bcm53xx_eth.c revision 1.31.2.2 1 /*-
2 * Copyright (c) 2012 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas of 3am Software Foundry.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #define _ARM32_BUS_DMA_PRIVATE
31 #define GMAC_PRIVATE
32
33 #include "locators.h"
34 #include "opt_broadcom.h"
35
36 #include <sys/cdefs.h>
37
38 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_eth.c,v 1.31.2.2 2020/04/08 14:07:28 martin Exp $");
39
40 #include <sys/param.h>
41 #include <sys/atomic.h>
42 #include <sys/bus.h>
43 #include <sys/device.h>
44 #include <sys/ioctl.h>
45 #include <sys/intr.h>
46 #include <sys/kmem.h>
47 #include <sys/mutex.h>
48 #include <sys/socket.h>
49 #include <sys/systm.h>
50 #include <sys/workqueue.h>
51
52 #include <net/if.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_dl.h>
56 #include <net/bpf.h>
57
58 #include <dev/mii/miivar.h>
59
60 #include <arm/locore.h>
61
62 #include <arm/broadcom/bcm53xx_reg.h>
63 #include <arm/broadcom/bcm53xx_var.h>
64
65 //#define BCMETH_MPSAFE
66
67 #ifdef BCMETH_COUNTERS
68 #define BCMETH_EVCNT_ADD(a, b) ((void)((a).ev_count += (b)))
69 #else
70 #define BCMETH_EVCNT_ADD(a, b) do { } while (/*CONSTCOND*/0)
71 #endif
72 #define BCMETH_EVCNT_INCR(a) BCMETH_EVCNT_ADD((a), 1)
73
74 #define BCMETH_MAXTXMBUFS 128
75 #define BCMETH_NTXSEGS 30
76 #define BCMETH_MAXRXMBUFS 255
77 #define BCMETH_MINRXMBUFS 64
78 #define BCMETH_NRXSEGS 1
79 #define BCMETH_RINGSIZE PAGE_SIZE
80
81 #if 1
82 #define BCMETH_RCVMAGIC 0xfeedface
83 #endif
84
85 static int bcmeth_ccb_match(device_t, cfdata_t, void *);
86 static void bcmeth_ccb_attach(device_t, device_t, void *);
87
88 struct bcmeth_txqueue {
89 bus_dmamap_t txq_descmap;
90 struct gmac_txdb *txq_consumer;
91 struct gmac_txdb *txq_producer;
92 struct gmac_txdb *txq_first;
93 struct gmac_txdb *txq_last;
94 struct ifqueue txq_mbufs;
95 struct mbuf *txq_next;
96 size_t txq_free;
97 size_t txq_threshold;
98 size_t txq_lastintr;
99 bus_size_t txq_reg_xmtaddrlo;
100 bus_size_t txq_reg_xmtptr;
101 bus_size_t txq_reg_xmtctl;
102 bus_size_t txq_reg_xmtsts0;
103 bus_size_t txq_reg_xmtsts1;
104 bus_dma_segment_t txq_descmap_seg;
105 };
106
107 struct bcmeth_rxqueue {
108 bus_dmamap_t rxq_descmap;
109 struct gmac_rxdb *rxq_consumer;
110 struct gmac_rxdb *rxq_producer;
111 struct gmac_rxdb *rxq_first;
112 struct gmac_rxdb *rxq_last;
113 struct mbuf *rxq_mhead;
114 struct mbuf **rxq_mtail;
115 struct mbuf *rxq_mconsumer;
116 size_t rxq_inuse;
117 size_t rxq_threshold;
118 bus_size_t rxq_reg_rcvaddrlo;
119 bus_size_t rxq_reg_rcvptr;
120 bus_size_t rxq_reg_rcvctl;
121 bus_size_t rxq_reg_rcvsts0;
122 bus_size_t rxq_reg_rcvsts1;
123 bus_dma_segment_t rxq_descmap_seg;
124 };
125
126 struct bcmeth_mapcache {
127 u_int dmc_nmaps;
128 u_int dmc_maxseg;
129 u_int dmc_maxmaps;
130 u_int dmc_maxmapsize;
131 bus_dmamap_t dmc_maps[0];
132 };
133
134 struct bcmeth_softc {
135 device_t sc_dev;
136 bus_space_tag_t sc_bst;
137 bus_space_handle_t sc_bsh;
138 bus_dma_tag_t sc_dmat;
139 kmutex_t *sc_lock;
140 kmutex_t *sc_hwlock;
141 struct ethercom sc_ec;
142 #define sc_if sc_ec.ec_if
143 struct ifmedia sc_media;
144 void *sc_soft_ih;
145 void *sc_ih;
146
147 struct bcmeth_rxqueue sc_rxq;
148 struct bcmeth_txqueue sc_txq;
149
150 size_t sc_rcvoffset;
151 uint32_t sc_macaddr[2];
152 uint32_t sc_maxfrm;
153 uint32_t sc_cmdcfg;
154 uint32_t sc_intmask;
155 uint32_t sc_rcvlazy;
156 volatile uint32_t sc_soft_flags;
157 #define SOFT_RXINTR 0x01
158 #define SOFT_TXINTR 0x02
159
160 #ifdef BCMETH_COUNTERS
161 struct evcnt sc_ev_intr;
162 struct evcnt sc_ev_soft_intr;
163 struct evcnt sc_ev_work;
164 struct evcnt sc_ev_tx_stall;
165 struct evcnt sc_ev_rx_badmagic_lo;
166 struct evcnt sc_ev_rx_badmagic_hi;
167 #endif
168
169 struct ifqueue sc_rx_bufcache;
170 struct bcmeth_mapcache *sc_rx_mapcache;
171 struct bcmeth_mapcache *sc_tx_mapcache;
172
173 struct workqueue *sc_workq;
174 struct work sc_work;
175
176 volatile uint32_t sc_work_flags;
177 #define WORK_RXINTR 0x01
178 #define WORK_RXUNDERFLOW 0x02
179 #define WORK_REINIT 0x04
180
181 uint8_t sc_enaddr[ETHER_ADDR_LEN];
182 };
183
184 static void bcmeth_ifstart(struct ifnet *);
185 static void bcmeth_ifwatchdog(struct ifnet *);
186 static int bcmeth_ifinit(struct ifnet *);
187 static void bcmeth_ifstop(struct ifnet *, int);
188 static int bcmeth_ifioctl(struct ifnet *, u_long, void *);
189
190 static int bcmeth_mapcache_create(struct bcmeth_softc *,
191 struct bcmeth_mapcache **, size_t, size_t, size_t);
192 static void bcmeth_mapcache_destroy(struct bcmeth_softc *,
193 struct bcmeth_mapcache *);
194 static bus_dmamap_t bcmeth_mapcache_get(struct bcmeth_softc *,
195 struct bcmeth_mapcache *);
196 static void bcmeth_mapcache_put(struct bcmeth_softc *,
197 struct bcmeth_mapcache *, bus_dmamap_t);
198
199 static int bcmeth_txq_attach(struct bcmeth_softc *,
200 struct bcmeth_txqueue *, u_int);
201 static void bcmeth_txq_purge(struct bcmeth_softc *,
202 struct bcmeth_txqueue *);
203 static void bcmeth_txq_reset(struct bcmeth_softc *,
204 struct bcmeth_txqueue *);
205 static bool bcmeth_txq_consume(struct bcmeth_softc *,
206 struct bcmeth_txqueue *);
207 static bool bcmeth_txq_produce(struct bcmeth_softc *,
208 struct bcmeth_txqueue *, struct mbuf *m);
209 static bool bcmeth_txq_active_p(struct bcmeth_softc *,
210 struct bcmeth_txqueue *);
211
212 static int bcmeth_rxq_attach(struct bcmeth_softc *,
213 struct bcmeth_rxqueue *, u_int);
214 static bool bcmeth_rxq_produce(struct bcmeth_softc *,
215 struct bcmeth_rxqueue *);
216 static void bcmeth_rxq_purge(struct bcmeth_softc *,
217 struct bcmeth_rxqueue *, bool);
218 static void bcmeth_rxq_reset(struct bcmeth_softc *,
219 struct bcmeth_rxqueue *);
220
221 static int bcmeth_intr(void *);
222 #ifdef BCMETH_MPSAFETX
223 static void bcmeth_soft_txintr(struct bcmeth_softc *);
224 #endif
225 static void bcmeth_soft_intr(void *);
226 static void bcmeth_worker(struct work *, void *);
227
228 static int bcmeth_mediachange(struct ifnet *);
229 static void bcmeth_mediastatus(struct ifnet *, struct ifmediareq *);
230
231 static inline uint32_t
232 bcmeth_read_4(struct bcmeth_softc *sc, bus_size_t o)
233 {
234 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
235 }
236
237 static inline void
238 bcmeth_write_4(struct bcmeth_softc *sc, bus_size_t o, uint32_t v)
239 {
240 bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v);
241 }
242
243 CFATTACH_DECL_NEW(bcmeth_ccb, sizeof(struct bcmeth_softc),
244 bcmeth_ccb_match, bcmeth_ccb_attach, NULL, NULL);
245
246 static int
247 bcmeth_ccb_match(device_t parent, cfdata_t cf, void *aux)
248 {
249 struct bcmccb_attach_args * const ccbaa = aux;
250 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
251
252 if (strcmp(cf->cf_name, loc->loc_name))
253 return 0;
254
255 #ifdef DIAGNOSTIC
256 const int port = cf->cf_loc[BCMCCBCF_PORT];
257 #endif
258 KASSERT(port == BCMCCBCF_PORT_DEFAULT || port == loc->loc_port);
259
260 return 1;
261 }
262
263 static void
264 bcmeth_ccb_attach(device_t parent, device_t self, void *aux)
265 {
266 struct bcmeth_softc * const sc = device_private(self);
267 struct ethercom * const ec = &sc->sc_ec;
268 struct ifnet * const ifp = &ec->ec_if;
269 struct bcmccb_attach_args * const ccbaa = aux;
270 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
271 const char * const xname = device_xname(self);
272 prop_dictionary_t dict = device_properties(self);
273 int error;
274
275 sc->sc_bst = ccbaa->ccbaa_ccb_bst;
276 sc->sc_dmat = ccbaa->ccbaa_dmat;
277 bus_space_subregion(sc->sc_bst, ccbaa->ccbaa_ccb_bsh,
278 loc->loc_offset, loc->loc_size, &sc->sc_bsh);
279
280 /*
281 * We need to use the coherent dma tag for the GMAC.
