bcm53xx_eth.c revision 1.33 1 /*-
2 * Copyright (c) 2012 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas of 3am Software Foundry.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #define _ARM32_BUS_DMA_PRIVATE
31 #define GMAC_PRIVATE
32
33 #include "locators.h"
34 #include "opt_broadcom.h"
35
36 #include <sys/cdefs.h>
37
38 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_eth.c,v 1.33 2018/12/22 14:07:53 maxv Exp $");
39
40 #include <sys/param.h>
41 #include <sys/atomic.h>
42 #include <sys/bus.h>
43 #include <sys/device.h>
44 #include <sys/ioctl.h>
45 #include <sys/intr.h>
46 #include <sys/kmem.h>
47 #include <sys/mutex.h>
48 #include <sys/socket.h>
49 #include <sys/systm.h>
50 #include <sys/workqueue.h>
51
52 #include <net/if.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55
56 #include <net/if_dl.h>
57
58 #include <net/bpf.h>
59
60 #include <dev/mii/miivar.h>
61
62 #include <arm/locore.h>
63
64 #include <arm/broadcom/bcm53xx_reg.h>
65 #include <arm/broadcom/bcm53xx_var.h>
66
67 //#define BCMETH_MPSAFE
68
69 #ifdef BCMETH_COUNTERS
70 #define BCMETH_EVCNT_ADD(a,b) ((void)((a).ev_count += (b)))
71 #else
72 #define BCMETH_EVCNT_ADD(a,b) do { } while (/*CONSTCOND*/0)
73 #endif
74 #define BCMETH_EVCNT_INCR(a) BCMETH_EVCNT_ADD((a), 1)
75
76 #define BCMETH_MAXTXMBUFS 128
77 #define BCMETH_NTXSEGS 30
78 #define BCMETH_MAXRXMBUFS 255
79 #define BCMETH_MINRXMBUFS 64
80 #define BCMETH_NRXSEGS 1
81 #define BCMETH_RINGSIZE PAGE_SIZE
82
83 #if 1
84 #define BCMETH_RCVMAGIC 0xfeedface
85 #endif
86
87 static int bcmeth_ccb_match(device_t, cfdata_t, void *);
88 static void bcmeth_ccb_attach(device_t, device_t, void *);
89
90 struct bcmeth_txqueue {
91 bus_dmamap_t txq_descmap;
92 struct gmac_txdb *txq_consumer;
93 struct gmac_txdb *txq_producer;
94 struct gmac_txdb *txq_first;
95 struct gmac_txdb *txq_last;
96 struct ifqueue txq_mbufs;
97 struct mbuf *txq_next;
98 size_t txq_free;
99 size_t txq_threshold;
100 size_t txq_lastintr;
101 bus_size_t txq_reg_xmtaddrlo;
102 bus_size_t txq_reg_xmtptr;
103 bus_size_t txq_reg_xmtctl;
104 bus_size_t txq_reg_xmtsts0;
105 bus_size_t txq_reg_xmtsts1;
106 bus_dma_segment_t txq_descmap_seg;
107 };
108
109 struct bcmeth_rxqueue {
110 bus_dmamap_t rxq_descmap;
111 struct gmac_rxdb *rxq_consumer;
112 struct gmac_rxdb *rxq_producer;
113 struct gmac_rxdb *rxq_first;
114 struct gmac_rxdb *rxq_last;
115 struct mbuf *rxq_mhead;
116 struct mbuf **rxq_mtail;
117 struct mbuf *rxq_mconsumer;
118 size_t rxq_inuse;
119 size_t rxq_threshold;
120 bus_size_t rxq_reg_rcvaddrlo;
121 bus_size_t rxq_reg_rcvptr;
122 bus_size_t rxq_reg_rcvctl;
123 bus_size_t rxq_reg_rcvsts0;
124 bus_size_t rxq_reg_rcvsts1;
125 bus_dma_segment_t rxq_descmap_seg;
126 };
127
128 struct bcmeth_mapcache {
129 u_int dmc_nmaps;
130 u_int dmc_maxseg;
131 u_int dmc_maxmaps;
132 u_int dmc_maxmapsize;
133 bus_dmamap_t dmc_maps[0];
134 };
135
136 struct bcmeth_softc {
137 device_t sc_dev;
138 bus_space_tag_t sc_bst;
139 bus_space_handle_t sc_bsh;
140 bus_dma_tag_t sc_dmat;
141 kmutex_t *sc_lock;
142 kmutex_t *sc_hwlock;
143 struct ethercom sc_ec;
144 #define sc_if sc_ec.ec_if
145 struct ifmedia sc_media;
146 void *sc_soft_ih;
147 void *sc_ih;
148
149 struct bcmeth_rxqueue sc_rxq;
150 struct bcmeth_txqueue sc_txq;
151
152 size_t sc_rcvoffset;
153 uint32_t sc_macaddr[2];
154 uint32_t sc_maxfrm;
155 uint32_t sc_cmdcfg;
156 uint32_t sc_intmask;
157 uint32_t sc_rcvlazy;
158 volatile uint32_t sc_soft_flags;
159 #define SOFT_RXINTR 0x01
160 #define SOFT_TXINTR 0x02
161
162 #ifdef BCMETH_COUNTERS
163 struct evcnt sc_ev_intr;
164 struct evcnt sc_ev_soft_intr;
165 struct evcnt sc_ev_work;
166 struct evcnt sc_ev_tx_stall;
167 struct evcnt sc_ev_rx_badmagic_lo;
168 struct evcnt sc_ev_rx_badmagic_hi;
169 #endif
170
171 struct ifqueue sc_rx_bufcache;
172 struct bcmeth_mapcache *sc_rx_mapcache;
173 struct bcmeth_mapcache *sc_tx_mapcache;
174
175 struct workqueue *sc_workq;
176 struct work sc_work;
177
178 volatile uint32_t sc_work_flags;
179 #define WORK_RXINTR 0x01
180 #define WORK_RXUNDERFLOW 0x02
181 #define WORK_REINIT 0x04
182
183 uint8_t sc_enaddr[ETHER_ADDR_LEN];
184 };
185
186 static void bcmeth_ifstart(struct ifnet *);
187 static void bcmeth_ifwatchdog(struct ifnet *);
188 static int bcmeth_ifinit(struct ifnet *);
189 static void bcmeth_ifstop(struct ifnet *, int);
190 static int bcmeth_ifioctl(struct ifnet *, u_long, void *);
191
192 static int bcmeth_mapcache_create(struct bcmeth_softc *,
193 struct bcmeth_mapcache **, size_t, size_t, size_t);
194 static void bcmeth_mapcache_destroy(struct bcmeth_softc *,
195 struct bcmeth_mapcache *);
196 static bus_dmamap_t bcmeth_mapcache_get(struct bcmeth_softc *,
197 struct bcmeth_mapcache *);
198 static void bcmeth_mapcache_put(struct bcmeth_softc *,
199 struct bcmeth_mapcache *, bus_dmamap_t);
200
201 static int bcmeth_txq_attach(struct bcmeth_softc *,
202 struct bcmeth_txqueue *, u_int);
203 static void bcmeth_txq_purge(struct bcmeth_softc *,
204 struct bcmeth_txqueue *);
205 static void bcmeth_txq_reset(struct bcmeth_softc *,
206 struct bcmeth_txqueue *);
207 static bool bcmeth_txq_consume(struct bcmeth_softc *,
208 struct bcmeth_txqueue *);
209 static bool bcmeth_txq_produce(struct bcmeth_softc *,
210 struct bcmeth_txqueue *, struct mbuf *m);
211 static bool bcmeth_txq_active_p(struct bcmeth_softc *,
212 struct bcmeth_txqueue *);
213
214 static int bcmeth_rxq_attach(struct bcmeth_softc *,
215 struct bcmeth_rxqueue *, u_int);
216 static bool bcmeth_rxq_produce(struct bcmeth_softc *,
217 struct bcmeth_rxqueue *);
218 static void bcmeth_rxq_purge(struct bcmeth_softc *,
219 struct bcmeth_rxqueue *, bool);
220 static void bcmeth_rxq_reset(struct bcmeth_softc *,
221 struct bcmeth_rxqueue *);
222
223 static int bcmeth_intr(void *);
224 #ifdef BCMETH_MPSAFETX
225 static void bcmeth_soft_txintr(struct bcmeth_softc *);
226 #endif
227 static void bcmeth_soft_intr(void *);
228 static void bcmeth_worker(struct work *, void *);
229
230 static int bcmeth_mediachange(struct ifnet *);
231 static void bcmeth_mediastatus(struct ifnet *, struct ifmediareq *);
232
233 static inline uint32_t
234 bcmeth_read_4(struct bcmeth_softc *sc, bus_size_t o)
235 {
236 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
237 }
238
239 static inline void
240 bcmeth_write_4(struct bcmeth_softc *sc, bus_size_t o, uint32_t v)
241 {
242 bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v);
243 }
244
245 CFATTACH_DECL_NEW(bcmeth_ccb, sizeof(struct bcmeth_softc),
246 bcmeth_ccb_match, bcmeth_ccb_attach, NULL, NULL);
247
248 static int
249 bcmeth_ccb_match(device_t parent, cfdata_t cf, void *aux)
250 {
251 struct bcmccb_attach_args * const ccbaa = aux;
252 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
253
254 if (strcmp(cf->cf_name, loc->loc_name))
255 return 0;
256
257 #ifdef DIAGNOSTIC
258 const int port = cf->cf_loc[BCMCCBCF_PORT];
259 #endif
260 KASSERT(port == BCMCCBCF_PORT_DEFAULT || port == loc->loc_port);
261
262 return 1;
263 }
264
265 static void
266 bcmeth_ccb_attach(device_t parent, device_t self, void *aux)
267 {
268 struct bcmeth_softc * const sc = device_private(self);
269 struct ethercom * const ec = &sc->sc_ec;
270 struct ifnet * const ifp = &ec->ec_if;
271 struct bcmccb_attach_args * const ccbaa = aux;
272 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
273 const char * const xname = device_xname(self);
274 prop_dictionary_t dict = device_properties(self);
275 int error;
276
277 sc->sc_bst = ccbaa->ccbaa_ccb_bst;
278 sc->sc_dmat = ccbaa->ccbaa_dmat;
279 bus_space_subregion(sc->sc_bst, ccbaa->ccbaa_ccb_bsh,
280 loc->loc_offset, loc->loc_size, &sc->sc_bsh);
281
282 /*
283 * We need to use the coherent dma tag for the GMAC.
