bcm53xx_eth.c revision 1.29 1 /*-
2 * Copyright (c) 2012 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas of 3am Software Foundry.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #define _ARM32_BUS_DMA_PRIVATE
31 #define GMAC_PRIVATE
32
33 #include "locators.h"
34 #include "opt_broadcom.h"
35
36 #include <sys/cdefs.h>
37
38 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_eth.c,v 1.29 2016/12/15 09:28:02 ozaki-r Exp $");
39
40 #include <sys/param.h>
41 #include <sys/atomic.h>
42 #include <sys/bus.h>
43 #include <sys/device.h>
44 #include <sys/ioctl.h>
45 #include <sys/intr.h>
46 #include <sys/kmem.h>
47 #include <sys/mutex.h>
48 #include <sys/socket.h>
49 #include <sys/systm.h>
50 #include <sys/workqueue.h>
51
52 #include <net/if.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55
56 #include <net/if_dl.h>
57
58 #include <net/bpf.h>
59
60 #include <dev/mii/miivar.h>
61
62 #include <arm/locore.h>
63
64 #include <arm/broadcom/bcm53xx_reg.h>
65 #include <arm/broadcom/bcm53xx_var.h>
66
67 //#define BCMETH_MPSAFE
68
69 #ifdef BCMETH_COUNTERS
70 #define BCMETH_EVCNT_ADD(a,b) ((void)((a).ev_count += (b)))
71 #else
72 #define BCMETH_EVCNT_ADD(a,b) do { } while (/*CONSTCOND*/0)
73 #endif
74 #define BCMETH_EVCNT_INCR(a) BCMETH_EVCNT_ADD((a), 1)
75
76 #define BCMETH_MAXTXMBUFS 128
77 #define BCMETH_NTXSEGS 30
78 #define BCMETH_MAXRXMBUFS 255
79 #define BCMETH_MINRXMBUFS 64
80 #define BCMETH_NRXSEGS 1
81 #define BCMETH_RINGSIZE PAGE_SIZE
82
83 #if 1
84 #define BCMETH_RCVMAGIC 0xfeedface
85 #endif
86
87 static int bcmeth_ccb_match(device_t, cfdata_t, void *);
88 static void bcmeth_ccb_attach(device_t, device_t, void *);
89
90 struct bcmeth_txqueue {
91 bus_dmamap_t txq_descmap;
92 struct gmac_txdb *txq_consumer;
93 struct gmac_txdb *txq_producer;
94 struct gmac_txdb *txq_first;
95 struct gmac_txdb *txq_last;
96 struct ifqueue txq_mbufs;
97 struct mbuf *txq_next;
98 size_t txq_free;
99 size_t txq_threshold;
100 size_t txq_lastintr;
101 bus_size_t txq_reg_xmtaddrlo;
102 bus_size_t txq_reg_xmtptr;
103 bus_size_t txq_reg_xmtctl;
104 bus_size_t txq_reg_xmtsts0;
105 bus_size_t txq_reg_xmtsts1;
106 bus_dma_segment_t txq_descmap_seg;
107 };
108
109 struct bcmeth_rxqueue {
110 bus_dmamap_t rxq_descmap;
111 struct gmac_rxdb *rxq_consumer;
112 struct gmac_rxdb *rxq_producer;
113 struct gmac_rxdb *rxq_first;
114 struct gmac_rxdb *rxq_last;
115 struct mbuf *rxq_mhead;
116 struct mbuf **rxq_mtail;
117 struct mbuf *rxq_mconsumer;
118 size_t rxq_inuse;
119 size_t rxq_threshold;
120 bus_size_t rxq_reg_rcvaddrlo;
121 bus_size_t rxq_reg_rcvptr;
122 bus_size_t rxq_reg_rcvctl;
123 bus_size_t rxq_reg_rcvsts0;
124 bus_size_t rxq_reg_rcvsts1;
125 bus_dma_segment_t rxq_descmap_seg;
126 };
127
128 struct bcmeth_mapcache {
129 u_int dmc_nmaps;
130 u_int dmc_maxseg;
131 u_int dmc_maxmaps;
132 u_int dmc_maxmapsize;
133 bus_dmamap_t dmc_maps[0];
134 };
135
136 struct bcmeth_softc {
137 device_t sc_dev;
138 bus_space_tag_t sc_bst;
139 bus_space_handle_t sc_bsh;
140 bus_dma_tag_t sc_dmat;
141 kmutex_t *sc_lock;
142 kmutex_t *sc_hwlock;
143 struct ethercom sc_ec;
144 #define sc_if sc_ec.ec_if
145 struct ifmedia sc_media;
146 void *sc_soft_ih;
147 void *sc_ih;
148
149 struct bcmeth_rxqueue sc_rxq;
150 struct bcmeth_txqueue sc_txq;
151
152 size_t sc_rcvoffset;
153 uint32_t sc_macaddr[2];
154 uint32_t sc_maxfrm;
155 uint32_t sc_cmdcfg;
156 uint32_t sc_intmask;
157 uint32_t sc_rcvlazy;
158 volatile uint32_t sc_soft_flags;
159 #define SOFT_RXINTR 0x01
160 #define SOFT_TXINTR 0x02
161
162 #ifdef BCMETH_COUNTERS
163 struct evcnt sc_ev_intr;
164 struct evcnt sc_ev_soft_intr;
165 struct evcnt sc_ev_work;
166 struct evcnt sc_ev_tx_stall;
167 struct evcnt sc_ev_rx_badmagic_lo;
168 struct evcnt sc_ev_rx_badmagic_hi;
169 #endif
170
171 struct ifqueue sc_rx_bufcache;
172 struct bcmeth_mapcache *sc_rx_mapcache;
173 struct bcmeth_mapcache *sc_tx_mapcache;
174
175 struct workqueue *sc_workq;
176 struct work sc_work;
177
178 volatile uint32_t sc_work_flags;
179 #define WORK_RXINTR 0x01
180 #define WORK_RXUNDERFLOW 0x02
181 #define WORK_REINIT 0x04
182
183 uint8_t sc_enaddr[ETHER_ADDR_LEN];
184 };
185
186 static void bcmeth_ifstart(struct ifnet *);
187 static void bcmeth_ifwatchdog(struct ifnet *);
188 static int bcmeth_ifinit(struct ifnet *);
189 static void bcmeth_ifstop(struct ifnet *, int);
190 static int bcmeth_ifioctl(struct ifnet *, u_long, void *);
191
192 static int bcmeth_mapcache_create(struct bcmeth_softc *,
193 struct bcmeth_mapcache **, size_t, size_t, size_t);
194 static void bcmeth_mapcache_destroy(struct bcmeth_softc *,
195 struct bcmeth_mapcache *);
196 static bus_dmamap_t bcmeth_mapcache_get(struct bcmeth_softc *,
197 struct bcmeth_mapcache *);
198 static void bcmeth_mapcache_put(struct bcmeth_softc *,
199 struct bcmeth_mapcache *, bus_dmamap_t);
200
201 static int bcmeth_txq_attach(struct bcmeth_softc *,
202 struct bcmeth_txqueue *, u_int);
203 static void bcmeth_txq_purge(struct bcmeth_softc *,
204 struct bcmeth_txqueue *);
205 static void bcmeth_txq_reset(struct bcmeth_softc *,
206 struct bcmeth_txqueue *);
207 static bool bcmeth_txq_consume(struct bcmeth_softc *,
208 struct bcmeth_txqueue *);
209 static bool bcmeth_txq_produce(struct bcmeth_softc *,
210 struct bcmeth_txqueue *, struct mbuf *m);
211 static bool bcmeth_txq_active_p(struct bcmeth_softc *,
212 struct bcmeth_txqueue *);
213
214 static int bcmeth_rxq_attach(struct bcmeth_softc *,
215 struct bcmeth_rxqueue *, u_int);
216 static bool bcmeth_rxq_produce(struct bcmeth_softc *,
217 struct bcmeth_rxqueue *);
218 static void bcmeth_rxq_purge(struct bcmeth_softc *,
219 struct bcmeth_rxqueue *, bool);
220 static void bcmeth_rxq_reset(struct bcmeth_softc *,
221 struct bcmeth_rxqueue *);
222
223 static int bcmeth_intr(void *);
224 #ifdef BCMETH_MPSAFETX
225 static void bcmeth_soft_txintr(struct bcmeth_softc *);
226 #endif
227 static void bcmeth_soft_intr(void *);
228 static void bcmeth_worker(struct work *, void *);
229
230 static int bcmeth_mediachange(struct ifnet *);
231 static void bcmeth_mediastatus(struct ifnet *, struct ifmediareq *);
232
233 static inline uint32_t
234 bcmeth_read_4(struct bcmeth_softc *sc, bus_size_t o)
235 {
236 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
237 }
238
239 static inline void
240 bcmeth_write_4(struct bcmeth_softc *sc, bus_size_t o, uint32_t v)
241 {
242 bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v);
243 }
244
245 CFATTACH_DECL_NEW(bcmeth_ccb, sizeof(struct bcmeth_softc),
246 bcmeth_ccb_match, bcmeth_ccb_attach, NULL, NULL);
247
248 static int
249 bcmeth_ccb_match(device_t parent, cfdata_t cf, void *aux)
250 {
251 struct bcmccb_attach_args * const ccbaa = aux;
252 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
253
254 if (strcmp(cf->cf_name, loc->loc_name))
255 return 0;
256
257 #ifdef DIAGNOSTIC
258 const int port = cf->cf_loc[BCMCCBCF_PORT];
259 #endif
260 KASSERT(port == BCMCCBCF_PORT_DEFAULT || port == loc->loc_port);
261
262 return 1;
263 }
264
265 static void
266 bcmeth_ccb_attach(device_t parent, device_t self, void *aux)
267 {
268 struct bcmeth_softc * const sc = device_private(self);
269 struct ethercom * const ec = &sc->sc_ec;
270 struct ifnet * const ifp = &ec->ec_if;
271 struct bcmccb_attach_args * const ccbaa = aux;
272 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
273 const char * const xname = device_xname(self);
274 prop_dictionary_t dict = device_properties(self);
275 int error;
276
277 sc->sc_bst = ccbaa->ccbaa_ccb_bst;
278 sc->sc_dmat = ccbaa->ccbaa_dmat;
279 bus_space_subregion(sc->sc_bst, ccbaa->ccbaa_ccb_bsh,
280 loc->loc_offset, loc->loc_size, &sc->sc_bsh);
281
282 /*
283 * We need to use the coherent dma tag for the GMAC.
