bcm53xx_eth.c revision 1.41 1 /*-
2 * Copyright (c) 2012 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas of 3am Software Foundry.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #define _ARM32_BUS_DMA_PRIVATE
31 #define GMAC_PRIVATE
32
33 #include "locators.h"
34 #include "opt_broadcom.h"
35
36 #include <sys/cdefs.h>
37
38 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_eth.c,v 1.41 2021/06/16 00:21:17 riastradh Exp $");
39
40 #include <sys/param.h>
41 #include <sys/atomic.h>
42 #include <sys/bus.h>
43 #include <sys/device.h>
44 #include <sys/ioctl.h>
45 #include <sys/intr.h>
46 #include <sys/kmem.h>
47 #include <sys/mutex.h>
48 #include <sys/socket.h>
49 #include <sys/systm.h>
50 #include <sys/workqueue.h>
51
52 #include <net/if.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_dl.h>
56 #include <net/bpf.h>
57
58 #include <dev/mii/miivar.h>
59
60 #include <arm/locore.h>
61
62 #include <arm/broadcom/bcm53xx_reg.h>
63 #include <arm/broadcom/bcm53xx_var.h>
64
65 //#define BCMETH_MPSAFE
66
67 #ifdef BCMETH_COUNTERS
68 #define BCMETH_EVCNT_ADD(a, b) ((void)((a).ev_count += (b)))
69 #else
70 #define BCMETH_EVCNT_ADD(a, b) do { } while (/*CONSTCOND*/0)
71 #endif
72 #define BCMETH_EVCNT_INCR(a) BCMETH_EVCNT_ADD((a), 1)
73
74 #define BCMETH_MAXTXMBUFS 128
75 #define BCMETH_NTXSEGS 30
76 #define BCMETH_MAXRXMBUFS 255
77 #define BCMETH_MINRXMBUFS 64
78 #define BCMETH_NRXSEGS 1
79 #define BCMETH_RINGSIZE PAGE_SIZE
80
81 #if 1
82 #define BCMETH_RCVMAGIC 0xfeedface
83 #endif
84
85 static int bcmeth_ccb_match(device_t, cfdata_t, void *);
86 static void bcmeth_ccb_attach(device_t, device_t, void *);
87
88 struct bcmeth_txqueue {
89 bus_dmamap_t txq_descmap;
90 struct gmac_txdb *txq_consumer;
91 struct gmac_txdb *txq_producer;
92 struct gmac_txdb *txq_first;
93 struct gmac_txdb *txq_last;
94 struct ifqueue txq_mbufs;
95 struct mbuf *txq_next;
96 size_t txq_free;
97 size_t txq_threshold;
98 size_t txq_lastintr;
99 bus_size_t txq_reg_xmtaddrlo;
100 bus_size_t txq_reg_xmtptr;
101 bus_size_t txq_reg_xmtctl;
102 bus_size_t txq_reg_xmtsts0;
103 bus_size_t txq_reg_xmtsts1;
104 bus_dma_segment_t txq_descmap_seg;
105 };
106
107 struct bcmeth_rxqueue {
108 bus_dmamap_t rxq_descmap;
109 struct gmac_rxdb *rxq_consumer;
110 struct gmac_rxdb *rxq_producer;
111 struct gmac_rxdb *rxq_first;
112 struct gmac_rxdb *rxq_last;
113 struct mbuf *rxq_mhead;
114 struct mbuf **rxq_mtail;
115 struct mbuf *rxq_mconsumer;
116 size_t rxq_inuse;
117 size_t rxq_threshold;
118 bus_size_t rxq_reg_rcvaddrlo;
119 bus_size_t rxq_reg_rcvptr;
120 bus_size_t rxq_reg_rcvctl;
121 bus_size_t rxq_reg_rcvsts0;
122 bus_size_t rxq_reg_rcvsts1;
123 bus_dma_segment_t rxq_descmap_seg;
124 };
125
126 struct bcmeth_mapcache {
127 u_int dmc_nmaps;
128 u_int dmc_maxseg;
129 u_int dmc_maxmaps;
130 u_int dmc_maxmapsize;
131 bus_dmamap_t dmc_maps[0];
132 };
133
134 struct bcmeth_softc {
135 device_t sc_dev;
136 bus_space_tag_t sc_bst;
137 bus_space_handle_t sc_bsh;
138 bus_dma_tag_t sc_dmat;
139 kmutex_t *sc_lock;
140 kmutex_t *sc_hwlock;
141 struct ethercom sc_ec;
142 #define sc_if sc_ec.ec_if
143 struct ifmedia sc_media;
144 void *sc_soft_ih;
145 void *sc_ih;
146
147 struct bcmeth_rxqueue sc_rxq;
148 struct bcmeth_txqueue sc_txq;
149
150 size_t sc_rcvoffset;
151 uint32_t sc_macaddr[2];
152 uint32_t sc_maxfrm;
153 uint32_t sc_cmdcfg;
154 uint32_t sc_intmask;
155 uint32_t sc_rcvlazy;
156 volatile uint32_t sc_soft_flags;
157 #define SOFT_RXINTR 0x01
158 #define SOFT_TXINTR 0x02
159
160 #ifdef BCMETH_COUNTERS
161 struct evcnt sc_ev_intr;
162 struct evcnt sc_ev_soft_intr;
163 struct evcnt sc_ev_work;
164 struct evcnt sc_ev_tx_stall;
165 struct evcnt sc_ev_rx_badmagic_lo;
166 struct evcnt sc_ev_rx_badmagic_hi;
167 #endif
168
169 struct ifqueue sc_rx_bufcache;
170 struct bcmeth_mapcache *sc_rx_mapcache;
171 struct bcmeth_mapcache *sc_tx_mapcache;
172
173 struct workqueue *sc_workq;
174 struct work sc_work;
175
176 volatile uint32_t sc_work_flags;
177 #define WORK_RXINTR 0x01
178 #define WORK_RXUNDERFLOW 0x02
179 #define WORK_REINIT 0x04
180
181 uint8_t sc_enaddr[ETHER_ADDR_LEN];
182 };
183
184 static void bcmeth_ifstart(struct ifnet *);
185 static void bcmeth_ifwatchdog(struct ifnet *);
186 static int bcmeth_ifinit(struct ifnet *);
187 static void bcmeth_ifstop(struct ifnet *, int);
188 static int bcmeth_ifioctl(struct ifnet *, u_long, void *);
189
190 static int bcmeth_mapcache_create(struct bcmeth_softc *,
191 struct bcmeth_mapcache **, size_t, size_t, size_t);
192 static void bcmeth_mapcache_destroy(struct bcmeth_softc *,
193 struct bcmeth_mapcache *);
194 static bus_dmamap_t bcmeth_mapcache_get(struct bcmeth_softc *,
195 struct bcmeth_mapcache *);
196 static void bcmeth_mapcache_put(struct bcmeth_softc *,
197 struct bcmeth_mapcache *, bus_dmamap_t);
198
199 static int bcmeth_txq_attach(struct bcmeth_softc *,
200 struct bcmeth_txqueue *, u_int);
201 static void bcmeth_txq_purge(struct bcmeth_softc *,
202 struct bcmeth_txqueue *);
203 static void bcmeth_txq_reset(struct bcmeth_softc *,
204 struct bcmeth_txqueue *);
205 static bool bcmeth_txq_consume(struct bcmeth_softc *,
206 struct bcmeth_txqueue *);
207 static bool bcmeth_txq_produce(struct bcmeth_softc *,
208 struct bcmeth_txqueue *, struct mbuf *m);
209 static bool bcmeth_txq_active_p(struct bcmeth_softc *,
210 struct bcmeth_txqueue *);
211
212 static int bcmeth_rxq_attach(struct bcmeth_softc *,
213 struct bcmeth_rxqueue *, u_int);
214 static bool bcmeth_rxq_produce(struct bcmeth_softc *,
215 struct bcmeth_rxqueue *);
216 static void bcmeth_rxq_purge(struct bcmeth_softc *,
217 struct bcmeth_rxqueue *, bool);
218 static void bcmeth_rxq_reset(struct bcmeth_softc *,
219 struct bcmeth_rxqueue *);
220
221 static int bcmeth_intr(void *);
222 #ifdef BCMETH_MPSAFETX
223 static void bcmeth_soft_txintr(struct bcmeth_softc *);
224 #endif
225 static void bcmeth_soft_intr(void *);
226 static void bcmeth_worker(struct work *, void *);
227
228 static int bcmeth_mediachange(struct ifnet *);
229 static void bcmeth_mediastatus(struct ifnet *, struct ifmediareq *);
230
231 static inline uint32_t
232 bcmeth_read_4(struct bcmeth_softc *sc, bus_size_t o)
233 {
234 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
235 }
236
237 static inline void
238 bcmeth_write_4(struct bcmeth_softc *sc, bus_size_t o, uint32_t v)
239 {
240 bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v);
241 }
242
243 CFATTACH_DECL_NEW(bcmeth_ccb, sizeof(struct bcmeth_softc),
244 bcmeth_ccb_match, bcmeth_ccb_attach, NULL, NULL);
245
246 static int
247 bcmeth_ccb_match(device_t parent, cfdata_t cf, void *aux)
248 {
249 struct bcmccb_attach_args * const ccbaa = aux;
250 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
251
252 if (strcmp(cf->cf_name, loc->loc_name))
253 return 0;
254
255 #ifdef DIAGNOSTIC
256 const int port = cf->cf_loc[BCMCCBCF_PORT];
257 #endif
258 KASSERT(port == BCMCCBCF_PORT_DEFAULT || port == loc->loc_port);
259
260 return 1;
261 }
262
263 static void
264 bcmeth_ccb_attach(device_t parent, device_t self, void *aux)
265 {
266 struct bcmeth_softc * const sc = device_private(self);
267 struct ethercom * const ec = &sc->sc_ec;
268 struct ifnet * const ifp = &ec->ec_if;
269 struct bcmccb_attach_args * const ccbaa = aux;
270 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
271 const char * const xname = device_xname(self);
272 prop_dictionary_t dict = device_properties(self);
273 int error;
274
275 sc->sc_bst = ccbaa->ccbaa_ccb_bst;
276 sc->sc_dmat = ccbaa->ccbaa_dmat;
277 bus_space_subregion(sc->sc_bst, ccbaa->ccbaa_ccb_bsh,
278 loc->loc_offset, loc->loc_size, &sc->sc_bsh);
279
280 /*
281 * We need to use the coherent dma tag for the GMAC.