284 */
285 sc->sc_dmat = &bcm53xx_coherent_dma_tag;
286 #if _ARM32_NEED_BUS_DMA_BOUNCE
287 if (device_cfdata(self)->cf_flags & 2) {
288 sc->sc_dmat = &bcm53xx_bounce_dma_tag;
289 }
290 #endif
291
292 prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
293 if (eaprop == NULL) {
294 uint32_t mac0 = bcmeth_read_4(sc, UNIMAC_MAC_0);
295 uint32_t mac1 = bcmeth_read_4(sc, UNIMAC_MAC_1);
296 if ((mac0 == 0 && mac1 == 0) || (mac1 & 1)) {
297 aprint_error(": mac-address property is missing\n");
298 return;
299 }
300 sc->sc_enaddr[0] = (mac0 >> 0) & 0xff;
301 sc->sc_enaddr[1] = (mac0 >> 8) & 0xff;
302 sc->sc_enaddr[2] = (mac0 >> 16) & 0xff;
303 sc->sc_enaddr[3] = (mac0 >> 24) & 0xff;
304 sc->sc_enaddr[4] = (mac1 >> 0) & 0xff;
305 sc->sc_enaddr[5] = (mac1 >> 8) & 0xff;
306 } else {
307 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
308 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
309 memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
310 ETHER_ADDR_LEN);
311 }
312 sc->sc_dev = self;
313 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
314 sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
315
316 bcmeth_write_4(sc, GMAC_INTMASK, 0); // disable interrupts
317
318 aprint_naive("\n");
319 aprint_normal(": Gigabit Ethernet Controller\n");
320
321 error = bcmeth_rxq_attach(sc, &sc->sc_rxq, 0);
322 if (error) {
323 aprint_error(": failed to init rxq: %d\n", error);
324 goto fail_1;
325 }
326
327 error = bcmeth_txq_attach(sc, &sc->sc_txq, 0);
328 if (error) {
329 aprint_error(": failed to init txq: %d\n", error);
330 goto fail_1;
331 }
332
333 error = bcmeth_mapcache_create(sc, &sc->sc_rx_mapcache,
334 BCMETH_MAXRXMBUFS, MCLBYTES, BCMETH_NRXSEGS);
335 if (error) {
336 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
337 goto fail_1;
338 }
339
340 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
341 BCMETH_MAXTXMBUFS, MCLBYTES, BCMETH_NTXSEGS);
342 if (error) {
343 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
344 goto fail_1;
345 }
346
347 error = workqueue_create(&sc->sc_workq, xname, bcmeth_worker, sc,
348 (PRI_USER + MAXPRI_USER) / 2, IPL_NET, WQ_MPSAFE|WQ_PERCPU);
349 if (error) {
350 aprint_error(": failed to create workqueue: %d\n", error);
351 goto fail_2;
352 }
353
354 sc->sc_soft_ih = softint_establish(SOFTINT_MPSAFE | SOFTINT_NET,
355 bcmeth_soft_intr, sc);
356
357 if (sc->sc_ih == NULL) {
358 aprint_error_dev(self, "failed to establish interrupt %d\n",
359 loc->loc_intrs[0]);
360 goto fail_3;
361 }
362
363 sc->sc_ih = intr_establish(loc->loc_intrs[0], IPL_VM, IST_LEVEL,
364 bcmeth_intr, sc);
365
366 if (sc->sc_ih == NULL) {
367 aprint_error_dev(self, "failed to establish interrupt %d\n",
368 loc->loc_intrs[0]);
369 goto fail_4;
370 } else {
371 aprint_normal_dev(self, "interrupting on irq %d\n",
372 loc->loc_intrs[0]);
373 }
374
375 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
376 ether_sprintf(sc->sc_enaddr));
377
378 /*
379 * Since each port in plugged into the switch/flow-accelerator,
380 * we hard code at Gige Full-Duplex with Flow Control enabled.
381 */
382 int ifmedia = IFM_ETHER|IFM_1000_T|IFM_FDX;
383 //ifmedia |= IFM_FLOW|IFM_ETH_TXPAUSE|IFM_ETH_RXPAUSE;
384 ifmedia_init(&sc->sc_media, IFM_IMASK, bcmeth_mediachange,
385 bcmeth_mediastatus);
386 ifmedia_add(&sc->sc_media, ifmedia, 0, NULL);
387 ifmedia_set(&sc->sc_media, ifmedia);
388
389 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
390
391 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
392 ifp->if_softc = sc;
393 ifp->if_baudrate = IF_Mbps(1000);
394 ifp->if_capabilities = 0;
395 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
396 #ifdef BCMETH_MPSAFE
397 ifp->if_flags2 = IFF2_MPSAFE;
398 #endif
399 ifp->if_ioctl = bcmeth_ifioctl;
400 ifp->if_start = bcmeth_ifstart;
401 ifp->if_watchdog = bcmeth_ifwatchdog;
402 ifp->if_init = bcmeth_ifinit;
403 ifp->if_stop = bcmeth_ifstop;
404 IFQ_SET_READY(&ifp->if_snd);
405
406 bcmeth_ifstop(ifp, true);
407
408 /*
409 * Attach the interface.
410 */
411 error = if_initialize(ifp);
412 if (error != 0) {
413 aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n",
414 error);
415 goto fail_5;
416 }
417 ether_ifattach(ifp, sc->sc_enaddr);
418 if_register(ifp);
419
420 #ifdef BCMETH_COUNTERS
421 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
422 NULL, xname, "intr");
423 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
424 NULL, xname, "soft intr");
425 evcnt_attach_dynamic(&sc->sc_ev_work, EVCNT_TYPE_MISC,
426 NULL, xname, "work items");
427 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
428 NULL, xname, "tx stalls");
429 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_lo, EVCNT_TYPE_MISC,
430 NULL, xname, "rx badmagic lo");
431 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_hi, EVCNT_TYPE_MISC,
432 NULL, xname, "rx badmagic hi");
433 #endif
434
435 return;
436
437 fail_5:
438 ifmedia_removeall(&sc->sc_media);
439 fail_4:
440 intr_disestablish(sc->sc_ih);
441 fail_3:
442 softint_disestablish(sc->sc_soft_ih);
443 fail_2:
444 workqueue_destroy(sc->sc_workq);
445 fail_1:
446 mutex_obj_free(sc->sc_lock);
447 mutex_obj_free(sc->sc_hwlock);
448 }
449
450 static int
451 bcmeth_mediachange(struct ifnet *ifp)
452 {
453 //struct bcmeth_softc * const sc = ifp->if_softc;
454 return 0;
455 }
456
457 static void
458 bcmeth_mediastatus(struct ifnet *ifp, struct ifmediareq *ifm)
459 {
460 //struct bcmeth_softc * const sc = ifp->if_softc;
461
462 ifm->ifm_status = IFM_AVALID | IFM_ACTIVE;
463 ifm->ifm_active = IFM_ETHER | IFM_FDX | IFM_1000_T;
464 }
465
466 static uint64_t
467 bcmeth_macaddr_create(const uint8_t *enaddr)
468 {
469 return (enaddr[3] << 0) // UNIMAC_MAC_0
470 | (enaddr[2] << 8) // UNIMAC_MAC_0
471 | (enaddr[1] << 16) // UNIMAC_MAC_0
472 | ((uint64_t)enaddr[0] << 24) // UNIMAC_MAC_0
473 | ((uint64_t)enaddr[5] << 32) // UNIMAC_MAC_1
474 | ((uint64_t)enaddr[4] << 40); // UNIMAC_MAC_1
475 }
476
477 static int
478 bcmeth_ifinit(struct ifnet *ifp)
479 {
480 struct bcmeth_softc * const sc = ifp->if_softc;
481 int error = 0;
482
483 sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
484 if (ifp->if_mtu > ETHERMTU_JUMBO)
485 return error;
486
487 KASSERT(ifp->if_flags & IFF_UP);
488
489 /*
490 * Stop the interface
491 */
492 bcmeth_ifstop(ifp, 0);
493
494 /*
495 * Reserve enough space at the front so that we can insert a maxsized
496 * link header and a VLAN tag. Also make sure we have enough room for
497 * the rcvsts field as well.