284 */
285 sc->sc_dmat = &bcm53xx_coherent_dma_tag;
286 #if _ARM32_NEED_BUS_DMA_BOUNCE
287 if (device_cfdata(self)->cf_flags & 2) {
288 sc->sc_dmat = &bcm53xx_bounce_dma_tag;
289 }
290 #endif
291
292 prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
293 if (eaprop == NULL) {
294 uint32_t mac0 = bcmeth_read_4(sc, UNIMAC_MAC_0);
295 uint32_t mac1 = bcmeth_read_4(sc, UNIMAC_MAC_1);
296 if ((mac0 == 0 && mac1 == 0) || (mac1 & 1)) {
297 aprint_error(": mac-address property is missing\n");
298 return;
299 }
300 sc->sc_enaddr[0] = (mac0 >> 0) & 0xff;
301 sc->sc_enaddr[1] = (mac0 >> 8) & 0xff;
302 sc->sc_enaddr[2] = (mac0 >> 16) & 0xff;
303 sc->sc_enaddr[3] = (mac0 >> 24) & 0xff;
304 sc->sc_enaddr[4] = (mac1 >> 0) & 0xff;
305 sc->sc_enaddr[5] = (mac1 >> 8) & 0xff;
306 } else {
307 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
308 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
309 memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
310 ETHER_ADDR_LEN);
311 }
312 sc->sc_dev = self;
313 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
314 sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
315
316 bcmeth_write_4(sc, GMAC_INTMASK, 0); // disable interrupts
317
318 aprint_naive("\n");
319 aprint_normal(": Gigabit Ethernet Controller\n");
320
321 error = bcmeth_rxq_attach(sc, &sc->sc_rxq, 0);
322 if (error) {
323 aprint_error(": failed to init rxq: %d\n", error);
324 return;
325 }
326
327 error = bcmeth_txq_attach(sc, &sc->sc_txq, 0);
328 if (error) {
329 aprint_error(": failed to init txq: %d\n", error);
330 return;
331 }
332
333 error = bcmeth_mapcache_create(sc, &sc->sc_rx_mapcache,
334 BCMETH_MAXRXMBUFS, MCLBYTES, BCMETH_NRXSEGS);
335 if (error) {
336 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
337 return;
338 }
339
340 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
341 BCMETH_MAXTXMBUFS, MCLBYTES, BCMETH_NTXSEGS);
342 if (error) {
343 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
344 return;
345 }
346
347 error = workqueue_create(&sc->sc_workq, xname, bcmeth_worker, sc,
348 (PRI_USER + MAXPRI_USER) / 2, IPL_NET, WQ_MPSAFE|WQ_PERCPU);
349 if (error) {
350 aprint_error(": failed to create workqueue: %d\n", error);
351 return;
352 }
353
354 sc->sc_soft_ih = softint_establish(SOFTINT_MPSAFE | SOFTINT_NET,
355 bcmeth_soft_intr, sc);
356
357 sc->sc_ih = intr_establish(loc->loc_intrs[0], IPL_VM, IST_LEVEL,
358 bcmeth_intr, sc);
359
360 if (sc->sc_ih == NULL) {
361 aprint_error_dev(self, "failed to establish interrupt %d\n",
362 loc->loc_intrs[0]);
363 } else {
364 aprint_normal_dev(self, "interrupting on irq %d\n",
365 loc->loc_intrs[0]);
366 }
367
368 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
369 ether_sprintf(sc->sc_enaddr));
370
371 /*
372 * Since each port in plugged into the switch/flow-accelerator,
373 * we hard code at Gige Full-Duplex with Flow Control enabled.
374 */
375 int ifmedia = IFM_ETHER|IFM_1000_T|IFM_FDX;
376 //ifmedia |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
377 ifmedia_init(&sc->sc_media, IFM_IMASK, bcmeth_mediachange,
378 bcmeth_mediastatus);
379 ifmedia_add(&sc->sc_media, ifmedia, 0, NULL);
380 ifmedia_set(&sc->sc_media, ifmedia);
381
382 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
383
384 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
385 ifp->if_softc = sc;
386 ifp->if_baudrate = IF_Mbps(1000);
387 ifp->if_capabilities = 0;
388 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
389 #ifdef BCMETH_MPSAFE
390 ifp->if_flags2 = IFF2_MPSAFE;
391 #endif
392 ifp->if_ioctl = bcmeth_ifioctl;
393 ifp->if_start = bcmeth_ifstart;
394 ifp->if_watchdog = bcmeth_ifwatchdog;
395 ifp->if_init = bcmeth_ifinit;
396 ifp->if_stop = bcmeth_ifstop;
397 IFQ_SET_READY(&ifp->if_snd);
398
399 bcmeth_ifstop(ifp, true);
400
401 /*
402 * Attach the interface.
403 */
404 if_initialize(ifp);
405 ether_ifattach(ifp, sc->sc_enaddr);
406 if_register(ifp);
407
408 #ifdef BCMETH_COUNTERS
409 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
410 NULL, xname, "intr");
411 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
412 NULL, xname, "soft intr");
413 evcnt_attach_dynamic(&sc->sc_ev_work, EVCNT_TYPE_MISC,
414 NULL, xname, "work items");
415 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
416 NULL, xname, "tx stalls");
417 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_lo, EVCNT_TYPE_MISC,
418 NULL, xname, "rx badmagic lo");
419 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_hi, EVCNT_TYPE_MISC,
420 NULL, xname, "rx badmagic hi");
421 #endif
422 }
423
424 static int
425 bcmeth_mediachange(struct ifnet *ifp)
426 {
427 //struct bcmeth_softc * const sc = ifp->if_softc;
428 return 0;
429 }
430
431 static void
432 bcmeth_mediastatus(struct ifnet *ifp, struct ifmediareq *ifm)
433 {
434 //struct bcmeth_softc * const sc = ifp->if_softc;
435
436 ifm->ifm_status = IFM_AVALID | IFM_ACTIVE;
437 ifm->ifm_active = IFM_ETHER | IFM_FDX | IFM_1000_T;
438 }
439
440 static uint64_t
441 bcmeth_macaddr_create(const uint8_t *enaddr)
442 {
443 return (enaddr[3] << 0) // UNIMAC_MAC_0
444 | (enaddr[2] << 8) // UNIMAC_MAC_0
445 | (enaddr[1] << 16) // UNIMAC_MAC_0
446 | ((uint64_t)enaddr[0] << 24) // UNIMAC_MAC_0
447 | ((uint64_t)enaddr[5] << 32) // UNIMAC_MAC_1
448 | ((uint64_t)enaddr[4] << 40); // UNIMAC_MAC_1
449 }
450
451 static int
452 bcmeth_ifinit(struct ifnet *ifp)
453 {
454 struct bcmeth_softc * const sc = ifp->if_softc;
455 int error = 0;
456
457 sc->sc_maxfrm = max(ifp->if_mtu + 32, MCLBYTES);
458 if (ifp->if_mtu > ETHERMTU_JUMBO)
459 return error;
460
461 KASSERT(ifp->if_flags & IFF_UP);
462
463 /*
464 * Stop the interface
465 */
466 bcmeth_ifstop(ifp, 0);
467
468 /*
469 * Reserve enough space at the front so that we can insert a maxsized
470 * link header and a VLAN tag. Also make sure we have enough room for
471 * the rcvsts field as well.
472 */
473 KASSERT(ALIGN(max_linkhdr) == max_linkhdr);
474 KASSERTMSG(max_linkhdr > sizeof(struct ether_header), "%u > %zu",
475 max_linkhdr, sizeof(struct ether_header));
476 sc->sc_rcvoffset = max_linkhdr + 4 - sizeof(struct ether_header);
477 if (sc->sc_rcvoffset <= 4)
478 sc->sc_rcvoffset += 4;
479 KASSERT((sc->sc_rcvoffset & 3) == 2);
480 KASSERT(sc->sc_rcvoffset <= __SHIFTOUT(RCVCTL_RCVOFFSET, RCVCTL_RCVOFFSET));
481 KASSERT(sc->sc_rcvoffset >= 6);
482
483 /*
484 * If our frame size has changed (or it's our first time through)
485 * destroy the existing transmit mapcache.
