizeof(txq->txq_first[0]);
1317 int error;
1318 void *descs;
1319
1320 KASSERT(desc_count == 256 || desc_count == 512);
1321
1322 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1323 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1324 if (error)
1325 return error;
1326
1327 memset(descs, 0, BCMETH_RINGSIZE);
1328 txq->txq_first = descs;
1329 txq->txq_last = txq->txq_first + desc_count;
1330 txq->txq_consumer = descs;
1331 txq->txq_producer = descs;
1332
1333 IFQ_SET_MAXLEN(&txq->txq_mbufs, BCMETH_MAXTXMBUFS);
1334
1335 txq->txq_reg_xmtaddrlo = GMAC_XMTADDR_LOW;
1336 txq->txq_reg_xmtctl = GMAC_XMTCONTROL;
1337 txq->txq_reg_xmtptr = GMAC_XMTPTR;
1338 txq->txq_reg_xmtsts0 = GMAC_XMTSTATUS0;
1339 txq->txq_reg_xmtsts1 = GMAC_XMTSTATUS1;
1340
1341 bcmeth_txq_reset(sc, txq);
1342
1343 return 0;
1344 }
1345
1346 static int
1347 bcmeth_txq_map_load(
1348 struct bcmeth_softc *sc,
1349 struct bcmeth_txqueue *txq,
1350 struct mbuf *m)
1351 {
1352 bus_dmamap_t map;
1353 int error;
1354
1355 map = M_GETCTX(m, bus_dmamap_t);
1356 if (map != NULL)
1357 return 0;
1358
1359 map = bcmeth_mapcache_get(sc, sc->sc_tx_mapcache);
1360 if (map == NULL)
1361 return ENOMEM;
1362
1363 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1364 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1365 if (error)
1366 return error;
1367
1368 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1369 BUS_DMASYNC_PREWRITE);
1370 M_SETCTX(m, map);
1371 return 0;
1372 }
1373
1374 static void
1375 bcmeth_txq_map_unload(
1376 struct bcmeth_softc *sc,
1377 struct bcmeth_txqueue *txq,
1378 struct mbuf *m)
1379 {
1380 KASSERT(m);
1381 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1382 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1383 BUS_DMASYNC_POSTWRITE);
1384 bus_dmamap_unload(sc->sc_dmat, map);
1385 bcmeth_mapcache_put(sc, sc->sc_tx_mapcache, map);
1386 }
1387
1388 static bool
1389 bcmeth_txq_produce(
1390 struct bcmeth_softc *sc,
1391 struct bcmeth_txqueue *txq,
1392 struct mbuf *m)
1393 {
1394 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1395
1396 if (map->dm_nsegs > txq->txq_free)
1397 return false;
1398
1399 /*
1400 * TCP Offload flag must be set in the first descriptor.
1401 */
1402 struct gmac_txdb *producer = txq->txq_producer;
1403 uint32_t first_flags = TXDB_FLAG_SF;
1404 uint32_t last_flags = TXDB_FLAG_EF;
1405
1406 /*
1407 * If we've produced enough descriptors without consuming any
1408 * we need to ask for an interrupt to reclaim some.
1409 */
1410 txq->txq_lastintr += map->dm_nsegs;
1411 if (txq->txq_lastintr >= txq->txq_threshold
1412 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1413 txq->txq_lastintr = 0;
1414 last_flags |= TXDB_FLAG_IC;
1415 }
1416
1417 KASSERT(producer != txq->txq_last);
1418
1419 struct gmac_txdb *start = producer;
1420 size_t count = map->dm_nsegs;
1421 producer->txdb_flags |= htole32(first_flags);
1422 producer->txdb_addrlo = htole32(map->dm_segs[0].ds_addr);
1423 producer->txdb_buflen = htole32(map->dm_segs[0].ds_len);
1424 for (u_int i = 1; i < map->dm_nsegs; i++) {
1425 #if 0
1426 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1427 le32toh(producer->txdb_flags),
1428 le32toh(producer->txdb_buflen),
1429 le32toh(producer->txdb_addrlo),
1430 le32toh(producer->txdb_addrhi));
1431 #endif
1432 if (__predict_false(++producer == txq->txq_last)) {
1433 bcmeth_txq_desc_presync(sc, txq, start,
1434 txq->txq_last - start);
1435 count -= txq->txq_last - start;
1436 producer = txq->txq_first;
1437 start = txq->txq_first;
1438 }
1439 producer->txdb_addrlo = htole32(map->dm_segs[i].ds_addr);
1440 producer->txdb_buflen = htole32(map->dm_segs[i].ds_len);
1441 }
1442 producer->txdb_flags |= htole32(last_flags);
1443 #if 0
1444 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1445 le32toh(producer->txdb_flags), le32toh(producer->txdb_buflen),
1446 le32toh(producer->txdb_addrlo), le32toh(producer->txdb_addrhi));
1447 #endif
1448 if (count)
1449 bcmeth_txq_desc_presync(sc, txq, start, count);
1450
1451 /*
1452 * Reduce free count by the number of segments we consumed.