282 */
283 sc->sc_dmat = &bcm53xx_coherent_dma_tag;
284 #if _ARM32_NEED_BUS_DMA_BOUNCE
285 if (device_cfdata(self)->cf_flags & 2) {
286 sc->sc_dmat = &bcm53xx_bounce_dma_tag;
287 }
288 #endif
289
290 prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
291 if (eaprop == NULL) {
292 uint32_t mac0 = bcmeth_read_4(sc, UNIMAC_MAC_0);
293 uint32_t mac1 = bcmeth_read_4(sc, UNIMAC_MAC_1);
294 if ((mac0 == 0 && mac1 == 0) || (mac1 & 1)) {
295 aprint_error(": mac-address property is missing\n");
296 return;
297 }
298 sc->sc_enaddr[0] = (mac0 >> 0) & 0xff;
299 sc->sc_enaddr[1] = (mac0 >> 8) & 0xff;
300 sc->sc_enaddr[2] = (mac0 >> 16) & 0xff;
301 sc->sc_enaddr[3] = (mac0 >> 24) & 0xff;
302 sc->sc_enaddr[4] = (mac1 >> 0) & 0xff;
303 sc->sc_enaddr[5] = (mac1 >> 8) & 0xff;
304 } else {
305 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
306 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
307 memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
308 ETHER_ADDR_LEN);
309 }
310 sc->sc_dev = self;
311 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
312 sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
313
314 bcmeth_write_4(sc, GMAC_INTMASK, 0); // disable interrupts
315
316 aprint_naive("\n");
317 aprint_normal(": Gigabit Ethernet Controller\n");
318
319 error = bcmeth_rxq_attach(sc, &sc->sc_rxq, 0);
320 if (error) {
321 aprint_error(": failed to init rxq: %d\n", error);
322 goto fail_1;
323 }
324
325 error = bcmeth_txq_attach(sc, &sc->sc_txq, 0);
326 if (error) {
327 aprint_error(": failed to init txq: %d\n", error);
328 goto fail_1;
329 }
330
331 error = bcmeth_mapcache_create(sc, &sc->sc_rx_mapcache,
332 BCMETH_MAXRXMBUFS, MCLBYTES, BCMETH_NRXSEGS);
333 if (error) {
334 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
335 goto fail_1;
336 }
337
338 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
339 BCMETH_MAXTXMBUFS, MCLBYTES, BCMETH_NTXSEGS);
340 if (error) {
341 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
342 goto fail_1;
343 }
344
345 error = workqueue_create(&sc->sc_workq, xname, bcmeth_worker, sc,
346 (PRI_USER + MAXPRI_USER) / 2, IPL_NET, WQ_MPSAFE|WQ_PERCPU);
347 if (error) {
348 aprint_error(": failed to create workqueue: %d\n", error);
349 goto fail_2;
350 }
351
352 sc->sc_soft_ih = softint_establish(SOFTINT_MPSAFE | SOFTINT_NET,
353 bcmeth_soft_intr, sc);
354
355 if (sc->sc_ih == NULL) {
356 aprint_error_dev(self, "failed to establish interrupt %d\n",
357 loc->loc_intrs[0]);
358 goto fail_3;
359 }
360
361 sc->sc_ih = intr_establish(loc->loc_intrs[0], IPL_VM, IST_LEVEL,
362 bcmeth_intr, sc);
363
364 if (sc->sc_ih == NULL) {
365 aprint_error_dev(self, "failed to establish interrupt %d\n",
366 loc->loc_intrs[0]);
367 goto fail_4;
368 } else {
369 aprint_normal_dev(self, "interrupting on irq %d\n",
370 loc->loc_intrs[0]);
371 }
372
373 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
374 ether_sprintf(sc->sc_enaddr));
375
376 /*
377 * Since each port in plugged into the switch/flow-accelerator,
378 * we hard code at Gige Full-Duplex with Flow Control enabled.
379 */
380 int ifmedia = IFM_ETHER | IFM_1000_T | IFM_FDX;
381 //ifmedia |= IFM_FLOW | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
382 ec->ec_ifmedia = &sc->sc_media;
383 ifmedia_init(&sc->sc_media, IFM_IMASK, bcmeth_mediachange,
384 bcmeth_mediastatus);
385 ifmedia_add(&sc->sc_media, ifmedia, 0, NULL);
386 ifmedia_set(&sc->sc_media, ifmedia);
387
388 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
389
390 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
391 ifp->if_softc = sc;
392 ifp->if_baudrate = IF_Mbps(1000);
393 ifp->if_capabilities = 0;
394 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
395 #ifdef BCMETH_MPSAFE
396 ifp->if_flags2 = IFF2_MPSAFE;
397 #endif
398 ifp->if_ioctl = bcmeth_ifioctl;
399 ifp->if_start = bcmeth_ifstart;
400 ifp->if_watchdog = bcmeth_ifwatchdog;
401 ifp->if_init = bcmeth_ifinit;
402 ifp->if_stop = bcmeth_ifstop;
403 IFQ_SET_READY(&ifp->if_snd);
404
405 bcmeth_ifstop(ifp, true);
406
407 /*
408 * Attach the interface.
409 */
410 error = if_initialize(ifp);
411 if (error != 0) {
412 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
413 error);
414 goto fail_5;
415 }
416 ether_ifattach(ifp, sc->sc_enaddr);
417 if_register(ifp);
418
419 #ifdef BCMETH_COUNTERS
420 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
421 NULL, xname, "intr");
422 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
423 NULL, xname, "soft intr");
424 evcnt_attach_dynamic(&sc->sc_ev_work, EVCNT_TYPE_MISC,
425 NULL, xname, "work items");
426 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
427 NULL, xname, "tx stalls");
428 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_lo, EVCNT_TYPE_MISC,
429 NULL, xname, "rx badmagic lo");
430 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_hi, EVCNT_TYPE_MISC,
431 NULL, xname, "rx badmagic hi");
432 #endif
433
434 return;
435
436 fail_5:
437 ifmedia_removeall(&sc->sc_media);
438 fail_4:
439 intr_disestablish(sc->sc_ih);
440 fail_3:
441 softint_disestablish(sc->sc_soft_ih);
442 fail_2:
443 workqueue_destroy(sc->sc_workq);
444 fail_1:
445 mutex_obj_free(sc->sc_lock);
446 mutex_obj_free(sc->sc_hwlock);
447 }
448
449 static int
450 bcmeth_mediachange(struct ifnet *ifp)
451 {
452 //struct bcmeth_softc * const sc = ifp->if_softc;
453 return 0;
454 }
455
456 static void
457 bcmeth_mediastatus(struct ifnet *ifp, struct ifmediareq *ifm)
458 {
459 //struct bcmeth_softc * const sc = ifp->if_softc;
460
461 ifm->ifm_status = IFM_AVALID | IFM_ACTIVE;
462 ifm->ifm_active = IFM_ETHER | IFM_FDX | IFM_1000_T;
463 }
464
465 static uint64_t
466 bcmeth_macaddr_create(const uint8_t *enaddr)
467 {
468 return (enaddr[3] << 0) // UNIMAC_MAC_0
469 | (enaddr[2] << 8) // UNIMAC_MAC_0
470 | (enaddr[1] << 16) // UNIMAC_MAC_0
471 | ((uint64_t)enaddr[0] << 24) // UNIMAC_MAC_0
472 | ((uint64_t)enaddr[5] << 32) // UNIMAC_MAC_1
473 | ((uint64_t)enaddr[4] << 40); // UNIMAC_MAC_1
474 }
475
476 static int
477 bcmeth_ifinit(struct ifnet *ifp)
478 {
479 struct bcmeth_softc * const sc = ifp->if_softc;
480 int error = 0;
481
482 sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
483 if (ifp->if_mtu > ETHERMTU_JUMBO)
484 return error;
485
486 KASSERT(ifp->if_flags & IFF_UP);
487
488 /*
489 * Stop the interface
490 */
491 bcmeth_ifstop(ifp, 0);
492
493 /*
494 * Reserve enough space at the front so that we can insert a maxsized
495 * link header and a VLAN tag. Also make sure we have enough room for
496 * the rcvsts field as well.