498 */
499 KASSERT(ALIGN(max_linkhdr) == max_linkhdr);
500 KASSERTMSG(max_linkhdr > sizeof(struct ether_header), "%u > %zu",
501 max_linkhdr, sizeof(struct ether_header));
502 sc->sc_rcvoffset = max_linkhdr + 4 - sizeof(struct ether_header);
503 if (sc->sc_rcvoffset <= 4)
504 sc->sc_rcvoffset += 4;
505 KASSERT((sc->sc_rcvoffset & 3) == 2);
506 KASSERT(sc->sc_rcvoffset <= __SHIFTOUT(RCVCTL_RCVOFFSET, RCVCTL_RCVOFFSET));
507 KASSERT(sc->sc_rcvoffset >= 6);
508
509 /*
510 * If our frame size has changed (or it's our first time through)
511 * destroy the existing transmit mapcache.
512 */
513 if (sc->sc_tx_mapcache != NULL
514 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
515 bcmeth_mapcache_destroy(sc, sc->sc_tx_mapcache);
516 sc->sc_tx_mapcache = NULL;
517 }
518
519 if (sc->sc_tx_mapcache == NULL) {
520 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
521 BCMETH_MAXTXMBUFS, sc->sc_maxfrm, BCMETH_NTXSEGS);
522 if (error)
523 return error;
524 }
525
526 sc->sc_cmdcfg = NO_LENGTH_CHECK | PAUSE_IGNORE
527 | __SHIFTIN(ETH_SPEED_1000, ETH_SPEED)
528 | RX_ENA | TX_ENA;
529
530 if (ifp->if_flags & IFF_PROMISC) {
531 sc->sc_cmdcfg |= PROMISC_EN;
532 } else {
533 sc->sc_cmdcfg &= ~PROMISC_EN;
534 }
535
536 const uint8_t * const lladdr = CLLADDR(ifp->if_sadl);
537 const uint64_t macstnaddr = bcmeth_macaddr_create(lladdr);
538
539 /*
540 * We make sure that a received Ethernet packet start on a non-word
541 * boundary so that the packet payload will be on a word boundary.
542 * So to check the destination address we keep around two words to
543 * quickly compare with.
544 */
545 #if __ARMEL__
546 sc->sc_macaddr[0] = lladdr[0] | (lladdr[1] << 8);
547 sc->sc_macaddr[1] = lladdr[2] | (lladdr[3] << 8)
548 | (lladdr[4] << 16) | (lladdr[5] << 24);
549 #else
550 sc->sc_macaddr[0] = lladdr[1] | (lladdr[0] << 8);
551 sc->sc_macaddr[1] = lladdr[5] | (lladdr[4] << 8)
552 | (lladdr[1] << 16) | (lladdr[2] << 24);
553 #endif
554
555 sc->sc_intmask = DESCPROTOERR|DATAERR|DESCERR;
556
557 /* 5. Load RCVADDR_LO with new pointer */
558 bcmeth_rxq_reset(sc, &sc->sc_rxq);
559
560 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
561 __SHIFTIN(sc->sc_rcvoffset, RCVCTL_RCVOFFSET)
562 | RCVCTL_PARITY_DIS
563 | RCVCTL_OFLOW_CONTINUE
564 | __SHIFTIN(3, RCVCTL_BURSTLEN));
565
566 /* 6. Load XMTADDR_LO with new pointer */
567 bcmeth_txq_reset(sc, &sc->sc_txq);
568
569 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl, XMTCTL_DMA_ACT_INDEX
570 | XMTCTL_PARITY_DIS
571 | __SHIFTIN(3, XMTCTL_BURSTLEN));
572
573 /* 7. Setup other UNIMAC registers */
574 bcmeth_write_4(sc, UNIMAC_FRAME_LEN, sc->sc_maxfrm);
575 bcmeth_write_4(sc, UNIMAC_MAC_0, (uint32_t)(macstnaddr >> 0));
576 bcmeth_write_4(sc, UNIMAC_MAC_1, (uint32_t)(macstnaddr >> 32));
577 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, sc->sc_cmdcfg);
578
579 uint32_t devctl = bcmeth_read_4(sc, GMAC_DEVCONTROL);
580 devctl |= RGMII_LINK_STATUS_SEL | NWAY_AUTO_POLL_EN | TXARB_STRICT_MODE;
581 devctl &= ~FLOW_CTRL_MODE;
582 devctl &= ~MIB_RD_RESET_EN;
583 devctl &= ~RXQ_OVERFLOW_CTRL_SEL;
584 devctl &= ~CPU_FLOW_CTRL_ON;
585 bcmeth_write_4(sc, GMAC_DEVCONTROL, devctl);
586
587 /* Setup lazy receive (at most 1ms). */
588 const struct cpu_softc * const cpu = curcpu()->ci_softc;
589 sc->sc_rcvlazy = __SHIFTIN(4, INTRCVLAZY_FRAMECOUNT)
590 | __SHIFTIN(cpu->cpu_clk.clk_apb / 1000, INTRCVLAZY_TIMEOUT);
591 bcmeth_write_4(sc, GMAC_INTRCVLAZY, sc->sc_rcvlazy);
592
593 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
594 sc->sc_intmask |= XMTINT_0|XMTUF;
595 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl,
596 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl) | XMTCTL_ENABLE);
597
598
599 /* 12. Enable receive queues in RQUEUE, */
600 sc->sc_intmask |= RCVINT|RCVDESCUF|RCVFIFOOF;
601 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
602 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl) | RCVCTL_ENABLE);
603
604 bcmeth_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
605
606 #if 0
607 aprint_normal_dev(sc->sc_dev,
608 "devctl=%#x ucmdcfg=%#x xmtctl=%#x rcvctl=%#x\n",
609 devctl, sc->sc_cmdcfg,
610 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl),
611 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl));
612 #endif
613
614 sc->sc_soft_flags = 0;
615
616 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
617
618 ifp->if_flags |= IFF_RUNNING;
619
620 return error;
621 }
622
623 static void
624 bcmeth_ifstop(struct ifnet *ifp, int disable)
625 {
626 struct bcmeth_softc * const sc = ifp->if_softc;
627 struct bcmeth_txqueue * const txq = &sc->sc_txq;
628 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
629
630 KASSERT(!cpu_intr_p());
631
632 sc->sc_soft_flags = 0;
633 sc->sc_work_flags = 0;
634
635 /* Disable Rx processing */
636 bcmeth_write_4(sc, rxq->rxq_reg_rcvctl,
637 bcmeth_read_4(sc, rxq->rxq_reg_rcvctl) & ~RCVCTL_ENABLE);
638
639 /* Disable Tx processing */
640 bcmeth_write_4(sc, txq->txq_reg_xmtctl,
641 bcmeth_read_4(sc, txq->txq_reg_xmtctl) & ~XMTCTL_ENABLE);
642
643 /* Disable all interrupts */
644 bcmeth_write_4(sc, GMAC_INTMASK, 0);
645
646 for (;;) {
647 uint32_t tx0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
648 uint32_t rx0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
649 if (__SHIFTOUT(tx0, XMTSTATE) == XMTSTATE_DIS
650 && __SHIFTOUT(rx0, RCVSTATE) == RCVSTATE_DIS)
651 break;
652 delay(50);
653 }
654 /*
655 * Now reset the controller.
656 *
657 * 3. Set SW_RESET bit in UNIMAC_COMMAND_CONFIG register
658 * 4. Clear SW_RESET bit in UNIMAC_COMMAND_CONFIG register
659 */
660 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, SW_RESET);
661 bcmeth_write_4(sc, GMAC_INTSTATUS, ~0);
662 sc->sc_intmask = 0;
663 ifp->if_flags &= ~IFF_RUNNING;
664
665 /*
666 * Let's consume any remaining transmitted packets. And if we are
667 * disabling the interface, purge ourselves of any untransmitted
668 * packets. But don't consume any received packets, just drop them.
669 * If we aren't disabling the interface, save the mbufs in the
670 * receive queue for reuse.