1453 */
1454 txq->txq_free -= map->dm_nsegs;
1455 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1456 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txdb_flags & htole32(TXDB_FLAG_EF)) == 0);
1457 KASSERT(producer->txdb_flags & htole32(TXDB_FLAG_EF));
1458
1459 #if 0
1460 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%zd..%zd)\n",
1461 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1462 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1463 #endif
1464
1465 if (producer + 1 == txq->txq_last)
1466 txq->txq_producer = txq->txq_first;
1467 else
1468 txq->txq_producer = producer + 1;
1469 IF_ENQUEUE(&txq->txq_mbufs, m);
1470
1471 /*
1472 * Let the transmitter know there's more to do
1473 */
1474 bcmeth_write_4(sc, txq->txq_reg_xmtptr,
1475 txq->txq_descmap->dm_segs[0].ds_addr
1476 + ((uintptr_t)txq->txq_producer & XMT_LASTDSCR));
1477
1478 return true;
1479 }
1480
1481 static struct mbuf *
1482 bcmeth_copy_packet(struct mbuf *m)
1483 {
1484 struct mbuf *mext = NULL;
1485 size_t misalignment = 0;
1486 size_t hlen = 0;
1487
1488 for (mext = m; mext != NULL; mext = mext->m_next) {
1489 if (mext->m_flags & M_EXT) {
1490 misalignment = mtod(mext, vaddr_t) & arm_dcache_align;
1491 break;
1492 }
1493 hlen += m->m_len;
1494 }
1495
1496 struct mbuf *n = m->m_next;
1497 if (m != mext && hlen + misalignment <= MHLEN && false) {
1498 KASSERT(m->m_pktdat <= m->m_data && m->m_data <= &m->m_pktdat[MHLEN - m->m_len]);
1499 size_t oldoff = m->m_data - m->m_pktdat;
1500 size_t off;
1501 if (mext == NULL) {
1502 off = (oldoff + hlen > MHLEN) ? 0 : oldoff;
1503 } else {
1504 off = MHLEN - (hlen + misalignment);
1505 }
1506 KASSERT(off + hlen + misalignment <= MHLEN);
1507 if (((oldoff ^ off) & arm_dcache_align) != 0 || off < oldoff) {
1508 memmove(&m->m_pktdat[off], m->m_data, m->m_len);
1509 m->m_data = &m->m_pktdat[off];
1510 }
1511 m_copydata(n, 0, hlen - m->m_len, &m->m_data[m->m_len]);
1512 m->m_len = hlen;
1513 m->m_next = mext;
1514 while (n != mext) {
1515 n = m_free(n);
1516 }
1517 return m;
1518 }
1519
1520 struct mbuf *m0 = m_gethdr(M_DONTWAIT, m->m_type);
1521 if (m0 == NULL) {
1522 return NULL;
1523 }
1524 M_COPY_PKTHDR(m0, m);
1525 MCLAIM(m0, m->m_owner);
1526 if (m0->m_pkthdr.len > MHLEN) {
1527 MCLGET(m0, M_DONTWAIT);
1528 if ((m0->m_flags & M_EXT) == 0) {
1529 m_freem(m0);
1530 return NULL;
1531 }
1532 }
1533 m0->m_len = m->m_pkthdr.len;
1534 m_copydata(m, 0, m0->m_len, mtod(m0, void *));
1535 m_freem(m);
1536 return m0;
1537 }
1538
1539 static bool
1540 bcmeth_txq_enqueue(
1541 struct bcmeth_softc *sc,
1542 struct bcmeth_txqueue *txq)
1543 {
1544 for (;;) {
1545 if (IF_QFULL(&txq->txq_mbufs))
1546 return false;
1547 struct mbuf *m = txq->txq_next;
1548 if (m == NULL) {
1549 int s = splnet();
1550 IF_DEQUEUE(&sc->sc_if.if_snd, m);
1551 splx(s);
1552 if (m == NULL)
1553 return true;
1554 M_SETCTX(m, NULL);
1555 } else {
1556 txq->txq_next = NULL;
1557 }
1558 /*
1559 * If LINK2 is set and this packet uses multiple mbufs,
1560 * consolidate it into a single mbuf.