497 */
498 KASSERT(ALIGN(max_linkhdr) == max_linkhdr);
499 KASSERTMSG(max_linkhdr > sizeof(struct ether_header), "%u > %zu",
500 max_linkhdr, sizeof(struct ether_header));
501 sc->sc_rcvoffset = max_linkhdr + 4 - sizeof(struct ether_header);
502 if (sc->sc_rcvoffset <= 4)
503 sc->sc_rcvoffset += 4;
504 KASSERT((sc->sc_rcvoffset & 3) == 2);
505 KASSERT(sc->sc_rcvoffset <= __SHIFTOUT(RCVCTL_RCVOFFSET, RCVCTL_RCVOFFSET));
506 KASSERT(sc->sc_rcvoffset >= 6);
507
508 /*
509 * If our frame size has changed (or it's our first time through)
510 * destroy the existing transmit mapcache.
511 */
512 if (sc->sc_tx_mapcache != NULL
513 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
514 bcmeth_mapcache_destroy(sc, sc->sc_tx_mapcache);
515 sc->sc_tx_mapcache = NULL;
516 }
517
518 if (sc->sc_tx_mapcache == NULL) {
519 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
520 BCMETH_MAXTXMBUFS, sc->sc_maxfrm, BCMETH_NTXSEGS);
521 if (error)
522 return error;
523 }
524
525 sc->sc_cmdcfg = NO_LENGTH_CHECK | PAUSE_IGNORE
526 | __SHIFTIN(ETH_SPEED_1000, ETH_SPEED)
527 | RX_ENA | TX_ENA;
528
529 if (ifp->if_flags & IFF_PROMISC) {
530 sc->sc_cmdcfg |= PROMISC_EN;
531 } else {
532 sc->sc_cmdcfg &= ~PROMISC_EN;
533 }
534
535 const uint8_t * const lladdr = CLLADDR(ifp->if_sadl);
536 const uint64_t macstnaddr = bcmeth_macaddr_create(lladdr);
537
538 /*
539 * We make sure that a received Ethernet packet start on a non-word
540 * boundary so that the packet payload will be on a word boundary.
541 * So to check the destination address we keep around two words to
542 * quickly compare with.
543 */
544 #if __ARMEL__
545 sc->sc_macaddr[0] = lladdr[0] | (lladdr[1] << 8);
546 sc->sc_macaddr[1] = lladdr[2] | (lladdr[3] << 8)
547 | (lladdr[4] << 16) | (lladdr[5] << 24);
548 #else
549 sc->sc_macaddr[0] = lladdr[1] | (lladdr[0] << 8);
550 sc->sc_macaddr[1] = lladdr[5] | (lladdr[4] << 8)
551 | (lladdr[1] << 16) | (lladdr[2] << 24);
552 #endif
553
554 sc->sc_intmask = DESCPROTOERR | DATAERR | DESCERR;
555
556 /* 5. Load RCVADDR_LO with new pointer */
557 bcmeth_rxq_reset(sc, &sc->sc_rxq);
558
559 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
560 __SHIFTIN(sc->sc_rcvoffset, RCVCTL_RCVOFFSET)
561 | RCVCTL_PARITY_DIS
562 | RCVCTL_OFLOW_CONTINUE
563 | __SHIFTIN(3, RCVCTL_BURSTLEN));
564
565 /* 6. Load XMTADDR_LO with new pointer */
566 bcmeth_txq_reset(sc, &sc->sc_txq);
567
568 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl, XMTCTL_DMA_ACT_INDEX
569 | XMTCTL_PARITY_DIS
570 | __SHIFTIN(3, XMTCTL_BURSTLEN));
571
572 /* 7. Setup other UNIMAC registers */
573 bcmeth_write_4(sc, UNIMAC_FRAME_LEN, sc->sc_maxfrm);
574 bcmeth_write_4(sc, UNIMAC_MAC_0, (uint32_t)(macstnaddr >> 0));
575 bcmeth_write_4(sc, UNIMAC_MAC_1, (uint32_t)(macstnaddr >> 32));
576 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, sc->sc_cmdcfg);
577
578 uint32_t devctl = bcmeth_read_4(sc, GMAC_DEVCONTROL);
579 devctl |= RGMII_LINK_STATUS_SEL | NWAY_AUTO_POLL_EN | TXARB_STRICT_MODE;
580 devctl &= ~FLOW_CTRL_MODE;
581 devctl &= ~MIB_RD_RESET_EN;
582 devctl &= ~RXQ_OVERFLOW_CTRL_SEL;
583 devctl &= ~CPU_FLOW_CTRL_ON;
584 bcmeth_write_4(sc, GMAC_DEVCONTROL, devctl);
585
586 /* Setup lazy receive (at most 1ms). */
587 const struct cpu_softc * const cpu = curcpu()->ci_softc;
588 sc->sc_rcvlazy = __SHIFTIN(4, INTRCVLAZY_FRAMECOUNT)
589 | __SHIFTIN(cpu->cpu_clk.clk_apb / 1000, INTRCVLAZY_TIMEOUT);
590 bcmeth_write_4(sc, GMAC_INTRCVLAZY, sc->sc_rcvlazy);
591
592 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
593 sc->sc_intmask |= XMTINT_0 | XMTUF;
594 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl,
595 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl) | XMTCTL_ENABLE);
596
597
598 /* 12. Enable receive queues in RQUEUE, */
599 sc->sc_intmask |= RCVINT | RCVDESCUF | RCVFIFOOF;
600 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
601 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl) | RCVCTL_ENABLE);
602
603 bcmeth_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
604
605 #if 0
606 aprint_normal_dev(sc->sc_dev,
607 "devctl=%#x ucmdcfg=%#x xmtctl=%#x rcvctl=%#x\n",
608 devctl, sc->sc_cmdcfg,
609 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl),
610 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl));
611 #endif
612
613 sc->sc_soft_flags = 0;
614
615 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
616
617 ifp->if_flags |= IFF_RUNNING;
618
619 return error;
620 }
621
622 static void
623 bcmeth_ifstop(struct ifnet *ifp, int disable)
624 {
625 struct bcmeth_softc * const sc = ifp->if_softc;
626 struct bcmeth_txqueue * const txq = &sc->sc_txq;
627 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
628
629 KASSERT(!cpu_intr_p());
630
631 sc->sc_soft_flags = 0;
632 sc->sc_work_flags = 0;
633
634 /* Disable Rx processing */
635 bcmeth_write_4(sc, rxq->rxq_reg_rcvctl,
636 bcmeth_read_4(sc, rxq->rxq_reg_rcvctl) & ~RCVCTL_ENABLE);
637
638 /* Disable Tx processing */
639 bcmeth_write_4(sc, txq->txq_reg_xmtctl,
640 bcmeth_read_4(sc, txq->txq_reg_xmtctl) & ~XMTCTL_ENABLE);
641
642 /* Disable all interrupts */
643 bcmeth_write_4(sc, GMAC_INTMASK, 0);
644
645 for (;;) {
646 uint32_t tx0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
647 uint32_t rx0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
648 if (__SHIFTOUT(tx0, XMTSTATE) == XMTSTATE_DIS
649 && __SHIFTOUT(rx0, RCVSTATE) == RCVSTATE_DIS)
650 break;
651 delay(50);
652 }
653 /*
654 * Now reset the controller.
655 *
656 * 3. Set SW_RESET bit in UNIMAC_COMMAND_CONFIG register
657 * 4. Clear SW_RESET bit in UNIMAC_COMMAND_CONFIG register
658 */
659 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, SW_RESET);
660 bcmeth_write_4(sc, GMAC_INTSTATUS, ~0);
661 sc->sc_intmask = 0;
662 ifp->if_flags &= ~IFF_RUNNING;
663
664 /*
665 * Let's consume any remaining transmitted packets. And if we are
666 * disabling the interface, purge ourselves of any untransmitted
667 * packets. But don't consume any received packets, just drop them.
668 * If we aren't disabling the interface, save the mbufs in the
669 * receive queue for reuse.
