bcm53xx_eth.c revision 1.45 1 /*-
2 * Copyright (c) 2012 The NetBSD Foundation, Inc.
3 * All rights reserved.
4 *
5 * This code is derived from software contributed to The NetBSD Foundation
6 * by Matt Thomas of 3am Software Foundry.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 * POSSIBILITY OF SUCH DAMAGE.
28 */
29
30 #define _ARM32_BUS_DMA_PRIVATE
31 #define GMAC_PRIVATE
32
33 #include "locators.h"
34 #include "opt_broadcom.h"
35
36 #include <sys/cdefs.h>
37
38 __KERNEL_RCSID(1, "$NetBSD: bcm53xx_eth.c,v 1.45 2024/12/04 21:18:34 andvar Exp $");
39
40 #include <sys/param.h>
41 #include <sys/atomic.h>
42 #include <sys/bus.h>
43 #include <sys/device.h>
44 #include <sys/ioctl.h>
45 #include <sys/intr.h>
46 #include <sys/kmem.h>
47 #include <sys/mutex.h>
48 #include <sys/socket.h>
49 #include <sys/systm.h>
50 #include <sys/workqueue.h>
51
52 #include <net/if.h>
53 #include <net/if_ether.h>
54 #include <net/if_media.h>
55 #include <net/if_dl.h>
56 #include <net/bpf.h>
57
58 #include <dev/mii/miivar.h>
59
60 #include <arm/locore.h>
61
62 #include <arm/broadcom/bcm53xx_reg.h>
63 #include <arm/broadcom/bcm53xx_var.h>
64
65 //#define BCMETH_MPSAFE
66
67 #ifdef BCMETH_COUNTERS
68 #define BCMETH_EVCNT_ADD(a, b) ((void)((a).ev_count += (b)))
69 #else
70 #define BCMETH_EVCNT_ADD(a, b) do { } while (/*CONSTCOND*/0)
71 #endif
72 #define BCMETH_EVCNT_INCR(a) BCMETH_EVCNT_ADD((a), 1)
73
74 #define BCMETH_MAXTXMBUFS 128
75 #define BCMETH_NTXSEGS 30
76 #define BCMETH_MAXRXMBUFS 255
77 #define BCMETH_MINRXMBUFS 64
78 #define BCMETH_NRXSEGS 1
79 #define BCMETH_RINGSIZE PAGE_SIZE
80
81 #if 1
82 #define BCMETH_RCVMAGIC 0xfeedface
83 #endif
84
85 static int bcmeth_ccb_match(device_t, cfdata_t, void *);
86 static void bcmeth_ccb_attach(device_t, device_t, void *);
87
88 struct bcmeth_txqueue {
89 bus_dmamap_t txq_descmap;
90 struct gmac_txdb *txq_consumer;
91 struct gmac_txdb *txq_producer;
92 struct gmac_txdb *txq_first;
93 struct gmac_txdb *txq_last;
94 struct ifqueue txq_mbufs;
95 struct mbuf *txq_next;
96 size_t txq_free;
97 size_t txq_threshold;
98 size_t txq_lastintr;
99 bus_size_t txq_reg_xmtaddrlo;
100 bus_size_t txq_reg_xmtptr;
101 bus_size_t txq_reg_xmtctl;
102 bus_size_t txq_reg_xmtsts0;
103 bus_size_t txq_reg_xmtsts1;
104 bus_dma_segment_t txq_descmap_seg;
105 };
106
107 struct bcmeth_rxqueue {
108 bus_dmamap_t rxq_descmap;
109 struct gmac_rxdb *rxq_consumer;
110 struct gmac_rxdb *rxq_producer;
111 struct gmac_rxdb *rxq_first;
112 struct gmac_rxdb *rxq_last;
113 struct mbuf *rxq_mhead;
114 struct mbuf **rxq_mtail;
115 struct mbuf *rxq_mconsumer;
116 size_t rxq_inuse;
117 size_t rxq_threshold;
118 bus_size_t rxq_reg_rcvaddrlo;
119 bus_size_t rxq_reg_rcvptr;
120 bus_size_t rxq_reg_rcvctl;
121 bus_size_t rxq_reg_rcvsts0;
122 bus_size_t rxq_reg_rcvsts1;
123 bus_dma_segment_t rxq_descmap_seg;
124 };
125
126 struct bcmeth_mapcache {
127 u_int dmc_nmaps;
128 u_int dmc_maxseg;
129 u_int dmc_maxmaps;
130 u_int dmc_maxmapsize;
131 bus_dmamap_t dmc_maps[0];
132 };
133
134 struct bcmeth_softc {
135 device_t sc_dev;
136 bus_space_tag_t sc_bst;
137 bus_space_handle_t sc_bsh;
138 bus_dma_tag_t sc_dmat;
139 kmutex_t *sc_lock;
140 kmutex_t *sc_hwlock;
141 struct ethercom sc_ec;
142 #define sc_if sc_ec.ec_if
143 struct ifmedia sc_media;
144 void *sc_soft_ih;
145 void *sc_ih;
146
147 struct bcmeth_rxqueue sc_rxq;
148 struct bcmeth_txqueue sc_txq;
149
150 size_t sc_rcvoffset;
151 uint32_t sc_macaddr[2];
152 uint32_t sc_maxfrm;
153 uint32_t sc_cmdcfg;
154 uint32_t sc_intmask;
155 uint32_t sc_rcvlazy;
156 volatile uint32_t sc_soft_flags;
157 #define SOFT_RXINTR 0x01
158 #define SOFT_TXINTR 0x02
159
160 #ifdef BCMETH_COUNTERS
161 struct evcnt sc_ev_intr;
162 struct evcnt sc_ev_soft_intr;
163 struct evcnt sc_ev_work;
164 struct evcnt sc_ev_tx_stall;
165 struct evcnt sc_ev_rx_badmagic_lo;
166 struct evcnt sc_ev_rx_badmagic_hi;
167 #endif
168
169 struct ifqueue sc_rx_bufcache;
170 struct bcmeth_mapcache *sc_rx_mapcache;
171 struct bcmeth_mapcache *sc_tx_mapcache;
172
173 struct workqueue *sc_workq;
174 struct work sc_work;
175
176 volatile uint32_t sc_work_flags;
177 #define WORK_RXINTR 0x01
178 #define WORK_RXUNDERFLOW 0x02
179 #define WORK_REINIT 0x04
180
181 uint8_t sc_enaddr[ETHER_ADDR_LEN];
182 };
183
184 static void bcmeth_ifstart(struct ifnet *);
185 static void bcmeth_ifwatchdog(struct ifnet *);
186 static int bcmeth_ifinit(struct ifnet *);
187 static void bcmeth_ifstop(struct ifnet *, int);
188 static int bcmeth_ifioctl(struct ifnet *, u_long, void *);
189
190 static int bcmeth_mapcache_create(struct bcmeth_softc *,
191 struct bcmeth_mapcache **, size_t, size_t, size_t);
192 static void bcmeth_mapcache_destroy(struct bcmeth_softc *,
193 struct bcmeth_mapcache *);
194 static bus_dmamap_t bcmeth_mapcache_get(struct bcmeth_softc *,
195 struct bcmeth_mapcache *);
196 static void bcmeth_mapcache_put(struct bcmeth_softc *,
197 struct bcmeth_mapcache *, bus_dmamap_t);
198
199 static int bcmeth_txq_attach(struct bcmeth_softc *,
200 struct bcmeth_txqueue *, u_int);
201 static void bcmeth_txq_purge(struct bcmeth_softc *,
202 struct bcmeth_txqueue *);
203 static void bcmeth_txq_reset(struct bcmeth_softc *,
204 struct bcmeth_txqueue *);
205 static bool bcmeth_txq_consume(struct bcmeth_softc *,
206 struct bcmeth_txqueue *);
207 static bool bcmeth_txq_produce(struct bcmeth_softc *,
208 struct bcmeth_txqueue *, struct mbuf *m);
209 static bool bcmeth_txq_active_p(struct bcmeth_softc *,
210 struct bcmeth_txqueue *);
211
212 static int bcmeth_rxq_attach(struct bcmeth_softc *,
213 struct bcmeth_rxqueue *, u_int);
214 static bool bcmeth_rxq_produce(struct bcmeth_softc *,
215 struct bcmeth_rxqueue *);
216 static void bcmeth_rxq_purge(struct bcmeth_softc *,
217 struct bcmeth_rxqueue *, bool);
218 static void bcmeth_rxq_reset(struct bcmeth_softc *,
219 struct bcmeth_rxqueue *);
220
221 static int bcmeth_intr(void *);
222 #ifdef BCMETH_MPSAFETX
223 static void bcmeth_soft_txintr(struct bcmeth_softc *);
224 #endif
225 static void bcmeth_soft_intr(void *);
226 static void bcmeth_worker(struct work *, void *);
227
228 static int bcmeth_mediachange(struct ifnet *);
229 static void bcmeth_mediastatus(struct ifnet *, struct ifmediareq *);
230
231 static inline uint32_t
232 bcmeth_read_4(struct bcmeth_softc *sc, bus_size_t o)
233 {
234 return bus_space_read_4(sc->sc_bst, sc->sc_bsh, o);
235 }
236
237 static inline void
238 bcmeth_write_4(struct bcmeth_softc *sc, bus_size_t o, uint32_t v)
239 {
240 bus_space_write_4(sc->sc_bst, sc->sc_bsh, o, v);
241 }
242
243 CFATTACH_DECL_NEW(bcmeth_ccb, sizeof(struct bcmeth_softc),
244 bcmeth_ccb_match, bcmeth_ccb_attach, NULL, NULL);
245
246 static int
247 bcmeth_ccb_match(device_t parent, cfdata_t cf, void *aux)
248 {
249 struct bcmccb_attach_args * const ccbaa = aux;
250 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
251
252 if (strcmp(cf->cf_name, loc->loc_name))
253 return 0;
254
255 const int port __diagused = cf->cf_loc[BCMCCBCF_PORT];
256 KASSERT(port == BCMCCBCF_PORT_DEFAULT || port == loc->loc_port);
257
258 return 1;
259 }
260
261 static void
262 bcmeth_ccb_attach(device_t parent, device_t self, void *aux)
263 {
264 struct bcmeth_softc * const sc = device_private(self);
265 struct ethercom * const ec = &sc->sc_ec;
266 struct ifnet * const ifp = &ec->ec_if;
267 struct bcmccb_attach_args * const ccbaa = aux;
268 const struct bcm_locators * const loc = &ccbaa->ccbaa_loc;
269 const char * const xname = device_xname(self);
270 prop_dictionary_t dict = device_properties(self);
271 int error;
272
273 sc->sc_bst = ccbaa->ccbaa_ccb_bst;
274 sc->sc_dmat = ccbaa->ccbaa_dmat;
275 bus_space_subregion(sc->sc_bst, ccbaa->ccbaa_ccb_bsh,
276 loc->loc_offset, loc->loc_size, &sc->sc_bsh);
277
278 /*
279 * We need to use the coherent dma tag for the GMAC.