486 */
487 if (sc->sc_tx_mapcache != NULL
488 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
489 bcmeth_mapcache_destroy(sc, sc->sc_tx_mapcache);
490 sc->sc_tx_mapcache = NULL;
491 }
492
493 if (sc->sc_tx_mapcache == NULL) {
494 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
495 BCMETH_MAXTXMBUFS, sc->sc_maxfrm, BCMETH_NTXSEGS);
496 if (error)
497 return error;
498 }
499
500 sc->sc_cmdcfg = NO_LENGTH_CHECK | PAUSE_IGNORE
501 | __SHIFTIN(ETH_SPEED_1000, ETH_SPEED)
502 | RX_ENA | TX_ENA;
503
504 if (ifp->if_flags & IFF_PROMISC) {
505 sc->sc_cmdcfg |= PROMISC_EN;
506 } else {
507 sc->sc_cmdcfg &= ~PROMISC_EN;
508 }
509
510 const uint8_t * const lladdr = CLLADDR(ifp->if_sadl);
511 const uint64_t macstnaddr = bcmeth_macaddr_create(lladdr);
512
513 /*
514 * We make sure that a received Ethernet packet start on a non-word
515 * boundary so that the packet payload will be on a word boundary.
516 * So to check the destination address we keep around two words to
517 * quickly compare with.
518 */
519 #if __ARMEL__
520 sc->sc_macaddr[0] = lladdr[0] | (lladdr[1] << 8);
521 sc->sc_macaddr[1] = lladdr[2] | (lladdr[3] << 8)
522 | (lladdr[4] << 16) | (lladdr[5] << 24);
523 #else
524 sc->sc_macaddr[0] = lladdr[1] | (lladdr[0] << 8);
525 sc->sc_macaddr[1] = lladdr[5] | (lladdr[4] << 8)
526 | (lladdr[1] << 16) | (lladdr[2] << 24);
527 #endif
528
529 sc->sc_intmask = DESCPROTOERR|DATAERR|DESCERR;
530
531 /* 5. Load RCVADDR_LO with new pointer */
532 bcmeth_rxq_reset(sc, &sc->sc_rxq);
533
534 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
535 __SHIFTIN(sc->sc_rcvoffset, RCVCTL_RCVOFFSET)
536 | RCVCTL_PARITY_DIS
537 | RCVCTL_OFLOW_CONTINUE
538 | __SHIFTIN(3, RCVCTL_BURSTLEN));
539
540 /* 6. Load XMTADDR_LO with new pointer */
541 bcmeth_txq_reset(sc, &sc->sc_txq);
542
543 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl, XMTCTL_DMA_ACT_INDEX
544 | XMTCTL_PARITY_DIS
545 | __SHIFTIN(3, XMTCTL_BURSTLEN));
546
547 /* 7. Setup other UNIMAC registers */
548 bcmeth_write_4(sc, UNIMAC_FRAME_LEN, sc->sc_maxfrm);
549 bcmeth_write_4(sc, UNIMAC_MAC_0, (uint32_t)(macstnaddr >> 0));
550 bcmeth_write_4(sc, UNIMAC_MAC_1, (uint32_t)(macstnaddr >> 32));
551 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, sc->sc_cmdcfg);
552
553 uint32_t devctl = bcmeth_read_4(sc, GMAC_DEVCONTROL);
554 devctl |= RGMII_LINK_STATUS_SEL | NWAY_AUTO_POLL_EN | TXARB_STRICT_MODE;
555 devctl &= ~FLOW_CTRL_MODE;
556 devctl &= ~MIB_RD_RESET_EN;
557 devctl &= ~RXQ_OVERFLOW_CTRL_SEL;
558 devctl &= ~CPU_FLOW_CTRL_ON;
559 bcmeth_write_4(sc, GMAC_DEVCONTROL, devctl);
560
561 /* Setup lazy receive (at most 1ms). */
562 const struct cpu_softc * const cpu = curcpu()->ci_softc;
563 sc->sc_rcvlazy = __SHIFTIN(4, INTRCVLAZY_FRAMECOUNT)
564 | __SHIFTIN(cpu->cpu_clk.clk_apb / 1000, INTRCVLAZY_TIMEOUT);
565 bcmeth_write_4(sc, GMAC_INTRCVLAZY, sc->sc_rcvlazy);
566
567 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
568 sc->sc_intmask |= XMTINT_0|XMTUF;
569 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl,
570 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl) | XMTCTL_ENABLE);
571
572
573 /* 12. Enable receive queues in RQUEUE, */
574 sc->sc_intmask |= RCVINT|RCVDESCUF|RCVFIFOOF;
575 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
576 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl) | RCVCTL_ENABLE);
577
578 bcmeth_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
579
580 #if 0
581 aprint_normal_dev(sc->sc_dev,
582 "devctl=%#x ucmdcfg=%#x xmtctl=%#x rcvctl=%#x\n",
583 devctl, sc->sc_cmdcfg,
584 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl),
585 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl));
586 #endif
587
588 sc->sc_soft_flags = 0;
589
590 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
591
592 ifp->if_flags |= IFF_RUNNING;
593
594 return error;
595 }
596
597 static void
598 bcmeth_ifstop(struct ifnet *ifp, int disable)
599 {
600 struct bcmeth_softc * const sc = ifp->if_softc;
601 struct bcmeth_txqueue * const txq = &sc->sc_txq;
602 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
603
604 KASSERT(!cpu_intr_p());
605
606 sc->sc_soft_flags = 0;
607 sc->sc_work_flags = 0;
608
609 /* Disable Rx processing */
610 bcmeth_write_4(sc, rxq->rxq_reg_rcvctl,
611 bcmeth_read_4(sc, rxq->rxq_reg_rcvctl) & ~RCVCTL_ENABLE);
612
613 /* Disable Tx processing */
614 bcmeth_write_4(sc, txq->txq_reg_xmtctl,
615 bcmeth_read_4(sc, txq->txq_reg_xmtctl) & ~XMTCTL_ENABLE);
616
617 /* Disable all interrupts */
618 bcmeth_write_4(sc, GMAC_INTMASK, 0);
619
620 for (;;) {
621 uint32_t tx0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
622 uint32_t rx0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
623 if (__SHIFTOUT(tx0, XMTSTATE) == XMTSTATE_DIS
624 && __SHIFTOUT(rx0, RCVSTATE) == RCVSTATE_DIS)
625 break;
626 delay(50);
627 }
628 /*
629 * Now reset the controller.
630 *
631 * 3. Set SW_RESET bit in UNIMAC_COMMAND_CONFIG register
632 * 4. Clear SW_RESET bit in UNIMAC_COMMAND_CONFIG register
633 */
634 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, SW_RESET);
635 bcmeth_write_4(sc, GMAC_INTSTATUS, ~0);
636 sc->sc_intmask = 0;
637 ifp->if_flags &= ~IFF_RUNNING;
638
639 /*
640 * Let's consume any remaining transmitted packets. And if we are
641 * disabling the interface, purge ourselves of any untransmitted
642 * packets. But don't consume any received packets, just drop them.
643 * If we aren't disabling the interface, save the mbufs in the
644 * receive queue for reuse.