670 */
671 bcmeth_rxq_purge(sc, &sc->sc_rxq, disable);
672 bcmeth_txq_consume(sc, &sc->sc_txq);
673 if (disable) {
674 bcmeth_txq_purge(sc, &sc->sc_txq);
675 IF_PURGE(&ifp->if_snd);
676 }
677
678 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, 0);
679 }
680
681 static void
682 bcmeth_ifwatchdog(struct ifnet *ifp)
683 {
684 }
685
686 static int
687 bcmeth_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
688 {
689 const int s = splnet();
690 int error;
691
692 switch (cmd) {
693 default:
694 error = ether_ioctl(ifp, cmd, data);
695 if (error != ENETRESET)
696 break;
697
698 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
699 error = 0;
700 break;
701 }
702 error = bcmeth_ifinit(ifp);
703 break;
704 }
705
706 splx(s);
707 return error;
708 }
709
710 static void
711 bcmeth_rxq_desc_presync(
712 struct bcmeth_softc *sc,
713 struct bcmeth_rxqueue *rxq,
714 struct gmac_rxdb *rxdb,
715 size_t count)
716 {
717 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
718 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
719 BUS_DMASYNC_PREWRITE);
720 }
721
722 static void
723 bcmeth_rxq_desc_postsync(
724 struct bcmeth_softc *sc,
725 struct bcmeth_rxqueue *rxq,
726 struct gmac_rxdb *rxdb,
727 size_t count)
728 {
729 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
730 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
731 BUS_DMASYNC_POSTWRITE);
732 }
733
734 static void
735 bcmeth_txq_desc_presync(
736 struct bcmeth_softc *sc,
737 struct bcmeth_txqueue *txq,
738 struct gmac_txdb *txdb,
739 size_t count)
740 {
741 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
742 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
743 BUS_DMASYNC_PREWRITE);
744 }
745
746 static void
747 bcmeth_txq_desc_postsync(
748 struct bcmeth_softc *sc,
749 struct bcmeth_txqueue *txq,
750 struct gmac_txdb *txdb,
751 size_t count)
752 {
753 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
754 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
755 BUS_DMASYNC_POSTWRITE);
756 }
757
758 static bus_dmamap_t
759 bcmeth_mapcache_get(
760 struct bcmeth_softc *sc,
761 struct bcmeth_mapcache *dmc)
762 {
763 KASSERT(dmc->dmc_nmaps > 0);
764 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
765 return dmc->dmc_maps[--dmc->dmc_nmaps];
766 }
767
768 static void
769 bcmeth_mapcache_put(
770 struct bcmeth_softc *sc,
771 struct bcmeth_mapcache *dmc,
772 bus_dmamap_t map)
773 {
774 KASSERT(map != NULL);
775 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
776 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
777 }
778
779 static void
780 bcmeth_mapcache_destroy(
781 struct bcmeth_softc *sc,
782 struct bcmeth_mapcache *dmc)
783 {
784 const size_t dmc_size =
785 offsetof(struct bcmeth_mapcache, dmc_maps[dmc->dmc_maxmaps]);
786
787 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
788 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
789 }
790 kmem_intr_free(dmc, dmc_size);
791 }
792
793 static int
794 bcmeth_mapcache_create(
795 struct bcmeth_softc *sc,
796 struct bcmeth_mapcache **dmc_p,
797 size_t maxmaps,
798 size_t maxmapsize,
799 size_t maxseg)
800 {
801 const size_t dmc_size =
802 offsetof(struct bcmeth_mapcache, dmc_maps[maxmaps]);
803 struct bcmeth_mapcache * const dmc =
804 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
805
806 dmc->dmc_maxmaps = maxmaps;
807 dmc->dmc_nmaps = maxmaps;
808 dmc->dmc_maxmapsize = maxmapsize;
809 dmc->dmc_maxseg = maxseg;
810
811 for (u_int i = 0; i < maxmaps; i++) {
812 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
813 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
814 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
815 if (error) {
816 aprint_error_dev(sc->sc_dev,
817 "failed to creat dma map cache "
818 "entry %u of %zu: %d\n",
819 i, maxmaps, error);
820 while (i-- > 0) {
821 bus_dmamap_destroy(sc->sc_dmat,
822 dmc->dmc_maps[i]);
823 }
824 kmem_intr_free(dmc, dmc_size);
825 return error;
826 }
827 KASSERT(dmc->dmc_maps[i] != NULL);
828 }
829
830 *dmc_p = dmc;
831
832 return 0;
833 }
834
835 #if 0
836 static void
837 bcmeth_dmamem_free(
838 bus_dma_tag_t dmat,
839 size_t map_size,
840 bus_dma_segment_t *seg,
841 bus_dmamap_t map,
842 void *kvap)
843 {
844 bus_dmamap_destroy(dmat, map);
845 bus_dmamem_unmap(dmat, kvap, map_size);
846 bus_dmamem_free(dmat, seg, 1);
847 }
848 #endif
849
850 static int
851 bcmeth_dmamem_alloc(
852 bus_dma_tag_t dmat,
853 size_t map_size,
854 bus_dma_segment_t *seg,
855 bus_dmamap_t *map,
856 void **kvap)
857 {
858 int error;
859 int nseg;
860
861 *kvap = NULL;
862 *map = NULL;
863
864 error = bus_dmamem_alloc(dmat, map_size, 2*PAGE_SIZE, 0,
865 seg, 1, &nseg, 0);
866 if (error)
867 return error;
868
869 KASSERT(nseg == 1);
870
871 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap, 0);
872 if (error == 0) {
873 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
874 map);
875 if (error == 0) {
876 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
877 NULL, 0);
878 if (error == 0)
879 return 0;
880 bus_dmamap_destroy(dmat, *map);
881 *map = NULL;
882 }
883 bus_dmamem_unmap(dmat, *kvap, map_size);
884 *kvap = NULL;
885 }
886 bus_dmamem_free(dmat, seg, nseg);
887 return 0;
888 }
889
890 static struct mbuf *
891 bcmeth_rx_buf_alloc(
892 struct bcmeth_softc *sc)
893 {
894 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
895 if (m == NULL) {
896 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
897 return NULL;
898 }
899 MCLGET(m, M_DONTWAIT);
900 if ((m->m_flags & M_EXT) == 0) {
901 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
902 m_freem(m);
903 return NULL;
904 }
905 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
906
907 bus_dmamap_t map = bcmeth_mapcache_get(sc, sc->sc_rx_mapcache);
908 if (map == NULL) {
909 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
910 m_freem(m);
911 return NULL;
912 }
913 M_SETCTX(m, map);
914 m->m_len = m->m_pkthdr.len = MCLBYTES;
915 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
916 BUS_DMA_READ | BUS_DMA_NOWAIT);
917 if (error) {
918 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
919 error);
920 M_SETCTX(m, NULL);
921 m_freem(m);
922 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
923 return NULL;
924 }
925 KASSERT(map->dm_mapsize == MCLBYTES);
926 #ifdef BCMETH_RCVMAGIC
927 *mtod(m, uint32_t *) = htole32(BCMETH_RCVMAGIC);
928 bus_dmamap_sync(sc->sc_dmat, map, 0, sizeof(uint32_t),
929 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
930 bus_dmamap_sync(sc->sc_dmat, map, sizeof(uint32_t),
931 map->dm_mapsize - sizeof(uint32_t), BUS_DMASYNC_PREREAD);
932 #else
933 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
934 BUS_DMASYNC_PREREAD);
935 #endif
936
937 return m;
938 }
939
940 static void
941 bcmeth_rx_map_unload(
942 struct bcmeth_softc *sc,
943 struct mbuf *m)
944 {
945 KASSERT(m);
946 for (; m != NULL; m = m->m_next) {
947 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
948 KASSERT(map);
949 KASSERT(map->dm_mapsize == MCLBYTES);
950 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
951 BUS_DMASYNC_POSTREAD);
952 bus_dmamap_unload(sc->sc_dmat, map);
953 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
954 M_SETCTX(m, NULL);
955 }
956 }
957
958 static bool
959 bcmeth_rxq_produce(
960 struct bcmeth_softc *sc,
961 struct bcmeth_rxqueue *rxq)
962 {
963 struct gmac_rxdb *producer = rxq->rxq_producer;
964 bool produced = false;
965
966 while (rxq->rxq_inuse < rxq->rxq_threshold) {
967 struct mbuf *m;
968 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
969 if (m == NULL) {
970 m = bcmeth_rx_buf_alloc(sc);
971 if (m == NULL) {
972 printf("%s: bcmeth_rx_buf_alloc failed\n",
973 __func__);
974 break;
975 }
976 }
977 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
978 KASSERT(map);
979
980 producer->rxdb_buflen = htole32(MCLBYTES);
981 producer->rxdb_addrlo = htole32(map->dm_segs[0].ds_addr);
982 producer->rxdb_flags &= htole32(RXDB_FLAG_ET);
983 *rxq->rxq_mtail = m;
984 rxq->rxq_mtail = &m->m_next;
985 m->m_len = MCLBYTES;
986 m->m_next = NULL;
987 rxq->rxq_inuse++;
988 if (++producer == rxq->rxq_last) {
989 membar_producer();
990 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
991 rxq->rxq_last - rxq->rxq_producer);
992 producer = rxq->rxq_producer = rxq->rxq_first;
993 }
994 produced = true;
995 }
996 if (produced) {
997 membar_producer();
998 if (producer != rxq->rxq_producer) {
999 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1000 producer - rxq->rxq_producer);
1001 rxq->rxq_producer = producer;
1002 }
1003 bcmeth_write_4(sc, rxq->rxq_reg_rcvptr,
1004 rxq->rxq_descmap->dm_segs[0].ds_addr
1005 + ((uintptr_t)producer & RCVPTR));
1006 }
1007 return true;
1008 }
1009
1010 static void
1011 bcmeth_rx_input(
1012 struct bcmeth_softc *sc,
1013 struct mbuf *m,
1014 uint32_t rxdb_flags)
1015 {
1016 struct ifnet * const ifp = &sc->sc_if;
1017
1018 bcmeth_rx_map_unload(sc, m);
1019
1020 m_adj(m, sc->sc_rcvoffset);
1021
1022 /*
1023 * If we are in promiscuous mode and this isn't a multicast, check the
1024 * destination address to make sure it matches our own. If it doesn't,
1025 * mark the packet as being received promiscuously.