671 */
672 bcmeth_rxq_purge(sc, &sc->sc_rxq, disable);
673 bcmeth_txq_consume(sc, &sc->sc_txq);
674 if (disable) {
675 bcmeth_txq_purge(sc, &sc->sc_txq);
676 IF_PURGE(&ifp->if_snd);
677 }
678
679 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, 0);
680 }
681
682 static void
683 bcmeth_ifwatchdog(struct ifnet *ifp)
684 {
685 }
686
687 static int
688 bcmeth_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
689 {
690 struct bcmeth_softc *sc = ifp->if_softc;
691 struct ifreq * const ifr = data;
692 const int s = splnet();
693 int error;
694
695 switch (cmd) {
696 case SIOCSIFMEDIA:
697 case SIOCGIFMEDIA:
698 error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
699 break;
700
701 default:
702 error = ether_ioctl(ifp, cmd, data);
703 if (error != ENETRESET)
704 break;
705
706 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
707 error = 0;
708 break;
709 }
710 error = bcmeth_ifinit(ifp);
711 break;
712 }
713
714 splx(s);
715 return error;
716 }
717
718 static void
719 bcmeth_rxq_desc_presync(
720 struct bcmeth_softc *sc,
721 struct bcmeth_rxqueue *rxq,
722 struct gmac_rxdb *rxdb,
723 size_t count)
724 {
725 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
726 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
727 BUS_DMASYNC_PREWRITE);
728 }
729
730 static void
731 bcmeth_rxq_desc_postsync(
732 struct bcmeth_softc *sc,
733 struct bcmeth_rxqueue *rxq,
734 struct gmac_rxdb *rxdb,
735 size_t count)
736 {
737 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
738 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
739 BUS_DMASYNC_POSTWRITE);
740 }
741
742 static void
743 bcmeth_txq_desc_presync(
744 struct bcmeth_softc *sc,
745 struct bcmeth_txqueue *txq,
746 struct gmac_txdb *txdb,
747 size_t count)
748 {
749 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
750 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
751 BUS_DMASYNC_PREWRITE);
752 }
753
754 static void
755 bcmeth_txq_desc_postsync(
756 struct bcmeth_softc *sc,
757 struct bcmeth_txqueue *txq,
758 struct gmac_txdb *txdb,
759 size_t count)
760 {
761 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
762 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
763 BUS_DMASYNC_POSTWRITE);
764 }
765
766 static bus_dmamap_t
767 bcmeth_mapcache_get(
768 struct bcmeth_softc *sc,
769 struct bcmeth_mapcache *dmc)
770 {
771 KASSERT(dmc->dmc_nmaps > 0);
772 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
773 return dmc->dmc_maps[--dmc->dmc_nmaps];
774 }
775
776 static void
777 bcmeth_mapcache_put(
778 struct bcmeth_softc *sc,
779 struct bcmeth_mapcache *dmc,
780 bus_dmamap_t map)
781 {
782 KASSERT(map != NULL);
783 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
784 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
785 }
786
787 static void
788 bcmeth_mapcache_destroy(
789 struct bcmeth_softc *sc,
790 struct bcmeth_mapcache *dmc)
791 {
792 const size_t dmc_size =
793 offsetof(struct bcmeth_mapcache, dmc_maps[dmc->dmc_maxmaps]);
794
795 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
796 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
797 }
798 kmem_intr_free(dmc, dmc_size);
799 }
800
801 static int
802 bcmeth_mapcache_create(
803 struct bcmeth_softc *sc,
804 struct bcmeth_mapcache **dmc_p,
805 size_t maxmaps,
806 size_t maxmapsize,
807 size_t maxseg)
808 {
809 const size_t dmc_size =
810 offsetof(struct bcmeth_mapcache, dmc_maps[maxmaps]);
811 struct bcmeth_mapcache * const dmc =
812 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
813
814 dmc->dmc_maxmaps = maxmaps;
815 dmc->dmc_nmaps = maxmaps;
816 dmc->dmc_maxmapsize = maxmapsize;
817 dmc->dmc_maxseg = maxseg;
818
819 for (u_int i = 0; i < maxmaps; i++) {
820 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
821 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
822 BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
823 if (error) {
824 aprint_error_dev(sc->sc_dev,
825 "failed to creat dma map cache "
826 "entry %u of %zu: %d\n",
827 i, maxmaps, error);
828 while (i-- > 0) {
829 bus_dmamap_destroy(sc->sc_dmat,
830 dmc->dmc_maps[i]);
831 }
832 kmem_intr_free(dmc, dmc_size);
833 return error;
834 }
835 KASSERT(dmc->dmc_maps[i] != NULL);
836 }
837
838 *dmc_p = dmc;
839
840 return 0;
841 }
842
843 #if 0
844 static void
845 bcmeth_dmamem_free(
846 bus_dma_tag_t dmat,
847 size_t map_size,
848 bus_dma_segment_t *seg,
849 bus_dmamap_t map,
850 void *kvap)
851 {
852 bus_dmamap_destroy(dmat, map);
853 bus_dmamem_unmap(dmat, kvap, map_size);
854 bus_dmamem_free(dmat, seg, 1);
855 }
856 #endif
857
858 static int
859 bcmeth_dmamem_alloc(
860 bus_dma_tag_t dmat,
861 size_t map_size,
862 bus_dma_segment_t *seg,
863 bus_dmamap_t *map,
864 void **kvap)
865 {
866 int error;
867 int nseg;
868
869 *kvap = NULL;
870 *map = NULL;
871
872 error = bus_dmamem_alloc(dmat, map_size, 2*PAGE_SIZE, 0,
873 seg, 1, &nseg, 0);
874 if (error)
875 return error;
876
877 KASSERT(nseg == 1);
878
879 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap, 0);
880 if (error == 0) {
881 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
882 map);
883 if (error == 0) {
884 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
885 NULL, 0);
886 if (error == 0)
887 return 0;
888 bus_dmamap_destroy(dmat, *map);
889 *map = NULL;
890 }
891 bus_dmamem_unmap(dmat, *kvap, map_size);
892 *kvap = NULL;
893 }
894 bus_dmamem_free(dmat, seg, nseg);
895 return 0;
896 }
897
898 static struct mbuf *
899 bcmeth_rx_buf_alloc(
900 struct bcmeth_softc *sc)
901 {
902 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
903 if (m == NULL) {
904 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
905 return NULL;
906 }
907 MCLGET(m, M_DONTWAIT);
908 if ((m->m_flags & M_EXT) == 0) {
909 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
910 m_freem(m);
911 return NULL;
912 }
913 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
914
915 bus_dmamap_t map = bcmeth_mapcache_get(sc, sc->sc_rx_mapcache);
916 if (map == NULL) {
917 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
918 m_freem(m);
919 return NULL;
920 }
921 M_SETCTX(m, map);
922 m->m_len = m->m_pkthdr.len = MCLBYTES;
923 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
924 BUS_DMA_READ|BUS_DMA_NOWAIT);
925 if (error) {
926 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
927 error);
928 M_SETCTX(m, NULL);
929 m_freem(m);
930 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
931 return NULL;
932 }
933 KASSERT(map->dm_mapsize == MCLBYTES);
934 #ifdef BCMETH_RCVMAGIC
935 *mtod(m, uint32_t *) = htole32(BCMETH_RCVMAGIC);
936 bus_dmamap_sync(sc->sc_dmat, map, 0, sizeof(uint32_t),
937 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
938 bus_dmamap_sync(sc->sc_dmat, map, sizeof(uint32_t),
939 map->dm_mapsize - sizeof(uint32_t), BUS_DMASYNC_PREREAD);
940 #else
941 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
942 BUS_DMASYNC_PREREAD);
943 #endif
944
945 return m;
946 }
947
948 static void
949 bcmeth_rx_map_unload(
950 struct bcmeth_softc *sc,
951 struct mbuf *m)
952 {
953 KASSERT(m);
954 for (; m != NULL; m = m->m_next) {
955 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
956 KASSERT(map);
957 KASSERT(map->dm_mapsize == MCLBYTES);
958 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
959 BUS_DMASYNC_POSTREAD);
960 bus_dmamap_unload(sc->sc_dmat, map);
961 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
962 M_SETCTX(m, NULL);
963 }
964 }
965
966 static bool
967 bcmeth_rxq_produce(
968 struct bcmeth_softc *sc,
969 struct bcmeth_rxqueue *rxq)
970 {
971 struct gmac_rxdb *producer = rxq->rxq_producer;
972 bool produced = false;
973
974 while (rxq->rxq_inuse < rxq->rxq_threshold) {
975 struct mbuf *m;
976 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
977 if (m == NULL) {
978 m = bcmeth_rx_buf_alloc(sc);
979 if (m == NULL) {
980 printf("%s: bcmeth_rx_buf_alloc failed\n", __func__);
981 break;
982 }
983 }
984 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
985 KASSERT(map);
986
987 producer->rxdb_buflen = htole32(MCLBYTES);
988 producer->rxdb_addrlo = htole32(map->dm_segs[0].ds_addr);
989 producer->rxdb_flags &= htole32(RXDB_FLAG_ET);
990 *rxq->rxq_mtail = m;
991 rxq->rxq_mtail = &m->m_next;
992 m->m_len = MCLBYTES;
993 m->m_next = NULL;
994 rxq->rxq_inuse++;
995 if (++producer == rxq->rxq_last) {
996 membar_producer();
997 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
998 rxq->rxq_last - rxq->rxq_producer);
999 producer = rxq->rxq_producer = rxq->rxq_first;
1000 }
1001 produced = true;
1002 }
1003 if (produced) {
1004 membar_producer();
1005 if (producer != rxq->rxq_producer) {
1006 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
1007 producer - rxq->rxq_producer);
1008 rxq->rxq_producer = producer;
1009 }
1010 bcmeth_write_4(sc, rxq->rxq_reg_rcvptr,
1011 rxq->rxq_descmap->dm_segs[0].ds_addr
1012 + ((uintptr_t)producer & RCVPTR));
1013 }
1014 return true;
1015 }
1016
1017 static void
1018 bcmeth_rx_input(
1019 struct bcmeth_softc *sc,
1020 struct mbuf *m,
1021 uint32_t rxdb_flags)
1022 {
1023 struct ifnet * const ifp = &sc->sc_if;
1024
1025 bcmeth_rx_map_unload(sc, m);
1026
1027 m_adj(m, sc->sc_rcvoffset);
1028
1029 /*
1030 * If we are in promiscuous mode and this isn't a multicast, check the
1031 * destination address to make sure it matches our own. If it doesn't,
1032 * mark the packet as being received promiscuously.