645 */
646 bcmeth_rxq_purge(sc, &sc->sc_rxq, disable);
647 bcmeth_txq_consume(sc, &sc->sc_txq);
648 if (disable) {
649 bcmeth_txq_purge(sc, &sc->sc_txq);
650 IF_PURGE(&ifp->if_snd);
651 }
652
653 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, 0);
654 }
655
656 static void
657 bcmeth_ifwatchdog(struct ifnet *ifp)
658 {
659 }
660
661 static int
662 bcmeth_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
663 {
664 struct bcmeth_softc *sc = ifp->if_softc;
665 struct ifreq * const ifr = data;
666 const int s = splnet();
667 int error;
668
669 switch (cmd) {
670 case SIOCSIFMEDIA:
671 case SIOCGIFMEDIA:
672 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
673 break;
674
675 default:
676 error = ether_ioctl(ifp, cmd, data);
677 if (error != ENETRESET)
678 break;
679
680 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
681 error = 0;
682 break;
683 }
684 error = bcmeth_ifinit(ifp);
685 break;
686 }
687
688 splx(s);
689 return error;
690 }
691
692 static void
693 bcmeth_rxq_desc_presync(
694 struct bcmeth_softc *sc,
695 struct bcmeth_rxqueue *rxq,
696 struct gmac_rxdb *rxdb,
697 size_t count)
698 {
699 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
700 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
701 BUS_DMASYNC_PREWRITE);
702 }
703
704 static void
705 bcmeth_rxq_desc_postsync(
706 struct bcmeth_softc *sc,
707 struct bcmeth_rxqueue *rxq,
708 struct gmac_rxdb *rxdb,
709 size_t count)
710 {
711 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
712 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
713 BUS_DMASYNC_POSTWRITE);
714 }
715
716 static void
717 bcmeth_txq_desc_presync(
718 struct bcmeth_softc *sc,
719 struct bcmeth_txqueue *txq,
720 struct gmac_txdb *txdb,
721 size_t count)
722 {
723 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
724 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
725 BUS_DMASYNC_PREWRITE);
726 }
727
728 static void
729 bcmeth_txq_desc_postsync(
730 struct bcmeth_softc *sc,
731 struct bcmeth_txqueue *txq,
732 struct gmac_txdb *txdb,
733 size_t count)
734 {
735 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
736 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
737 BUS_DMASYNC_POSTWRITE);
738 }
739
740 static bus_dmamap_t
741 bcmeth_mapcache_get(
742 struct bcmeth_softc *sc,
743 struct bcmeth_mapcache *dmc)
744 {
745 KASSERT(dmc->dmc_nmaps > 0);
746 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
747 return dmc->dmc_maps[--dmc->dmc_nmaps];
748 }
749
750 static void
751 bcmeth_mapcache_put(
752 struct bcmeth_softc *sc,
753 struct bcmeth_mapcache *dmc,
754 bus_dmamap_t map)
755 {
756 KASSERT(map != NULL);
757 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
758 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
759 }
760
761 static void
762 bcmeth_mapcache_destroy(
763 struct bcmeth_softc *sc,
764 struct bcmeth_mapcache *dmc)
765 {
766 const size_t dmc_size =
767 offsetof(struct bcmeth_mapcache, dmc_maps[dmc->dmc_maxmaps]);
768
769 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
770 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
771 }
772 kmem_intr_free(dmc, dmc_size);
773 }
774
775 static int
776 bcmeth_mapcache_create(
777 struct bcmeth_softc *sc,
778 struct bcmeth_mapcache **dmc_p,
779 size_t maxmaps,
780 size_t maxmapsize,
781 size_t maxseg)
782 {
783 const size_t dmc_size =
784 offsetof(struct bcmeth_mapcache, dmc_maps[maxmaps]);
785 struct bcmeth_mapcache * const dmc =
786 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
787
788 dmc->dmc_maxmaps = maxmaps;
789 dmc->dmc_nmaps = maxmaps;
790 dmc->dmc_maxmapsize = maxmapsize;
791 dmc->dmc_maxseg = maxseg;
792
793 for (u_int i = 0; i < maxmaps; i++) {
794 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
795 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
796 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
797 if (error) {
798 aprint_error_dev(sc->sc_dev,
799 "failed to creat dma map cache "
800 "entry %u of %zu: %d\n",
801 i, maxmaps, error);
802 while (i-- > 0) {
803 bus_dmamap_destroy(sc->sc_dmat,
804 dmc->dmc_maps[i]);
805 }
806 kmem_intr_free(dmc, dmc_size);
807 return error;
808 }
809 KASSERT(dmc->dmc_maps[i] != NULL);
810 }
811
812 *dmc_p = dmc;
813
814 return 0;
815 }
816
817 #if 0
818 static void
819 bcmeth_dmamem_free(
820 bus_dma_tag_t dmat,
821 size_t map_size,
822 bus_dma_segment_t *seg,
823 bus_dmamap_t map,
824 void *kvap)
825 {
826 bus_dmamap_destroy(dmat, map);
827 bus_dmamem_unmap(dmat, kvap, map_size);
828 bus_dmamem_free(dmat, seg, 1);
829 }
830 #endif
831
832 static int
833 bcmeth_dmamem_alloc(
834 bus_dma_tag_t dmat,
835 size_t map_size,
836 bus_dma_segment_t *seg,
837 bus_dmamap_t *map,
838 void **kvap)
839 {
840 int error;
841 int nseg;
842
843 *kvap = NULL;
844 *map = NULL;
845
846 error = bus_dmamem_alloc(dmat, map_size, 2*PAGE_SIZE, 0,
847 seg, 1, &nseg, 0);
848 if (error)
849 return error;
850
851 KASSERT(nseg == 1);
852
853 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap, 0);
854 if (error == 0) {
855 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
856 map);
857 if (error == 0) {
858 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
859 NULL, 0);
860 if (error == 0)
861 return 0;
862 bus_dmamap_destroy(dmat, *map);
863 *map = NULL;
864 }
865 bus_dmamem_unmap(dmat, *kvap, map_size);
866 *kvap = NULL;
867 }
868 bus_dmamem_free(dmat, seg, nseg);
869 return 0;
870 }
871
872 static struct mbuf *
873 bcmeth_rx_buf_alloc(
874 struct bcmeth_softc *sc)
875 {
876 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
877 if (m == NULL) {
878 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
879 return NULL;
880 }
881 MCLGET(m, M_DONTWAIT);
882 if ((m->m_flags & M_EXT) == 0) {
883 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
884 m_freem(m);
885 return NULL;
886 }
887 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
888
889 bus_dmamap_t map = bcmeth_mapcache_get(sc, sc->sc_rx_mapcache);
890 if (map == NULL) {
891 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
892 m_freem(m);
893 return NULL;
894 }
895 M_SETCTX(m, map);
896 m->m_len = m->m_pkthdr.len = MCLBYTES;
897 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
898 BUS_DMA_READ|BUS_DMA_NOWAIT);
899 if (error) {
900 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
901 error);
902 M_SETCTX(m, NULL);
903 m_freem(m);
904 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
905 return NULL;
906 }
907 KASSERT(map->dm_mapsize == MCLBYTES);
908 #ifdef BCMETH_RCVMAGIC
909 *mtod(m, uint32_t *) = htole32(BCMETH_RCVMAGIC);
910 bus_dmamap_sync(sc->sc_dmat, map, 0, sizeof(uint32_t),
911 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
912 bus_dmamap_sync(sc->sc_dmat, map, sizeof(uint32_t),
913 map->dm_mapsize - sizeof(uint32_t), BUS_DMASYNC_PREREAD);
914 #else
915 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
916 BUS_DMASYNC_PREREAD);
917 #endif
918
919 return m;
920 }
921
922 static void
923 bcmeth_rx_map_unload(
924 struct bcmeth_softc *sc,
925 struct mbuf *m)
926 {
927 KASSERT(m);
928 for (; m != NULL; m = m->m_next) {
929 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
930 KASSERT(map);
931 KASSERT(map->dm_mapsize == MCLBYTES);
932 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
933 BUS_DMASYNC_POSTREAD);
934 bus_dmamap_unload(sc->sc_dmat, map);
935 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
936 M_SETCTX(m, NULL);
937 }
938 }
939
940 static bool
941 bcmeth_rxq_produce(
942 struct bcmeth_softc *sc,
943 struct bcmeth_rxqueue *rxq)
944 {
945 struct gmac_rxdb *producer = rxq->rxq_producer;
946 bool produced = false;
947
948 while (rxq->rxq_inuse < rxq->rxq_threshold) {
949 struct mbuf *m;
950 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
951 if (m == NULL) {
952 m = bcmeth_rx_buf_alloc(sc);
953 if (m == NULL) {
954 printf("%s: bcmeth_rx_buf_alloc failed\n", __func__);
955 break;
956 }
957 }
958 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
959 KASSERT(map);
960
961 producer->rxdb_buflen = htole32(MCLBYTES);
962 producer->rxdb_addrlo = htole32(map->dm_segs[0].ds_addr);
963 producer->rxdb_flags &= htole32(RXDB_FLAG_ET);
964 *rxq->rxq_mtail = m;
965 rxq->rxq_mtail = &m->m_next;
966 m->m_len = MCLBYTES;
967 m->m_next = NULL;
968 rxq->rxq_inuse++;
969 if (++producer == rxq->rxq_last) {
970 membar_producer();
971 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
972 rxq->rxq_last - rxq->rxq_producer);
973 producer = rxq->rxq_producer = rxq->rxq_first;
974 }
975 produced = true;
976 }
977 if (produced) {
978 membar_producer();
979 if (producer != rxq->rxq_producer) {
980 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
981 producer - rxq->rxq_producer);
982 rxq->rxq_producer = producer;
983 }
984 bcmeth_write_4(sc, rxq->rxq_reg_rcvptr,
985 rxq->rxq_descmap->dm_segs[0].ds_addr
986 + ((uintptr_t)producer & RCVPTR));
987 }
988 return true;
989 }
990
991 static void
992 bcmeth_rx_input(
993 struct bcmeth_softc *sc,
994 struct mbuf *m,
995 uint32_t rxdb_flags)
996 {
997 struct ifnet * const ifp = &sc->sc_if;
998
999 bcmeth_rx_map_unload(sc, m);
1000
1001 m_adj(m, sc->sc_rcvoffset);
1002
1003 /*
1004 * If we are in promiscuous mode and this isn't a multicast, check the
1005 * destination address to make sure it matches our own. If it doesn't,
1006 * mark the packet as being received promiscuously.