1026 */
1027 if ((sc->sc_cmdcfg & PROMISC_EN)
1028 && (m->m_data[0] & 1) == 0
1029 && (*(uint16_t *)&m->m_data[0] != sc->sc_macaddr[0]
1030 || *(uint32_t *)&m->m_data[2] != sc->sc_macaddr[1])) {
1031 m->m_flags |= M_PROMISC;
1032 }
1033 m_set_rcvif(m, ifp);
1034
1035 ifp->if_ibytes += m->m_pkthdr.len;
1036
1037 /*
1038 * Let's give it to the network subsystm to deal with.
1039 */
1040 #ifdef BCMETH_MPSAFE
1041 mutex_exit(sc->sc_lock);
1042 if_input(ifp, m);
1043 mutex_enter(sc->sc_lock);
1044 #else
1045 int s = splnet();
1046 if_input(ifp, m);
1047 splx(s);
1048 #endif
1049 }
1050
1051 static bool
1052 bcmeth_rxq_consume(
1053 struct bcmeth_softc *sc,
1054 struct bcmeth_rxqueue *rxq,
1055 size_t atmost)
1056 {
1057 struct ifnet * const ifp = &sc->sc_if;
1058 struct gmac_rxdb *consumer = rxq->rxq_consumer;
1059 size_t rxconsumed = 0;
1060 bool didconsume = false;
1061
1062 while (atmost-- > 0) {
1063 if (consumer == rxq->rxq_producer) {
1064 KASSERT(rxq->rxq_inuse == 0);
1065 break;
1066 }
1067
1068 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1069 uint32_t currdscr = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1070 if (consumer == rxq->rxq_first + currdscr) {
1071 break;
1072 }
1073 bcmeth_rxq_desc_postsync(sc, rxq, consumer, 1);
1074
1075 /*
1076 * We own this packet again. Copy the rxsts word from it.
1077 */
1078 rxconsumed++;
1079 didconsume = true;
1080 uint32_t rxsts;
1081 KASSERT(rxq->rxq_mhead != NULL);
1082 bus_dmamap_t map = M_GETCTX(rxq->rxq_mhead, bus_dmamap_t);
1083 bus_dmamap_sync(sc->sc_dmat, map, 0, arm_dcache_align,
1084 BUS_DMASYNC_POSTREAD);
1085 memcpy(&rxsts, rxq->rxq_mhead->m_data, 4);
1086 rxsts = le32toh(rxsts);
1087 #if 0
1088 KASSERTMSG(rxsts != BCMETH_RCVMAGIC, "currdscr=%u consumer=%zd",
1089 currdscr, consumer - rxq->rxq_first);
1090 #endif
1091
1092 /*
1093 * Get the count of descriptors. Fetch the correct number
1094 * of mbufs.
1095 */
1096 #ifdef BCMETH_RCVMAGIC
1097 size_t desc_count = rxsts != BCMETH_RCVMAGIC
1098 ? __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1 : 1;
1099 #else
1100 size_t desc_count = __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1;
1101 #endif
1102 struct mbuf *m = rxq->rxq_mhead;
1103 struct mbuf *m_last = m;
1104 for (size_t i = 1; i < desc_count; i++) {
1105 if (++consumer == rxq->rxq_last) {
1106 consumer = rxq->rxq_first;
1107 }
1108 KASSERTMSG(consumer != rxq->rxq_first + currdscr,
1109 "i=%zu rxsts=%#x desc_count=%zu currdscr=%u "
1110 "consumer=%zd", i, rxsts, desc_count, currdscr,
1111 consumer - rxq->rxq_first);
1112 m_last = m_last->m_next;
1113 }
1114
1115 /*
1116 * Now remove it/them from the list of enqueued mbufs.
1117 */
1118 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1119 rxq->rxq_mtail = &rxq->rxq_mhead;
1120 m_last->m_next = NULL;
1121
1122 #ifdef BCMETH_RCVMAGIC
1123 if (rxsts == BCMETH_RCVMAGIC) {
1124 if_statinc(ifp, if_ierrors);
1125 if ((m->m_ext.ext_paddr >> 28) == 8) {
1126 BCMETH_EVCNT_INCR(sc->sc_ev_rx_badmagic_lo);
1127 } else {
1128 BCMETH_EVCNT_INCR( sc->sc_ev_rx_badmagic_hi);
1129 }
1130 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1131 } else
1132 #endif /* BCMETH_RCVMAGIC */
1133 if (rxsts
1134 & (RXSTS_CRC_ERROR |RXSTS_OVERSIZED |RXSTS_PKT_OVERFLOW)) {
1135 aprint_error_dev(sc->sc_dev,
1136 "[%zu]: count=%zu rxsts=%#x\n",
1137 consumer - rxq->rxq_first, desc_count, rxsts);
1138 /*
1139 * We encountered an error, take the mbufs and add them
1140 * to the rx bufcache so we can quickly reuse them.
1141 */
1142 if_statinc(ifp, if_ierrors);
1143 do {
1144 struct mbuf *m0 = m->m_next;
1145 m->m_next = NULL;
1146 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1147 m = m0;
1148 } while (m);
1149 } else {
1150 uint32_t framelen = __SHIFTOUT(rxsts, RXSTS_FRAMELEN);
1151 framelen += sc->sc_rcvoffset;
1152 m->m_pkthdr.len = framelen;
1153 if (desc_count == 1) {
1154 KASSERT(framelen <= MCLBYTES);
1155 m->m_len = framelen;
1156 } else {
1157 m_last->m_len = framelen & (MCLBYTES - 1);
1158 }
1159
1160 #ifdef BCMETH_MPSAFE
1161 /*
1162 * Wrap at the last entry!
1163 */
1164 if (++consumer == rxq->rxq_last) {
1165 KASSERT(consumer[-1].rxdb_flags
1166 & htole32(RXDB_FLAG_ET));
1167 rxq->rxq_consumer = rxq->rxq_first;
1168 } else {
1169 rxq->rxq_consumer = consumer;
1170 }
1171 rxq->rxq_inuse -= rxconsumed;
1172 #endif /* BCMETH_MPSAFE */
1173
1174 /*
1175 * Receive the packet (which releases our lock)
1176 */
1177 bcmeth_rx_input(sc, m, rxsts);
1178
1179 #ifdef BCMETH_MPSAFE
1180 /*
1181 * Since we had to give up our lock, we need to
1182 * refresh these.
1183 */
1184 consumer = rxq->rxq_consumer;
1185 rxconsumed = 0;
1186 continue;
1187 #endif /* BCMETH_MPSAFE */
1188 }
1189
1190 /*
1191 * Wrap at the last entry!
1192 */
1193 if (++consumer == rxq->rxq_last) {
1194 KASSERT(consumer[-1].rxdb_flags & htole32(RXDB_FLAG_ET));
1195 consumer = rxq->rxq_first;
1196 }
1197 }
1198
1199 /*
1200 * Update queue info.
1201 */
1202 rxq->rxq_consumer = consumer;
1203 rxq->rxq_inuse -= rxconsumed;
1204
1205 /*
1206 * Did we consume anything?
1207 */
1208 return didconsume;
1209 }
1210
1211 static void
1212 bcmeth_rxq_purge(
1213 struct bcmeth_softc *sc,
1214 struct bcmeth_rxqueue *rxq,
1215 bool discard)
1216 {
1217 struct mbuf *m;
1218
1219 if ((m = rxq->rxq_mhead) != NULL) {
1220 if (discard) {
1221 bcmeth_rx_map_unload(sc, m);
1222 m_freem(m);
1223 } else {
1224 while (m != NULL) {
1225 struct mbuf *m0 = m->m_next;
1226 m->m_next = NULL;
1227 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1228 m = m0;
1229 }
1230 }
1231 }
1232
1233 rxq->rxq_mhead = NULL;
1234 rxq->rxq_mtail = &rxq->rxq_mhead;
1235 rxq->rxq_inuse = 0;
1236 }
1237
1238 static void
1239 bcmeth_rxq_reset(
1240 struct bcmeth_softc *sc,
1241 struct bcmeth_rxqueue *rxq)
1242 {
1243 /*
1244 * sync all the descriptors
1245 */
1246 bcmeth_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1247 rxq->rxq_last - rxq->rxq_first);
1248
1249 /*
1250 * Make sure we own all descriptors in the ring.
1251 */
1252 struct gmac_rxdb *rxdb;
1253 for (rxdb = rxq->rxq_first; rxdb < rxq->rxq_last - 1; rxdb++) {
1254 rxdb->rxdb_flags = htole32(RXDB_FLAG_IC);
1255 }
1256
1257 /*
1258 * Last descriptor has the wrap flag.
1259 */
1260 rxdb->rxdb_flags = htole32(RXDB_FLAG_ET | RXDB_FLAG_IC);
1261
1262 /*
1263 * Reset the producer consumer indexes.