1033 */
1034 if ((sc->sc_cmdcfg & PROMISC_EN)
1035 && (m->m_data[0] & 1) == 0
1036 && (*(uint16_t *)&m->m_data[0] != sc->sc_macaddr[0]
1037 || *(uint32_t *)&m->m_data[2] != sc->sc_macaddr[1])) {
1038 m->m_flags |= M_PROMISC;
1039 }
1040 m_set_rcvif(m, ifp);
1041
1042 ifp->if_ibytes += m->m_pkthdr.len;
1043
1044 /*
1045 * Let's give it to the network subsystm to deal with.
1046 */
1047 #ifdef BCMETH_MPSAFE
1048 mutex_exit(sc->sc_lock);
1049 if_input(ifp, m);
1050 mutex_enter(sc->sc_lock);
1051 #else
1052 int s = splnet();
1053 if_input(ifp, m);
1054 splx(s);
1055 #endif
1056 }
1057
1058 static bool
1059 bcmeth_rxq_consume(
1060 struct bcmeth_softc *sc,
1061 struct bcmeth_rxqueue *rxq,
1062 size_t atmost)
1063 {
1064 struct ifnet * const ifp = &sc->sc_if;
1065 struct gmac_rxdb *consumer = rxq->rxq_consumer;
1066 size_t rxconsumed = 0;
1067 bool didconsume = false;
1068
1069 while (atmost-- > 0) {
1070 if (consumer == rxq->rxq_producer) {
1071 KASSERT(rxq->rxq_inuse == 0);
1072 break;
1073 }
1074
1075 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1076 uint32_t currdscr = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1077 if (consumer == rxq->rxq_first + currdscr) {
1078 break;
1079 }
1080 bcmeth_rxq_desc_postsync(sc, rxq, consumer, 1);
1081
1082 /*
1083 * We own this packet again. Copy the rxsts word from it.
1084 */
1085 rxconsumed++;
1086 didconsume = true;
1087 uint32_t rxsts;
1088 KASSERT(rxq->rxq_mhead != NULL);
1089 bus_dmamap_t map = M_GETCTX(rxq->rxq_mhead, bus_dmamap_t);
1090 bus_dmamap_sync(sc->sc_dmat, map, 0, arm_dcache_align,
1091 BUS_DMASYNC_POSTREAD);
1092 memcpy(&rxsts, rxq->rxq_mhead->m_data, 4);
1093 rxsts = le32toh(rxsts);
1094 #if 0
1095 KASSERTMSG(rxsts != BCMETH_RCVMAGIC, "currdscr=%u consumer=%zd",
1096 currdscr, consumer - rxq->rxq_first);
1097 #endif
1098
1099 /*
1100 * Get the count of descriptors. Fetch the correct number
1101 * of mbufs.
1102 */
1103 #ifdef BCMETH_RCVMAGIC
1104 size_t desc_count = rxsts != BCMETH_RCVMAGIC ? __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1 : 1;
1105 #else
1106 size_t desc_count = __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1;
1107 #endif
1108 struct mbuf *m = rxq->rxq_mhead;
1109 struct mbuf *m_last = m;
1110 for (size_t i = 1; i < desc_count; i++) {
1111 if (++consumer == rxq->rxq_last) {
1112 consumer = rxq->rxq_first;
1113 }
1114 KASSERTMSG(consumer != rxq->rxq_first + currdscr,
1115 "i=%zu rxsts=%#x desc_count=%zu currdscr=%u consumer=%zd",
1116 i, rxsts, desc_count, currdscr,
1117 consumer - rxq->rxq_first);
1118 m_last = m_last->m_next;
1119 }
1120
1121 /*
1122 * Now remove it/them from the list of enqueued mbufs.
1123 */
1124 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1125 rxq->rxq_mtail = &rxq->rxq_mhead;
1126 m_last->m_next = NULL;
1127
1128 #ifdef BCMETH_RCVMAGIC
1129 if (rxsts == BCMETH_RCVMAGIC) {
1130 ifp->if_ierrors++;
1131 if ((m->m_ext.ext_paddr >> 28) == 8) {
1132 BCMETH_EVCNT_INCR(sc->sc_ev_rx_badmagic_lo);
1133 } else {
1134 BCMETH_EVCNT_INCR( sc->sc_ev_rx_badmagic_hi);
1135 }
1136 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1137 } else
1138 #endif /* BCMETH_RCVMAGIC */
1139 if (rxsts & (RXSTS_CRC_ERROR|RXSTS_OVERSIZED|RXSTS_PKT_OVERFLOW)) {
1140 aprint_error_dev(sc->sc_dev, "[%zu]: count=%zu rxsts=%#x\n",
1141 consumer - rxq->rxq_first, desc_count, rxsts);
1142 /*
1143 * We encountered an error, take the mbufs and add them
1144 * to the rx bufcache so we can quickly reuse them.
1145 */
1146 ifp->if_ierrors++;
1147 do {
1148 struct mbuf *m0 = m->m_next;
1149 m->m_next = NULL;
1150 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1151 m = m0;
1152 } while (m);
1153 } else {
1154 uint32_t framelen = __SHIFTOUT(rxsts, RXSTS_FRAMELEN);
1155 framelen += sc->sc_rcvoffset;
1156 m->m_pkthdr.len = framelen;
1157 if (desc_count == 1) {
1158 KASSERT(framelen <= MCLBYTES);
1159 m->m_len = framelen;
1160 } else {
1161 m_last->m_len = framelen & (MCLBYTES - 1);
1162 }
1163
1164 #ifdef BCMETH_MPSAFE
1165 /*
1166 * Wrap at the last entry!
1167 */
1168 if (++consumer == rxq->rxq_last) {
1169 KASSERT(consumer[-1].rxdb_flags & htole32(RXDB_FLAG_ET));
1170 rxq->rxq_consumer = rxq->rxq_first;
1171 } else {
1172 rxq->rxq_consumer = consumer;
1173 }
1174 rxq->rxq_inuse -= rxconsumed;
1175 #endif /* BCMETH_MPSAFE */
1176
1177 /*
1178 * Receive the packet (which releases our lock)
1179 */
1180 bcmeth_rx_input(sc, m, rxsts);
1181
1182 #ifdef BCMETH_MPSAFE
1183 /*
1184 * Since we had to give up our lock, we need to
1185 * refresh these.
1186 */
1187 consumer = rxq->rxq_consumer;
1188 rxconsumed = 0;
1189 continue;
1190 #endif /* BCMETH_MPSAFE */
1191 }
1192
1193 /*
1194 * Wrap at the last entry!
1195 */
1196 if (++consumer == rxq->rxq_last) {
1197 KASSERT(consumer[-1].rxdb_flags & htole32(RXDB_FLAG_ET));
1198 consumer = rxq->rxq_first;
1199 }
1200 }
1201
1202 /*
1203 * Update queue info.
1204 */
1205 rxq->rxq_consumer = consumer;
1206 rxq->rxq_inuse -= rxconsumed;
1207
1208 /*
1209 * Did we consume anything?
1210 */
1211 return didconsume;
1212 }
1213
1214 static void
1215 bcmeth_rxq_purge(
1216 struct bcmeth_softc *sc,
1217 struct bcmeth_rxqueue *rxq,
1218 bool discard)
1219 {
1220 struct mbuf *m;
1221
1222 if ((m = rxq->rxq_mhead) != NULL) {
1223 if (discard) {
1224 bcmeth_rx_map_unload(sc, m);
1225 m_freem(m);
1226 } else {
1227 while (m != NULL) {
1228 struct mbuf *m0 = m->m_next;
1229 m->m_next = NULL;
1230 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1231 m = m0;
1232 }
1233 }
1234
1235 }
1236
1237 rxq->rxq_mhead = NULL;
1238 rxq->rxq_mtail = &rxq->rxq_mhead;
1239 rxq->rxq_inuse = 0;
1240 }
1241
1242 static void
1243 bcmeth_rxq_reset(
1244 struct bcmeth_softc *sc,
1245 struct bcmeth_rxqueue *rxq)
1246 {
1247 /*
1248 * sync all the descriptors
1249 */
1250 bcmeth_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1251 rxq->rxq_last - rxq->rxq_first);
1252
1253 /*
1254 * Make sure we own all descriptors in the ring.
1255 */
1256 struct gmac_rxdb *rxdb;
1257 for (rxdb = rxq->rxq_first; rxdb < rxq->rxq_last - 1; rxdb++) {
1258 rxdb->rxdb_flags = htole32(RXDB_FLAG_IC);
1259 }
1260
1261 /*
1262 * Last descriptor has the wrap flag.
1263 */
1264 rxdb->rxdb_flags = htole32(RXDB_FLAG_ET|RXDB_FLAG_IC);
1265
1266 /*
1267 * Reset the producer consumer indexes.