1007 */
1008 if ((sc->sc_cmdcfg & PROMISC_EN)
1009 && (m->m_data[0] & 1) == 0
1010 && (*(uint16_t *)&m->m_data[0] != sc->sc_macaddr[0]
1011 || *(uint32_t *)&m->m_data[2] != sc->sc_macaddr[1])) {
1012 m->m_flags |= M_PROMISC;
1013 }
1014 m_set_rcvif(m, ifp);
1015
1016 ifp->if_ibytes += m->m_pkthdr.len;
1017
1018 /*
1019 * Let's give it to the network subsystm to deal with.
1020 */
1021 #ifdef BCMETH_MPSAFE
1022 mutex_exit(sc->sc_lock);
1023 if_input(ifp, m);
1024 mutex_enter(sc->sc_lock);
1025 #else
1026 int s = splnet();
1027 if_input(ifp, m);
1028 splx(s);
1029 #endif
1030 }
1031
1032 static bool
1033 bcmeth_rxq_consume(
1034 struct bcmeth_softc *sc,
1035 struct bcmeth_rxqueue *rxq,
1036 size_t atmost)
1037 {
1038 struct ifnet * const ifp = &sc->sc_if;
1039 struct gmac_rxdb *consumer = rxq->rxq_consumer;
1040 size_t rxconsumed = 0;
1041 bool didconsume = false;
1042
1043 while (atmost-- > 0) {
1044 if (consumer == rxq->rxq_producer) {
1045 KASSERT(rxq->rxq_inuse == 0);
1046 break;
1047 }
1048
1049 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1050 uint32_t currdscr = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1051 if (consumer == rxq->rxq_first + currdscr) {
1052 break;
1053 }
1054 bcmeth_rxq_desc_postsync(sc, rxq, consumer, 1);
1055
1056 /*
1057 * We own this packet again. Copy the rxsts word from it.
1058 */
1059 rxconsumed++;
1060 didconsume = true;
1061 uint32_t rxsts;
1062 KASSERT(rxq->rxq_mhead != NULL);
1063 bus_dmamap_t map = M_GETCTX(rxq->rxq_mhead, bus_dmamap_t);
1064 bus_dmamap_sync(sc->sc_dmat, map, 0, arm_dcache_align,
1065 BUS_DMASYNC_POSTREAD);
1066 memcpy(&rxsts, rxq->rxq_mhead->m_data, 4);
1067 rxsts = le32toh(rxsts);
1068 #if 0
1069 KASSERTMSG(rxsts != BCMETH_RCVMAGIC, "currdscr=%u consumer=%zd",
1070 currdscr, consumer - rxq->rxq_first);
1071 #endif
1072
1073 /*
1074 * Get the count of descriptors. Fetch the correct number
1075 * of mbufs.
1076 */
1077 #ifdef BCMETH_RCVMAGIC
1078 size_t desc_count = rxsts != BCMETH_RCVMAGIC ? __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1 : 1;
1079 #else
1080 size_t desc_count = __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1;
1081 #endif
1082 struct mbuf *m = rxq->rxq_mhead;
1083 struct mbuf *m_last = m;
1084 for (size_t i = 1; i < desc_count; i++) {
1085 if (++consumer == rxq->rxq_last) {
1086 consumer = rxq->rxq_first;
1087 }
1088 KASSERTMSG(consumer != rxq->rxq_first + currdscr,
1089 "i=%zu rxsts=%#x desc_count=%zu currdscr=%u consumer=%zd",
1090 i, rxsts, desc_count, currdscr,
1091 consumer - rxq->rxq_first);
1092 m_last = m_last->m_next;
1093 }
1094
1095 /*
1096 * Now remove it/them from the list of enqueued mbufs.
1097 */
1098 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1099 rxq->rxq_mtail = &rxq->rxq_mhead;
1100 m_last->m_next = NULL;
1101
1102 #ifdef BCMETH_RCVMAGIC
1103 if (rxsts == BCMETH_RCVMAGIC) {
1104 ifp->if_ierrors++;
1105 if ((m->m_ext.ext_paddr >> 28) == 8) {
1106 BCMETH_EVCNT_INCR(sc->sc_ev_rx_badmagic_lo);
1107 } else {
1108 BCMETH_EVCNT_INCR( sc->sc_ev_rx_badmagic_hi);
1109 }
1110 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1111 } else
1112 #endif /* BCMETH_RCVMAGIC */
1113 if (rxsts & (RXSTS_CRC_ERROR|RXSTS_OVERSIZED|RXSTS_PKT_OVERFLOW)) {
1114 aprint_error_dev(sc->sc_dev, "[%zu]: count=%zu rxsts=%#x\n",
1115 consumer - rxq->rxq_first, desc_count, rxsts);
1116 /*
1117 * We encountered an error, take the mbufs and add them
1118 * to the rx bufcache so we can quickly reuse them.
1119 */
1120 ifp->if_ierrors++;
1121 do {
1122 struct mbuf *m0 = m->m_next;
1123 m->m_next = NULL;
1124 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1125 m = m0;
1126 } while (m);
1127 } else {
1128 uint32_t framelen = __SHIFTOUT(rxsts, RXSTS_FRAMELEN);
1129 framelen += sc->sc_rcvoffset;
1130 m->m_pkthdr.len = framelen;
1131 if (desc_count == 1) {
1132 KASSERT(framelen <= MCLBYTES);
1133 m->m_len = framelen;
1134 } else {
1135 m_last->m_len = framelen & (MCLBYTES - 1);
1136 }
1137
1138 #ifdef BCMETH_MPSAFE
1139 /*
1140 * Wrap at the last entry!
1141 */
1142 if (++consumer == rxq->rxq_last) {
1143 KASSERT(consumer[-1].rxdb_flags & htole32(RXDB_FLAG_ET));
1144 rxq->rxq_consumer = rxq->rxq_first;
1145 } else {
1146 rxq->rxq_consumer = consumer;
1147 }
1148 rxq->rxq_inuse -= rxconsumed;
1149 #endif /* BCMETH_MPSAFE */
1150
1151 /*
1152 * Receive the packet (which releases our lock)
1153 */
1154 bcmeth_rx_input(sc, m, rxsts);
1155
1156 #ifdef BCMETH_MPSAFE
1157 /*
1158 * Since we had to give up our lock, we need to
1159 * refresh these.
1160 */
1161 consumer = rxq->rxq_consumer;
1162 rxconsumed = 0;
1163 continue;
1164 #endif /* BCMETH_MPSAFE */
1165 }
1166
1167 /*
1168 * Wrap at the last entry!
1169 */
1170 if (++consumer == rxq->rxq_last) {
1171 KASSERT(consumer[-1].rxdb_flags & htole32(RXDB_FLAG_ET));
1172 consumer = rxq->rxq_first;
1173 }
1174 }
1175
1176 /*
1177 * Update queue info.
1178 */
1179 rxq->rxq_consumer = consumer;
1180 rxq->rxq_inuse -= rxconsumed;
1181
1182 /*
1183 * Did we consume anything?
1184 */
1185 return didconsume;
1186 }
1187
1188 static void
1189 bcmeth_rxq_purge(
1190 struct bcmeth_softc *sc,
1191 struct bcmeth_rxqueue *rxq,
1192 bool discard)
1193 {
1194 struct mbuf *m;
1195
1196 if ((m = rxq->rxq_mhead) != NULL) {
1197 if (discard) {
1198 bcmeth_rx_map_unload(sc, m);
1199 m_freem(m);
1200 } else {
1201 while (m != NULL) {
1202 struct mbuf *m0 = m->m_next;
1203 m->m_next = NULL;
1204 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1205 m = m0;
1206 }
1207 }
1208
1209 }
1210
1211 rxq->rxq_mhead = NULL;
1212 rxq->rxq_mtail = &rxq->rxq_mhead;
1213 rxq->rxq_inuse = 0;
1214 }
1215
1216 static void
1217 bcmeth_rxq_reset(
1218 struct bcmeth_softc *sc,
1219 struct bcmeth_rxqueue *rxq)
1220 {
1221 /*
1222 * sync all the descriptors
1223 */
1224 bcmeth_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1225 rxq->rxq_last - rxq->rxq_first);
1226
1227 /*
1228 * Make sure we own all descriptors in the ring.
1229 */
1230 struct gmac_rxdb *rxdb;
1231 for (rxdb = rxq->rxq_first; rxdb < rxq->rxq_last - 1; rxdb++) {
1232 rxdb->rxdb_flags = htole32(RXDB_FLAG_IC);
1233 }
1234
1235 /*
1236 * Last descriptor has the wrap flag.
1237 */
1238 rxdb->rxdb_flags = htole32(RXDB_FLAG_ET|RXDB_FLAG_IC);
1239
1240 /*
1241 * Reset the producer consumer indexes.