282 */
283 sc->sc_dmat = &bcm53xx_coherent_dma_tag;
284 #if _ARM32_NEED_BUS_DMA_BOUNCE
285 if (device_cfdata(self)->cf_flags & 2) {
286 sc->sc_dmat = &bcm53xx_bounce_dma_tag;
287 }
288 #endif
289
290 prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
291 if (eaprop == NULL) {
292 uint32_t mac0 = bcmeth_read_4(sc, UNIMAC_MAC_0);
293 uint32_t mac1 = bcmeth_read_4(sc, UNIMAC_MAC_1);
294 if ((mac0 == 0 && mac1 == 0) || (mac1 & 1)) {
295 aprint_error(": mac-address property is missing\n");
296 return;
297 }
298 sc->sc_enaddr[0] = (mac0 >> 0) & 0xff;
299 sc->sc_enaddr[1] = (mac0 >> 8) & 0xff;
300 sc->sc_enaddr[2] = (mac0 >> 16) & 0xff;
301 sc->sc_enaddr[3] = (mac0 >> 24) & 0xff;
302 sc->sc_enaddr[4] = (mac1 >> 0) & 0xff;
303 sc->sc_enaddr[5] = (mac1 >> 8) & 0xff;
304 } else {
305 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
306 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
307 memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
308 ETHER_ADDR_LEN);
309 }
310 sc->sc_dev = self;
311 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
312 sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
313
314 bcmeth_write_4(sc, GMAC_INTMASK, 0); // disable interrupts
315
316 aprint_naive("\n");
317 aprint_normal(": Gigabit Ethernet Controller\n");
318
319 error = bcmeth_rxq_attach(sc, &sc->sc_rxq, 0);
320 if (error) {
321 aprint_error(": failed to init rxq: %d\n", error);
322 goto fail_1;
323 }
324
325 error = bcmeth_txq_attach(sc, &sc->sc_txq, 0);
326 if (error) {
327 aprint_error(": failed to init txq: %d\n", error);
328 goto fail_1;
329 }
330
331 error = bcmeth_mapcache_create(sc, &sc->sc_rx_mapcache,
332 BCMETH_MAXRXMBUFS, MCLBYTES, BCMETH_NRXSEGS);
333 if (error) {
334 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
335 goto fail_1;
336 }
337
338 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
339 BCMETH_MAXTXMBUFS, MCLBYTES, BCMETH_NTXSEGS);
340 if (error) {
341 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
342 goto fail_1;
343 }
344
345 error = workqueue_create(&sc->sc_workq, xname, bcmeth_worker, sc,
346 (PRI_USER + MAXPRI_USER) / 2, IPL_NET, WQ_MPSAFE|WQ_PERCPU);
347 if (error) {
348 aprint_error(": failed to create workqueue: %d\n", error);
349 goto fail_2;
350 }
351
352 sc->sc_soft_ih = softint_establish(SOFTINT_MPSAFE | SOFTINT_NET,
353 bcmeth_soft_intr, sc);
354
355 if (sc->sc_ih == NULL) {
356 aprint_error_dev(self, "failed to establish interrupt %d\n",
357 loc->loc_intrs[0]);
358 goto fail_3;
359 }
360
361 sc->sc_ih = intr_establish(loc->loc_intrs[0], IPL_VM, IST_LEVEL,
362 bcmeth_intr, sc);
363
364 if (sc->sc_ih == NULL) {
365 aprint_error_dev(self, "failed to establish interrupt %d\n",
366 loc->loc_intrs[0]);
367 goto fail_4;
368 } else {
369 aprint_normal_dev(self, "interrupting on irq %d\n",
370 loc->loc_intrs[0]);
371 }
372
373 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
374 ether_sprintf(sc->sc_enaddr));
375
376 /*
377 * Since each port in plugged into the switch/flow-accelerator,
378 * we hard code at Gige Full-Duplex with Flow Control enabled.
379 */
380 int ifmedia = IFM_ETHER | IFM_1000_T | IFM_FDX;
381 //ifmedia |= IFM_FLOW | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
382 ec->ec_ifmedia = &sc->sc_media;
383 ifmedia_init(&sc->sc_media, IFM_IMASK, bcmeth_mediachange,
384 bcmeth_mediastatus);
385 ifmedia_add(&sc->sc_media, ifmedia, 0, NULL);
386 ifmedia_set(&sc->sc_media, ifmedia);
387
388 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
389
390 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
391 ifp->if_softc = sc;
392 ifp->if_baudrate = IF_Mbps(1000);
393 ifp->if_capabilities = 0;
394 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
395 #ifdef BCMETH_MPSAFE
396 ifp->if_flags2 = IFF2_MPSAFE;
397 #endif
398 ifp->if_ioctl = bcmeth_ifioctl;
399 ifp->if_start = bcmeth_ifstart;
400 ifp->if_watchdog = bcmeth_ifwatchdog;
401 ifp->if_init = bcmeth_ifinit;
402 ifp->if_stop = bcmeth_ifstop;
403 IFQ_SET_READY(&ifp->if_snd);
404
405 bcmeth_ifstop(ifp, true);
406
407 /*
408 * Attach the interface.
409 */
410 if_initialize(ifp);
411 ether_ifattach(ifp, sc->sc_enaddr);
412 if_register(ifp);
413
414 #ifdef BCMETH_COUNTERS
415 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
416 NULL, xname, "intr");
417 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
418 NULL, xname, "soft intr");
419 evcnt_attach_dynamic(&sc->sc_ev_work, EVCNT_TYPE_MISC,
420 NULL, xname, "work items");
421 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
422 NULL, xname, "tx stalls");
423 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_lo, EVCNT_TYPE_MISC,
424 NULL, xname, "rx badmagic lo");
425 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_hi, EVCNT_TYPE_MISC,
426 NULL, xname, "rx badmagic hi");
427 #endif
428
429 return;
430
431 fail_4:
432 intr_disestablish(sc->sc_ih);
433 fail_3:
434 softint_disestablish(sc->sc_soft_ih);
435 fail_2:
436 workqueue_destroy(sc->sc_workq);
437 fail_1:
438 mutex_obj_free(sc->sc_lock);
439 mutex_obj_free(sc->sc_hwlock);
440 }
441
442 static int
443 bcmeth_mediachange(struct ifnet *ifp)
444 {
445 //struct bcmeth_softc * const sc = ifp->if_softc;
446 return 0;
447 }
448
449 static void
450 bcmeth_mediastatus(struct ifnet *ifp, struct ifmediareq *ifm)
451 {
452 //struct bcmeth_softc * const sc = ifp->if_softc;
453
454 ifm->ifm_status = IFM_AVALID | IFM_ACTIVE;
455 ifm->ifm_active = IFM_ETHER | IFM_FDX | IFM_1000_T;
456 }
457
458 static uint64_t
459 bcmeth_macaddr_create(const uint8_t *enaddr)
460 {
461 return (enaddr[3] << 0) // UNIMAC_MAC_0
462 | (enaddr[2] << 8) // UNIMAC_MAC_0
463 | (enaddr[1] << 16) // UNIMAC_MAC_0
464 | ((uint64_t)enaddr[0] << 24) // UNIMAC_MAC_0
465 | ((uint64_t)enaddr[5] << 32) // UNIMAC_MAC_1
466 | ((uint64_t)enaddr[4] << 40); // UNIMAC_MAC_1
467 }
468
469 static int
470 bcmeth_ifinit(struct ifnet *ifp)
471 {
472 struct bcmeth_softc * const sc = ifp->if_softc;
473 int error = 0;
474
475 sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
476 if (ifp->if_mtu > ETHERMTU_JUMBO)
477 return error;
478
479 KASSERT(ifp->if_flags & IFF_UP);
480
481 /*
482 * Stop the interface
483 */
484 bcmeth_ifstop(ifp, 0);
485
486 /*
487 * Reserve enough space at the front so that we can insert a maxsized
488 * link header and a VLAN tag. Also make sure we have enough room for
489 * the rcvsts field as well.