1268 */
1269 rxq->rxq_consumer = rxq->rxq_first;
1270 rxq->rxq_producer = rxq->rxq_first;
1271 rxq->rxq_inuse = 0;
1272 if (rxq->rxq_threshold < BCMETH_MINRXMBUFS)
1273 rxq->rxq_threshold = BCMETH_MINRXMBUFS;
1274
1275 sc->sc_intmask |= RCVINT|RCVFIFOOF|RCVDESCUF;
1276
1277 /*
1278 * Restart the receiver at the first descriptor
1279 */
1280 bcmeth_write_4(sc, rxq->rxq_reg_rcvaddrlo,
1281 rxq->rxq_descmap->dm_segs[0].ds_addr);
1282 }
1283
1284 static int
1285 bcmeth_rxq_attach(
1286 struct bcmeth_softc *sc,
1287 struct bcmeth_rxqueue *rxq,
1288 u_int qno)
1289 {
1290 size_t desc_count = BCMETH_RINGSIZE / sizeof(rxq->rxq_first[0]);
1291 int error;
1292 void *descs;
1293
1294 KASSERT(desc_count == 256 || desc_count == 512);
1295
1296 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1297 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1298 if (error)
1299 return error;
1300
1301 memset(descs, 0, BCMETH_RINGSIZE);
1302 rxq->rxq_first = descs;
1303 rxq->rxq_last = rxq->rxq_first + desc_count;
1304 rxq->rxq_consumer = descs;
1305 rxq->rxq_producer = descs;
1306
1307 bcmeth_rxq_purge(sc, rxq, true);
1308 bcmeth_rxq_reset(sc, rxq);
1309
1310 rxq->rxq_reg_rcvaddrlo = GMAC_RCVADDR_LOW;
1311 rxq->rxq_reg_rcvctl = GMAC_RCVCONTROL;
1312 rxq->rxq_reg_rcvptr = GMAC_RCVPTR;
1313 rxq->rxq_reg_rcvsts0 = GMAC_RCVSTATUS0;
1314 rxq->rxq_reg_rcvsts1 = GMAC_RCVSTATUS1;
1315
1316 return 0;
1317 }
1318
1319 static bool
1320 bcmeth_txq_active_p(
1321 struct bcmeth_softc * const sc,
1322 struct bcmeth_txqueue *txq)
1323 {
1324 return !IF_IS_EMPTY(&txq->txq_mbufs);
1325 }
1326
1327 static bool
1328 bcmeth_txq_fillable_p(
1329 struct bcmeth_softc * const sc,
1330 struct bcmeth_txqueue *txq)
1331 {
1332 return txq->txq_free >= txq->txq_threshold;
1333 }
1334
1335 static int
1336 bcmeth_txq_attach(
1337 struct bcmeth_softc *sc,
1338 struct bcmeth_txqueue *txq,
1339 u_int qno)
1340 {
1341 size_t desc_count = BCMETH_RINGSIZE / sizeof(txq->txq_first[0]);
1342 int error;
1343 void *descs;
1344
1345 KASSERT(desc_count == 256 || desc_count == 512);
1346
1347 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1348 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1349 if (error)
1350 return error;
1351
1352 memset(descs, 0, BCMETH_RINGSIZE);
1353 txq->txq_first = descs;
1354 txq->txq_last = txq->txq_first + desc_count;
1355 txq->txq_consumer = descs;
1356 txq->txq_producer = descs;
1357
1358 IFQ_SET_MAXLEN(&txq->txq_mbufs, BCMETH_MAXTXMBUFS);
1359
1360 txq->txq_reg_xmtaddrlo = GMAC_XMTADDR_LOW;
1361 txq->txq_reg_xmtctl = GMAC_XMTCONTROL;
1362 txq->txq_reg_xmtptr = GMAC_XMTPTR;
1363 txq->txq_reg_xmtsts0 = GMAC_XMTSTATUS0;
1364 txq->txq_reg_xmtsts1 = GMAC_XMTSTATUS1;
1365
1366 bcmeth_txq_reset(sc, txq);
1367
1368 return 0;
1369 }
1370
1371 static int
1372 bcmeth_txq_map_load(
1373 struct bcmeth_softc *sc,
1374 struct bcmeth_txqueue *txq,
1375 struct mbuf *m)
1376 {
1377 bus_dmamap_t map;
1378 int error;
1379
1380 map = M_GETCTX(m, bus_dmamap_t);
1381 if (map != NULL)
1382 return 0;
1383
1384 map = bcmeth_mapcache_get(sc, sc->sc_tx_mapcache);
1385 if (map == NULL)
1386 return ENOMEM;
1387
1388 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1389 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1390 if (error)
1391 return error;
1392
1393 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1394 BUS_DMASYNC_PREWRITE);
1395 M_SETCTX(m, map);
1396 return 0;
1397 }
1398
1399 static void
1400 bcmeth_txq_map_unload(
1401 struct bcmeth_softc *sc,
1402 struct bcmeth_txqueue *txq,
1403 struct mbuf *m)
1404 {
1405 KASSERT(m);
1406 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1407 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1408 BUS_DMASYNC_POSTWRITE);
1409 bus_dmamap_unload(sc->sc_dmat, map);
1410 bcmeth_mapcache_put(sc, sc->sc_tx_mapcache, map);
1411 }
1412
1413 static bool
1414 bcmeth_txq_produce(
1415 struct bcmeth_softc *sc,
1416 struct bcmeth_txqueue *txq,
1417 struct mbuf *m)
1418 {
1419 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1420
1421 if (map->dm_nsegs > txq->txq_free)
1422 return false;
1423
1424 /*
1425 * TCP Offload flag must be set in the first descriptor.
1426 */
1427 struct gmac_txdb *producer = txq->txq_producer;
1428 uint32_t first_flags = TXDB_FLAG_SF;
1429 uint32_t last_flags = TXDB_FLAG_EF;
1430
1431 /*
1432 * If we've produced enough descriptors without consuming any
1433 * we need to ask for an interrupt to reclaim some.
1434 */
1435 txq->txq_lastintr += map->dm_nsegs;
1436 if (txq->txq_lastintr >= txq->txq_threshold
1437 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1438 txq->txq_lastintr = 0;
1439 last_flags |= TXDB_FLAG_IC;
1440 }
1441
1442 KASSERT(producer != txq->txq_last);
1443
1444 struct gmac_txdb *start = producer;
1445 size_t count = map->dm_nsegs;
1446 producer->txdb_flags |= htole32(first_flags);
1447 producer->txdb_addrlo = htole32(map->dm_segs[0].ds_addr);
1448 producer->txdb_buflen = htole32(map->dm_segs[0].ds_len);
1449 for (u_int i = 1; i < map->dm_nsegs; i++) {
1450 #if 0
1451 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1452 le32toh(producer->txdb_flags),
1453 le32toh(producer->txdb_buflen),
1454 le32toh(producer->txdb_addrlo),
1455 le32toh(producer->txdb_addrhi));
1456 #endif
1457 if (__predict_false(++producer == txq->txq_last)) {
1458 bcmeth_txq_desc_presync(sc, txq, start,
1459 txq->txq_last - start);
1460 count -= txq->txq_last - start;
1461 producer = txq->txq_first;
1462 start = txq->txq_first;
1463 }
1464 producer->txdb_addrlo = htole32(map->dm_segs[i].ds_addr);
1465 producer->txdb_buflen = htole32(map->dm_segs[i].ds_len);
1466 }
1467 producer->txdb_flags |= htole32(last_flags);
1468 #if 0
1469 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1470 le32toh(producer->txdb_flags), le32toh(producer->txdb_buflen),
1471 le32toh(producer->txdb_addrlo), le32toh(producer->txdb_addrhi));
1472 #endif
1473 if (count)
1474 bcmeth_txq_desc_presync(sc, txq, start, count);
1475
1476 /*
1477 * Reduce free count by the number of segments we consumed.