1242 */
1243 rxq->rxq_consumer = rxq->rxq_first;
1244 rxq->rxq_producer = rxq->rxq_first;
1245 rxq->rxq_inuse = 0;
1246 if (rxq->rxq_threshold < BCMETH_MINRXMBUFS)
1247 rxq->rxq_threshold = BCMETH_MINRXMBUFS;
1248
1249 sc->sc_intmask |= RCVINT|RCVFIFOOF|RCVDESCUF;
1250
1251 /*
1252 * Restart the receiver at the first descriptor
1253 */
1254 bcmeth_write_4(sc, rxq->rxq_reg_rcvaddrlo,
1255 rxq->rxq_descmap->dm_segs[0].ds_addr);
1256 }
1257
1258 static int
1259 bcmeth_rxq_attach(
1260 struct bcmeth_softc *sc,
1261 struct bcmeth_rxqueue *rxq,
1262 u_int qno)
1263 {
1264 size_t desc_count = BCMETH_RINGSIZE / sizeof(rxq->rxq_first[0]);
1265 int error;
1266 void *descs;
1267
1268 KASSERT(desc_count == 256 || desc_count == 512);
1269
1270 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1271 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1272 if (error)
1273 return error;
1274
1275 memset(descs, 0, BCMETH_RINGSIZE);
1276 rxq->rxq_first = descs;
1277 rxq->rxq_last = rxq->rxq_first + desc_count;
1278 rxq->rxq_consumer = descs;
1279 rxq->rxq_producer = descs;
1280
1281 bcmeth_rxq_purge(sc, rxq, true);
1282 bcmeth_rxq_reset(sc, rxq);
1283
1284 rxq->rxq_reg_rcvaddrlo = GMAC_RCVADDR_LOW;
1285 rxq->rxq_reg_rcvctl = GMAC_RCVCONTROL;
1286 rxq->rxq_reg_rcvptr = GMAC_RCVPTR;
1287 rxq->rxq_reg_rcvsts0 = GMAC_RCVSTATUS0;
1288 rxq->rxq_reg_rcvsts1 = GMAC_RCVSTATUS1;
1289
1290 return 0;
1291 }
1292
1293 static bool
1294 bcmeth_txq_active_p(
1295 struct bcmeth_softc * const sc,
1296 struct bcmeth_txqueue *txq)
1297 {
1298 return !IF_IS_EMPTY(&txq->txq_mbufs);
1299 }
1300
1301 static bool
1302 bcmeth_txq_fillable_p(
1303 struct bcmeth_softc * const sc,
1304 struct bcmeth_txqueue *txq)
1305 {
1306 return txq->txq_free >= txq->txq_threshold;
1307 }
1308
1309 static int
1310 bcmeth_txq_attach(
1311 struct bcmeth_softc *sc,
1312 struct bcmeth_txqueue *txq,
1313 u_int qno)
1314 {
1315 size_t desc_count = BCMETH_RINGSIZE / sizeof(txq->txq_first[0]);
1316 int error;
1317 void *descs;
1318
1319 KASSERT(desc_count == 256 || desc_count == 512);
1320
1321 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1322 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1323 if (error)
1324 return error;
1325
1326 memset(descs, 0, BCMETH_RINGSIZE);
1327 txq->txq_first = descs;
1328 txq->txq_last = txq->txq_first + desc_count;
1329 txq->txq_consumer = descs;
1330 txq->txq_producer = descs;
1331
1332 IFQ_SET_MAXLEN(&txq->txq_mbufs, BCMETH_MAXTXMBUFS);
1333
1334 txq->txq_reg_xmtaddrlo = GMAC_XMTADDR_LOW;
1335 txq->txq_reg_xmtctl = GMAC_XMTCONTROL;
1336 txq->txq_reg_xmtptr = GMAC_XMTPTR;
1337 txq->txq_reg_xmtsts0 = GMAC_XMTSTATUS0;
1338 txq->txq_reg_xmtsts1 = GMAC_XMTSTATUS1;
1339
1340 bcmeth_txq_reset(sc, txq);
1341
1342 return 0;
1343 }
1344
1345 static int
1346 bcmeth_txq_map_load(
1347 struct bcmeth_softc *sc,
1348 struct bcmeth_txqueue *txq,
1349 struct mbuf *m)
1350 {
1351 bus_dmamap_t map;
1352 int error;
1353
1354 map = M_GETCTX(m, bus_dmamap_t);
1355 if (map != NULL)
1356 return 0;
1357
1358 map = bcmeth_mapcache_get(sc, sc->sc_tx_mapcache);
1359 if (map == NULL)
1360 return ENOMEM;
1361
1362 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1363 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1364 if (error)
1365 return error;
1366
1367 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1368 BUS_DMASYNC_PREWRITE);
1369 M_SETCTX(m, map);
1370 return 0;
1371 }
1372
1373 static void
1374 bcmeth_txq_map_unload(
1375 struct bcmeth_softc *sc,
1376 struct bcmeth_txqueue *txq,
1377 struct mbuf *m)
1378 {
1379 KASSERT(m);
1380 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1381 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1382 BUS_DMASYNC_POSTWRITE);
1383 bus_dmamap_unload(sc->sc_dmat, map);
1384 bcmeth_mapcache_put(sc, sc->sc_tx_mapcache, map);
1385 }
1386
1387 static bool
1388 bcmeth_txq_produce(
1389 struct bcmeth_softc *sc,
1390 struct bcmeth_txqueue *txq,
1391 struct mbuf *m)
1392 {
1393 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1394
1395 if (map->dm_nsegs > txq->txq_free)
1396 return false;
1397
1398 /*
1399 * TCP Offload flag must be set in the first descriptor.
1400 */
1401 struct gmac_txdb *producer = txq->txq_producer;
1402 uint32_t first_flags = TXDB_FLAG_SF;
1403 uint32_t last_flags = TXDB_FLAG_EF;
1404
1405 /*
1406 * If we've produced enough descriptors without consuming any
1407 * we need to ask for an interrupt to reclaim some.
1408 */
1409 txq->txq_lastintr += map->dm_nsegs;
1410 if (txq->txq_lastintr >= txq->txq_threshold
1411 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1412 txq->txq_lastintr = 0;
1413 last_flags |= TXDB_FLAG_IC;
1414 }
1415
1416 KASSERT(producer != txq->txq_last);
1417
1418 struct gmac_txdb *start = producer;
1419 size_t count = map->dm_nsegs;
1420 producer->txdb_flags |= htole32(first_flags);
1421 producer->txdb_addrlo = htole32(map->dm_segs[0].ds_addr);
1422 producer->txdb_buflen = htole32(map->dm_segs[0].ds_len);
1423 for (u_int i = 1; i < map->dm_nsegs; i++) {
1424 #if 0
1425 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1426 le32toh(producer->txdb_flags),
1427 le32toh(producer->txdb_buflen),
1428 le32toh(producer->txdb_addrlo),
1429 le32toh(producer->txdb_addrhi));
1430 #endif
1431 if (__predict_false(++producer == txq->txq_last)) {
1432 bcmeth_txq_desc_presync(sc, txq, start,
1433 txq->txq_last - start);
1434 count -= txq->txq_last - start;
1435 producer = txq->txq_first;
1436 start = txq->txq_first;
1437 }
1438 producer->txdb_addrlo = htole32(map->dm_segs[i].ds_addr);
1439 producer->txdb_buflen = htole32(map->dm_segs[i].ds_len);
1440 }
1441 producer->txdb_flags |= htole32(last_flags);
1442 #if 0
1443 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1444 le32toh(producer->txdb_flags), le32toh(producer->txdb_buflen),
1445 le32toh(producer->txdb_addrlo), le32toh(producer->txdb_addrhi));
1446 #endif
1447 if (count)
1448 bcmeth_txq_desc_presync(sc, txq, start, count);
1449
1450 /*
1451 * Reduce free count by the number of segments we consumed.