1264 */
1265 rxq->rxq_consumer = rxq->rxq_first;
1266 rxq->rxq_producer = rxq->rxq_first;
1267 rxq->rxq_inuse = 0;
1268 if (rxq->rxq_threshold < BCMETH_MINRXMBUFS)
1269 rxq->rxq_threshold = BCMETH_MINRXMBUFS;
1270
1271 sc->sc_intmask |= RCVINT | RCVFIFOOF | RCVDESCUF;
1272
1273 /*
1274 * Restart the receiver at the first descriptor
1275 */
1276 bcmeth_write_4(sc, rxq->rxq_reg_rcvaddrlo,
1277 rxq->rxq_descmap->dm_segs[0].ds_addr);
1278 }
1279
1280 static int
1281 bcmeth_rxq_attach(
1282 struct bcmeth_softc *sc,
1283 struct bcmeth_rxqueue *rxq,
1284 u_int qno)
1285 {
1286 size_t desc_count = BCMETH_RINGSIZE / sizeof(rxq->rxq_first[0]);
1287 int error;
1288 void *descs;
1289
1290 KASSERT(desc_count == 256 || desc_count == 512);
1291
1292 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1293 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1294 if (error)
1295 return error;
1296
1297 memset(descs, 0, BCMETH_RINGSIZE);
1298 rxq->rxq_first = descs;
1299 rxq->rxq_last = rxq->rxq_first + desc_count;
1300 rxq->rxq_consumer = descs;
1301 rxq->rxq_producer = descs;
1302
1303 bcmeth_rxq_purge(sc, rxq, true);
1304 bcmeth_rxq_reset(sc, rxq);
1305
1306 rxq->rxq_reg_rcvaddrlo = GMAC_RCVADDR_LOW;
1307 rxq->rxq_reg_rcvctl = GMAC_RCVCONTROL;
1308 rxq->rxq_reg_rcvptr = GMAC_RCVPTR;
1309 rxq->rxq_reg_rcvsts0 = GMAC_RCVSTATUS0;
1310 rxq->rxq_reg_rcvsts1 = GMAC_RCVSTATUS1;
1311
1312 return 0;
1313 }
1314
1315 static bool
1316 bcmeth_txq_active_p(
1317 struct bcmeth_softc * const sc,
1318 struct bcmeth_txqueue *txq)
1319 {
1320 return !IF_IS_EMPTY(&txq->txq_mbufs);
1321 }
1322
1323 static bool
1324 bcmeth_txq_fillable_p(
1325 struct bcmeth_softc * const sc,
1326 struct bcmeth_txqueue *txq)
1327 {
1328 return txq->txq_free >= txq->txq_threshold;
1329 }
1330
1331 static int
1332 bcmeth_txq_attach(
1333 struct bcmeth_softc *sc,
1334 struct bcmeth_txqueue *txq,
1335 u_int qno)
1336 {
1337 size_t desc_count = BCMETH_RINGSIZE / sizeof(txq->txq_first[0]);
1338 int error;
1339 void *descs;
1340
1341 KASSERT(desc_count == 256 || desc_count == 512);
1342
1343 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1344 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1345 if (error)
1346 return error;
1347
1348 memset(descs, 0, BCMETH_RINGSIZE);
1349 txq->txq_first = descs;
1350 txq->txq_last = txq->txq_first + desc_count;
1351 txq->txq_consumer = descs;
1352 txq->txq_producer = descs;
1353
1354 IFQ_SET_MAXLEN(&txq->txq_mbufs, BCMETH_MAXTXMBUFS);
1355
1356 txq->txq_reg_xmtaddrlo = GMAC_XMTADDR_LOW;
1357 txq->txq_reg_xmtctl = GMAC_XMTCONTROL;
1358 txq->txq_reg_xmtptr = GMAC_XMTPTR;
1359 txq->txq_reg_xmtsts0 = GMAC_XMTSTATUS0;
1360 txq->txq_reg_xmtsts1 = GMAC_XMTSTATUS1;
1361
1362 bcmeth_txq_reset(sc, txq);
1363
1364 return 0;
1365 }
1366
1367 static int
1368 bcmeth_txq_map_load(
1369 struct bcmeth_softc *sc,
1370 struct bcmeth_txqueue *txq,
1371 struct mbuf *m)
1372 {
1373 bus_dmamap_t map;
1374 int error;
1375
1376 map = M_GETCTX(m, bus_dmamap_t);
1377 if (map != NULL)
1378 return 0;
1379
1380 map = bcmeth_mapcache_get(sc, sc->sc_tx_mapcache);
1381 if (map == NULL)
1382 return ENOMEM;
1383
1384 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1385 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1386 if (error)
1387 return error;
1388
1389 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1390 BUS_DMASYNC_PREWRITE);
1391 M_SETCTX(m, map);
1392 return 0;
1393 }
1394
1395 static void
1396 bcmeth_txq_map_unload(
1397 struct bcmeth_softc *sc,
1398 struct bcmeth_txqueue *txq,
1399 struct mbuf *m)
1400 {
1401 KASSERT(m);
1402 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1403 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1404 BUS_DMASYNC_POSTWRITE);
1405 bus_dmamap_unload(sc->sc_dmat, map);
1406 bcmeth_mapcache_put(sc, sc->sc_tx_mapcache, map);
1407 }
1408
1409 static bool
1410 bcmeth_txq_produce(
1411 struct bcmeth_softc *sc,
1412 struct bcmeth_txqueue *txq,
1413 struct mbuf *m)
1414 {
1415 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1416
1417 if (map->dm_nsegs > txq->txq_free)
1418 return false;
1419
1420 /*
1421 * TCP Offload flag must be set in the first descriptor.
1422 */
1423 struct gmac_txdb *producer = txq->txq_producer;
1424 uint32_t first_flags = TXDB_FLAG_SF;
1425 uint32_t last_flags = TXDB_FLAG_EF;
1426
1427 /*
1428 * If we've produced enough descriptors without consuming any
1429 * we need to ask for an interrupt to reclaim some.
1430 */
1431 txq->txq_lastintr += map->dm_nsegs;
1432 if (txq->txq_lastintr >= txq->txq_threshold
1433 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1434 txq->txq_lastintr = 0;
1435 last_flags |= TXDB_FLAG_IC;
1436 }
1437
1438 KASSERT(producer != txq->txq_last);
1439
1440 struct gmac_txdb *start = producer;
1441 size_t count = map->dm_nsegs;
1442 producer->txdb_flags |= htole32(first_flags);
1443 producer->txdb_addrlo = htole32(map->dm_segs[0].ds_addr);
1444 producer->txdb_buflen = htole32(map->dm_segs[0].ds_len);
1445 for (u_int i = 1; i < map->dm_nsegs; i++) {
1446 #if 0
1447 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1448 le32toh(producer->txdb_flags),
1449 le32toh(producer->txdb_buflen),
1450 le32toh(producer->txdb_addrlo),
1451 le32toh(producer->txdb_addrhi));
1452 #endif
1453 if (__predict_false(++producer == txq->txq_last)) {
1454 bcmeth_txq_desc_presync(sc, txq, start,
1455 txq->txq_last - start);
1456 count -= txq->txq_last - start;
1457 producer = txq->txq_first;
1458 start = txq->txq_first;
1459 }
1460 producer->txdb_addrlo = htole32(map->dm_segs[i].ds_addr);
1461 producer->txdb_buflen = htole32(map->dm_segs[i].ds_len);
1462 }
1463 producer->txdb_flags |= htole32(last_flags);
1464 #if 0
1465 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1466 le32toh(producer->txdb_flags), le32toh(producer->txdb_buflen),
1467 le32toh(producer->txdb_addrlo), le32toh(producer->txdb_addrhi));
1468 #endif
1469 if (count)
1470 bcmeth_txq_desc_presync(sc, txq, start, count);
1471
1472 /*
1473 * Reduce free count by the number of segments we consumed.