280 */
281 sc->sc_dmat = &bcm53xx_coherent_dma_tag;
282 #if _ARM32_NEED_BUS_DMA_BOUNCE
283 if (device_cfdata(self)->cf_flags & 2) {
284 sc->sc_dmat = &bcm53xx_bounce_dma_tag;
285 }
286 #endif
287
288 prop_data_t eaprop = prop_dictionary_get(dict, "mac-address");
289 if (eaprop == NULL) {
290 uint32_t mac0 = bcmeth_read_4(sc, UNIMAC_MAC_0);
291 uint32_t mac1 = bcmeth_read_4(sc, UNIMAC_MAC_1);
292 if ((mac0 == 0 && mac1 == 0) || (mac1 & 1)) {
293 aprint_error(": mac-address property is missing\n");
294 return;
295 }
296 sc->sc_enaddr[0] = (mac0 >> 0) & 0xff;
297 sc->sc_enaddr[1] = (mac0 >> 8) & 0xff;
298 sc->sc_enaddr[2] = (mac0 >> 16) & 0xff;
299 sc->sc_enaddr[3] = (mac0 >> 24) & 0xff;
300 sc->sc_enaddr[4] = (mac1 >> 0) & 0xff;
301 sc->sc_enaddr[5] = (mac1 >> 8) & 0xff;
302 } else {
303 KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
304 KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
305 memcpy(sc->sc_enaddr, prop_data_data_nocopy(eaprop),
306 ETHER_ADDR_LEN);
307 }
308 sc->sc_dev = self;
309 sc->sc_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
310 sc->sc_hwlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_VM);
311
312 bcmeth_write_4(sc, GMAC_INTMASK, 0); // disable interrupts
313
314 aprint_naive("\n");
315 aprint_normal(": Gigabit Ethernet Controller\n");
316
317 error = bcmeth_rxq_attach(sc, &sc->sc_rxq, 0);
318 if (error) {
319 aprint_error(": failed to init rxq: %d\n", error);
320 goto fail_1;
321 }
322
323 error = bcmeth_txq_attach(sc, &sc->sc_txq, 0);
324 if (error) {
325 aprint_error(": failed to init txq: %d\n", error);
326 goto fail_1;
327 }
328
329 error = bcmeth_mapcache_create(sc, &sc->sc_rx_mapcache,
330 BCMETH_MAXRXMBUFS, MCLBYTES, BCMETH_NRXSEGS);
331 if (error) {
332 aprint_error(": failed to allocate rx dmamaps: %d\n", error);
333 goto fail_1;
334 }
335
336 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
337 BCMETH_MAXTXMBUFS, MCLBYTES, BCMETH_NTXSEGS);
338 if (error) {
339 aprint_error(": failed to allocate tx dmamaps: %d\n", error);
340 goto fail_1;
341 }
342
343 error = workqueue_create(&sc->sc_workq, xname, bcmeth_worker, sc,
344 (PRI_USER + MAXPRI_USER) / 2, IPL_NET, WQ_MPSAFE|WQ_PERCPU);
345 if (error) {
346 aprint_error(": failed to create workqueue: %d\n", error);
347 goto fail_1;
348 }
349
350 sc->sc_soft_ih = softint_establish(SOFTINT_MPSAFE | SOFTINT_NET,
351 bcmeth_soft_intr, sc);
352
353 if (sc->sc_soft_ih == NULL) {
354 aprint_error_dev(self, "failed to establish soft interrupt\n");
355 goto fail_2;
356 }
357
358 sc->sc_ih = intr_establish(loc->loc_intrs[0], IPL_VM, IST_LEVEL,
359 bcmeth_intr, sc);
360
361 if (sc->sc_ih == NULL) {
362 aprint_error_dev(self, "failed to establish interrupt %d\n",
363 loc->loc_intrs[0]);
364 goto fail_3;
365 } else {
366 aprint_normal_dev(self, "interrupting on irq %d\n",
367 loc->loc_intrs[0]);
368 }
369
370 aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
371 ether_sprintf(sc->sc_enaddr));
372
373 /*
374 * Since each port in plugged into the switch/flow-accelerator,
375 * we hard code at Gige Full-Duplex with Flow Control enabled.
376 */
377 int ifmedia = IFM_ETHER | IFM_1000_T | IFM_FDX;
378 //ifmedia |= IFM_FLOW | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
379 ec->ec_ifmedia = &sc->sc_media;
380 ifmedia_init(&sc->sc_media, IFM_IMASK, bcmeth_mediachange,
381 bcmeth_mediastatus);
382 ifmedia_add(&sc->sc_media, ifmedia, 0, NULL);
383 ifmedia_set(&sc->sc_media, ifmedia);
384
385 ec->ec_capabilities = ETHERCAP_VLAN_MTU | ETHERCAP_JUMBO_MTU;
386
387 strlcpy(ifp->if_xname, xname, IFNAMSIZ);
388 ifp->if_softc = sc;
389 ifp->if_baudrate = IF_Mbps(1000);
390 ifp->if_capabilities = 0;
391 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
392 #ifdef BCMETH_MPSAFE
393 ifp->if_flags2 = IFF2_MPSAFE;
394 #endif
395 ifp->if_ioctl = bcmeth_ifioctl;
396 ifp->if_start = bcmeth_ifstart;
397 ifp->if_watchdog = bcmeth_ifwatchdog;
398 ifp->if_init = bcmeth_ifinit;
399 ifp->if_stop = bcmeth_ifstop;
400 IFQ_SET_READY(&ifp->if_snd);
401
402 bcmeth_ifstop(ifp, true);
403
404 /*
405 * Attach the interface.