490 */
491 KASSERT(ALIGN(max_linkhdr) == max_linkhdr);
492 KASSERTMSG(max_linkhdr > sizeof(struct ether_header), "%u > %zu",
493 max_linkhdr, sizeof(struct ether_header));
494 sc->sc_rcvoffset = max_linkhdr + 4 - sizeof(struct ether_header);
495 if (sc->sc_rcvoffset <= 4)
496 sc->sc_rcvoffset += 4;
497 KASSERT((sc->sc_rcvoffset & 3) == 2);
498 KASSERT(sc->sc_rcvoffset <= __SHIFTOUT(RCVCTL_RCVOFFSET, RCVCTL_RCVOFFSET));
499 KASSERT(sc->sc_rcvoffset >= 6);
500
501 /*
502 * If our frame size has changed (or it's our first time through)
503 * destroy the existing transmit mapcache.
504 */
505 if (sc->sc_tx_mapcache != NULL
506 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
507 bcmeth_mapcache_destroy(sc, sc->sc_tx_mapcache);
508 sc->sc_tx_mapcache = NULL;
509 }
510
511 if (sc->sc_tx_mapcache == NULL) {
512 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
513 BCMETH_MAXTXMBUFS, sc->sc_maxfrm, BCMETH_NTXSEGS);
514 if (error)
515 return error;
516 }
517
518 sc->sc_cmdcfg = NO_LENGTH_CHECK | PAUSE_IGNORE
519 | __SHIFTIN(ETH_SPEED_1000, ETH_SPEED)
520 | RX_ENA | TX_ENA;
521
522 if (ifp->if_flags & IFF_PROMISC) {
523 sc->sc_cmdcfg |= PROMISC_EN;
524 } else {
525 sc->sc_cmdcfg &= ~PROMISC_EN;
526 }
527
528 const uint8_t * const lladdr = CLLADDR(ifp->if_sadl);
529 const uint64_t macstnaddr = bcmeth_macaddr_create(lladdr);
530
531 /*
532 * We make sure that a received Ethernet packet start on a non-word
533 * boundary so that the packet payload will be on a word boundary.
534 * So to check the destination address we keep around two words to
535 * quickly compare with.
536 */
537 #if __ARMEL__
538 sc->sc_macaddr[0] = lladdr[0] | (lladdr[1] << 8);
539 sc->sc_macaddr[1] = lladdr[2] | (lladdr[3] << 8)
540 | (lladdr[4] << 16) | (lladdr[5] << 24);
541 #else
542 sc->sc_macaddr[0] = lladdr[1] | (lladdr[0] << 8);
543 sc->sc_macaddr[1] = lladdr[5] | (lladdr[4] << 8)
544 | (lladdr[1] << 16) | (lladdr[2] << 24);
545 #endif
546
547 sc->sc_intmask = DESCPROTOERR | DATAERR | DESCERR;
548
549 /* 5. Load RCVADDR_LO with new pointer */
550 bcmeth_rxq_reset(sc, &sc->sc_rxq);
551
552 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
553 __SHIFTIN(sc->sc_rcvoffset, RCVCTL_RCVOFFSET)
554 | RCVCTL_PARITY_DIS
555 | RCVCTL_OFLOW_CONTINUE
556 | __SHIFTIN(3, RCVCTL_BURSTLEN));
557
558 /* 6. Load XMTADDR_LO with new pointer */
559 bcmeth_txq_reset(sc, &sc->sc_txq);
560
561 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl, XMTCTL_DMA_ACT_INDEX
562 | XMTCTL_PARITY_DIS
563 | __SHIFTIN(3, XMTCTL_BURSTLEN));
564
565 /* 7. Setup other UNIMAC registers */
566 bcmeth_write_4(sc, UNIMAC_FRAME_LEN, sc->sc_maxfrm);
567 bcmeth_write_4(sc, UNIMAC_MAC_0, (uint32_t)(macstnaddr >> 0));
568 bcmeth_write_4(sc, UNIMAC_MAC_1, (uint32_t)(macstnaddr >> 32));
569 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, sc->sc_cmdcfg);
570
571 uint32_t devctl = bcmeth_read_4(sc, GMAC_DEVCONTROL);
572 devctl |= RGMII_LINK_STATUS_SEL | NWAY_AUTO_POLL_EN | TXARB_STRICT_MODE;
573 devctl &= ~FLOW_CTRL_MODE;
574 devctl &= ~MIB_RD_RESET_EN;
575 devctl &= ~RXQ_OVERFLOW_CTRL_SEL;
576 devctl &= ~CPU_FLOW_CTRL_ON;
577 bcmeth_write_4(sc, GMAC_DEVCONTROL, devctl);
578
579 /* Setup lazy receive (at most 1ms). */
580 const struct cpu_softc * const cpu = curcpu()->ci_softc;
581 sc->sc_rcvlazy = __SHIFTIN(4, INTRCVLAZY_FRAMECOUNT)
582 | __SHIFTIN(cpu->cpu_clk.clk_apb / 1000, INTRCVLAZY_TIMEOUT);
583 bcmeth_write_4(sc, GMAC_INTRCVLAZY, sc->sc_rcvlazy);
584
585 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
586 sc->sc_intmask |= XMTINT_0 | XMTUF;
587 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl,
588 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl) | XMTCTL_ENABLE);
589
590
591 /* 12. Enable receive queues in RQUEUE, */
592 sc->sc_intmask |= RCVINT | RCVDESCUF | RCVFIFOOF;
593 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
594 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl) | RCVCTL_ENABLE);
595
596 bcmeth_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
597
598 #if 0
599 aprint_normal_dev(sc->sc_dev,
600 "devctl=%#x ucmdcfg=%#x xmtctl=%#x rcvctl=%#x\n",
601 devctl, sc->sc_cmdcfg,
602 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl),
603 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl));
604 #endif
605
606 sc->sc_soft_flags = 0;
607
608 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
609
610 ifp->if_flags |= IFF_RUNNING;
611
612 return error;
613 }
614
615 static void
616 bcmeth_ifstop(struct ifnet *ifp, int disable)
617 {
618 struct bcmeth_softc * const sc = ifp->if_softc;
619 struct bcmeth_txqueue * const txq = &sc->sc_txq;
620 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
621
622 KASSERT(!cpu_intr_p());
623
624 sc->sc_soft_flags = 0;
625 sc->sc_work_flags = 0;
626
627 /* Disable Rx processing */
628 bcmeth_write_4(sc, rxq->rxq_reg_rcvctl,
629 bcmeth_read_4(sc, rxq->rxq_reg_rcvctl) & ~RCVCTL_ENABLE);
630
631 /* Disable Tx processing */
632 bcmeth_write_4(sc, txq->txq_reg_xmtctl,
633 bcmeth_read_4(sc, txq->txq_reg_xmtctl) & ~XMTCTL_ENABLE);
634
635 /* Disable all interrupts */
636 bcmeth_write_4(sc, GMAC_INTMASK, 0);
637
638 for (;;) {
639 uint32_t tx0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
640 uint32_t rx0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
641 if (__SHIFTOUT(tx0, XMTSTATE) == XMTSTATE_DIS
642 && __SHIFTOUT(rx0, RCVSTATE) == RCVSTATE_DIS)
643 break;
644 delay(50);
645 }
646 /*
647 * Now reset the controller.
648 *
649 * 3. Set SW_RESET bit in UNIMAC_COMMAND_CONFIG register
650 * 4. Clear SW_RESET bit in UNIMAC_COMMAND_CONFIG register
651 */
652 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, SW_RESET);
653 bcmeth_write_4(sc, GMAC_INTSTATUS, ~0);
654 sc->sc_intmask = 0;
655 ifp->if_flags &= ~IFF_RUNNING;
656
657 /*
658 * Let's consume any remaining transmitted packets. And if we are
659 * disabling the interface, purge ourselves of any untransmitted
660 * packets. But don't consume any received packets, just drop them.
661 * If we aren't disabling the interface, save the mbufs in the
662 * receive queue for reuse.