1478 */
1479 txq->txq_free -= map->dm_nsegs;
1480 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1481 KASSERT(map->dm_nsegs == 1 || (txq->txq_producer->txdb_flags & htole32(TXDB_FLAG_EF)) == 0);
1482 KASSERT(producer->txdb_flags & htole32(TXDB_FLAG_EF));
1483
1484 #if 0
1485 printf("%s: mbuf %p: produced a %u byte packet in %u segments (%zd..%zd)\n",
1486 __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1487 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1488 #endif
1489
1490 if (producer + 1 == txq->txq_last)
1491 txq->txq_producer = txq->txq_first;
1492 else
1493 txq->txq_producer = producer + 1;
1494 IF_ENQUEUE(&txq->txq_mbufs, m);
1495
1496 /*
1497 * Let the transmitter know there's more to do
1498 */
1499 bcmeth_write_4(sc, txq->txq_reg_xmtptr,
1500 txq->txq_descmap->dm_segs[0].ds_addr
1501 + ((uintptr_t)txq->txq_producer & XMT_LASTDSCR));
1502
1503 return true;
1504 }
1505
1506 static struct mbuf *
1507 bcmeth_copy_packet(struct mbuf *m)
1508 {
1509 struct mbuf *mext = NULL;
1510 size_t misalignment = 0;
1511 size_t hlen = 0;
1512
1513 for (mext = m; mext != NULL; mext = mext->m_next) {
1514 if (mext->m_flags & M_EXT) {
1515 misalignment = mtod(mext, vaddr_t) & arm_dcache_align;
1516 break;
1517 }
1518 hlen += m->m_len;
1519 }
1520
1521 struct mbuf *n = m->m_next;
1522 if (m != mext && hlen + misalignment <= MHLEN && false) {
1523 KASSERT(m->m_pktdat <= m->m_data && m->m_data <= &m->m_pktdat[MHLEN - m->m_len]);
1524 size_t oldoff = m->m_data - m->m_pktdat;
1525 size_t off;
1526 if (mext == NULL) {
1527 off = (oldoff + hlen > MHLEN) ? 0 : oldoff;
1528 } else {
1529 off = MHLEN - (hlen + misalignment);
1530 }
1531 KASSERT(off + hlen + misalignment <= MHLEN);
1532 if (((oldoff ^ off) & arm_dcache_align) != 0 || off < oldoff) {
1533 memmove(&m->m_pktdat[off], m->m_data, m->m_len);
1534 m->m_data = &m->m_pktdat[off];
1535 }
1536 m_copydata(n, 0, hlen - m->m_len, &m->m_data[m->m_len]);
1537 m->m_len = hlen;
1538 m->m_next = mext;
1539 while (n != mext) {
1540 n = m_free(n);
1541 }
1542 return m;
1543 }
1544
1545 struct mbuf *m0 = m_gethdr(M_DONTWAIT, m->m_type);
1546 if (m0 == NULL) {
1547 return NULL;
1548 }
1549 m_copy_pkthdr(m0, m);
1550 MCLAIM(m0, m->m_owner);
1551 if (m0->m_pkthdr.len > MHLEN) {
1552 MCLGET(m0, M_DONTWAIT);
1553 if ((m0->m_flags & M_EXT) == 0) {
1554 m_freem(m0);
1555 return NULL;
1556 }
1557 }
1558 m0->m_len = m->m_pkthdr.len;
1559 m_copydata(m, 0, m0->m_len, mtod(m0, void *));
1560 m_freem(m);
1561 return m0;
1562 }
1563
1564 static bool
1565 bcmeth_txq_enqueue(
1566 struct bcmeth_softc *sc,
1567 struct bcmeth_txqueue *txq)
1568 {
1569 for (;;) {
1570 if (IF_QFULL(&txq->txq_mbufs))
1571 return false;
1572 struct mbuf *m = txq->txq_next;
1573 if (m == NULL) {
1574 int s = splnet();
1575 IF_DEQUEUE(&sc->sc_if.if_snd, m);
1576 splx(s);
1577 if (m == NULL)
1578 return true;
1579 M_SETCTX(m, NULL);
1580 } else {
1581 txq->txq_next = NULL;
1582 }
1583 /*
1584 * If LINK2 is set and this packet uses multiple mbufs,
1585 * consolidate it into a single mbuf.
1586 */
1587 if (m->m_next != NULL && (sc->sc_if.if_flags & IFF_LINK2)) {
1588 struct mbuf *m0 = bcmeth_copy_packet(m);
1589 if (m0 == NULL) {
1590 txq->txq_next = m;
1591 return true;
1592 }
1593 m = m0;
1594 }
1595 int error = bcmeth_txq_map_load(sc, txq, m);
1596 if (error) {
1597 aprint_error_dev(sc->sc_dev,
1598 "discarded packet due to "
1599 "dmamap load failure: %d\n", error);
1600 m_freem(m);
1601 continue;
1602 }
1603 KASSERT(txq->txq_next == NULL);
1604 if (!bcmeth_txq_produce(sc, txq, m)) {
1605 txq->txq_next = m;
1606 return false;
1607 }
1608 KASSERT(txq->txq_next == NULL);
1609 }
1610 }
1611
1612 static bool
1613 bcmeth_txq_consume(
1614 struct bcmeth_softc *sc,
1615 struct bcmeth_txqueue *txq)
1616 {
1617 struct ifnet * const ifp = &sc->sc_if;
1618 struct gmac_txdb *consumer = txq->txq_consumer;
1619 size_t txfree = 0;
1620
1621 #if 0
1622 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1623 #endif
1624
1625 for (;;) {
1626 if (consumer == txq->txq_producer) {
1627 txq->txq_consumer = consumer;
1628 txq->txq_free += txfree;
1629 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
1630 #if 0
1631 printf("%s: empty: freed %zu descriptors going from %zu to %zu\n",
1632 __func__, txfree, txq->txq_free - txfree, txq->txq_free);
1633 #endif
1634 KASSERT(txq->txq_lastintr == 0);
1635 KASSERT(txq->txq_free == txq->txq_last - txq->txq_first - 1);
1636 return true;
1637 }
1638 bcmeth_txq_desc_postsync(sc, txq, consumer, 1);
1639 uint32_t s0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
1640 if (consumer == txq->txq_first + __SHIFTOUT(s0, XMT_CURRDSCR)) {
1641 txq->txq_consumer = consumer;
1642 txq->txq_free += txfree;
1643 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
1644 #if 0
1645 printf("%s: freed %zu descriptors\n",
1646 __func__, txfree);
1647 #endif
1648 return bcmeth_txq_fillable_p(sc, txq);
1649 }
1650
1651 /*
1652 * If this is the last descriptor in the chain, get the
1653 * mbuf, free its dmamap, and free the mbuf chain itself.
1654 */
1655 const uint32_t txdb_flags = le32toh(consumer->txdb_flags);
1656 if (txdb_flags & TXDB_FLAG_EF) {
1657 struct mbuf *m;
1658
1659 IF_DEQUEUE(&txq->txq_mbufs, m);
1660 KASSERT(m);
1661 bcmeth_txq_map_unload(sc, txq, m);
1662 #if 0
1663 printf("%s: mbuf %p: consumed a %u byte packet\n",
1664 __func__, m, m->m_pkthdr.len);
1665 #endif
1666 bpf_mtap(ifp, m, BPF_D_OUT);
1667 ifp->if_opackets++;
1668 ifp->if_obytes += m->m_pkthdr.len;
1669 if (m->m_flags & M_MCAST)
1670 ifp->if_omcasts++;
1671 m_freem(m);
1672 }
1673
1674 /*
1675 * We own this packet again. Clear all flags except wrap.
1676 */
1677 txfree++;
1678
1679 /*
1680 * Wrap at the last entry!
1681 */
1682 if (txdb_flags & TXDB_FLAG_ET) {
1683 consumer->txdb_flags = htole32(TXDB_FLAG_ET);
1684 KASSERT(consumer + 1 == txq->txq_last);
1685 consumer = txq->txq_first;
1686 } else {
1687 consumer->txdb_flags = 0;
1688 consumer++;
1689 KASSERT(consumer < txq->txq_last);
1690 }
1691 }
1692 }
1693
1694 static void
1695 bcmeth_txq_purge(
1696 struct bcmeth_softc *sc,
1697 struct bcmeth_txqueue *txq)
1698 {
1699 struct mbuf *m;
1700 KASSERT((bcmeth_read_4(sc, UNIMAC_COMMAND_CONFIG) & TX_ENA) == 0);
1701
1702 for (;;) {
1703 IF_DEQUEUE(&txq->txq_mbufs, m);
1704 if (m == NULL)
1705 break;
1706 bcmeth_txq_map_unload(sc, txq, m);
1707 m_freem(m);
1708 }
1709 if ((m = txq->txq_next) != NULL) {
1710 txq->txq_next = NULL;
1711 bcmeth_txq_map_unload(sc, txq, m);
1712 m_freem(m);
1713 }
1714 }
1715
1716 static void
1717 bcmeth_txq_reset(
1718 struct bcmeth_softc *sc,
1719 struct bcmeth_txqueue *txq)
1720 {
1721 /*
1722 * sync all the descriptors
1723 */
1724 bcmeth_txq_desc_postsync(sc, txq, txq->txq_first,
1725 txq->txq_last - txq->txq_first);
1726
1727 /*
1728 * Make sure we own all descriptors in the ring.
1729 */
1730 struct gmac_txdb *txdb;
1731 for (txdb = txq->txq_first; txdb < txq->txq_last - 1; txdb++) {
1732 txdb->txdb_flags = 0;
1733 }
1734
1735 /*
1736 * Last descriptor has the wrap flag.
1737 */
1738 txdb->txdb_flags = htole32(TXDB_FLAG_ET);
1739
1740 /*
1741 * Reset the producer consumer indexes.
1742 */
1743 txq->txq_consumer = txq->txq_first;
1744 txq->txq_producer = txq->txq_first;
1745 txq->txq_free = txq->txq_last - txq->txq_first - 1;
1746 txq->txq_threshold = txq->txq_free / 2;
1747 txq->txq_lastintr = 0;
1748
1749 /*
1750 * What do we want to get interrupted on?
1751 */
1752 sc->sc_intmask |= XMTINT_0 | XMTUF;
1753
1754 /*
1755 * Restart the transmiter at the first descriptor
1756 */
1757 bcmeth_write_4(sc, txq->txq_reg_xmtaddrlo,
1758 txq->txq_descmap->dm_segs->ds_addr);
1759 }
1760
1761 static void
1762 bcmeth_ifstart(struct ifnet *ifp)
1763 {
1764 struct bcmeth_softc * const sc = ifp->if_softc;
1765
1766 if (__predict_false((ifp->if_flags & IFF_RUNNING) == 0)) {
1767 return;
1768 }
1769
1770 #ifdef BCMETH_MPSAFETX
1771 if (cpu_intr_p()) {
1772 #endif
1773 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
1774 softint_schedule(sc->sc_soft_ih);
1775 #ifdef BCMETH_MPSAFETX
1776 } else {
1777 /*
1778 * Either we are in a softintr thread already or some other
1779 * thread so just borrow it to do the send and save ourselves
1780 * the overhead of a fast soft int.