406 */
407 if_initialize(ifp);
408 ether_ifattach(ifp, sc->sc_enaddr);
409 if_register(ifp);
410
411 #ifdef BCMETH_COUNTERS
412 evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
413 NULL, xname, "intr");
414 evcnt_attach_dynamic(&sc->sc_ev_soft_intr, EVCNT_TYPE_INTR,
415 NULL, xname, "soft intr");
416 evcnt_attach_dynamic(&sc->sc_ev_work, EVCNT_TYPE_MISC,
417 NULL, xname, "work items");
418 evcnt_attach_dynamic(&sc->sc_ev_tx_stall, EVCNT_TYPE_MISC,
419 NULL, xname, "tx stalls");
420 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_lo, EVCNT_TYPE_MISC,
421 NULL, xname, "rx badmagic lo");
422 evcnt_attach_dynamic(&sc->sc_ev_rx_badmagic_hi, EVCNT_TYPE_MISC,
423 NULL, xname, "rx badmagic hi");
424 #endif
425
426 return;
427
428 fail_3:
429 softint_disestablish(sc->sc_soft_ih);
430 fail_2:
431 workqueue_destroy(sc->sc_workq);
432 fail_1:
433 mutex_obj_free(sc->sc_lock);
434 mutex_obj_free(sc->sc_hwlock);
435 }
436
437 static int
438 bcmeth_mediachange(struct ifnet *ifp)
439 {
440 //struct bcmeth_softc * const sc = ifp->if_softc;
441 return 0;
442 }
443
444 static void
445 bcmeth_mediastatus(struct ifnet *ifp, struct ifmediareq *ifm)
446 {
447 //struct bcmeth_softc * const sc = ifp->if_softc;
448
449 ifm->ifm_status = IFM_AVALID | IFM_ACTIVE;
450 ifm->ifm_active = IFM_ETHER | IFM_FDX | IFM_1000_T;
451 }
452
453 static uint64_t
454 bcmeth_macaddr_create(const uint8_t *enaddr)
455 {
456 return (enaddr[3] << 0) // UNIMAC_MAC_0
457 | (enaddr[2] << 8) // UNIMAC_MAC_0
458 | (enaddr[1] << 16) // UNIMAC_MAC_0
459 | ((uint64_t)enaddr[0] << 24) // UNIMAC_MAC_0
460 | ((uint64_t)enaddr[5] << 32) // UNIMAC_MAC_1
461 | ((uint64_t)enaddr[4] << 40); // UNIMAC_MAC_1
462 }
463
464 static int
465 bcmeth_ifinit(struct ifnet *ifp)
466 {
467 struct bcmeth_softc * const sc = ifp->if_softc;
468 int error = 0;
469
470 sc->sc_maxfrm = uimax(ifp->if_mtu + 32, MCLBYTES);
471 if (ifp->if_mtu > ETHERMTU_JUMBO)
472 return error;
473
474 KASSERT(ifp->if_flags & IFF_UP);
475
476 /*
477 * Stop the interface
478 */
479 bcmeth_ifstop(ifp, 0);
480
481 /*
482 * Reserve enough space at the front so that we can insert a maxsized
483 * link header and a VLAN tag. Also make sure we have enough room for
484 * the rcvsts field as well.
485 */
486 KASSERT(ALIGN(max_linkhdr) == max_linkhdr);
487 KASSERTMSG(max_linkhdr > sizeof(struct ether_header), "%u > %zu",
488 max_linkhdr, sizeof(struct ether_header));
489 sc->sc_rcvoffset = max_linkhdr + 4 - sizeof(struct ether_header);
490 if (sc->sc_rcvoffset <= 4)
491 sc->sc_rcvoffset += 4;
492 KASSERT((sc->sc_rcvoffset & 3) == 2);
493 KASSERT(sc->sc_rcvoffset <= __SHIFTOUT(RCVCTL_RCVOFFSET, RCVCTL_RCVOFFSET));
494 KASSERT(sc->sc_rcvoffset >= 6);
495
496 /*
497 * If our frame size has changed (or it's our first time through)
498 * destroy the existing transmit mapcache.
499 */
500 if (sc->sc_tx_mapcache != NULL
501 && sc->sc_maxfrm != sc->sc_tx_mapcache->dmc_maxmapsize) {
502 bcmeth_mapcache_destroy(sc, sc->sc_tx_mapcache);
503 sc->sc_tx_mapcache = NULL;
504 }
505
506 if (sc->sc_tx_mapcache == NULL) {
507 error = bcmeth_mapcache_create(sc, &sc->sc_tx_mapcache,
508 BCMETH_MAXTXMBUFS, sc->sc_maxfrm, BCMETH_NTXSEGS);
509 if (error)
510 return error;
511 }
512
513 sc->sc_cmdcfg = NO_LENGTH_CHECK | PAUSE_IGNORE
514 | __SHIFTIN(ETH_SPEED_1000, ETH_SPEED)
515 | RX_ENA | TX_ENA;
516
517 if (ifp->if_flags & IFF_PROMISC) {
518 sc->sc_cmdcfg |= PROMISC_EN;
519 } else {
520 sc->sc_cmdcfg &= ~PROMISC_EN;
521 }
522
523 const uint8_t * const lladdr = CLLADDR(ifp->if_sadl);
524 const uint64_t macstnaddr = bcmeth_macaddr_create(lladdr);
525
526 /*
527 * We make sure that a received Ethernet packet start on a non-word
528 * boundary so that the packet payload will be on a word boundary.
529 * So to check the destination address we keep around two words to
530 * quickly compare with.
531 */
532 #if __ARMEL__
533 sc->sc_macaddr[0] = lladdr[0] | (lladdr[1] << 8);
534 sc->sc_macaddr[1] = lladdr[2] | (lladdr[3] << 8)
535 | (lladdr[4] << 16) | (lladdr[5] << 24);
536 #else
537 sc->sc_macaddr[0] = lladdr[1] | (lladdr[0] << 8);
538 sc->sc_macaddr[1] = lladdr[5] | (lladdr[4] << 8)
539 | (lladdr[1] << 16) | (lladdr[2] << 24);
540 #endif
541
542 sc->sc_intmask = DESCPROTOERR | DATAERR | DESCERR;
543
544 /* 5. Load RCVADDR_LO with new pointer */
545 bcmeth_rxq_reset(sc, &sc->sc_rxq);
546
547 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
548 __SHIFTIN(sc->sc_rcvoffset, RCVCTL_RCVOFFSET)
549 | RCVCTL_PARITY_DIS
550 | RCVCTL_OFLOW_CONTINUE
551 | __SHIFTIN(3, RCVCTL_BURSTLEN));
552
553 /* 6. Load XMTADDR_LO with new pointer */
554 bcmeth_txq_reset(sc, &sc->sc_txq);
555
556 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl, XMTCTL_DMA_ACT_INDEX
557 | XMTCTL_PARITY_DIS
558 | __SHIFTIN(3, XMTCTL_BURSTLEN));
559
560 /* 7. Setup other UNIMAC registers */
561 bcmeth_write_4(sc, UNIMAC_FRAME_LEN, sc->sc_maxfrm);
562 bcmeth_write_4(sc, UNIMAC_MAC_0, (uint32_t)(macstnaddr >> 0));
563 bcmeth_write_4(sc, UNIMAC_MAC_1, (uint32_t)(macstnaddr >> 32));
564 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, sc->sc_cmdcfg);
565
566 uint32_t devctl = bcmeth_read_4(sc, GMAC_DEVCONTROL);
567 devctl |= RGMII_LINK_STATUS_SEL | NWAY_AUTO_POLL_EN | TXARB_STRICT_MODE;
568 devctl &= ~FLOW_CTRL_MODE;
569 devctl &= ~MIB_RD_RESET_EN;
570 devctl &= ~RXQ_OVERFLOW_CTRL_SEL;
571 devctl &= ~CPU_FLOW_CTRL_ON;
572 bcmeth_write_4(sc, GMAC_DEVCONTROL, devctl);
573
574 /* Setup lazy receive (at most 1ms). */
575 const struct cpu_softc * const cpu = curcpu()->ci_softc;
576 sc->sc_rcvlazy = __SHIFTIN(4, INTRCVLAZY_FRAMECOUNT)
577 | __SHIFTIN(cpu->cpu_clk.clk_apb / 1000, INTRCVLAZY_TIMEOUT);
578 bcmeth_write_4(sc, GMAC_INTRCVLAZY, sc->sc_rcvlazy);
579
580 /* 11. Enable transmit queues in TQUEUE, and ensure that the transmit scheduling mode is correctly set in TCTRL. */
581 sc->sc_intmask |= XMTINT_0 | XMTUF;
582 bcmeth_write_4(sc, sc->sc_txq.txq_reg_xmtctl,
583 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl) | XMTCTL_ENABLE);
584
585
586 /* 12. Enable receive queues in RQUEUE, */
587 sc->sc_intmask |= RCVINT | RCVDESCUF | RCVFIFOOF;
588 bcmeth_write_4(sc, sc->sc_rxq.rxq_reg_rcvctl,
589 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl) | RCVCTL_ENABLE);
590
591 bcmeth_rxq_produce(sc, &sc->sc_rxq); /* fill with rx buffers */
592
593 #if 0
594 aprint_normal_dev(sc->sc_dev,
595 "devctl=%#x ucmdcfg=%#x xmtctl=%#x rcvctl=%#x\n",
596 devctl, sc->sc_cmdcfg,
597 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtctl),
598 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvctl));
599 #endif
600
601 sc->sc_soft_flags = 0;
602
603 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
604
605 ifp->if_flags |= IFF_RUNNING;
606
607 return error;
608 }
609
610 static void
611 bcmeth_ifstop(struct ifnet *ifp, int disable)
612 {
613 struct bcmeth_softc * const sc = ifp->if_softc;
614 struct bcmeth_txqueue * const txq = &sc->sc_txq;
615 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
616
617 KASSERT(!cpu_intr_p());
618
619 sc->sc_soft_flags = 0;
620 sc->sc_work_flags = 0;
621
622 /* Disable Rx processing */
623 bcmeth_write_4(sc, rxq->rxq_reg_rcvctl,
624 bcmeth_read_4(sc, rxq->rxq_reg_rcvctl) & ~RCVCTL_ENABLE);
625
626 /* Disable Tx processing */
627 bcmeth_write_4(sc, txq->txq_reg_xmtctl,
628 bcmeth_read_4(sc, txq->txq_reg_xmtctl) & ~XMTCTL_ENABLE);
629
630 /* Disable all interrupts */
631 bcmeth_write_4(sc, GMAC_INTMASK, 0);
632
633 for (;;) {
634 uint32_t tx0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
635 uint32_t rx0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
636 if (__SHIFTOUT(tx0, XMTSTATE) == XMTSTATE_DIS
637 && __SHIFTOUT(rx0, RCVSTATE) == RCVSTATE_DIS)
638 break;
639 delay(50);
640 }
641 /*
642 * Now reset the controller.