1561 */
1562 if (m->m_next != NULL && (sc->sc_if.if_flags & IFF_LINK2)) {
1563 struct mbuf *m0 = bcmeth_copy_packet(m);
1564 if (m0 == NULL) {
1565 txq->txq_next = m;
1566 return true;
1567 }
1568 m = m0;
1569 }
1570 int error = bcmeth_txq_map_load(sc, txq, m);
1571 if (error) {
1572 aprint_error_dev(sc->sc_dev,
1573 "discarded packet due to "
1574 "dmamap load failure: %d\n", error);
1575 m_freem(m);
1576 continue;
1577 }
1578 KASSERT(txq->txq_next == NULL);
1579 if (!bcmeth_txq_produce(sc, txq, m)) {
1580 txq->txq_next = m;
1581 return false;
1582 }
1583 KASSERT(txq->txq_next == NULL);
1584 }
1585 }
1586
1587 static bool
1588 bcmeth_txq_consume(
1589 struct bcmeth_softc *sc,
1590 struct bcmeth_txqueue *txq)
1591 {
1592 struct ifnet * const ifp = &sc->sc_if;
1593 struct gmac_txdb *consumer = txq->txq_consumer;
1594 size_t txfree = 0;
1595
1596 #if 0
1597 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1598 #endif
1599
1600 for (;;) {
1601 if (consumer == txq->txq_producer) {
1602 txq->txq_consumer = consumer;
1603 txq->txq_free += txfree;
1604 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
1605 #if 0
1606 printf("%s: empty: freed %zu descriptors going from %zu to %zu\n",
1607 __func__, txfree, txq->txq_free - txfree, txq->txq_free);
1608 #endif
1609 KASSERT(txq->txq_lastintr == 0);
1610 KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
1611 return true;
1612 }
1613 bcmeth_txq_desc_postsync(sc, txq, consumer, 1);
1614 uint32_t s0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
1615 if (consumer == txq->txq_first + __SHIFTOUT(s0, XMT_CURRDSCR)) {
1616 txq->txq_consumer = consumer;
1617 txq->txq_free += txfree;
1618 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
1619 #if 0
1620 printf("%s: freed %zu descriptors\n",
1621 __func__, txfree);
1622 #endif
1623 return bcmeth_txq_fillable_p(sc, txq);
1624 }
1625
1626 /*
1627 * If this is the last descriptor in the chain, get the
1628 * mbuf, free its dmamap, and free the mbuf chain itself.
1629 */
1630 const uint32_t txdb_flags = le32toh(consumer->txdb_flags);
1631 if (txdb_flags & TXDB_FLAG_EF) {
1632 struct mbuf *m;
1633
1634 IF_DEQUEUE(&txq->txq_mbufs, m);
1635 KASSERT(m);
1636 bcmeth_txq_map_unload(sc, txq, m);
1637 #if 0
1638 printf("%s: mbuf %p: consumed a %u byte packet\n",
1639 __func__, m, m->m_pkthdr.len);
1640 #endif
1641 bpf_mtap(ifp, m);
1642 ifp->if_opackets++;
1643 ifp->if_obytes += m->m_pkthdr.len;
1644 if (m->m_flags & M_MCAST)
1645 ifp->if_omcasts++;
1646 m_freem(m);
1647 }
1648
1649 /*
1650 * We own this packet again. Clear all flags except wrap.
1651 */
1652 txfree++;
1653
1654 /*
1655 * Wrap at the last entry!