663 */
664 bcmeth_rxq_purge(sc, &sc->sc_rxq, disable);
665 bcmeth_txq_consume(sc, &sc->sc_txq);
666 if (disable) {
667 bcmeth_txq_purge(sc, &sc->sc_txq);
668 IF_PURGE(&ifp->if_snd);
669 }
670
671 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, 0);
672 }
673
674 static void
675 bcmeth_ifwatchdog(struct ifnet *ifp)
676 {
677 }
678
679 static int
680 bcmeth_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
681 {
682 const int s = splnet();
683 int error;
684
685 switch (cmd) {
686 default:
687 error = ether_ioctl(ifp, cmd, data);
688 if (error != ENETRESET)
689 break;
690
691 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
692 error = 0;
693 break;
694 }
695 error = bcmeth_ifinit(ifp);
696 break;
697 }
698
699 splx(s);
700 return error;
701 }
702
703 static void
704 bcmeth_rxq_desc_presync(
705 struct bcmeth_softc *sc,
706 struct bcmeth_rxqueue *rxq,
707 struct gmac_rxdb *rxdb,
708 size_t count)
709 {
710 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
711 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
712 BUS_DMASYNC_PREWRITE);
713 }
714
715 static void
716 bcmeth_rxq_desc_postsync(
717 struct bcmeth_softc *sc,
718 struct bcmeth_rxqueue *rxq,
719 struct gmac_rxdb *rxdb,
720 size_t count)
721 {
722 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
723 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
724 BUS_DMASYNC_POSTWRITE);
725 }
726
727 static void
728 bcmeth_txq_desc_presync(
729 struct bcmeth_softc *sc,
730 struct bcmeth_txqueue *txq,
731 struct gmac_txdb *txdb,
732 size_t count)
733 {
734 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
735 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
736 BUS_DMASYNC_PREWRITE);
737 }
738
739 static void
740 bcmeth_txq_desc_postsync(
741 struct bcmeth_softc *sc,
742 struct bcmeth_txqueue *txq,
743 struct gmac_txdb *txdb,
744 size_t count)
745 {
746 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
747 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
748 BUS_DMASYNC_POSTWRITE);
749 }
750
751 static bus_dmamap_t
752 bcmeth_mapcache_get(
753 struct bcmeth_softc *sc,
754 struct bcmeth_mapcache *dmc)
755 {
756 KASSERT(dmc->dmc_nmaps > 0);
757 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
758 return dmc->dmc_maps[--dmc->dmc_nmaps];
759 }
760
761 static void
762 bcmeth_mapcache_put(
763 struct bcmeth_softc *sc,
764 struct bcmeth_mapcache *dmc,
765 bus_dmamap_t map)
766 {
767 KASSERT(map != NULL);
768 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
769 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
770 }
771
772 static void
773 bcmeth_mapcache_destroy(
774 struct bcmeth_softc *sc,
775 struct bcmeth_mapcache *dmc)
776 {
777 const size_t dmc_size =
778 offsetof(struct bcmeth_mapcache, dmc_maps[dmc->dmc_maxmaps]);
779
780 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
781 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
782 }
783 kmem_intr_free(dmc, dmc_size);
784 }
785
786 static int
787 bcmeth_mapcache_create(
788 struct bcmeth_softc *sc,
789 struct bcmeth_mapcache **dmc_p,
790 size_t maxmaps,
791 size_t maxmapsize,
792 size_t maxseg)
793 {
794 const size_t dmc_size =
795 offsetof(struct bcmeth_mapcache, dmc_maps[maxmaps]);
796 struct bcmeth_mapcache * const dmc =
797 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
798
799 dmc->dmc_maxmaps = maxmaps;
800 dmc->dmc_nmaps = maxmaps;
801 dmc->dmc_maxmapsize = maxmapsize;
802 dmc->dmc_maxseg = maxseg;
803
804 for (u_int i = 0; i < maxmaps; i++) {
805 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
806 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
807 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
808 if (error) {
809 aprint_error_dev(sc->sc_dev,
810 "failed to creat dma map cache "
811 "entry %u of %zu: %d\n",
812 i, maxmaps, error);
813 while (i-- > 0) {
814 bus_dmamap_destroy(sc->sc_dmat,
815 dmc->dmc_maps[i]);
816 }
817 kmem_intr_free(dmc, dmc_size);
818 return error;
819 }
820 KASSERT(dmc->dmc_maps[i] != NULL);
821 }
822
823 *dmc_p = dmc;
824
825 return 0;
826 }
827
828 #if 0
829 static void
830 bcmeth_dmamem_free(
831 bus_dma_tag_t dmat,
832 size_t map_size,
833 bus_dma_segment_t *seg,
834 bus_dmamap_t map,
835 void *kvap)
836 {
837 bus_dmamap_destroy(dmat, map);
838 bus_dmamem_unmap(dmat, kvap, map_size);
839 bus_dmamem_free(dmat, seg, 1);
840 }
841 #endif
842
843 static int
844 bcmeth_dmamem_alloc(
845 bus_dma_tag_t dmat,
846 size_t map_size,
847 bus_dma_segment_t *seg,
848 bus_dmamap_t *map,
849 void **kvap)
850 {
851 int error;
852 int nseg;
853
854 *kvap = NULL;
855 *map = NULL;
856
857 error = bus_dmamem_alloc(dmat, map_size, 2*PAGE_SIZE, 0,
858 seg, 1, &nseg, 0);
859 if (error)
860 return error;
861
862 KASSERT(nseg == 1);
863
864 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap, 0);
865 if (error == 0) {
866 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
867 map);
868 if (error == 0) {
869 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
870 NULL, 0);
871 if (error == 0)
872 return 0;
873 bus_dmamap_destroy(dmat, *map);
874 *map = NULL;
875 }
876 bus_dmamem_unmap(dmat, *kvap, map_size);
877 *kvap = NULL;
878 }
879 bus_dmamem_free(dmat, seg, nseg);
880 return 0;
881 }
882
883 static struct mbuf *
884 bcmeth_rx_buf_alloc(
885 struct bcmeth_softc *sc)
886 {
887 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
888 if (m == NULL) {
889 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
890 return NULL;
891 }
892 MCLGET(m, M_DONTWAIT);
893 if ((m->m_flags & M_EXT) == 0) {
894 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
895 m_freem(m);
896 return NULL;
897 }
898 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
899
900 bus_dmamap_t map = bcmeth_mapcache_get(sc, sc->sc_rx_mapcache);
901 if (map == NULL) {
902 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
903 m_freem(m);
904 return NULL;
905 }
906 M_SETCTX(m, map);
907 m->m_len = m->m_pkthdr.len = MCLBYTES;
908 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
909 BUS_DMA_READ | BUS_DMA_NOWAIT);
910 if (error) {
911 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
912 error);
913 M_SETCTX(m, NULL);
914 m_freem(m);
915 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
916 return NULL;
917 }
918 KASSERT(map->dm_mapsize == MCLBYTES);
919 #ifdef BCMETH_RCVMAGIC
920 *mtod(m, uint32_t *) = htole32(BCMETH_RCVMAGIC);
921 bus_dmamap_sync(sc->sc_dmat, map, 0, sizeof(uint32_t),
922 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
923 bus_dmamap_sync(sc->sc_dmat, map, sizeof(uint32_t),
924 map->dm_mapsize - sizeof(uint32_t), BUS_DMASYNC_PREREAD);
925 #else
926 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
927 BUS_DMASYNC_PREREAD);
928 #endif
929
930 return m;
931 }
932
933 static void
934 bcmeth_rx_map_unload(
935 struct bcmeth_softc *sc,
936 struct mbuf *m)
937 {
938 KASSERT(m);
939 for (; m != NULL; m = m->m_next) {
940 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
941 KASSERT(map);
942 KASSERT(map->dm_mapsize == MCLBYTES);
943 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
944 BUS_DMASYNC_POSTREAD);
945 bus_dmamap_unload(sc->sc_dmat, map);
946 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
947 M_SETCTX(m, NULL);
948 }
949 }
950
951 static bool
952 bcmeth_rxq_produce(
953 struct bcmeth_softc *sc,
954 struct bcmeth_rxqueue *rxq)
955 {
956 struct gmac_rxdb *producer = rxq->rxq_producer;
957 bool produced = false;
958
959 while (rxq->rxq_inuse < rxq->rxq_threshold) {
960 struct mbuf *m;
961 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
962 if (m == NULL) {
963 m = bcmeth_rx_buf_alloc(sc);
964 if (m == NULL) {
965 printf("%s: bcmeth_rx_buf_alloc failed\n",
966 __func__);
967 break;
968 }
969 }
970 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
971 KASSERT(map);
972
973 producer->rxdb_buflen = htole32(MCLBYTES);
974 producer->rxdb_addrlo = htole32(map->dm_segs[0].ds_addr);
975 producer->rxdb_flags &= htole32(RXDB_FLAG_ET);
976 *rxq->rxq_mtail = m;
977 rxq->rxq_mtail = &m->m_next;
978 m->m_len = MCLBYTES;
979 m->m_next = NULL;
980 rxq->rxq_inuse++;
981 if (++producer == rxq->rxq_last) {
982 membar_producer();
983 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
984 rxq->rxq_last - rxq->rxq_producer);
985 producer = rxq->rxq_producer = rxq->rxq_first;
986 }
987 produced = true;
988 }
989 if (produced) {
990 membar_producer();
991 if (producer != rxq->rxq_producer) {
992 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
993 producer - rxq->rxq_producer);
994 rxq->rxq_producer = producer;
995 }
996 bcmeth_write_4(sc, rxq->rxq_reg_rcvptr,
997 rxq->rxq_descmap->dm_segs[0].ds_addr
998 + ((uintptr_t)producer & RCVPTR));
999 }
1000 return true;
1001 }
1002
1003 static void
1004 bcmeth_rx_input(
1005 struct bcmeth_softc *sc,
1006 struct mbuf *m,
1007 uint32_t rxdb_flags)
1008 {
1009 struct ifnet * const ifp = &sc->sc_if;
1010
1011 bcmeth_rx_map_unload(sc, m);
1012
1013 m_adj(m, sc->sc_rcvoffset);
1014
1015 /*
1016 * If we are in promiscuous mode and this isn't a multicast, check the
1017 * destination address to make sure it matches our own. If it doesn't,
1018 * mark the packet as being received promiscuously.