1474 */
1475 txq->txq_free -= map->dm_nsegs;
1476 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1477 KASSERT(map->dm_nsegs == 1
1478 || (txq->txq_producer->txdb_flags & htole32(TXDB_FLAG_EF)) == 0);
1479 KASSERT(producer->txdb_flags & htole32(TXDB_FLAG_EF));
1480
1481 #if 0
1482 printf("%s: mbuf %p: produced a %u byte packet in %u segments "
1483 "(%zd..%zd)\n", __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1484 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1485 #endif
1486
1487 if (producer + 1 == txq->txq_last)
1488 txq->txq_producer = txq->txq_first;
1489 else
1490 txq->txq_producer = producer + 1;
1491 IF_ENQUEUE(&txq->txq_mbufs, m);
1492
1493 /*
1494 * Let the transmitter know there's more to do
1495 */
1496 bcmeth_write_4(sc, txq->txq_reg_xmtptr,
1497 txq->txq_descmap->dm_segs[0].ds_addr
1498 + ((uintptr_t)txq->txq_producer & XMT_LASTDSCR));
1499
1500 return true;
1501 }
1502
1503 static struct mbuf *
1504 bcmeth_copy_packet(struct mbuf *m)
1505 {
1506 struct mbuf *mext = NULL;
1507 size_t misalignment = 0;
1508 size_t hlen = 0;
1509
1510 for (mext = m; mext != NULL; mext = mext->m_next) {
1511 if (mext->m_flags & M_EXT) {
1512 misalignment = mtod(mext, vaddr_t) & arm_dcache_align;
1513 break;
1514 }
1515 hlen += m->m_len;
1516 }
1517
1518 struct mbuf *n = m->m_next;
1519 if (m != mext && hlen + misalignment <= MHLEN && false) {
1520 KASSERT(m->m_pktdat <= m->m_data
1521 && m->m_data <= &m->m_pktdat[MHLEN - m->m_len]);
1522 size_t oldoff = m->m_data - m->m_pktdat;
1523 size_t off;
1524 if (mext == NULL) {
1525 off = (oldoff + hlen > MHLEN) ? 0 : oldoff;
1526 } else {
1527 off = MHLEN - (hlen + misalignment);
1528 }
1529 KASSERT(off + hlen + misalignment <= MHLEN);
1530 if (((oldoff ^ off) & arm_dcache_align) != 0 || off < oldoff) {
1531 memmove(&m->m_pktdat[off], m->m_data, m->m_len);
1532 m->m_data = &m->m_pktdat[off];
1533 }
1534 m_copydata(n, 0, hlen - m->m_len, &m->m_data[m->m_len]);
1535 m->m_len = hlen;
1536 m->m_next = mext;
1537 while (n != mext) {
1538 n = m_free(n);
1539 }
1540 return m;
1541 }
1542
1543 struct mbuf *m0 = m_gethdr(M_DONTWAIT, m->m_type);
1544 if (m0 == NULL) {
1545 return NULL;
1546 }
1547 m_copy_pkthdr(m0, m);
1548 MCLAIM(m0, m->m_owner);
1549 if (m0->m_pkthdr.len > MHLEN) {
1550 MCLGET(m0, M_DONTWAIT);
1551 if ((m0->m_flags & M_EXT) == 0) {
1552 m_freem(m0);
1553 return NULL;
1554 }
1555 }
1556 m0->m_len = m->m_pkthdr.len;
1557 m_copydata(m, 0, m0->m_len, mtod(m0, void *));
1558 m_freem(m);
1559 return m0;
1560 }
1561
1562 static bool
1563 bcmeth_txq_enqueue(
1564 struct bcmeth_softc *sc,
1565 struct bcmeth_txqueue *txq)
1566 {
1567 for (;;) {
1568 if (IF_QFULL(&txq->txq_mbufs))
1569 return false;
1570 struct mbuf *m = txq->txq_next;
1571 if (m == NULL) {
1572 int s = splnet();
1573 IF_DEQUEUE(&sc->sc_if.if_snd, m);
1574 splx(s);
1575 if (m == NULL)
1576 return true;
1577 M_SETCTX(m, NULL);
1578 } else {
1579 txq->txq_next = NULL;
1580 }
1581 /*
1582 * If LINK2 is set and this packet uses multiple mbufs,
1583 * consolidate it into a single mbuf.
1584 */
1585 if (m->m_next != NULL && (sc->sc_if.if_flags & IFF_LINK2)) {
1586 struct mbuf *m0 = bcmeth_copy_packet(m);
1587 if (m0 == NULL) {
1588 txq->txq_next = m;
1589 return true;
1590 }
1591 m = m0;
1592 }
1593 int error = bcmeth_txq_map_load(sc, txq, m);
1594 if (error) {
1595 aprint_error_dev(sc->sc_dev,
1596 "discarded packet due to "
1597 "dmamap load failure: %d\n", error);
1598 m_freem(m);
1599 continue;
1600 }
1601 KASSERT(txq->txq_next == NULL);
1602 if (!bcmeth_txq_produce(sc, txq, m)) {
1603 txq->txq_next = m;
1604 return false;
1605 }
1606 KASSERT(txq->txq_next == NULL);
1607 }
1608 }
1609
1610 static bool
1611 bcmeth_txq_consume(
1612 struct bcmeth_softc *sc,
1613 struct bcmeth_txqueue *txq)
1614 {
1615 struct ifnet * const ifp = &sc->sc_if;
1616 struct gmac_txdb *consumer = txq->txq_consumer;
1617 size_t txfree = 0;
1618
1619 #if 0
1620 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1621 #endif
1622
1623 for (;;) {
1624 if (consumer == txq->txq_producer) {
1625 txq->txq_consumer = consumer;
1626 txq->txq_free += txfree;
1627 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
1628 #if 0
1629 printf("%s: empty: freed %zu descriptors going from "
1630 "%zu to %zu\n", __func__, txfree,
1631 txq->txq_free - txfree, txq->txq_free);
1632 #endif
1633 KASSERT(txq->txq_lastintr == 0);
1634 KASSERT(txq->txq_free
1635 == txq->txq_last - txq->txq_first - 1);
1636 return true;
1637 }
1638 bcmeth_txq_desc_postsync(sc, txq, consumer, 1);
1639 uint32_t s0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
1640 if (consumer == txq->txq_first + __SHIFTOUT(s0, XMT_CURRDSCR)) {
1641 txq->txq_consumer = consumer;
1642 txq->txq_free += txfree;
1643 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
1644 #if 0
1645 printf("%s: freed %zu descriptors\n",
1646 __func__, txfree);
1647 #endif
1648 return bcmeth_txq_fillable_p(sc, txq);
1649 }
1650
1651 /*
1652 * If this is the last descriptor in the chain, get the
1653 * mbuf, free its dmamap, and free the mbuf chain itself.
1654 */
1655 const uint32_t txdb_flags = le32toh(consumer->txdb_flags);
1656 if (txdb_flags & TXDB_FLAG_EF) {
1657 struct mbuf *m;
1658
1659 IF_DEQUEUE(&txq->txq_mbufs, m);
1660 KASSERT(m);
1661 bcmeth_txq_map_unload(sc, txq, m);
1662 #if 0
1663 printf("%s: mbuf %p: consumed a %u byte packet\n",
1664 __func__, m, m->m_pkthdr.len);
1665 #endif
1666 bpf_mtap(ifp, m, BPF_D_OUT);
1667 if_statinc(ifp, if_opackets);
1668 if_statadd(ifp, if_obytes, m->m_pkthdr.len);
1669 if (m->m_flags & M_MCAST)
1670 if_statinc(ifp, if_omcasts);
1671 m_freem(m);
1672 }
1673
1674 /*
1675 * We own this packet again. Clear all flags except wrap.
1676 */
1677 txfree++;
1678
1679 /*
1680 * Wrap at the last entry!
1681 */
1682 if (txdb_flags & TXDB_FLAG_ET) {
1683 consumer->txdb_flags = htole32(TXDB_FLAG_ET);
1684 KASSERT(consumer + 1 == txq->txq_last);
1685 consumer = txq->txq_first;
1686 } else {
1687 consumer->txdb_flags = 0;
1688 consumer++;
1689 KASSERT(consumer < txq->txq_last);
1690 }
1691 }
1692 }
1693
1694 static void
1695 bcmeth_txq_purge(
1696 struct bcmeth_softc *sc,
1697 struct bcmeth_txqueue *txq)
1698 {
1699 struct mbuf *m;
1700 KASSERT((bcmeth_read_4(sc, UNIMAC_COMMAND_CONFIG) & TX_ENA) == 0);
1701
1702 for (;;) {
1703 IF_DEQUEUE(&txq->txq_mbufs, m);
1704 if (m == NULL)
1705 break;
1706 bcmeth_txq_map_unload(sc, txq, m);
1707 m_freem(m);
1708 }
1709 if ((m = txq->txq_next) != NULL) {
1710 txq->txq_next = NULL;
1711 bcmeth_txq_map_unload(sc, txq, m);
1712 m_freem(m);
1713 }
1714 }
1715
1716 static void
1717 bcmeth_txq_reset(
1718 struct bcmeth_softc *sc,
1719 struct bcmeth_txqueue *txq)
1720 {
1721 /*
1722 * sync all the descriptors
1723 */
1724 bcmeth_txq_desc_postsync(sc, txq, txq->txq_first,
1725 txq->txq_last - txq->txq_first);
1726
1727 /*
1728 * Make sure we own all descriptors in the ring.
1729 */
1730 struct gmac_txdb *txdb;
1731 for (txdb = txq->txq_first; txdb < txq->txq_last - 1; txdb++) {
1732 txdb->txdb_flags = 0;
1733 }
1734
1735 /*
1736 * Last descriptor has the wrap flag.
1737 */
1738 txdb->txdb_flags = htole32(TXDB_FLAG_ET);
1739
1740 /*
1741 * Reset the producer consumer indexes.
1742 */
1743 txq->txq_consumer = txq->txq_first;
1744 txq->txq_producer = txq->txq_first;
1745 txq->txq_free = txq->txq_last - txq->txq_first - 1;
1746 txq->txq_threshold = txq->txq_free / 2;
1747 txq->txq_lastintr = 0;
1748
1749 /*
1750 * What do we want to get interrupted on?
1751 */
1752 sc->sc_intmask |= XMTINT_0 | XMTUF;
1753
1754 /*
1755 * Restart the transmiter at the first descriptor
1756 */
1757 bcmeth_write_4(sc, txq->txq_reg_xmtaddrlo,
1758 txq->txq_descmap->dm_segs->ds_addr);
1759 }
1760
1761 static void
1762 bcmeth_ifstart(struct ifnet *ifp)
1763 {
1764 struct bcmeth_softc * const sc = ifp->if_softc;
1765
1766 if (__predict_false((ifp->if_flags & IFF_RUNNING) == 0)) {
1767 return;
1768 }
1769
1770 #ifdef BCMETH_MPSAFETX
1771 if (cpu_intr_p()) {
1772 #endif
1773 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
1774 softint_schedule(sc->sc_soft_ih);
1775 #ifdef BCMETH_MPSAFETX
1776 } else {
1777 /*
1778 * Either we are in a softintr thread already or some other
1779 * thread so just borrow it to do the send and save ourselves
1780 * the overhead of a fast soft int.