1656 */
1657 if (txdb_flags & TXDB_FLAG_ET) {
1658 consumer->txdb_flags = htole32(TXDB_FLAG_ET);
1659 KASSERT(consumer + 1 == txq->txq_last);
1660 consumer = txq->txq_first;
1661 } else {
1662 consumer->txdb_flags = 0;
1663 consumer++;
1664 KASSERT(consumer < txq->txq_last);
1665 }
1666 }
1667 }
1668
1669 static void
1670 bcmeth_txq_purge(
1671 struct bcmeth_softc *sc,
1672 struct bcmeth_txqueue *txq)
1673 {
1674 struct mbuf *m;
1675 KASSERT((bcmeth_read_4(sc, UNIMAC_COMMAND_CONFIG) & TX_ENA) == 0);
1676
1677 for (;;) {
1678 IF_DEQUEUE(&txq->txq_mbufs, m);
1679 if (m == NULL)
1680 break;
1681 bcmeth_txq_map_unload(sc, txq, m);
1682 m_freem(m);
1683 }
1684 if ((m = txq->txq_next) != NULL) {
1685 txq->txq_next = NULL;
1686 bcmeth_txq_map_unload(sc, txq, m);
1687 m_freem(m);
1688 }
1689 }
1690
1691 static void
1692 bcmeth_txq_reset(
1693 struct bcmeth_softc *sc,
1694 struct bcmeth_txqueue *txq)
1695 {
1696 /*
1697 * sync all the descriptors
1698 */
1699 bcmeth_txq_desc_postsync(sc, txq, txq->txq_first,
1700 txq->txq_last - txq->txq_first);
1701
1702 /*
1703 * Make sure we own all descriptors in the ring.
1704 */
1705 struct gmac_txdb *txdb;
1706 for (txdb = txq->txq_first; txdb < txq->txq_last - 1; txdb++) {
1707 txdb->txdb_flags = 0;
1708 }
1709
1710 /*
1711 * Last descriptor has the wrap flag.
1712 */
1713 txdb->txdb_flags = htole32(TXDB_FLAG_ET);
1714
1715 /*
1716 * Reset the producer consumer indexes.
1717 */
1718 txq->txq_consumer = txq->txq_first;
1719 txq->txq_producer = txq->txq_first;
1720 txq->txq_free = txq->txq_last - txq->txq_first - 1;
1721 txq->txq_threshold = txq->txq_free / 2;
1722 txq->txq_lastintr = 0;
1723
1724 /*
1725 * What do we want to get interrupted on?
1726 */
1727 sc->sc_intmask |= XMTINT_0 | XMTUF;
1728
1729 /*
1730 * Restart the transmiter at the first descriptor
1731 */
1732 bcmeth_write_4(sc, txq->txq_reg_xmtaddrlo,
1733 txq->txq_descmap->dm_segs->ds_addr);
1734 }
1735
1736 static void
1737 bcmeth_ifstart(struct ifnet *ifp)
1738 {
1739 struct bcmeth_softc * const sc = ifp->if_softc;
1740
1741 if (__predict_false((ifp->if_flags & IFF_RUNNING) == 0)) {
1742 return;
1743 }
1744
1745 #ifdef BCMETH_MPSAFETX
1746 if (cpu_intr_p()) {
1747 #endif
1748 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
1749 softint_schedule(sc->sc_soft_ih);
1750 #ifdef BCMETH_MPSAFETX
1751 } else {
1752 /*
1753 * Either we are in a softintr thread already or some other
1754 * thread so just borrow it to do the send and save ourselves
1755 * the overhead of a fast soft int.
1756 */
1757 bcmeth_soft_txintr(sc);
1758 }
1759 #endif
1760 }
1761
1762 int
1763 bcmeth_intr(void *arg)
1764 {
1765 struct bcmeth_softc * const sc = arg;
1766 uint32_t soft_flags = 0;
1767 uint32_t work_flags = 0;
1768 int rv = 0;
1769
1770 mutex_enter(sc->sc_hwlock);
1771
1772 uint32_t intmask = sc->sc_intmask;
1773 BCMETH_EVCNT_INCR(sc->sc_ev_intr);
1774
1775 for (;;) {
1776 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
1777 intstatus &= intmask;
1778 bcmeth_write_4(sc, GMAC_INTSTATUS, intstatus); /* write 1 to clear */
1779 if (intstatus == 0) {
1780 break;
1781 }
1782 #if 0
1783 aprint_normal_dev(sc->sc_dev, "%s: intstatus=%#x intmask=%#x\n",
1784 __func__, intstatus, bcmeth_read_4(sc, GMAC_INTMASK));
1785 #endif
1786 if (intstatus & RCVINT) {
1787 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
1788 intmask &= ~RCVINT;
1789
1790 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1791 uint32_t descs = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1792 if (descs < rxq->rxq_consumer - rxq->rxq_first) {
1793 /*
1794 * We wrapped at the end so count how far
1795 * we are from the end.