1019 */
1020 if ((sc->sc_cmdcfg & PROMISC_EN)
1021 && (m->m_data[0] & 1) == 0
1022 && (*(uint16_t *)&m->m_data[0] != sc->sc_macaddr[0]
1023 || *(uint32_t *)&m->m_data[2] != sc->sc_macaddr[1])) {
1024 m->m_flags |= M_PROMISC;
1025 }
1026 m_set_rcvif(m, ifp);
1027
1028 /*
1029 * Let's give it to the network subsystm to deal with.
1030 */
1031 #ifdef BCMETH_MPSAFE
1032 mutex_exit(sc->sc_lock);
1033 if_input(ifp, m);
1034 mutex_enter(sc->sc_lock);
1035 #else
1036 int s = splnet();
1037 if_input(ifp, m);
1038 splx(s);
1039 #endif
1040 }
1041
1042 static bool
1043 bcmeth_rxq_consume(
1044 struct bcmeth_softc *sc,
1045 struct bcmeth_rxqueue *rxq,
1046 size_t atmost)
1047 {
1048 struct ifnet * const ifp = &sc->sc_if;
1049 struct gmac_rxdb *consumer = rxq->rxq_consumer;
1050 size_t rxconsumed = 0;
1051 bool didconsume = false;
1052
1053 while (atmost-- > 0) {
1054 if (consumer == rxq->rxq_producer) {
1055 KASSERT(rxq->rxq_inuse == 0);
1056 break;
1057 }
1058
1059 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1060 uint32_t currdscr = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1061 if (consumer == rxq->rxq_first + currdscr) {
1062 break;
1063 }
1064 bcmeth_rxq_desc_postsync(sc, rxq, consumer, 1);
1065
1066 /*
1067 * We own this packet again. Copy the rxsts word from it.
1068 */
1069 rxconsumed++;
1070 didconsume = true;
1071 uint32_t rxsts;
1072 KASSERT(rxq->rxq_mhead != NULL);
1073 bus_dmamap_t map = M_GETCTX(rxq->rxq_mhead, bus_dmamap_t);
1074 bus_dmamap_sync(sc->sc_dmat, map, 0, arm_dcache_align,
1075 BUS_DMASYNC_POSTREAD);
1076 memcpy(&rxsts, rxq->rxq_mhead->m_data, 4);
1077 rxsts = le32toh(rxsts);
1078 #if 0
1079 KASSERTMSG(rxsts != BCMETH_RCVMAGIC, "currdscr=%u consumer=%zd",
1080 currdscr, consumer - rxq->rxq_first);
1081 #endif
1082
1083 /*
1084 * Get the count of descriptors. Fetch the correct number
1085 * of mbufs.
1086 */
1087 #ifdef BCMETH_RCVMAGIC
1088 size_t desc_count = rxsts != BCMETH_RCVMAGIC
1089 ? __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1 : 1;
1090 #else
1091 size_t desc_count = __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1;
1092 #endif
1093 struct mbuf *m = rxq->rxq_mhead;
1094 struct mbuf *m_last = m;
1095 for (size_t i = 1; i < desc_count; i++) {
1096 if (++consumer == rxq->rxq_last) {
1097 consumer = rxq->rxq_first;
1098 }
1099 KASSERTMSG(consumer != rxq->rxq_first + currdscr,
1100 "i=%zu rxsts=%#x desc_count=%zu currdscr=%u "
1101 "consumer=%zd", i, rxsts, desc_count, currdscr,
1102 consumer - rxq->rxq_first);
1103 m_last = m_last->m_next;
1104 }
1105
1106 /*
1107 * Now remove it/them from the list of enqueued mbufs.
1108 */
1109 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1110 rxq->rxq_mtail = &rxq->rxq_mhead;
1111 m_last->m_next = NULL;
1112
1113 #ifdef BCMETH_RCVMAGIC
1114 if (rxsts == BCMETH_RCVMAGIC) {
1115 if_statinc(ifp, if_ierrors);
1116 if ((m->m_ext.ext_paddr >> 28) == 8) {
1117 BCMETH_EVCNT_INCR(sc->sc_ev_rx_badmagic_lo);
1118 } else {
1119 BCMETH_EVCNT_INCR( sc->sc_ev_rx_badmagic_hi);
1120 }
1121 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1122 } else
1123 #endif /* BCMETH_RCVMAGIC */
1124 if (rxsts
1125 & (RXSTS_CRC_ERROR |RXSTS_OVERSIZED |RXSTS_PKT_OVERFLOW)) {
1126 aprint_error_dev(sc->sc_dev,
1127 "[%zu]: count=%zu rxsts=%#x\n",
1128 consumer - rxq->rxq_first, desc_count, rxsts);
1129 /*
1130 * We encountered an error, take the mbufs and add them
1131 * to the rx bufcache so we can quickly reuse them.
1132 */
1133 if_statinc(ifp, if_ierrors);
1134 do {
1135 struct mbuf *m0 = m->m_next;
1136 m->m_next = NULL;
1137 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1138 m = m0;
1139 } while (m);
1140 } else {
1141 uint32_t framelen = __SHIFTOUT(rxsts, RXSTS_FRAMELEN);
1142 framelen += sc->sc_rcvoffset;
1143 m->m_pkthdr.len = framelen;
1144 if (desc_count == 1) {
1145 KASSERT(framelen <= MCLBYTES);
1146 m->m_len = framelen;
1147 } else {
1148 m_last->m_len = framelen & (MCLBYTES - 1);
1149 }
1150
1151 #ifdef BCMETH_MPSAFE
1152 /*
1153 * Wrap at the last entry!
1154 */
1155 if (++consumer == rxq->rxq_last) {
1156 KASSERT(consumer[-1].rxdb_flags
1157 & htole32(RXDB_FLAG_ET));
1158 rxq->rxq_consumer = rxq->rxq_first;
1159 } else {
1160 rxq->rxq_consumer = consumer;
1161 }
1162 rxq->rxq_inuse -= rxconsumed;
1163 #endif /* BCMETH_MPSAFE */
1164
1165 /*
1166 * Receive the packet (which releases our lock)
1167 */
1168 bcmeth_rx_input(sc, m, rxsts);
1169
1170 #ifdef BCMETH_MPSAFE
1171 /*
1172 * Since we had to give up our lock, we need to
1173 * refresh these.
1174 */
1175 consumer = rxq->rxq_consumer;
1176 rxconsumed = 0;
1177 continue;
1178 #endif /* BCMETH_MPSAFE */
1179 }
1180
1181 /*
1182 * Wrap at the last entry!
1183 */
1184 if (++consumer == rxq->rxq_last) {
1185 KASSERT(consumer[-1].rxdb_flags & htole32(RXDB_FLAG_ET));
1186 consumer = rxq->rxq_first;
1187 }
1188 }
1189
1190 /*
1191 * Update queue info.
1192 */
1193 rxq->rxq_consumer = consumer;
1194 rxq->rxq_inuse -= rxconsumed;
1195
1196 /*
1197 * Did we consume anything?
1198 */
1199 return didconsume;
1200 }
1201
1202 static void
1203 bcmeth_rxq_purge(
1204 struct bcmeth_softc *sc,
1205 struct bcmeth_rxqueue *rxq,
1206 bool discard)
1207 {
1208 struct mbuf *m;
1209
1210 if ((m = rxq->rxq_mhead) != NULL) {
1211 if (discard) {
1212 bcmeth_rx_map_unload(sc, m);
1213 m_freem(m);
1214 } else {
1215 while (m != NULL) {
1216 struct mbuf *m0 = m->m_next;
1217 m->m_next = NULL;
1218 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1219 m = m0;
1220 }
1221 }
1222 }
1223
1224 rxq->rxq_mhead = NULL;
1225 rxq->rxq_mtail = &rxq->rxq_mhead;
1226 rxq->rxq_inuse = 0;
1227 }
1228
1229 static void
1230 bcmeth_rxq_reset(
1231 struct bcmeth_softc *sc,
1232 struct bcmeth_rxqueue *rxq)
1233 {
1234 /*
1235 * sync all the descriptors
1236 */
1237 bcmeth_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1238 rxq->rxq_last - rxq->rxq_first);
1239
1240 /*
1241 * Make sure we own all descriptors in the ring.
1242 */
1243 struct gmac_rxdb *rxdb;
1244 for (rxdb = rxq->rxq_first; rxdb < rxq->rxq_last - 1; rxdb++) {
1245 rxdb->rxdb_flags = htole32(RXDB_FLAG_IC);
1246 }
1247
1248 /*
1249 * Last descriptor has the wrap flag.
1250 */
1251 rxdb->rxdb_flags = htole32(RXDB_FLAG_ET | RXDB_FLAG_IC);
1252
1253 /*
1254 * Reset the producer consumer indexes.