643 *
644 * 3. Set SW_RESET bit in UNIMAC_COMMAND_CONFIG register
645 * 4. Clear SW_RESET bit in UNIMAC_COMMAND_CONFIG register
646 */
647 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, SW_RESET);
648 bcmeth_write_4(sc, GMAC_INTSTATUS, ~0);
649 sc->sc_intmask = 0;
650 ifp->if_flags &= ~IFF_RUNNING;
651
652 /*
653 * Let's consume any remaining transmitted packets. And if we are
654 * disabling the interface, purge ourselves of any untransmitted
655 * packets. But don't consume any received packets, just drop them.
656 * If we aren't disabling the interface, save the mbufs in the
657 * receive queue for reuse.
658 */
659 bcmeth_rxq_purge(sc, &sc->sc_rxq, disable);
660 bcmeth_txq_consume(sc, &sc->sc_txq);
661 if (disable) {
662 bcmeth_txq_purge(sc, &sc->sc_txq);
663 IF_PURGE(&ifp->if_snd);
664 }
665
666 bcmeth_write_4(sc, UNIMAC_COMMAND_CONFIG, 0);
667 }
668
669 static void
670 bcmeth_ifwatchdog(struct ifnet *ifp)
671 {
672 }
673
674 static int
675 bcmeth_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
676 {
677 const int s = splnet();
678 int error;
679
680 switch (cmd) {
681 default:
682 error = ether_ioctl(ifp, cmd, data);
683 if (error != ENETRESET)
684 break;
685
686 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
687 error = 0;
688 break;
689 }
690 error = bcmeth_ifinit(ifp);
691 break;
692 }
693
694 splx(s);
695 return error;
696 }
697
698 static void
699 bcmeth_rxq_desc_presync(
700 struct bcmeth_softc *sc,
701 struct bcmeth_rxqueue *rxq,
702 struct gmac_rxdb *rxdb,
703 size_t count)
704 {
705 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
706 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
707 BUS_DMASYNC_PREWRITE);
708 }
709
710 static void
711 bcmeth_rxq_desc_postsync(
712 struct bcmeth_softc *sc,
713 struct bcmeth_rxqueue *rxq,
714 struct gmac_rxdb *rxdb,
715 size_t count)
716 {
717 bus_dmamap_sync(sc->sc_dmat, rxq->rxq_descmap,
718 (rxdb - rxq->rxq_first) * sizeof(*rxdb), count * sizeof(*rxdb),
719 BUS_DMASYNC_POSTWRITE);
720 }
721
722 static void
723 bcmeth_txq_desc_presync(
724 struct bcmeth_softc *sc,
725 struct bcmeth_txqueue *txq,
726 struct gmac_txdb *txdb,
727 size_t count)
728 {
729 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
730 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
731 BUS_DMASYNC_PREWRITE);
732 }
733
734 static void
735 bcmeth_txq_desc_postsync(
736 struct bcmeth_softc *sc,
737 struct bcmeth_txqueue *txq,
738 struct gmac_txdb *txdb,
739 size_t count)
740 {
741 bus_dmamap_sync(sc->sc_dmat, txq->txq_descmap,
742 (txdb - txq->txq_first) * sizeof(*txdb), count * sizeof(*txdb),
743 BUS_DMASYNC_POSTWRITE);
744 }
745
746 static bus_dmamap_t
747 bcmeth_mapcache_get(
748 struct bcmeth_softc *sc,
749 struct bcmeth_mapcache *dmc)
750 {
751 KASSERT(dmc->dmc_nmaps > 0);
752 KASSERT(dmc->dmc_maps[dmc->dmc_nmaps-1] != NULL);
753 return dmc->dmc_maps[--dmc->dmc_nmaps];
754 }
755
756 static void
757 bcmeth_mapcache_put(
758 struct bcmeth_softc *sc,
759 struct bcmeth_mapcache *dmc,
760 bus_dmamap_t map)
761 {
762 KASSERT(map != NULL);
763 KASSERT(dmc->dmc_nmaps < dmc->dmc_maxmaps);
764 dmc->dmc_maps[dmc->dmc_nmaps++] = map;
765 }
766
767 static void
768 bcmeth_mapcache_destroy(
769 struct bcmeth_softc *sc,
770 struct bcmeth_mapcache *dmc)
771 {
772 const size_t dmc_size =
773 offsetof(struct bcmeth_mapcache, dmc_maps[dmc->dmc_maxmaps]);
774
775 for (u_int i = 0; i < dmc->dmc_maxmaps; i++) {
776 bus_dmamap_destroy(sc->sc_dmat, dmc->dmc_maps[i]);
777 }
778 kmem_intr_free(dmc, dmc_size);
779 }
780
781 static int
782 bcmeth_mapcache_create(
783 struct bcmeth_softc *sc,
784 struct bcmeth_mapcache **dmc_p,
785 size_t maxmaps,
786 size_t maxmapsize,
787 size_t maxseg)
788 {
789 const size_t dmc_size =
790 offsetof(struct bcmeth_mapcache, dmc_maps[maxmaps]);
791 struct bcmeth_mapcache * const dmc =
792 kmem_intr_zalloc(dmc_size, KM_NOSLEEP);
793
794 dmc->dmc_maxmaps = maxmaps;
795 dmc->dmc_nmaps = maxmaps;
796 dmc->dmc_maxmapsize = maxmapsize;
797 dmc->dmc_maxseg = maxseg;
798
799 for (u_int i = 0; i < maxmaps; i++) {
800 int error = bus_dmamap_create(sc->sc_dmat, dmc->dmc_maxmapsize,
801 dmc->dmc_maxseg, dmc->dmc_maxmapsize, 0,
802 BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmc->dmc_maps[i]);
803 if (error) {
804 aprint_error_dev(sc->sc_dev,
805 "failed to creat dma map cache "
806 "entry %u of %zu: %d\n",
807 i, maxmaps, error);
808 while (i-- > 0) {
809 bus_dmamap_destroy(sc->sc_dmat,
810 dmc->dmc_maps[i]);
811 }
812 kmem_intr_free(dmc, dmc_size);
813 return error;
814 }
815 KASSERT(dmc->dmc_maps[i] != NULL);
816 }
817
818 *dmc_p = dmc;
819
820 return 0;
821 }
822
823 #if 0
824 static void
825 bcmeth_dmamem_free(
826 bus_dma_tag_t dmat,
827 size_t map_size,
828 bus_dma_segment_t *seg,
829 bus_dmamap_t map,
830 void *kvap)
831 {
832 bus_dmamap_destroy(dmat, map);
833 bus_dmamem_unmap(dmat, kvap, map_size);
834 bus_dmamem_free(dmat, seg, 1);
835 }
836 #endif
837
838 static int
839 bcmeth_dmamem_alloc(
840 bus_dma_tag_t dmat,
841 size_t map_size,
842 bus_dma_segment_t *seg,
843 bus_dmamap_t *map,
844 void **kvap)
845 {
846 int error;
847 int nseg;
848
849 *kvap = NULL;
850 *map = NULL;
851
852 error = bus_dmamem_alloc(dmat, map_size, 2*PAGE_SIZE, 0,
853 seg, 1, &nseg, 0);
854 if (error)
855 return error;
856
857 KASSERT(nseg == 1);
858
859 error = bus_dmamem_map(dmat, seg, nseg, map_size, (void **)kvap, 0);
860 if (error == 0) {
861 error = bus_dmamap_create(dmat, map_size, 1, map_size, 0, 0,
862 map);
863 if (error == 0) {
864 error = bus_dmamap_load(dmat, *map, *kvap, map_size,
865 NULL, 0);
866 if (error == 0)
867 return 0;
868 bus_dmamap_destroy(dmat, *map);
869 *map = NULL;
870 }
871 bus_dmamem_unmap(dmat, *kvap, map_size);
872 *kvap = NULL;
873 }
874 bus_dmamem_free(dmat, seg, nseg);
875 return 0;
876 }
877