1452 */
1453 txq->txq_free -= map->dm_nsegs;
1454 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1455 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txdb_flags & htole32(TXDB_FLAG_EF)) == 0);
1456 KASSERT(producer->txdb_flags & htole32(TXDB_FLAG_EF));
1457
1458 #if 0
1459 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%zd..%zd)\n",
1460 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1461 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1462 #endif
1463
1464 if (producer + 1 == txq->txq_last)
1465 txq->txq_producer = txq->txq_first;
1466 else
1467 txq->txq_producer = producer + 1;
1468 IF_ENQUEUE(&txq->txq_mbufs, m);
1469
1470 /*
1471 * Let the transmitter know there's more to do
1472 */
1473 bcmeth_write_4(sc, txq->txq_reg_xmtptr,
1474 txq->txq_descmap->dm_segs[0].ds_addr
1475 + ((uintptr_t)txq->txq_producer & XMT_LASTDSCR));
1476
1477 return true;
1478 }
1479
1480 static struct mbuf *
1481 bcmeth_copy_packet(struct mbuf *m)
1482 {
1483 struct mbuf *mext = NULL;
1484 size_t misalignment = 0;
1485 size_t hlen = 0;
1486
1487 for (mext = m; mext != NULL; mext = mext->m_next) {
1488 if (mext->m_flags & M_EXT) {
1489 misalignment = mtod(mext, vaddr_t) & arm_dcache_align;
1490 break;
1491 }
1492 hlen += m->m_len;
1493 }
1494
1495 struct mbuf *n = m->m_next;
1496 if (m != mext && hlen + misalignment <= MHLEN && false) {
1497 KASSERT(m->m_pktdat <= m->m_data && m->m_data <= &m->m_pktdat[MHLEN - m->m_len]);
1498 size_t oldoff = m->m_data - m->m_pktdat;
1499 size_t off;
1500 if (mext == NULL) {
1501 off = (oldoff + hlen > MHLEN) ? 0 : oldoff;
1502 } else {
1503 off = MHLEN - (hlen + misalignment);
1504 }
1505 KASSERT(off + hlen + misalignment <= MHLEN);
1506 if (((oldoff ^ off) & arm_dcache_align) != 0 || off < oldoff) {
1507 memmove(&m->m_pktdat[off], m->m_data, m->m_len);
1508 m->m_data = &m->m_pktdat[off];
1509 }
1510 m_copydata(n, 0, hlen - m->m_len, &m->m_data[m->m_len]);
1511 m->m_len = hlen;
1512 m->m_next = mext;
1513 while (n != mext) {
1514 n = m_free(n);
1515 }
1516 return m;
1517 }
1518
1519 struct mbuf *m0 = m_gethdr(M_DONTWAIT, m->m_type);
1520 if (m0 == NULL) {
1521 return NULL;
1522 }
1523 M_COPY_PKTHDR(m0, m);
1524 MCLAIM(m0, m->m_owner);
1525 if (m0->m_pkthdr.len > MHLEN) {
1526 MCLGET(m0, M_DONTWAIT);
1527 if ((m0->m_flags & M_EXT) == 0) {
1528 m_freem(m0);
1529 return NULL;
1530 }
1531 }
1532 m0->m_len = m->m_pkthdr.len;
1533 m_copydata(m, 0, m0->m_len, mtod(m0, void *));
1534 m_freem(m);
1535 return m0;
1536 }
1537
1538 static bool
1539 bcmeth_txq_enqueue(
1540 struct bcmeth_softc *sc,
1541 struct bcmeth_txqueue *txq)
1542 {
1543 for (;;) {
1544 if (IF_QFULL(&txq->txq_mbufs))
1545 return false;
1546 struct mbuf *m = txq->txq_next;
1547 if (m == NULL) {
1548 int s = splnet();
1549 IF_DEQUEUE(&sc->sc_if.if_snd, m);
1550 splx(s);
1551 if (m == NULL)
1552 return true;
1553 M_SETCTX(m, NULL);
1554 } else {
1555 txq->txq_next = NULL;
1556 }
1557 /*
1558 * If LINK2 is set and this packet uses multiple mbufs,
1559 * consolidate it into a single mbuf.
1560 */
1561 if (m->m_next != NULL && (sc->sc_if.if_flags & IFF_LINK2)) {
1562 struct mbuf *m0 = bcmeth_copy_packet(m);
1563 if (m0 == NULL) {
1564 txq->txq_next = m;
1565 return true;
1566 }
1567 m = m0;
1568 }
1569 int error = bcmeth_txq_map_load(sc, txq, m);
1570 if (error) {
1571 aprint_error_dev(sc->sc_dev,
1572 "discarded packet due to "
1573 "dmamap load failure: %d\n", error);
1574 m_freem(m);
1575 continue;
1576 }
1577 KASSERT(txq->txq_next == NULL);
1578 if (!bcmeth_txq_produce(sc, txq, m)) {
1579 txq->txq_next = m;
1580 return false;
1581 }
1582 KASSERT(txq->txq_next == NULL);
1583 }
1584 }
1585
1586 static bool
1587 bcmeth_txq_consume(
1588 struct bcmeth_softc *sc,
1589 struct bcmeth_txqueue *txq)
1590 {
1591 struct ifnet * const ifp = &sc->sc_if;
1592 struct gmac_txdb *consumer = txq->txq_consumer;
1593 size_t txfree = 0;
1594
1595 #if 0
1596 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1597 #endif
1598
1599 for (;;) {
1600 if (consumer == txq->txq_producer) {
1601 txq->txq_consumer = consumer;
1602 txq->txq_free += txfree;
1603 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
1604 #if 0
1605 printf("%s: empty: freed %zu descriptors going from %zu to %zu\n",
1606 __func__, txfree, txq->txq_free - txfree, txq->txq_free);
1607 #endif
1608 KASSERT(txq->txq_lastintr == 0);
1609 KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
1610 return true;
1611 }
1612 bcmeth_txq_desc_postsync(sc, txq, consumer, 1);
1613 uint32_t s0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
1614 if (consumer == txq->txq_first + __SHIFTOUT(s0, XMT_CURRDSCR)) {
1615 txq->txq_consumer = consumer;
1616 txq->txq_free += txfree;
1617 txq->txq_lastintr -= min(txq->txq_lastintr, txfree);
1618 #if 0
1619 printf("%s: freed %zu descriptors\n",
1620 __func__, txfree);
1621 #endif
1622 return bcmeth_txq_fillable_p(sc, txq);
1623 }
1624
1625 /*
1626 * If this is the last descriptor in the chain, get the
1627 * mbuf, free its dmamap, and free the mbuf chain itself.
1628 */
1629 const uint32_t txdb_flags = le32toh(consumer->txdb_flags);
1630 if (txdb_flags & TXDB_FLAG_EF) {
1631 struct mbuf *m;
1632
1633 IF_DEQUEUE(&txq->txq_mbufs, m);
1634 KASSERT(m);
1635 bcmeth_txq_map_unload(sc, txq, m);
1636 #if 0
1637 printf("%s: mbuf %p: consumed a %u byte packet\n",
1638 __func__, m, m->m_pkthdr.len);
1639 #endif
1640 bpf_mtap(ifp, m);
1641 ifp->if_opackets++;
1642 ifp->if_obytes += m->m_pkthdr.len;
1643 if (m->m_flags & M_MCAST)
1644 ifp->if_omcasts++;
1645 m_freem(m);
1646 }
1647
1648 /*
1649 * We own this packet again. Clear all flags except wrap.
1650 */
1651 txfree++;
1652
1653 /*
1654 * Wrap at the last entry!
1655 */
1656 if (txdb_flags & TXDB_FLAG_ET) {
1657 consumer->txdb_flags = htole32(TXDB_FLAG_ET);
1658 KASSERT(consumer + 1 == txq->txq_last);
1659 consumer = txq->txq_first;
1660 } else {
1661 consumer->txdb_flags = 0;
1662 consumer++;
1663 KASSERT(consumer < txq->txq_last);
1664 }
1665 }
1666 }
1667
1668 static void
1669 bcmeth_txq_purge(
1670 struct bcmeth_softc *sc,
1671 struct bcmeth_txqueue *txq)
1672 {
1673 struct mbuf *m;
1674 KASSERT((bcmeth_read_4(sc, UNIMAC_COMMAND_CONFIG) & TX_ENA) == 0);
1675
1676 for (;;) {
1677 IF_DEQUEUE(&txq->txq_mbufs, m);
1678 if (m == NULL)
1679 break;
1680 bcmeth_txq_map_unload(sc, txq, m);
1681 m_freem(m);
1682 }
1683 if ((m = txq->txq_next) != NULL) {
1684 txq->txq_next = NULL;
1685 bcmeth_txq_map_unload(sc, txq, m);
1686 m_freem(m);
1687 }
1688 }
1689
1690 static void
1691 bcmeth_txq_reset(
1692 struct bcmeth_softc *sc,
1693 struct bcmeth_txqueue *txq)
1694 {
1695 /*
1696 * sync all the descriptors
1697 */
1698 bcmeth_txq_desc_postsync(sc, txq, txq->txq_first,
1699 txq->txq_last - txq->txq_first);
1700
1701 /*
1702 * Make sure we own all descriptors in the ring.
1703 */
1704 struct gmac_txdb *txdb;
1705 for (txdb = txq->txq_first; txdb < txq->txq_last - 1; txdb++) {
1706 txdb->txdb_flags = 0;
1707 }
1708
1709 /*
1710 * Last descriptor has the wrap flag.
1711 */
1712 txdb->txdb_flags = htole32(TXDB_FLAG_ET);
1713
1714 /*
1715 * Reset the producer consumer indexes.
1716 */
1717 txq->txq_consumer = txq->txq_first;
1718 txq->txq_producer = txq->txq_first;
1719 txq->txq_free = txq->txq_last - txq->txq_first - 1;
1720 txq->txq_threshold = txq->txq_free / 2;
1721 txq->txq_lastintr = 0;
1722
1723 /*
1724 * What do we want to get interrupted on?
1725 */
1726 sc->sc_intmask |= XMTINT_0 | XMTUF;
1727
1728 /*
1729 * Restart the transmiter at the first descriptor
1730 */
1731 bcmeth_write_4(sc, txq->txq_reg_xmtaddrlo,
1732 txq->txq_descmap->dm_segs->ds_addr);
1733 }
1734
1735 static void
1736 bcmeth_ifstart(struct ifnet *ifp)
1737 {
1738 struct bcmeth_softc * const sc = ifp->if_softc;
1739
1740 if (__predict_false((ifp->if_flags & IFF_RUNNING) == 0)) {
1741 return;
1742 }
1743
1744 #ifdef BCMETH_MPSAFETX
1745 if (cpu_intr_p()) {
1746 #endif
1747 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
1748 softint_schedule(sc->sc_soft_ih);
1749 #ifdef BCMETH_MPSAFETX
1750 } else {
1751 /*
1752 * Either we are in a softintr thread already or some other
1753 * thread so just borrow it to do the send and save ourselves
1754 * the overhead of a fast soft int.