1255 */
1256 rxq->rxq_consumer = rxq->rxq_first;
1257 rxq->rxq_producer = rxq->rxq_first;
1258 rxq->rxq_inuse = 0;
1259 if (rxq->rxq_threshold < BCMETH_MINRXMBUFS)
1260 rxq->rxq_threshold = BCMETH_MINRXMBUFS;
1261
1262 sc->sc_intmask |= RCVINT | RCVFIFOOF | RCVDESCUF;
1263
1264 /*
1265 * Restart the receiver at the first descriptor
1266 */
1267 bcmeth_write_4(sc, rxq->rxq_reg_rcvaddrlo,
1268 rxq->rxq_descmap->dm_segs[0].ds_addr);
1269 }
1270
1271 static int
1272 bcmeth_rxq_attach(
1273 struct bcmeth_softc *sc,
1274 struct bcmeth_rxqueue *rxq,
1275 u_int qno)
1276 {
1277 size_t desc_count = BCMETH_RINGSIZE / sizeof(rxq->rxq_first[0]);
1278 int error;
1279 void *descs;
1280
1281 KASSERT(desc_count == 256 || desc_count == 512);
1282
1283 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1284 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1285 if (error)
1286 return error;
1287
1288 memset(descs, 0, BCMETH_RINGSIZE);
1289 rxq->rxq_first = descs;
1290 rxq->rxq_last = rxq->rxq_first + desc_count;
1291 rxq->rxq_consumer = descs;
1292 rxq->rxq_producer = descs;
1293
1294 bcmeth_rxq_purge(sc, rxq, true);
1295 bcmeth_rxq_reset(sc, rxq);
1296
1297 rxq->rxq_reg_rcvaddrlo = GMAC_RCVADDR_LOW;
1298 rxq->rxq_reg_rcvctl = GMAC_RCVCONTROL;
1299 rxq->rxq_reg_rcvptr = GMAC_RCVPTR;
1300 rxq->rxq_reg_rcvsts0 = GMAC_RCVSTATUS0;
1301 rxq->rxq_reg_rcvsts1 = GMAC_RCVSTATUS1;
1302
1303 return 0;
1304 }
1305
1306 static bool
1307 bcmeth_txq_active_p(
1308 struct bcmeth_softc * const sc,
1309 struct bcmeth_txqueue *txq)
1310 {
1311 return !IF_IS_EMPTY(&txq->txq_mbufs);
1312 }
1313
1314 static bool
1315 bcmeth_txq_fillable_p(
1316 struct bcmeth_softc * const sc,
1317 struct bcmeth_txqueue *txq)
1318 {
1319 return txq->txq_free >= txq->txq_threshold;
1320 }
1321
1322 static int
1323 bcmeth_txq_attach(
1324 struct bcmeth_softc *sc,
1325 struct bcmeth_txqueue *txq,
1326 u_int qno)
1327 {
1328 size_t desc_count = BCMETH_RINGSIZE / sizeof(txq->txq_first[0]);
1329 int error;
1330 void *descs;
1331
1332 KASSERT(desc_count == 256 || desc_count == 512);
1333
1334 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1335 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1336 if (error)
1337 return error;
1338
1339 memset(descs, 0, BCMETH_RINGSIZE);
1340 txq->txq_first = descs;
1341 txq->txq_last = txq->txq_first + desc_count;
1342 txq->txq_consumer = descs;
1343 txq->txq_producer = descs;
1344
1345 IFQ_SET_MAXLEN(&txq->txq_mbufs, BCMETH_MAXTXMBUFS);
1346
1347 txq->txq_reg_xmtaddrlo = GMAC_XMTADDR_LOW;
1348 txq->txq_reg_xmtctl = GMAC_XMTCONTROL;
1349 txq->txq_reg_xmtptr = GMAC_XMTPTR;
1350 txq->txq_reg_xmtsts0 = GMAC_XMTSTATUS0;
1351 txq->txq_reg_xmtsts1 = GMAC_XMTSTATUS1;
1352
1353 bcmeth_txq_reset(sc, txq);
1354
1355 return 0;
1356 }
1357
1358 static int
1359 bcmeth_txq_map_load(
1360 struct bcmeth_softc *sc,
1361 struct bcmeth_txqueue *txq,
1362 struct mbuf *m)
1363 {
1364 bus_dmamap_t map;
1365 int error;
1366
1367 map = M_GETCTX(m, bus_dmamap_t);
1368 if (map != NULL)
1369 return 0;
1370
1371 map = bcmeth_mapcache_get(sc, sc->sc_tx_mapcache);
1372 if (map == NULL)
1373 return ENOMEM;
1374
1375 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1376 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1377 if (error)
1378 return error;
1379
1380 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1381 BUS_DMASYNC_PREWRITE);
1382 M_SETCTX(m, map);
1383 return 0;
1384 }
1385
1386 static void
1387 bcmeth_txq_map_unload(
1388 struct bcmeth_softc *sc,
1389 struct bcmeth_txqueue *txq,
1390 struct mbuf *m)
1391 {
1392 KASSERT(m);
1393 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1394 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1395 BUS_DMASYNC_POSTWRITE);
1396 bus_dmamap_unload(sc->sc_dmat, map);
1397 bcmeth_mapcache_put(sc, sc->sc_tx_mapcache, map);
1398 }
1399
1400 static bool
1401 bcmeth_txq_produce(
1402 struct bcmeth_softc *sc,
1403 struct bcmeth_txqueue *txq,
1404 struct mbuf *m)
1405 {
1406 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1407
1408 if (map->dm_nsegs > txq->txq_free)
1409 return false;
1410
1411 /*
1412 * TCP Offload flag must be set in the first descriptor.
1413 */
1414 struct gmac_txdb *producer = txq->txq_producer;
1415 uint32_t first_flags = TXDB_FLAG_SF;
1416 uint32_t last_flags = TXDB_FLAG_EF;
1417
1418 /*
1419 * If we've produced enough descriptors without consuming any
1420 * we need to ask for an interrupt to reclaim some.
1421 */
1422 txq->txq_lastintr += map->dm_nsegs;
1423 if (txq->txq_lastintr >= txq->txq_threshold
1424 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1425 txq->txq_lastintr = 0;
1426 last_flags |= TXDB_FLAG_IC;
1427 }
1428
1429 KASSERT(producer != txq->txq_last);
1430
1431 struct gmac_txdb *start = producer;
1432 size_t count = map->dm_nsegs;
1433 producer->txdb_flags |= htole32(first_flags);
1434 producer->txdb_addrlo = htole32(map->dm_segs[0].ds_addr);
1435 producer->txdb_buflen = htole32(map->dm_segs[0].ds_len);
1436 for (u_int i = 1; i < map->dm_nsegs; i++) {
1437 #if 0
1438 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1439 le32toh(producer->txdb_flags),
1440 le32toh(producer->txdb_buflen),
1441 le32toh(producer->txdb_addrlo),
1442 le32toh(producer->txdb_addrhi));
1443 #endif
1444 if (__predict_false(++producer == txq->txq_last)) {
1445 bcmeth_txq_desc_presync(sc, txq, start,
1446 txq->txq_last - start);
1447 count -= txq->txq_last - start;
1448 producer = txq->txq_first;
1449 start = txq->txq_first;
1450 }
1451 producer->txdb_addrlo = htole32(map->dm_segs[i].ds_addr);
1452 producer->txdb_buflen = htole32(map->dm_segs[i].ds_len);
1453 }
1454 producer->txdb_flags |= htole32(last_flags);
1455 #if 0
1456 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1457 le32toh(producer->txdb_flags), le32toh(producer->txdb_buflen),
1458 le32toh(producer->txdb_addrlo), le32toh(producer->txdb_addrhi));
1459 #endif
1460 if (count)
1461 bcmeth_txq_desc_presync(sc, txq, start, count);
1462
1463 /*
1464 * Reduce free count by the number of segments we consumed.