878 static struct mbuf *
879 bcmeth_rx_buf_alloc(
880 struct bcmeth_softc *sc)
881 {
882 struct mbuf *m = m_gethdr(M_DONTWAIT, MT_DATA);
883 if (m == NULL) {
884 printf("%s:%d: %s\n", __func__, __LINE__, "m_gethdr");
885 return NULL;
886 }
887 MCLGET(m, M_DONTWAIT);
888 if ((m->m_flags & M_EXT) == 0) {
889 printf("%s:%d: %s\n", __func__, __LINE__, "MCLGET");
890 m_freem(m);
891 return NULL;
892 }
893 m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
894
895 bus_dmamap_t map = bcmeth_mapcache_get(sc, sc->sc_rx_mapcache);
896 if (map == NULL) {
897 printf("%s:%d: %s\n", __func__, __LINE__, "map get");
898 m_freem(m);
899 return NULL;
900 }
901 M_SETCTX(m, map);
902 m->m_len = m->m_pkthdr.len = MCLBYTES;
903 int error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
904 BUS_DMA_READ | BUS_DMA_NOWAIT);
905 if (error) {
906 aprint_error_dev(sc->sc_dev, "fail to load rx dmamap: %d\n",
907 error);
908 M_SETCTX(m, NULL);
909 m_freem(m);
910 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
911 return NULL;
912 }
913 KASSERT(map->dm_mapsize == MCLBYTES);
914 #ifdef BCMETH_RCVMAGIC
915 *mtod(m, uint32_t *) = htole32(BCMETH_RCVMAGIC);
916 bus_dmamap_sync(sc->sc_dmat, map, 0, sizeof(uint32_t),
917 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
918 bus_dmamap_sync(sc->sc_dmat, map, sizeof(uint32_t),
919 map->dm_mapsize - sizeof(uint32_t), BUS_DMASYNC_PREREAD);
920 #else
921 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
922 BUS_DMASYNC_PREREAD);
923 #endif
924
925 return m;
926 }
927
928 static void
929 bcmeth_rx_map_unload(
930 struct bcmeth_softc *sc,
931 struct mbuf *m)
932 {
933 KASSERT(m);
934 for (; m != NULL; m = m->m_next) {
935 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
936 KASSERT(map);
937 KASSERT(map->dm_mapsize == MCLBYTES);
938 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_len,
939 BUS_DMASYNC_POSTREAD);
940 bus_dmamap_unload(sc->sc_dmat, map);
941 bcmeth_mapcache_put(sc, sc->sc_rx_mapcache, map);
942 M_SETCTX(m, NULL);
943 }
944 }
945
946 static bool
947 bcmeth_rxq_produce(
948 struct bcmeth_softc *sc,
949 struct bcmeth_rxqueue *rxq)
950 {
951 struct gmac_rxdb *producer = rxq->rxq_producer;
952 bool produced = false;
953
954 while (rxq->rxq_inuse < rxq->rxq_threshold) {
955 struct mbuf *m;
956 IF_DEQUEUE(&sc->sc_rx_bufcache, m);
957 if (m == NULL) {
958 m = bcmeth_rx_buf_alloc(sc);
959 if (m == NULL) {
960 printf("%s: bcmeth_rx_buf_alloc failed\n",
961 __func__);
962 break;
963 }
964 }
965 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
966 KASSERT(map);
967
968 producer->rxdb_buflen = htole32(MCLBYTES);
969 producer->rxdb_addrlo = htole32(map->dm_segs[0].ds_addr);
970 producer->rxdb_flags &= htole32(RXDB_FLAG_ET);
971 *rxq->rxq_mtail = m;
972 rxq->rxq_mtail = &m->m_next;
973 m->m_len = MCLBYTES;
974 m->m_next = NULL;
975 rxq->rxq_inuse++;
976 if (++producer == rxq->rxq_last) {
977 membar_producer();
978 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
979 rxq->rxq_last - rxq->rxq_producer);
980 producer = rxq->rxq_producer = rxq->rxq_first;
981 }
982 produced = true;
983 }
984 if (produced) {
985 membar_producer();
986 if (producer != rxq->rxq_producer) {
987 bcmeth_rxq_desc_presync(sc, rxq, rxq->rxq_producer,
988 producer - rxq->rxq_producer);
989 rxq->rxq_producer = producer;
990 }
991 bcmeth_write_4(sc, rxq->rxq_reg_rcvptr,
992 rxq->rxq_descmap->dm_segs[0].ds_addr
993 + ((uintptr_t)producer & RCVPTR));
994 }
995 return true;
996 }
997
998 static void
999 bcmeth_rx_input(
1000 struct bcmeth_softc *sc,
1001 struct mbuf *m,
1002 uint32_t rxdb_flags)
1003 {
1004 struct ifnet * const ifp = &sc->sc_if;
1005
1006 bcmeth_rx_map_unload(sc, m);
1007
1008 m_adj(m, sc->sc_rcvoffset);
1009
1010 /*
1011 * If we are in promiscuous mode and this isn't a multicast, check the
1012 * destination address to make sure it matches our own. If it doesn't,
1013 * mark the packet as being received promiscuously.
1014 */
1015 if ((sc->sc_cmdcfg & PROMISC_EN)
1016 && (m->m_data[0] & 1) == 0
1017 && (*(uint16_t *)&m->m_data[0] != sc->sc_macaddr[0]
1018 || *(uint32_t *)&m->m_data[2] != sc->sc_macaddr[1])) {
1019 m->m_flags |= M_PROMISC;
1020 }
1021 m_set_rcvif(m, ifp);
1022
1023 /*
1024 * Let's give it to the network subsystm to deal with.
1025 */
1026 #ifdef BCMETH_MPSAFE
1027 mutex_exit(sc->sc_lock);
1028 if_input(ifp, m);
1029 mutex_enter(sc->sc_lock);
1030 #else
1031 int s = splnet();
1032 if_input(ifp, m);
1033 splx(s);
1034 #endif
1035 }
1036
1037 static bool
1038 bcmeth_rxq_consume(
1039 struct bcmeth_softc *sc,
1040 struct bcmeth_rxqueue *rxq,
1041 size_t atmost)
1042 {
1043 struct ifnet * const ifp = &sc->sc_if;
1044 struct gmac_rxdb *consumer = rxq->rxq_consumer;
1045 size_t rxconsumed = 0;
1046 bool didconsume = false;
1047
1048 while (atmost-- > 0) {
1049 if (consumer == rxq->rxq_producer) {
1050 KASSERT(rxq->rxq_inuse == 0);
1051 break;
1052 }
1053
1054 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1055 uint32_t currdscr = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1056 if (consumer == rxq->rxq_first + currdscr) {
1057 break;
1058 }
1059 bcmeth_rxq_desc_postsync(sc, rxq, consumer, 1);
1060
1061 /*
1062 * We own this packet again. Copy the rxsts word from it.
1063 */
1064 rxconsumed++;
1065 didconsume = true;
1066 uint32_t rxsts;
1067 KASSERT(rxq->rxq_mhead != NULL);
1068 bus_dmamap_t map = M_GETCTX(rxq->rxq_mhead, bus_dmamap_t);
1069 bus_dmamap_sync(sc->sc_dmat, map, 0, arm_dcache_align,
1070 BUS_DMASYNC_POSTREAD);
1071 memcpy(&rxsts, rxq->rxq_mhead->m_data, 4);
1072 rxsts = le32toh(rxsts);
1073 #if 0
1074 KASSERTMSG(rxsts != BCMETH_RCVMAGIC, "currdscr=%u consumer=%zd",
1075 currdscr, consumer - rxq->rxq_first);
1076 #endif
1077
1078 /*
1079 * Get the count of descriptors. Fetch the correct number
1080 * of mbufs.