1781 */
1782 bcmeth_soft_txintr(sc);
1783 }
1784 #endif
1785 }
1786
1787 int
1788 bcmeth_intr(void *arg)
1789 {
1790 struct bcmeth_softc * const sc = arg;
1791 uint32_t soft_flags = 0;
1792 uint32_t work_flags = 0;
1793 int rv = 0;
1794
1795 mutex_enter(sc->sc_hwlock);
1796
1797 uint32_t intmask = sc->sc_intmask;
1798 BCMETH_EVCNT_INCR(sc->sc_ev_intr);
1799
1800 for (;;) {
1801 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
1802 intstatus &= intmask;
1803 bcmeth_write_4(sc, GMAC_INTSTATUS, intstatus); /* write 1 to clear */
1804 if (intstatus == 0) {
1805 break;
1806 }
1807 #if 0
1808 aprint_normal_dev(sc->sc_dev, "%s: intstatus=%#x intmask=%#x\n",
1809 __func__, intstatus, bcmeth_read_4(sc, GMAC_INTMASK));
1810 #endif
1811 if (intstatus & RCVINT) {
1812 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
1813 intmask &= ~RCVINT;
1814
1815 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1816 uint32_t descs = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1817 if (descs < rxq->rxq_consumer - rxq->rxq_first) {
1818 /*
1819 * We wrapped at the end so count how far
1820 * we are from the end.
1821 */
1822 descs += rxq->rxq_last - rxq->rxq_consumer;
1823 } else {
1824 descs -= rxq->rxq_consumer - rxq->rxq_first;
1825 }
1826 /*
1827 * If we "timedout" we can't be hogging so use
1828 * softints. If we exceeded then we might hogging
1829 * so let the workqueue deal with them.
1830 */
1831 const uint32_t framecount = __SHIFTOUT(sc->sc_rcvlazy, INTRCVLAZY_FRAMECOUNT);
1832 if (descs < framecount
1833 || (curcpu()->ci_curlwp->l_flag & LW_IDLE)) {
1834 soft_flags |= SOFT_RXINTR;
1835 } else {
1836 work_flags |= WORK_RXINTR;
1837 }
1838 }
1839
1840 if (intstatus & XMTINT_0) {
1841 intmask &= ~XMTINT_0;
1842 soft_flags |= SOFT_TXINTR;
1843 }
1844
1845 if (intstatus & RCVDESCUF) {
1846 intmask &= ~RCVDESCUF;
1847 work_flags |= WORK_RXUNDERFLOW;
1848 }
1849
1850 intstatus &= intmask;
1851 if (intstatus) {
1852 aprint_error_dev(sc->sc_dev,
1853 "intr: intstatus=%#x\n", intstatus);
1854 aprint_error_dev(sc->sc_dev,
1855 "rcvbase=%p/%#lx rcvptr=%#x rcvsts=%#x/%#x\n",
1856 sc->sc_rxq.rxq_first,
1857 sc->sc_rxq.rxq_descmap->dm_segs[0].ds_addr,
1858 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvptr),
1859 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts0),
1860 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts1));
1861 aprint_error_dev(sc->sc_dev,
1862 "xmtbase=%p/%#lx xmtptr=%#x xmtsts=%#x/%#x\n",
1863 sc->sc_txq.txq_first,
1864 sc->sc_txq.txq_descmap->dm_segs[0].ds_addr,
1865 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtptr),
1866 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts0),
1867 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts1));
1868 intmask &= ~intstatus;
1869 work_flags |= WORK_REINIT;
1870 break;
1871 }
1872 }
1873
1874 if (intmask != sc->sc_intmask) {
1875 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1876 }
1877
1878 if (work_flags) {
1879 if (sc->sc_work_flags == 0) {
1880 workqueue_enqueue(sc->sc_workq, &sc->sc_work, NULL);
1881 }
1882 atomic_or_32(&sc->sc_work_flags, work_flags);
1883 rv = 1;
1884 }
1885
1886 if (soft_flags) {
1887 if (sc->sc_soft_flags == 0) {
1888 softint_schedule(sc->sc_soft_ih);
1889 }
1890 atomic_or_32(&sc->sc_soft_flags, soft_flags);
1891 rv = 1;
1892 }
1893
1894 mutex_exit(sc->sc_hwlock);
1895
1896 return rv;
1897 }
1898
1899 #ifdef BCMETH_MPSAFETX
1900 void
1901 bcmeth_soft_txintr(struct bcmeth_softc *sc)
1902 {
1903 mutex_enter(sc->sc_lock);
1904 /*
1905 * Let's do what we came here for. Consume transmitted
1906 * packets off the the transmit ring.
1907 */
1908 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1909 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1910 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1911 sc->sc_if.if_flags |= IFF_OACTIVE;
1912 } else {
1913 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1914 }
1915 if (sc->sc_if.if_flags & IFF_RUNNING) {
1916 mutex_spin_enter(sc->sc_hwlock);
1917 sc->sc_intmask |= XMTINT_0;
1918 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1919 mutex_spin_exit(sc->sc_hwlock);
1920 }
1921 mutex_exit(sc->sc_lock);
1922 }
1923 #endif /* BCMETH_MPSAFETX */
1924
1925 void
1926 bcmeth_soft_intr(void *arg)
1927 {
1928 struct bcmeth_softc * const sc = arg;
1929 struct ifnet * const ifp = &sc->sc_if;
1930 uint32_t intmask = 0;
1931
1932 mutex_enter(sc->sc_lock);
1933
1934 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
1935
1936 BCMETH_EVCNT_INCR(sc->sc_ev_soft_intr);
1937
1938 if ((soft_flags & SOFT_TXINTR)
1939 || bcmeth_txq_active_p(sc, &sc->sc_txq)) {
1940 /*
1941 * Let's do what we came here for. Consume transmitted
1942 * packets off the the transmit ring.
1943 */
1944 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1945 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1946 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1947 ifp->if_flags |= IFF_OACTIVE;
1948 } else {
1949 ifp->if_flags &= ~IFF_OACTIVE;
1950 }
1951 intmask |= XMTINT_0;
1952 }
1953
1954 if (soft_flags & SOFT_RXINTR) {
1955 /*
1956 * Let's consume
1957 */
1958 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
1959 sc->sc_rxq.rxq_threshold / 4)) {
1960 /*
1961 * We've consumed a quarter of the ring and still have
1962 * more to do. Refill the ring.
1963 */
1964 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1965 }
1966 intmask |= RCVINT;
1967 }
1968
1969 if (ifp->if_flags & IFF_RUNNING) {
1970 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1971 mutex_spin_enter(sc->sc_hwlock);
1972 sc->sc_intmask |= intmask;
1973 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1974 mutex_spin_exit(sc->sc_hwlock);
1975 }
1976
1977 mutex_exit(sc->sc_lock);
1978 }
1979
1980 void
1981 bcmeth_worker(struct work *wk, void *arg)
1982 {
1983 struct bcmeth_softc * const sc = arg;
1984 struct ifnet * const ifp = &sc->sc_if;
1985 uint32_t intmask = 0;
1986
1987 mutex_enter(sc->sc_lock);
1988
1989 BCMETH_EVCNT_INCR(sc->sc_ev_work);
1990
1991 uint32_t work_flags = atomic_swap_32(&sc->sc_work_flags, 0);
1992 if (work_flags & WORK_REINIT) {
1993 int s = splnet();
1994 sc->sc_soft_flags = 0;
1995 bcmeth_ifinit(ifp);
1996 splx(s);
1997 work_flags &= ~WORK_RXUNDERFLOW;
1998 }
1999
2000 if (work_flags & WORK_RXUNDERFLOW) {
2001 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
2002 size_t threshold = 5 * rxq->rxq_threshold / 4;
2003 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
2004 threshold = rxq->rxq_last - rxq->rxq_first - 1;
2005 } else {
2006 intmask |= RCVDESCUF;
2007 }
2008 aprint_normal_dev(sc->sc_dev,
2009 "increasing receive buffers from %zu to %zu\n",
2010 rxq->rxq_threshold, threshold);
2011 rxq->rxq_threshold = threshold;
2012 }
2013
2014 if (work_flags & WORK_RXINTR) {
2015 /*
2016 * Let's consume
2017 */
2018 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
2019 sc->sc_rxq.rxq_threshold / 4)) {
2020 /*
2021 * We've consumed a quarter of the ring and still have
2022 * more to do. Refill the ring.
2023 */
2024 bcmeth_rxq_produce(sc, &sc->sc_rxq);
2025 }
2026 intmask |= RCVINT;
2027 }
2028
2029 if (ifp->if_flags & IFF_RUNNING) {
2030 bcmeth_rxq_produce(sc, &sc->sc_rxq);
2031 #if 0
2032 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
2033 if (intstatus & RCVINT) {
2034 bcmeth_write_4(sc, GMAC_INTSTATUS, RCVINT);
2035 work_flags |= WORK_RXINTR;
2036 continue;
2037 }
2038 #endif
2039 mutex_spin_enter(sc->sc_hwlock);
2040 sc->sc_intmask |= intmask;
2041 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
2042 mutex_spin_exit(sc->sc_hwlock);
2043 }
2044
2045 mutex_exit(sc->sc_lock);
2046 }
2047