1465 */
1466 txq->txq_free -= map->dm_nsegs;
1467 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1468 KASSERT(map->dm_nsegs == 1
1469 || (txq->txq_producer->txdb_flags & htole32(TXDB_FLAG_EF)) == 0);
1470 KASSERT(producer->txdb_flags & htole32(TXDB_FLAG_EF));
1471
1472 #if 0
1473 printf("%s: mbuf %p: produced a %u byte packet in %u segments "
1474 "(%zd..%zd)\n", __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1475 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1476 #endif
1477
1478 if (producer + 1 == txq->txq_last)
1479 txq->txq_producer = txq->txq_first;
1480 else
1481 txq->txq_producer = producer + 1;
1482 IF_ENQUEUE(&txq->txq_mbufs, m);
1483
1484 /*
1485 * Let the transmitter know there's more to do
1486 */
1487 bcmeth_write_4(sc, txq->txq_reg_xmtptr,
1488 txq->txq_descmap->dm_segs[0].ds_addr
1489 + ((uintptr_t)txq->txq_producer & XMT_LASTDSCR));
1490
1491 return true;
1492 }
1493
1494 static struct mbuf *
1495 bcmeth_copy_packet(struct mbuf *m)
1496 {
1497 struct mbuf *mext = NULL;
1498 size_t misalignment = 0;
1499 size_t hlen = 0;
1500
1501 for (mext = m; mext != NULL; mext = mext->m_next) {
1502 if (mext->m_flags & M_EXT) {
1503 misalignment = mtod(mext, vaddr_t) & arm_dcache_align;
1504 break;
1505 }
1506 hlen += m->m_len;
1507 }
1508
1509 struct mbuf *n = m->m_next;
1510 if (m != mext && hlen + misalignment <= MHLEN && false) {
1511 KASSERT(m->m_pktdat <= m->m_data
1512 && m->m_data <= &m->m_pktdat[MHLEN - m->m_len]);
1513 size_t oldoff = m->m_data - m->m_pktdat;
1514 size_t off;
1515 if (mext == NULL) {
1516 off = (oldoff + hlen > MHLEN) ? 0 : oldoff;
1517 } else {
1518 off = MHLEN - (hlen + misalignment);
1519 }
1520 KASSERT(off + hlen + misalignment <= MHLEN);
1521 if (((oldoff ^ off) & arm_dcache_align) != 0 || off < oldoff) {
1522 memmove(&m->m_pktdat[off], m->m_data, m->m_len);
1523 m->m_data = &m->m_pktdat[off];
1524 }
1525 m_copydata(n, 0, hlen - m->m_len, &m->m_data[m->m_len]);
1526 m->m_len = hlen;
1527 m->m_next = mext;
1528 while (n != mext) {
1529 n = m_free(n);
1530 }
1531 return m;
1532 }
1533
1534 struct mbuf *m0 = m_gethdr(M_DONTWAIT, m->m_type);
1535 if (m0 == NULL) {
1536 return NULL;
1537 }
1538 m_copy_pkthdr(m0, m);
1539 MCLAIM(m0, m->m_owner);
1540 if (m0->m_pkthdr.len > MHLEN) {
1541 MCLGET(m0, M_DONTWAIT);
1542 if ((m0->m_flags & M_EXT) == 0) {
1543 m_freem(m0);
1544 return NULL;
1545 }
1546 }
1547 m0->m_len = m->m_pkthdr.len;
1548 m_copydata(m, 0, m0->m_len, mtod(m0, void *));
1549 m_freem(m);
1550 return m0;
1551 }
1552
1553 static bool
1554 bcmeth_txq_enqueue(
1555 struct bcmeth_softc *sc,
1556 struct bcmeth_txqueue *txq)
1557 {
1558 for (;;) {
1559 if (IF_QFULL(&txq->txq_mbufs))
1560 return false;
1561 struct mbuf *m = txq->txq_next;
1562 if (m == NULL) {
1563 int s = splnet();
1564 IF_DEQUEUE(&sc->sc_if.if_snd, m);
1565 splx(s);
1566 if (m == NULL)
1567 return true;
1568 M_SETCTX(m, NULL);
1569 } else {
1570 txq->txq_next = NULL;
1571 }
1572 /*
1573 * If LINK2 is set and this packet uses multiple mbufs,
1574 * consolidate it into a single mbuf.
1575 */
1576 if (m->m_next != NULL && (sc->sc_if.if_flags & IFF_LINK2)) {
1577 struct mbuf *m0 = bcmeth_copy_packet(m);
1578 if (m0 == NULL) {
1579 txq->txq_next = m;
1580 return true;
1581 }
1582 m = m0;
1583 }
1584 int error = bcmeth_txq_map_load(sc, txq, m);
1585 if (error) {
1586 aprint_error_dev(sc->sc_dev,
1587 "discarded packet due to "
1588 "dmamap load failure: %d\n", error);
1589 m_freem(m);
1590 continue;
1591 }
1592 KASSERT(txq->txq_next == NULL);
1593 if (!bcmeth_txq_produce(sc, txq, m)) {
1594 txq->txq_next = m;
1595 return false;
1596 }
1597 KASSERT(txq->txq_next == NULL);
1598 }
1599 }
1600
1601 static bool
1602 bcmeth_txq_consume(
1603 struct bcmeth_softc *sc,
1604 struct bcmeth_txqueue *txq)
1605 {
1606 struct ifnet * const ifp = &sc->sc_if;
1607 struct gmac_txdb *consumer = txq->txq_consumer;
1608 size_t txfree = 0;
1609
1610 #if 0
1611 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1612 #endif
1613
1614 for (;;) {
1615 if (consumer == txq->txq_producer) {
1616 txq->txq_consumer = consumer;
1617 txq->txq_free += txfree;
1618 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
1619 #if 0
1620 printf("%s: empty: freed %zu descriptors going from "
1621 "%zu to %zu\n", __func__, txfree,
1622 txq->txq_free - txfree, txq->txq_free);
1623 #endif
1624 KASSERT(txq->txq_lastintr == 0);
1625 KASSERT(txq->txq_free
1626 == txq->txq_last - txq->txq_first - 1);
1627 return true;
1628 }
1629 bcmeth_txq_desc_postsync(sc, txq, consumer, 1);
1630 uint32_t s0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
1631 if (consumer == txq->txq_first + __SHIFTOUT(s0, XMT_CURRDSCR)) {
1632 txq->txq_consumer = consumer;
1633 txq->txq_free += txfree;
1634 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
1635 #if 0
1636 printf("%s: freed %zu descriptors\n",
1637 __func__, txfree);
1638 #endif
1639 return bcmeth_txq_fillable_p(sc, txq);
1640 }
1641
1642 /*
1643 * If this is the last descriptor in the chain, get the
1644 * mbuf, free its dmamap, and free the mbuf chain itself.
1645 */
1646 const uint32_t txdb_flags = le32toh(consumer->txdb_flags);
1647 if (txdb_flags & TXDB_FLAG_EF) {
1648 struct mbuf *m;
1649
1650 IF_DEQUEUE(&txq->txq_mbufs, m);
1651 KASSERT(m);
1652 bcmeth_txq_map_unload(sc, txq, m);
1653 #if 0
1654 printf("%s: mbuf %p: consumed a %u byte packet\n",
1655 __func__, m, m->m_pkthdr.len);
1656 #endif
1657 bpf_mtap(ifp, m, BPF_D_OUT);
1658 if_statinc(ifp, if_opackets);
1659 if_statadd(ifp, if_obytes, m->m_pkthdr.len);
1660 if (m->m_flags & M_MCAST)
1661 if_statinc(ifp, if_omcasts);
1662 m_freem(m);
1663 }
1664
1665 /*
1666 * We own this packet again. Clear all flags except wrap.
1667 */
1668 txfree++;
1669
1670 /*
1671 * Wrap at the last entry!
1672 */
1673 if (txdb_flags & TXDB_FLAG_ET) {
1674 consumer->txdb_flags = htole32(TXDB_FLAG_ET);
1675 KASSERT(consumer + 1 == txq->txq_last);
1676 consumer = txq->txq_first;
1677 } else {
1678 consumer->txdb_flags = 0;
1679 consumer++;
1680 KASSERT(consumer < txq->txq_last);
1681 }
1682 }
1683 }
1684
1685 static void
1686 bcmeth_txq_purge(
1687 struct bcmeth_softc *sc,
1688 struct bcmeth_txqueue *txq)
1689 {
1690 struct mbuf *m;
1691 KASSERT((bcmeth_read_4(sc, UNIMAC_COMMAND_CONFIG) & TX_ENA) == 0);
1692
1693 for (;;) {
1694 IF_DEQUEUE(&txq->txq_mbufs, m);
1695 if (m == NULL)
1696 break;
1697 bcmeth_txq_map_unload(sc, txq, m);
1698 m_freem(m);
1699 }
1700 if ((m = txq->txq_next) != NULL) {
1701 txq->txq_next = NULL;
1702 bcmeth_txq_map_unload(sc, txq, m);
1703 m_freem(m);
1704 }
1705 }
1706
1707 static void
1708 bcmeth_txq_reset(
1709 struct bcmeth_softc *sc,
1710 struct bcmeth_txqueue *txq)
1711 {
1712 /*
1713 * sync all the descriptors
1714 */
1715 bcmeth_txq_desc_postsync(sc, txq, txq->txq_first,
1716 txq->txq_last - txq->txq_first);
1717
1718 /*
1719 * Make sure we own all descriptors in the ring.
1720 */
1721 struct gmac_txdb *txdb;
1722 for (txdb = txq->txq_first; txdb < txq->txq_last - 1; txdb++) {
1723 txdb->txdb_flags = 0;
1724 }
1725
1726 /*
1727 * Last descriptor has the wrap flag.
1728 */
1729 txdb->txdb_flags = htole32(TXDB_FLAG_ET);
1730
1731 /*
1732 * Reset the producer consumer indexes.
1733 */
1734 txq->txq_consumer = txq->txq_first;
1735 txq->txq_producer = txq->txq_first;
1736 txq->txq_free = txq->txq_last - txq->txq_first - 1;
1737 txq->txq_threshold = txq->txq_free / 2;
1738 txq->txq_lastintr = 0;
1739
1740 /*
1741 * What do we want to get interrupted on?
1742 */
1743 sc->sc_intmask |= XMTINT_0 | XMTUF;
1744
1745 /*
1746 * Restart the transmiter at the first descriptor
1747 */
1748 bcmeth_write_4(sc, txq->txq_reg_xmtaddrlo,
1749 txq->txq_descmap->dm_segs->ds_addr);
1750 }
1751
1752 static void
1753 bcmeth_ifstart(struct ifnet *ifp)
1754 {
1755 struct bcmeth_softc * const sc = ifp->if_softc;
1756
1757 if (__predict_false((ifp->if_flags & IFF_RUNNING) == 0)) {
1758 return;
1759 }
1760
1761 #ifdef BCMETH_MPSAFETX
1762 if (cpu_intr_p()) {
1763 #endif
1764 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
1765 softint_schedule(sc->sc_soft_ih);
1766 #ifdef BCMETH_MPSAFETX
1767 } else {
1768 /*
1769 * Either we are in a softintr thread already or some other
1770 * thread so just borrow it to do the send and save ourselves
1771 * the overhead of a fast soft int.