1081 */
1082 #ifdef BCMETH_RCVMAGIC
1083 size_t desc_count = rxsts != BCMETH_RCVMAGIC
1084 ? __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1 : 1;
1085 #else
1086 size_t desc_count = __SHIFTOUT(rxsts, RXSTS_DESC_COUNT) + 1;
1087 #endif
1088 struct mbuf *m = rxq->rxq_mhead;
1089 struct mbuf *m_last = m;
1090 for (size_t i = 1; i < desc_count; i++) {
1091 if (++consumer == rxq->rxq_last) {
1092 consumer = rxq->rxq_first;
1093 }
1094 KASSERTMSG(consumer != rxq->rxq_first + currdscr,
1095 "i=%zu rxsts=%#x desc_count=%zu currdscr=%u "
1096 "consumer=%zd", i, rxsts, desc_count, currdscr,
1097 consumer - rxq->rxq_first);
1098 m_last = m_last->m_next;
1099 }
1100
1101 /*
1102 * Now remove it/them from the list of enqueued mbufs.
1103 */
1104 if ((rxq->rxq_mhead = m_last->m_next) == NULL)
1105 rxq->rxq_mtail = &rxq->rxq_mhead;
1106 m_last->m_next = NULL;
1107
1108 #ifdef BCMETH_RCVMAGIC
1109 if (rxsts == BCMETH_RCVMAGIC) {
1110 if_statinc(ifp, if_ierrors);
1111 if ((m->m_ext.ext_paddr >> 28) == 8) {
1112 BCMETH_EVCNT_INCR(sc->sc_ev_rx_badmagic_lo);
1113 } else {
1114 BCMETH_EVCNT_INCR( sc->sc_ev_rx_badmagic_hi);
1115 }
1116 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1117 } else
1118 #endif /* BCMETH_RCVMAGIC */
1119 if (rxsts
1120 & (RXSTS_CRC_ERROR |RXSTS_OVERSIZED |RXSTS_PKT_OVERFLOW)) {
1121 aprint_error_dev(sc->sc_dev,
1122 "[%zu]: count=%zu rxsts=%#x\n",
1123 consumer - rxq->rxq_first, desc_count, rxsts);
1124 /*
1125 * We encountered an error, take the mbufs and add them
1126 * to the rx bufcache so we can quickly reuse them.
1127 */
1128 if_statinc(ifp, if_ierrors);
1129 do {
1130 struct mbuf *m0 = m->m_next;
1131 m->m_next = NULL;
1132 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1133 m = m0;
1134 } while (m);
1135 } else {
1136 uint32_t framelen = __SHIFTOUT(rxsts, RXSTS_FRAMELEN);
1137 framelen += sc->sc_rcvoffset;
1138 m->m_pkthdr.len = framelen;
1139 if (desc_count == 1) {
1140 KASSERT(framelen <= MCLBYTES);
1141 m->m_len = framelen;
1142 } else {
1143 m_last->m_len = framelen & (MCLBYTES - 1);
1144 }
1145
1146 #ifdef BCMETH_MPSAFE
1147 /*
1148 * Wrap at the last entry!
1149 */
1150 if (++consumer == rxq->rxq_last) {
1151 KASSERT(consumer[-1].rxdb_flags
1152 & htole32(RXDB_FLAG_ET));
1153 rxq->rxq_consumer = rxq->rxq_first;
1154 } else {
1155 rxq->rxq_consumer = consumer;
1156 }
1157 rxq->rxq_inuse -= rxconsumed;
1158 #endif /* BCMETH_MPSAFE */
1159
1160 /*
1161 * Receive the packet (which releases our lock)
1162 */
1163 bcmeth_rx_input(sc, m, rxsts);
1164
1165 #ifdef BCMETH_MPSAFE
1166 /*
1167 * Since we had to give up our lock, we need to
1168 * refresh these.
1169 */
1170 consumer = rxq->rxq_consumer;
1171 rxconsumed = 0;
1172 continue;
1173 #endif /* BCMETH_MPSAFE */
1174 }
1175
1176 /*
1177 * Wrap at the last entry!
1178 */
1179 if (++consumer == rxq->rxq_last) {
1180 KASSERT(consumer[-1].rxdb_flags & htole32(RXDB_FLAG_ET));
1181 consumer = rxq->rxq_first;
1182 }
1183 }
1184
1185 /*
1186 * Update queue info.
1187 */
1188 rxq->rxq_consumer = consumer;
1189 rxq->rxq_inuse -= rxconsumed;
1190
1191 /*
1192 * Did we consume anything?
1193 */
1194 return didconsume;
1195 }
1196
1197 static void
1198 bcmeth_rxq_purge(
1199 struct bcmeth_softc *sc,
1200 struct bcmeth_rxqueue *rxq,
1201 bool discard)
1202 {
1203 struct mbuf *m;
1204
1205 if ((m = rxq->rxq_mhead) != NULL) {
1206 if (discard) {
1207 bcmeth_rx_map_unload(sc, m);
1208 m_freem(m);
1209 } else {
1210 while (m != NULL) {
1211 struct mbuf *m0 = m->m_next;
1212 m->m_next = NULL;
1213 IF_ENQUEUE(&sc->sc_rx_bufcache, m);
1214 m = m0;
1215 }
1216 }
1217 }
1218
1219 rxq->rxq_mhead = NULL;
1220 rxq->rxq_mtail = &rxq->rxq_mhead;
1221 rxq->rxq_inuse = 0;
1222 }
1223
1224 static void
1225 bcmeth_rxq_reset(
1226 struct bcmeth_softc *sc,
1227 struct bcmeth_rxqueue *rxq)
1228 {
1229 /*
1230 * sync all the descriptors
1231 */
1232 bcmeth_rxq_desc_postsync(sc, rxq, rxq->rxq_first,
1233 rxq->rxq_last - rxq->rxq_first);
1234
1235 /*
1236 * Make sure we own all descriptors in the ring.
1237 */
1238 struct gmac_rxdb *rxdb;
1239 for (rxdb = rxq->rxq_first; rxdb < rxq->rxq_last - 1; rxdb++) {
1240 rxdb->rxdb_flags = htole32(RXDB_FLAG_IC);
1241 }
1242
1243 /*
1244 * Last descriptor has the wrap flag.
1245 */
1246 rxdb->rxdb_flags = htole32(RXDB_FLAG_ET | RXDB_FLAG_IC);
1247
1248 /*
1249 * Reset the producer consumer indexes.