1796 */
1797 descs += rxq->rxq_last - rxq->rxq_consumer;
1798 } else {
1799 descs -= rxq->rxq_consumer - rxq->rxq_first;
1800 }
1801 /*
1802 * If we "timedout" we can't be hogging so use
1803 * softints. If we exceeded then we might hogging
1804 * so let the workqueue deal with them.
1805 */
1806 const uint32_t framecount = __SHIFTOUT(sc->sc_rcvlazy, INTRCVLAZY_FRAMECOUNT);
1807 if (descs < framecount
1808 || (curcpu()->ci_curlwp->l_flag & LW_IDLE)) {
1809 soft_flags |= SOFT_RXINTR;
1810 } else {
1811 work_flags |= WORK_RXINTR;
1812 }
1813 }
1814
1815 if (intstatus & XMTINT_0) {
1816 intmask &= ~XMTINT_0;
1817 soft_flags |= SOFT_TXINTR;
1818 }
1819
1820 if (intstatus & RCVDESCUF) {
1821 intmask &= ~RCVDESCUF;
1822 work_flags |= WORK_RXUNDERFLOW;
1823 }
1824
1825 intstatus &= intmask;
1826 if (intstatus) {
1827 aprint_error_dev(sc->sc_dev,
1828 "intr: intstatus=%#x\n", intstatus);
1829 aprint_error_dev(sc->sc_dev,
1830 "rcvbase=%p/%#lx rcvptr=%#x rcvsts=%#x/%#x\n",
1831 sc->sc_rxq.rxq_first,
1832 sc->sc_rxq.rxq_descmap->dm_segs[0].ds_addr,
1833 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvptr),
1834 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts0),
1835 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts1));
1836 aprint_error_dev(sc->sc_dev,
1837 "xmtbase=%p/%#lx xmtptr=%#x xmtsts=%#x/%#x\n",
1838 sc->sc_txq.txq_first,
1839 sc->sc_txq.txq_descmap->dm_segs[0].ds_addr,
1840 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtptr),
1841 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts0),
1842 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts1));
1843 intmask &= ~intstatus;
1844 work_flags |= WORK_REINIT;
1845 break;
1846 }
1847 }
1848
1849 if (intmask != sc->sc_intmask) {
1850 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1851 }
1852
1853 if (work_flags) {
1854 if (sc->sc_work_flags == 0) {
1855 workqueue_enqueue(sc->sc_workq, &sc->sc_work, NULL);
1856 }
1857 atomic_or_32(&sc->sc_work_flags, work_flags);
1858 rv = 1;
1859 }
1860
1861 if (soft_flags) {
1862 if (sc->sc_soft_flags == 0) {
1863 softint_schedule(sc->sc_soft_ih);
1864 }
1865 atomic_or_32(&sc->sc_soft_flags, soft_flags);
1866 rv = 1;
1867 }
1868
1869 mutex_exit(sc->sc_hwlock);
1870
1871 return rv;
1872 }
1873
1874 #ifdef BCMETH_MPSAFETX
1875 void
1876 bcmeth_soft_txintr(struct bcmeth_softc *sc)
1877 {
1878 mutex_enter(sc->sc_lock);
1879 /*
1880 * Let's do what we came here for. Consume transmitted
1881 * packets off the the transmit ring.