1781 */
1782 bcmeth_soft_txintr(sc);
1783 }
1784 #endif
1785 }
1786
1787 int
1788 bcmeth_intr(void *arg)
1789 {
1790 struct bcmeth_softc * const sc = arg;
1791 uint32_t soft_flags = 0;
1792 uint32_t work_flags = 0;
1793 int rv = 0;
1794
1795 mutex_enter(sc->sc_hwlock);
1796
1797 uint32_t intmask = sc->sc_intmask;
1798 BCMETH_EVCNT_INCR(sc->sc_ev_intr);
1799
1800 for (;;) {
1801 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
1802 intstatus &= intmask;
1803 bcmeth_write_4(sc, GMAC_INTSTATUS, intstatus); /* write 1 to clear */
1804 if (intstatus == 0) {
1805 break;
1806 }
1807 #if 0
1808 aprint_normal_dev(sc->sc_dev, "%s: intstatus=%#x intmask=%#x\n",
1809 __func__, intstatus, bcmeth_read_4(sc, GMAC_INTMASK));
1810 #endif
1811 if (intstatus & RCVINT) {
1812 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
1813 intmask &= ~RCVINT;
1814
1815 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1816 uint32_t descs = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1817 if (descs < rxq->rxq_consumer - rxq->rxq_first) {
1818 /*
1819 * We wrapped at the end so count how far
1820 * we are from the end.
1821 */
1822 descs += rxq->rxq_last - rxq->rxq_consumer;
1823 } else {
1824 descs -= rxq->rxq_consumer - rxq->rxq_first;
1825 }
1826 /*
1827 * If we "timedout" we can't be hogging so use
1828 * softints. If we exceeded then we might hogging
1829 * so let the workqueue deal with them.
1830 */
1831 const uint32_t framecount = __SHIFTOUT(sc->sc_rcvlazy,
1832 INTRCVLAZY_FRAMECOUNT);
1833 if (descs < framecount
1834 || (curcpu()->ci_curlwp->l_flag & LW_IDLE)) {
1835 soft_flags |= SOFT_RXINTR;
1836 } else {
1837 work_flags |= WORK_RXINTR;
1838 }
1839 }
1840
1841 if (intstatus & XMTINT_0) {
1842 intmask &= ~XMTINT_0;
1843 soft_flags |= SOFT_TXINTR;
1844 }
1845
1846 if (intstatus & RCVDESCUF) {
1847 intmask &= ~RCVDESCUF;
1848 work_flags |= WORK_RXUNDERFLOW;
1849 }
1850
1851 intstatus &= intmask;
1852 if (intstatus) {
1853 aprint_error_dev(sc->sc_dev,
1854 "intr: intstatus=%#x\n", intstatus);
1855 aprint_error_dev(sc->sc_dev,
1856 "rcvbase=%p/%#lx rcvptr=%#x rcvsts=%#x/%#x\n",
1857 sc->sc_rxq.rxq_first,
1858 sc->sc_rxq.rxq_descmap->dm_segs[0].ds_addr,
1859 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvptr),
1860 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts0),
1861 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts1));
1862 aprint_error_dev(sc->sc_dev,
1863 "xmtbase=%p/%#lx xmtptr=%#x xmtsts=%#x/%#x\n",
1864 sc->sc_txq.txq_first,
1865 sc->sc_txq.txq_descmap->dm_segs[0].ds_addr,
1866 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtptr),
1867 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts0),
1868 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts1));
1869 intmask &= ~intstatus;
1870 work_flags |= WORK_REINIT;
1871 break;
1872 }
1873 }
1874
1875 if (intmask != sc->sc_intmask) {
1876 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1877 }
1878
1879 if (work_flags) {
1880 if (sc->sc_work_flags == 0) {
1881 workqueue_enqueue(sc->sc_workq, &sc->sc_work, NULL);
1882 }
1883 atomic_or_32(&sc->sc_work_flags, work_flags);
1884 rv = 1;
1885 }
1886
1887 if (soft_flags) {
1888 if (sc->sc_soft_flags == 0) {
1889 softint_schedule(sc->sc_soft_ih);
1890 }
1891 atomic_or_32(&sc->sc_soft_flags, soft_flags);
1892 rv = 1;
1893 }
1894
1895 mutex_exit(sc->sc_hwlock);
1896
1897 return rv;
1898 }
1899
1900 #ifdef BCMETH_MPSAFETX
1901 void
1902 bcmeth_soft_txintr(struct bcmeth_softc *sc)
1903 {
1904 mutex_enter(sc->sc_lock);
1905 /*
1906 * Let's do what we came here for. Consume transmitted
1907 * packets off the transmit ring.
1908 */
1909 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1910 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1911 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1912 sc->sc_if.if_flags |= IFF_OACTIVE;
1913 } else {
1914 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1915 }
1916 if (sc->sc_if.if_flags & IFF_RUNNING) {
1917 mutex_spin_enter(sc->sc_hwlock);
1918 sc->sc_intmask |= XMTINT_0;
1919 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1920 mutex_spin_exit(sc->sc_hwlock);
1921 }
1922 mutex_exit(sc->sc_lock);
1923 }
1924 #endif /* BCMETH_MPSAFETX */
1925
1926 void
1927 bcmeth_soft_intr(void *arg)
1928 {
1929 struct bcmeth_softc * const sc = arg;
1930 struct ifnet * const ifp = &sc->sc_if;
1931 uint32_t intmask = 0;
1932
1933 mutex_enter(sc->sc_lock);
1934
1935 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
1936
1937 BCMETH_EVCNT_INCR(sc->sc_ev_soft_intr);
1938
1939 if ((soft_flags & SOFT_TXINTR)
1940 || bcmeth_txq_active_p(sc, &sc->sc_txq)) {
1941 /*
1942 * Let's do what we came here for. Consume transmitted
1943 * packets off the transmit ring.
1944 */
1945 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1946 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1947 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1948 ifp->if_flags |= IFF_OACTIVE;
1949 } else {
1950 ifp->if_flags &= ~IFF_OACTIVE;
1951 }
1952 intmask |= XMTINT_0;
1953 }
1954
1955 if (soft_flags & SOFT_RXINTR) {
1956 /*
1957 * Let's consume
1958 */
1959 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
1960 sc->sc_rxq.rxq_threshold / 4)) {
1961 /*
1962 * We've consumed a quarter of the ring and still have
1963 * more to do. Refill the ring.
1964 */
1965 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1966 }
1967 intmask |= RCVINT;
1968 }
1969
1970 if (ifp->if_flags & IFF_RUNNING) {
1971 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1972 mutex_spin_enter(sc->sc_hwlock);
1973 sc->sc_intmask |= intmask;
1974 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1975 mutex_spin_exit(sc->sc_hwlock);
1976 }
1977
1978 mutex_exit(sc->sc_lock);
1979 }
1980
1981 void
1982 bcmeth_worker(struct work *wk, void *arg)
1983 {
1984 struct bcmeth_softc * const sc = arg;
1985 struct ifnet * const ifp = &sc->sc_if;
1986 uint32_t intmask = 0;
1987
1988 mutex_enter(sc->sc_lock);
1989
1990 BCMETH_EVCNT_INCR(sc->sc_ev_work);
1991
1992 uint32_t work_flags = atomic_swap_32(&sc->sc_work_flags, 0);
1993 if (work_flags & WORK_REINIT) {
1994 int s = splnet();
1995 sc->sc_soft_flags = 0;
1996 bcmeth_ifinit(ifp);
1997 splx(s);
1998 work_flags &= ~WORK_RXUNDERFLOW;
1999 }
2000
2001 if (work_flags & WORK_RXUNDERFLOW) {
2002 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
2003 size_t threshold = 5 * rxq->rxq_threshold / 4;
2004 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2005 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2006 } else {
2007 intmask |= RCVDESCUF;
2008 }
2009 aprint_normal_dev(sc->sc_dev,
2010 "increasing receive buffers from %zu to %zu\n",
2011 rxq->rxq_threshold, threshold);
2012 rxq->rxq_threshold = threshold;
2013 }
2014
2015 if (work_flags & WORK_RXINTR) {
2016 /*
2017 * Let's consume
2018 */
2019 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
2020 sc->sc_rxq.rxq_threshold / 4)) {
2021 /*
2022 * We've consumed a quarter of the ring and still have
2023 * more to do. Refill the ring.
2024 */
2025 bcmeth_rxq_produce(sc, &sc->sc_rxq);
2026 }
2027 intmask |= RCVINT;
2028 }
2029
2030 if (ifp->if_flags & IFF_RUNNING) {
2031 bcmeth_rxq_produce(sc, &sc->sc_rxq);
2032 #if 0
2033 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
2034 if (intstatus & RCVINT) {
2035 bcmeth_write_4(sc, GMAC_INTSTATUS, RCVINT);
2036 work_flags |= WORK_RXINTR;
2037 continue;
2038 }
2039 #endif
2040 mutex_spin_enter(sc->sc_hwlock);
2041 sc->sc_intmask |= intmask;
2042 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
2043 mutex_spin_exit(sc->sc_hwlock);
2044 }
2045
2046 mutex_exit(sc->sc_lock);
2047 }
2048