1250 */
1251 rxq->rxq_consumer = rxq->rxq_first;
1252 rxq->rxq_producer = rxq->rxq_first;
1253 rxq->rxq_inuse = 0;
1254 if (rxq->rxq_threshold < BCMETH_MINRXMBUFS)
1255 rxq->rxq_threshold = BCMETH_MINRXMBUFS;
1256
1257 sc->sc_intmask |= RCVINT | RCVFIFOOF | RCVDESCUF;
1258
1259 /*
1260 * Restart the receiver at the first descriptor
1261 */
1262 bcmeth_write_4(sc, rxq->rxq_reg_rcvaddrlo,
1263 rxq->rxq_descmap->dm_segs[0].ds_addr);
1264 }
1265
1266 static int
1267 bcmeth_rxq_attach(
1268 struct bcmeth_softc *sc,
1269 struct bcmeth_rxqueue *rxq,
1270 u_int qno)
1271 {
1272 size_t desc_count = BCMETH_RINGSIZE / sizeof(rxq->rxq_first[0]);
1273 int error;
1274 void *descs;
1275
1276 KASSERT(desc_count == 256 || desc_count == 512);
1277
1278 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1279 &rxq->rxq_descmap_seg, &rxq->rxq_descmap, &descs);
1280 if (error)
1281 return error;
1282
1283 memset(descs, 0, BCMETH_RINGSIZE);
1284 rxq->rxq_first = descs;
1285 rxq->rxq_last = rxq->rxq_first + desc_count;
1286 rxq->rxq_consumer = descs;
1287 rxq->rxq_producer = descs;
1288
1289 bcmeth_rxq_purge(sc, rxq, true);
1290 bcmeth_rxq_reset(sc, rxq);
1291
1292 rxq->rxq_reg_rcvaddrlo = GMAC_RCVADDR_LOW;
1293 rxq->rxq_reg_rcvctl = GMAC_RCVCONTROL;
1294 rxq->rxq_reg_rcvptr = GMAC_RCVPTR;
1295 rxq->rxq_reg_rcvsts0 = GMAC_RCVSTATUS0;
1296 rxq->rxq_reg_rcvsts1 = GMAC_RCVSTATUS1;
1297
1298 return 0;
1299 }
1300
1301 static bool
1302 bcmeth_txq_active_p(
1303 struct bcmeth_softc * const sc,
1304 struct bcmeth_txqueue *txq)
1305 {
1306 return !IF_IS_EMPTY(&txq->txq_mbufs);
1307 }
1308
1309 static bool
1310 bcmeth_txq_fillable_p(
1311 struct bcmeth_softc * const sc,
1312 struct bcmeth_txqueue *txq)
1313 {
1314 return txq->txq_free >= txq->txq_threshold;
1315 }
1316
1317 static int
1318 bcmeth_txq_attach(
1319 struct bcmeth_softc *sc,
1320 struct bcmeth_txqueue *txq,
1321 u_int qno)
1322 {
1323 size_t desc_count = BCMETH_RINGSIZE / sizeof(txq->txq_first[0]);
1324 int error;
1325 void *descs;
1326
1327 KASSERT(desc_count == 256 || desc_count == 512);
1328
1329 error = bcmeth_dmamem_alloc(sc->sc_dmat, BCMETH_RINGSIZE,
1330 &txq->txq_descmap_seg, &txq->txq_descmap, &descs);
1331 if (error)
1332 return error;
1333
1334 memset(descs, 0, BCMETH_RINGSIZE);
1335 txq->txq_first = descs;
1336 txq->txq_last = txq->txq_first + desc_count;
1337 txq->txq_consumer = descs;
1338 txq->txq_producer = descs;
1339
1340 IFQ_SET_MAXLEN(&txq->txq_mbufs, BCMETH_MAXTXMBUFS);
1341
1342 txq->txq_reg_xmtaddrlo = GMAC_XMTADDR_LOW;
1343 txq->txq_reg_xmtctl = GMAC_XMTCONTROL;
1344 txq->txq_reg_xmtptr = GMAC_XMTPTR;
1345 txq->txq_reg_xmtsts0 = GMAC_XMTSTATUS0;
1346 txq->txq_reg_xmtsts1 = GMAC_XMTSTATUS1;
1347
1348 bcmeth_txq_reset(sc, txq);
1349
1350 return 0;
1351 }
1352
1353 static int
1354 bcmeth_txq_map_load(
1355 struct bcmeth_softc *sc,
1356 struct bcmeth_txqueue *txq,
1357 struct mbuf *m)
1358 {
1359 bus_dmamap_t map;
1360 int error;
1361
1362 map = M_GETCTX(m, bus_dmamap_t);
1363 if (map != NULL)
1364 return 0;
1365
1366 map = bcmeth_mapcache_get(sc, sc->sc_tx_mapcache);
1367 if (map == NULL)
1368 return ENOMEM;
1369
1370 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1371 BUS_DMA_WRITE | BUS_DMA_NOWAIT);
1372 if (error)
1373 return error;
1374
1375 bus_dmamap_sync(sc->sc_dmat, map, 0, m->m_pkthdr.len,
1376 BUS_DMASYNC_PREWRITE);
1377 M_SETCTX(m, map);
1378 return 0;
1379 }
1380
1381 static void
1382 bcmeth_txq_map_unload(
1383 struct bcmeth_softc *sc,
1384 struct bcmeth_txqueue *txq,
1385 struct mbuf *m)
1386 {
1387 KASSERT(m);
1388 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1389 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1390 BUS_DMASYNC_POSTWRITE);
1391 bus_dmamap_unload(sc->sc_dmat, map);
1392 bcmeth_mapcache_put(sc, sc->sc_tx_mapcache, map);
1393 }
1394
1395 static bool
1396 bcmeth_txq_produce(
1397 struct bcmeth_softc *sc,
1398 struct bcmeth_txqueue *txq,
1399 struct mbuf *m)
1400 {
1401 bus_dmamap_t map = M_GETCTX(m, bus_dmamap_t);
1402
1403 if (map->dm_nsegs > txq->txq_free)
1404 return false;
1405
1406 /*
1407 * TCP Offload flag must be set in the first descriptor.
1408 */
1409 struct gmac_txdb *producer = txq->txq_producer;
1410 uint32_t first_flags = TXDB_FLAG_SF;
1411 uint32_t last_flags = TXDB_FLAG_EF;
1412
1413 /*
1414 * If we've produced enough descriptors without consuming any
1415 * we need to ask for an interrupt to reclaim some.
1416 */
1417 txq->txq_lastintr += map->dm_nsegs;
1418 if (txq->txq_lastintr >= txq->txq_threshold
1419 || txq->txq_mbufs.ifq_len + 1 == txq->txq_mbufs.ifq_maxlen) {
1420 txq->txq_lastintr = 0;
1421 last_flags |= TXDB_FLAG_IC;
1422 }
1423
1424 KASSERT(producer != txq->txq_last);
1425
1426 struct gmac_txdb *start = producer;
1427 size_t count = map->dm_nsegs;
1428 producer->txdb_flags |= htole32(first_flags);
1429 producer->txdb_addrlo = htole32(map->dm_segs[0].ds_addr);
1430 producer->txdb_buflen = htole32(map->dm_segs[0].ds_len);
1431 for (u_int i = 1; i < map->dm_nsegs; i++) {
1432 #if 0
1433 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1434 le32toh(producer->txdb_flags),
1435 le32toh(producer->txdb_buflen),
1436 le32toh(producer->txdb_addrlo),
1437 le32toh(producer->txdb_addrhi));
1438 #endif
1439 if (__predict_false(++producer == txq->txq_last)) {
1440 bcmeth_txq_desc_presync(sc, txq, start,
1441 txq->txq_last - start);
1442 count -= txq->txq_last - start;
1443 producer = txq->txq_first;
1444 start = txq->txq_first;
1445 }
1446 producer->txdb_addrlo = htole32(map->dm_segs[i].ds_addr);
1447 producer->txdb_buflen = htole32(map->dm_segs[i].ds_len);
1448 }
1449 producer->txdb_flags |= htole32(last_flags);
1450 #if 0
1451 printf("[%zu]: %#x/%#x/%#x/%#x\n", producer - txq->txq_first,
1452 le32toh(producer->txdb_flags), le32toh(producer->txdb_buflen),
1453 le32toh(producer->txdb_addrlo), le32toh(producer->txdb_addrhi));
1454 #endif
1455 if (count)
1456 bcmeth_txq_desc_presync(sc, txq, start, count);
1457
1458 /*
1459 * Reduce free count by the number of segments we consumed.
1460 */
1461 txq->txq_free -= map->dm_nsegs;
1462 KASSERT(map->dm_nsegs == 1 || txq->txq_producer != producer);
1463 KASSERT(map->dm_nsegs == 1
1464 || (txq->txq_producer->txdb_flags & htole32(TXDB_FLAG_EF)) == 0);
1465 KASSERT(producer->txdb_flags & htole32(TXDB_FLAG_EF));
1466
1467 #if 0
1468 printf("%s: mbuf %p: produced a %u byte packet in %u segments "
1469 "(%zd..%zd)\n", __func__, m, m->m_pkthdr.len, map->dm_nsegs,
1470 txq->txq_producer - txq->txq_first, producer - txq->txq_first);
1471 #endif
1472
1473 if (producer + 1 == txq->txq_last)
1474 txq->txq_producer = txq->txq_first;
1475 else
1476 txq->txq_producer = producer + 1;
1477 IF_ENQUEUE(&txq->txq_mbufs, m);
1478
1479 /*
1480 * Let the transmitter know there's more to do
1481 */
1482 bcmeth_write_4(sc, txq->txq_reg_xmtptr,
1483 txq->txq_descmap->dm_segs[0].ds_addr
1484 + ((uintptr_t)txq->txq_producer & XMT_LASTDSCR));
1485
1486 return true;
1487 }
1488
1489 static struct mbuf *
1490 bcmeth_copy_packet(struct mbuf *m)
1491 {
1492 struct mbuf *mext = NULL;
1493 size_t misalignment = 0;
1494 size_t hlen = 0;
1495
1496 for (mext = m; mext != NULL; mext = mext->m_next) {
1497 if (mext->m_flags & M_EXT) {
1498 misalignment = mtod(mext, vaddr_t) & arm_dcache_align;
1499 break;
1500 }
1501 hlen += m->m_len;
1502 }
1503
1504 struct mbuf *n = m->m_next;
1505 if (m != mext && hlen + misalignment <= MHLEN && false) {
1506 KASSERT(m->m_pktdat <= m->m_data
1507 && m->m_data <= &m->m_pktdat[MHLEN - m->m_len]);
1508 size_t oldoff = m->m_data - m->m_pktdat;
1509 size_t off;
1510 if (mext == NULL) {
1511 off = (oldoff + hlen > MHLEN) ? 0 : oldoff;
1512 } else {
1513 off = MHLEN - (hlen + misalignment);
1514 }
1515 KASSERT(off + hlen + misalignment <= MHLEN);
1516 if (((oldoff ^ off) & arm_dcache_align) != 0 || off < oldoff) {
1517 memmove(&m->m_pktdat[off], m->m_data, m->m_len);
1518 m->m_data = &m->m_pktdat[off];
1519 }
1520 m_copydata(n, 0, hlen - m->m_len, &m->m_data[m->m_len]);
1521 m->m_len = hlen;
1522 m->m_next = mext;
1523 while (n != mext) {
1524 n = m_free(n);
1525 }
1526 return m;
1527 }
1528
1529 struct mbuf *m0 = m_gethdr(M_DONTWAIT, m->m_type);
1530 if (m0 == NULL) {
1531 return NULL;
1532 }
1533 m_copy_pkthdr(m0, m);
1534 MCLAIM(m0, m->m_owner);
1535 if (m0->m_pkthdr.len > MHLEN) {
1536 MCLGET(m0, M_DONTWAIT);
1537 if ((m0->m_flags & M_EXT) == 0) {
1538 m_freem(m0);
1539 return NULL;
1540 }
1541 }
1542 m0->m_len = m->m_pkthdr.len;
1543 m_copydata(m, 0, m0->m_len, mtod(m0, void *));
1544 m_freem(m);
1545 return m0;
1546 }
1547
1548 static bool
1549 bcmeth_txq_enqueue(
1550 struct bcmeth_softc *sc,
1551 struct bcmeth_txqueue *txq)
1552 {
1553 for (;;) {
1554 if (IF_QFULL(&txq->txq_mbufs))
1555 return false;
1556 struct mbuf *m = txq->txq_next;
1557 if (m == NULL) {
1558 int s = splnet();
1559 IF_DEQUEUE(&sc->sc_if.if_snd, m);
1560 splx(s);
1561 if (m == NULL)
1562 return true;
1563 M_SETCTX(m, NULL);
1564 } else {
1565 txq->txq_next = NULL;
1566 }
1567 /*
1568 * If LINK2 is set and this packet uses multiple mbufs,
1569 * consolidate it into a single mbuf.