1755 */
1756 bcmeth_soft_txintr(sc);
1757 }
1758 #endif
1759 }
1760
1761 int
1762 bcmeth_intr(void *arg)
1763 {
1764 struct bcmeth_softc * const sc = arg;
1765 uint32_t soft_flags = 0;
1766 uint32_t work_flags = 0;
1767 int rv = 0;
1768
1769 mutex_enter(sc->sc_hwlock);
1770
1771 uint32_t intmask = sc->sc_intmask;
1772 BCMETH_EVCNT_INCR(sc->sc_ev_intr);
1773
1774 for (;;) {
1775 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
1776 intstatus &= intmask;
1777 bcmeth_write_4(sc, GMAC_INTSTATUS, intstatus); /* write 1 to clear */
1778 if (intstatus == 0) {
1779 break;
1780 }
1781 #if 0
1782 aprint_normal_dev(sc->sc_dev, "%s: intstatus=%#x intmask=%#x\n",
1783 __func__, intstatus, bcmeth_read_4(sc, GMAC_INTMASK));
1784 #endif
1785 if (intstatus & RCVINT) {
1786 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
1787 intmask &= ~RCVINT;
1788
1789 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1790 uint32_t descs = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1791 if (descs < rxq->rxq_consumer - rxq->rxq_first) {
1792 /*
1793 * We wrapped at the end so count how far
1794 * we are from the end.
1795 */
1796 descs += rxq->rxq_last - rxq->rxq_consumer;
1797 } else {
1798 descs -= rxq->rxq_consumer - rxq->rxq_first;
1799 }
1800 /*
1801 * If we "timedout" we can't be hogging so use
1802 * softints. If we exceeded then we might hogging
1803 * so let the workqueue deal with them.
1804 */
1805 const uint32_t framecount = __SHIFTOUT(sc->sc_rcvlazy, INTRCVLAZY_FRAMECOUNT);
1806 if (descs < framecount
1807 || (curcpu()->ci_curlwp->l_flag & LW_IDLE)) {
1808 soft_flags |= SOFT_RXINTR;
1809 } else {
1810 work_flags |= WORK_RXINTR;
1811 }
1812 }
1813
1814 if (intstatus & XMTINT_0) {
1815 intmask &= ~XMTINT_0;
1816 soft_flags |= SOFT_TXINTR;
1817 }
1818
1819 if (intstatus & RCVDESCUF) {
1820 intmask &= ~RCVDESCUF;
1821 work_flags |= WORK_RXUNDERFLOW;
1822 }
1823
1824 intstatus &= intmask;
1825 if (intstatus) {
1826 aprint_error_dev(sc->sc_dev,
1827 "intr: intstatus=%#x\n", intstatus);
1828 aprint_error_dev(sc->sc_dev,
1829 "rcvbase=%p/%#lx rcvptr=%#x rcvsts=%#x/%#x\n",
1830 sc->sc_rxq.rxq_first,
1831 sc->sc_rxq.rxq_descmap->dm_segs[0].ds_addr,
1832 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvptr),
1833 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts0),
1834 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts1));
1835 aprint_error_dev(sc->sc_dev,
1836 "xmtbase=%p/%#lx xmtptr=%#x xmtsts=%#x/%#x\n",
1837 sc->sc_txq.txq_first,
1838 sc->sc_txq.txq_descmap->dm_segs[0].ds_addr,
1839 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtptr),
1840 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts0),
1841 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts1));
1842 intmask &= ~intstatus;
1843 work_flags |= WORK_REINIT;
1844 break;
1845 }
1846 }
1847
1848 if (intmask != sc->sc_intmask) {
1849 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1850 }
1851
1852 if (work_flags) {
1853 if (sc->sc_work_flags == 0) {
1854 workqueue_enqueue(sc->sc_workq, &sc->sc_work, NULL);
1855 }
1856 atomic_or_32(&sc->sc_work_flags, work_flags);
1857 rv = 1;
1858 }
1859
1860 if (soft_flags) {
1861 if (sc->sc_soft_flags == 0) {
1862 softint_schedule(sc->sc_soft_ih);
1863 }
1864 atomic_or_32(&sc->sc_soft_flags, soft_flags);
1865 rv = 1;
1866 }
1867
1868 mutex_exit(sc->sc_hwlock);
1869
1870 return rv;
1871 }
1872
1873 #ifdef BCMETH_MPSAFETX
1874 void
1875 bcmeth_soft_txintr(struct bcmeth_softc *sc)
1876 {
1877 mutex_enter(sc->sc_lock);
1878 /*
1879 * Let's do what we came here for. Consume transmitted
1880 * packets off the the transmit ring.
1881 */
1882 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1883 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1884 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1885 sc->sc_if.if_flags |= IFF_OACTIVE;
1886 } else {
1887 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1888 }
1889 if (sc->sc_if.if_flags & IFF_RUNNING) {
1890 mutex_spin_enter(sc->sc_hwlock);
1891 sc->sc_intmask |= XMTINT_0;
1892 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1893 mutex_spin_exit(sc->sc_hwlock);
1894 }
1895 mutex_exit(sc->sc_lock);
1896 }
1897 #endif /* BCMETH_MPSAFETX */
1898
1899 void
1900 bcmeth_soft_intr(void *arg)
1901 {
1902 struct bcmeth_softc * const sc = arg;
1903 struct ifnet * const ifp = &sc->sc_if;
1904 uint32_t intmask = 0;
1905
1906 mutex_enter(sc->sc_lock);
1907
1908 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
1909
1910 BCMETH_EVCNT_INCR(sc->sc_ev_soft_intr);
1911
1912 if ((soft_flags & SOFT_TXINTR)
1913 || bcmeth_txq_active_p(sc, &sc->sc_txq)) {
1914 /*
1915 * Let's do what we came here for. Consume transmitted
1916 * packets off the the transmit ring.
1917 */
1918 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1919 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1920 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1921 ifp->if_flags |= IFF_OACTIVE;
1922 } else {
1923 ifp->if_flags &= ~IFF_OACTIVE;
1924 }
1925 intmask |= XMTINT_0;
1926 }
1927
1928 if (soft_flags & SOFT_RXINTR) {
1929 /*
1930 * Let's consume
1931 */
1932 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
1933 sc->sc_rxq.rxq_threshold / 4)) {
1934 /*
1935 * We've consumed a quarter of the ring and still have
1936 * more to do. Refill the ring.
1937 */
1938 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1939 }
1940 intmask |= RCVINT;
1941 }
1942
1943 if (ifp->if_flags & IFF_RUNNING) {
1944 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1945 mutex_spin_enter(sc->sc_hwlock);
1946 sc->sc_intmask |= intmask;
1947 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1948 mutex_spin_exit(sc->sc_hwlock);
1949 }
1950
1951 mutex_exit(sc->sc_lock);
1952 }
1953
1954 void
1955 bcmeth_worker(struct work *wk, void *arg)
1956 {
1957 struct bcmeth_softc * const sc = arg;
1958 struct ifnet * const ifp = &sc->sc_if;
1959 uint32_t intmask = 0;
1960
1961 mutex_enter(sc->sc_lock);
1962
1963 BCMETH_EVCNT_INCR(sc->sc_ev_work);
1964
1965 uint32_t work_flags = atomic_swap_32(&sc->sc_work_flags, 0);
1966 if (work_flags & WORK_REINIT) {
1967 int s = splnet();
1968 sc->sc_soft_flags = 0;
1969 bcmeth_ifinit(ifp);
1970 splx(s);
1971 work_flags &= ~WORK_RXUNDERFLOW;
1972 }
1973
1974 if (work_flags & WORK_RXUNDERFLOW) {
1975 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
1976 size_t threshold = 5 * rxq->rxq_threshold / 4;
1977 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
1978 threshold = rxq->rxq_last - rxq->rxq_first - 1;
1979 } else {
1980 intmask |= RCVDESCUF;
1981 }
1982 aprint_normal_dev(sc->sc_dev,
1983 "increasing receive buffers from %zu to %zu\n",
1984 rxq->rxq_threshold, threshold);
1985 rxq->rxq_threshold = threshold;
1986 }
1987
1988 if (work_flags & WORK_RXINTR) {
1989 /*
1990 * Let's consume
1991 */
1992 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
1993 sc->sc_rxq.rxq_threshold / 4)) {
1994 /*
1995 * We've consumed a quarter of the ring and still have
1996 * more to do. Refill the ring.
1997 */
1998 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1999 }
2000 intmask |= RCVINT;
2001 }
2002
2003 if (ifp->if_flags & IFF_RUNNING) {
2004 bcmeth_rxq_produce(sc, &sc->sc_rxq);
2005 #if 0
2006 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
2007 if (intstatus & RCVINT) {
2008 bcmeth_write_4(sc, GMAC_INTSTATUS, RCVINT);
2009 work_flags |= WORK_RXINTR;
2010 continue;
2011 }
2012 #endif
2013 mutex_spin_enter(sc->sc_hwlock);
2014 sc->sc_intmask |= intmask;
2015 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
2016 mutex_spin_exit(sc->sc_hwlock);
2017 }
2018
2019 mutex_exit(sc->sc_lock);
2020 }
2021