1772 */
1773 bcmeth_soft_txintr(sc);
1774 }
1775 #endif
1776 }
1777
1778 int
1779 bcmeth_intr(void *arg)
1780 {
1781 struct bcmeth_softc * const sc = arg;
1782 uint32_t soft_flags = 0;
1783 uint32_t work_flags = 0;
1784 int rv = 0;
1785
1786 mutex_enter(sc->sc_hwlock);
1787
1788 uint32_t intmask = sc->sc_intmask;
1789 BCMETH_EVCNT_INCR(sc->sc_ev_intr);
1790
1791 for (;;) {
1792 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
1793 intstatus &= intmask;
1794 bcmeth_write_4(sc, GMAC_INTSTATUS, intstatus); /* write 1 to clear */
1795 if (intstatus == 0) {
1796 break;
1797 }
1798 #if 0
1799 aprint_normal_dev(sc->sc_dev, "%s: intstatus=%#x intmask=%#x\n",
1800 __func__, intstatus, bcmeth_read_4(sc, GMAC_INTMASK));
1801 #endif
1802 if (intstatus & RCVINT) {
1803 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
1804 intmask &= ~RCVINT;
1805
1806 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1807 uint32_t descs = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1808 if (descs < rxq->rxq_consumer - rxq->rxq_first) {
1809 /*
1810 * We wrapped at the end so count how far
1811 * we are from the end.
1812 */
1813 descs += rxq->rxq_last - rxq->rxq_consumer;
1814 } else {
1815 descs -= rxq->rxq_consumer - rxq->rxq_first;
1816 }
1817 /*
1818 * If we "timedout" we can't be hogging so use
1819 * softints. If we exceeded then we might hogging
1820 * so let the workqueue deal with them.
1821 */
1822 const uint32_t framecount = __SHIFTOUT(sc->sc_rcvlazy,
1823 INTRCVLAZY_FRAMECOUNT);
1824 if (descs < framecount
1825 || (curcpu()->ci_curlwp->l_flag & LW_IDLE)) {
1826 soft_flags |= SOFT_RXINTR;
1827 } else {
1828 work_flags |= WORK_RXINTR;
1829 }
1830 }
1831
1832 if (intstatus & XMTINT_0) {
1833 intmask &= ~XMTINT_0;
1834 soft_flags |= SOFT_TXINTR;
1835 }
1836
1837 if (intstatus & RCVDESCUF) {
1838 intmask &= ~RCVDESCUF;
1839 work_flags |= WORK_RXUNDERFLOW;
1840 }
1841
1842 intstatus &= intmask;
1843 if (intstatus) {
1844 aprint_error_dev(sc->sc_dev,
1845 "intr: intstatus=%#x\n", intstatus);
1846 aprint_error_dev(sc->sc_dev,
1847 "rcvbase=%p/%#lx rcvptr=%#x rcvsts=%#x/%#x\n",
1848 sc->sc_rxq.rxq_first,
1849 sc->sc_rxq.rxq_descmap->dm_segs[0].ds_addr,
1850 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvptr),
1851 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts0),
1852 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts1));
1853 aprint_error_dev(sc->sc_dev,
1854 "xmtbase=%p/%#lx xmtptr=%#x xmtsts=%#x/%#x\n",
1855 sc->sc_txq.txq_first,
1856 sc->sc_txq.txq_descmap->dm_segs[0].ds_addr,
1857 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtptr),
1858 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts0),
1859 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts1));
1860 intmask &= ~intstatus;
1861 work_flags |= WORK_REINIT;
1862 break;
1863 }
1864 }
1865
1866 if (intmask != sc->sc_intmask) {
1867 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1868 }
1869
1870 if (work_flags) {
1871 if (sc->sc_work_flags == 0) {
1872 workqueue_enqueue(sc->sc_workq, &sc->sc_work, NULL);
1873 }
1874 atomic_or_32(&sc->sc_work_flags, work_flags);
1875 rv = 1;
1876 }
1877
1878 if (soft_flags) {
1879 if (sc->sc_soft_flags == 0) {
1880 softint_schedule(sc->sc_soft_ih);
1881 }
1882 atomic_or_32(&sc->sc_soft_flags, soft_flags);
1883 rv = 1;
1884 }
1885
1886 mutex_exit(sc->sc_hwlock);
1887
1888 return rv;
1889 }
1890
1891 #ifdef BCMETH_MPSAFETX
1892 void
1893 bcmeth_soft_txintr(struct bcmeth_softc *sc)
1894 {
1895 mutex_enter(sc->sc_lock);
1896 /*
1897 * Let's do what we came here for. Consume transmitted
1898 * packets off the transmit ring.
1899 */
1900 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1901 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1902 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1903 sc->sc_if.if_flags |= IFF_OACTIVE;
1904 } else {
1905 sc->sc_if.if_flags &= ~IFF_OACTIVE;
1906 }
1907 if (sc->sc_if.if_flags & IFF_RUNNING) {
1908 mutex_spin_enter(sc->sc_hwlock);
1909 sc->sc_intmask |= XMTINT_0;
1910 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1911 mutex_spin_exit(sc->sc_hwlock);
1912 }
1913 mutex_exit(sc->sc_lock);
1914 }
1915 #endif /* BCMETH_MPSAFETX */
1916
1917 void
1918 bcmeth_soft_intr(void *arg)
1919 {
1920 struct bcmeth_softc * const sc = arg;
1921 struct ifnet * const ifp = &sc->sc_if;
1922 uint32_t intmask = 0;
1923
1924 mutex_enter(sc->sc_lock);
1925
1926 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
1927
1928 BCMETH_EVCNT_INCR(sc->sc_ev_soft_intr);
1929
1930 if ((soft_flags & SOFT_TXINTR)
1931 || bcmeth_txq_active_p(sc, &sc->sc_txq)) {
1932 /*
1933 * Let's do what we came here for. Consume transmitted
1934 * packets off the transmit ring.
1935 */
1936 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1937 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1938 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1939 ifp->if_flags |= IFF_OACTIVE;
1940 } else {
1941 ifp->if_flags &= ~IFF_OACTIVE;
1942 }
1943 intmask |= XMTINT_0;
1944 }
1945
1946 if (soft_flags & SOFT_RXINTR) {
1947 /*
1948 * Let's consume
1949 */
1950 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
1951 sc->sc_rxq.rxq_threshold / 4)) {
1952 /*
1953 * We've consumed a quarter of the ring and still have
1954 * more to do. Refill the ring.
1955 */
1956 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1957 }
1958 intmask |= RCVINT;
1959 }
1960
1961 if (ifp->if_flags & IFF_RUNNING) {
1962 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1963 mutex_spin_enter(sc->sc_hwlock);
1964 sc->sc_intmask |= intmask;
1965 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1966 mutex_spin_exit(sc->sc_hwlock);
1967 }
1968
1969 mutex_exit(sc->sc_lock);
1970 }
1971
1972 void
1973 bcmeth_worker(struct work *wk, void *arg)
1974 {
1975 struct bcmeth_softc * const sc = arg;
1976 struct ifnet * const ifp = &sc->sc_if;
1977 uint32_t intmask = 0;
1978
1979 mutex_enter(sc->sc_lock);
1980
1981 BCMETH_EVCNT_INCR(sc->sc_ev_work);
1982
1983 uint32_t work_flags = atomic_swap_32(&sc->sc_work_flags, 0);
1984 if (work_flags & WORK_REINIT) {
1985 int s = splnet();
1986 sc->sc_soft_flags = 0;
1987 bcmeth_ifinit(ifp);
1988 splx(s);
1989 work_flags &= ~WORK_RXUNDERFLOW;
1990 }
1991
1992 if (work_flags & WORK_RXUNDERFLOW) {
1993 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
1994 size_t threshold = 5 * rxq->rxq_threshold / 4;
1995 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
1996 threshold = rxq->rxq_last - rxq->rxq_first - 1;
1997 } else {
1998 intmask |= RCVDESCUF;
1999 }
2000 aprint_normal_dev(sc->sc_dev,
2001 "increasing receive buffers from %zu to %zu\n",
2002 rxq->rxq_threshold, threshold);
2003 rxq->rxq_threshold = threshold;
2004 }
2005
2006 if (work_flags & WORK_RXINTR) {
2007 /*
2008 * Let's consume
2009 */
2010 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
2011 sc->sc_rxq.rxq_threshold / 4)) {
2012 /*
2013 * We've consumed a quarter of the ring and still have
2014 * more to do. Refill the ring.
2015 */
2016 bcmeth_rxq_produce(sc, &sc->sc_rxq);
2017 }
2018 intmask |= RCVINT;
2019 }
2020
2021 if (ifp->if_flags & IFF_RUNNING) {
2022 bcmeth_rxq_produce(sc, &sc->sc_rxq);
2023 #if 0
2024 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
2025 if (intstatus & RCVINT) {
2026 bcmeth_write_4(sc, GMAC_INTSTATUS, RCVINT);
2027 work_flags |= WORK_RXINTR;
2028 continue;
2029 }
2030 #endif
2031 mutex_spin_enter(sc->sc_hwlock);
2032 sc->sc_intmask |= intmask;
2033 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
2034 mutex_spin_exit(sc->sc_hwlock);
2035 }
2036
2037 mutex_exit(sc->sc_lock);
2038 }
2039