1882 */
1883 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1884 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1885 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1886 sc->sc_if.if_flags |= IFF_OACTIVE;
1887 } else {
1888 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1889 }
1890 if (sc->sc_if.if_flags & IFF_RUNNING) {
1891 mutex_spin_enter(sc->sc_hwlock);
1892 sc->sc_intmask |= XMTINT_0;
1893 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1894 mutex_spin_exit(sc->sc_hwlock);
1895 }
1896 mutex_exit(sc->sc_lock);
1897 }
1898 #endif /* BCMETH_MPSAFETX */
1899
1900 void
1901 bcmeth_soft_intr(void *arg)
1902 {
1903 struct bcmeth_softc * const sc = arg;
1904 struct ifnet * const ifp = &sc->sc_if;
1905 uint32_t intmask = 0;
1906
1907 mutex_enter(sc->sc_lock);
1908
1909 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
1910
1911 BCMETH_EVCNT_INCR(sc->sc_ev_soft_intr);
1912
1913 if ((soft_flags & SOFT_TXINTR)
1914 || bcmeth_txq_active_p(sc, &sc->sc_txq)) {
1915 /*
1916 * Let's do what we came here for. Consume transmitted
1917 * packets off the the transmit ring.
1918 */
1919 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1920 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1921 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1922 ifp->if_flags |= IFF_OACTIVE;
1923 } else {
1924 ifp->if_flags &= ~IFF_OACTIVE;
1925 }
1926 intmask |= XMTINT_0;
1927 }
1928
1929 if (soft_flags & SOFT_RXINTR) {
1930 /*
1931 * Let's consume
1932 */
1933 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
1934 sc->sc_rxq.rxq_threshold / 4)) {
1935 /*
1936 * We've consumed a quarter of the ring and still have
1937 * more to do. Refill the ring.
1938 */
1939 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1940 }
1941 intmask |= RCVINT;
1942 }
1943
1944 if (ifp->if_flags & IFF_RUNNING) {
1945 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1946 mutex_spin_enter(sc->sc_hwlock);
1947 sc->sc_intmask |= intmask;
1948 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1949 mutex_spin_exit(sc->sc_hwlock);
1950 }
1951
1952 mutex_exit(sc->sc_lock);
1953 }
1954
1955 void
1956 bcmeth_worker(struct work *wk, void *arg)
1957 {
1958 struct bcmeth_softc * const sc = arg;
1959 struct ifnet * const ifp = &sc->sc_if;
1960 uint32_t intmask = 0;
1961
1962 mutex_enter(sc->sc_lock);
1963
1964 BCMETH_EVCNT_INCR(sc->sc_ev_work);
1965
1966 uint32_t work_flags = atomic_swap_32(&sc->sc_work_flags, 0);
1967 if (work_flags & WORK_REINIT) {
1968 int s = splnet();
1969 sc->sc_soft_flags = 0;
1970 bcmeth_ifinit(ifp);
1971 splx(s);
1972 work_flags &= ~WORK_RXUNDERFLOW;
1973 }
1974
1975 if (work_flags & WORK_RXUNDERFLOW) {
1976 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
1977 size_t threshold = 5 * rxq->rxq_threshold / 4;
1978 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
1979 threshold = rxq->rxq_last - rxq->rxq_first - 1;
1980 } else {
1981 intmask |= RCVDESCUF;
1982 }
1983 aprint_normal_dev(sc->sc_dev,
1984 "increasing receive buffers from %zu to %zu\n",
1985 rxq->rxq_threshold, threshold);
1986 rxq->rxq_threshold = threshold;
1987 }
1988
1989 if (work_flags & WORK_RXINTR) {
1990 /*
1991 * Let's consume
1992 */
1993 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
1994 sc->sc_rxq.rxq_threshold / 4)) {
1995 /*
1996 * We've consumed a quarter of the ring and still have
1997 * more to do. Refill the ring.
1998 */
1999 bcmeth_rxq_produce(sc, &sc->sc_rxq);
2000 }
2001 intmask |= RCVINT;
2002 }
2003
2004 if (ifp->if_flags & IFF_RUNNING) {
2005 bcmeth_rxq_produce(sc, &sc->sc_rxq);
2006 #if 0
2007 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
2008 if (intstatus & RCVINT) {
2009 bcmeth_write_4(sc, GMAC_INTSTATUS, RCVINT);
2010 work_flags |= WORK_RXINTR;
2011 continue;
2012 }
2013 #endif
2014 mutex_spin_enter(sc->sc_hwlock);
2015 sc->sc_intmask |= intmask;
2016 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
2017 mutex_spin_exit(sc->sc_hwlock);
2018 }
2019
2020 mutex_exit(sc->sc_lock);
2021 }
2022