1570 */
1571 if (m->m_next != NULL && (sc->sc_if.if_flags & IFF_LINK2)) {
1572 struct mbuf *m0 = bcmeth_copy_packet(m);
1573 if (m0 == NULL) {
1574 txq->txq_next = m;
1575 return true;
1576 }
1577 m = m0;
1578 }
1579 int error = bcmeth_txq_map_load(sc, txq, m);
1580 if (error) {
1581 aprint_error_dev(sc->sc_dev,
1582 "discarded packet due to "
1583 "dmamap load failure: %d\n", error);
1584 m_freem(m);
1585 continue;
1586 }
1587 KASSERT(txq->txq_next == NULL);
1588 if (!bcmeth_txq_produce(sc, txq, m)) {
1589 txq->txq_next = m;
1590 return false;
1591 }
1592 KASSERT(txq->txq_next == NULL);
1593 }
1594 }
1595
1596 static bool
1597 bcmeth_txq_consume(
1598 struct bcmeth_softc *sc,
1599 struct bcmeth_txqueue *txq)
1600 {
1601 struct ifnet * const ifp = &sc->sc_if;
1602 struct gmac_txdb *consumer = txq->txq_consumer;
1603 size_t txfree = 0;
1604
1605 #if 0
1606 printf("%s: entry: free=%zu\n", __func__, txq->txq_free);
1607 #endif
1608
1609 for (;;) {
1610 if (consumer == txq->txq_producer) {
1611 txq->txq_consumer = consumer;
1612 txq->txq_free += txfree;
1613 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
1614 #if 0
1615 printf("%s: empty: freed %zu descriptors going from "
1616 "%zu to %zu\n", __func__, txfree,
1617 txq->txq_free - txfree, txq->txq_free);
1618 #endif
1619 KASSERT(txq->txq_lastintr == 0);
1620 KASSERT(txq->txq_free
1621 == txq->txq_last - txq->txq_first - 1);
1622 return true;
1623 }
1624 bcmeth_txq_desc_postsync(sc, txq, consumer, 1);
1625 uint32_t s0 = bcmeth_read_4(sc, txq->txq_reg_xmtsts0);
1626 if (consumer == txq->txq_first + __SHIFTOUT(s0, XMT_CURRDSCR)) {
1627 txq->txq_consumer = consumer;
1628 txq->txq_free += txfree;
1629 txq->txq_lastintr -= uimin(txq->txq_lastintr, txfree);
1630 #if 0
1631 printf("%s: freed %zu descriptors\n",
1632 __func__, txfree);
1633 #endif
1634 return bcmeth_txq_fillable_p(sc, txq);
1635 }
1636
1637 /*
1638 * If this is the last descriptor in the chain, get the
1639 * mbuf, free its dmamap, and free the mbuf chain itself.
1640 */
1641 const uint32_t txdb_flags = le32toh(consumer->txdb_flags);
1642 if (txdb_flags & TXDB_FLAG_EF) {
1643 struct mbuf *m;
1644
1645 IF_DEQUEUE(&txq->txq_mbufs, m);
1646 KASSERT(m);
1647 bcmeth_txq_map_unload(sc, txq, m);
1648 #if 0
1649 printf("%s: mbuf %p: consumed a %u byte packet\n",
1650 __func__, m, m->m_pkthdr.len);
1651 #endif
1652 bpf_mtap(ifp, m, BPF_D_OUT);
1653 if_statinc(ifp, if_opackets);
1654 if_statadd(ifp, if_obytes, m->m_pkthdr.len);
1655 if (m->m_flags & M_MCAST)
1656 if_statinc(ifp, if_omcasts);
1657 m_freem(m);
1658 }
1659
1660 /*
1661 * We own this packet again. Clear all flags except wrap.
1662 */
1663 txfree++;
1664
1665 /*
1666 * Wrap at the last entry!
1667 */
1668 if (txdb_flags & TXDB_FLAG_ET) {
1669 consumer->txdb_flags = htole32(TXDB_FLAG_ET);
1670 KASSERT(consumer + 1 == txq->txq_last);
1671 consumer = txq->txq_first;
1672 } else {
1673 consumer->txdb_flags = 0;
1674 consumer++;
1675 KASSERT(consumer < txq->txq_last);
1676 }
1677 }
1678 }
1679
1680 static void
1681 bcmeth_txq_purge(
1682 struct bcmeth_softc *sc,
1683 struct bcmeth_txqueue *txq)
1684 {
1685 struct mbuf *m;
1686 KASSERT((bcmeth_read_4(sc, UNIMAC_COMMAND_CONFIG) & TX_ENA) == 0);
1687
1688 for (;;) {
1689 IF_DEQUEUE(&txq->txq_mbufs, m);
1690 if (m == NULL)
1691 break;
1692 bcmeth_txq_map_unload(sc, txq, m);
1693 m_freem(m);
1694 }
1695 if ((m = txq->txq_next) != NULL) {
1696 txq->txq_next = NULL;
1697 bcmeth_txq_map_unload(sc, txq, m);
1698 m_freem(m);
1699 }
1700 }
1701
1702 static void
1703 bcmeth_txq_reset(
1704 struct bcmeth_softc *sc,
1705 struct bcmeth_txqueue *txq)
1706 {
1707 /*
1708 * sync all the descriptors
1709 */
1710 bcmeth_txq_desc_postsync(sc, txq, txq->txq_first,
1711 txq->txq_last - txq->txq_first);
1712
1713 /*
1714 * Make sure we own all descriptors in the ring.
1715 */
1716 struct gmac_txdb *txdb;
1717 for (txdb = txq->txq_first; txdb < txq->txq_last - 1; txdb++) {
1718 txdb->txdb_flags = 0;
1719 }
1720
1721 /*
1722 * Last descriptor has the wrap flag.
1723 */
1724 txdb->txdb_flags = htole32(TXDB_FLAG_ET);
1725
1726 /*
1727 * Reset the producer consumer indexes.
1728 */
1729 txq->txq_consumer = txq->txq_first;
1730 txq->txq_producer = txq->txq_first;
1731 txq->txq_free = txq->txq_last - txq->txq_first - 1;
1732 txq->txq_threshold = txq->txq_free / 2;
1733 txq->txq_lastintr = 0;
1734
1735 /*
1736 * What do we want to get interrupted on?
1737 */
1738 sc->sc_intmask |= XMTINT_0 | XMTUF;
1739
1740 /*
1741 * Restart the transmitter at the first descriptor
1742 */
1743 bcmeth_write_4(sc, txq->txq_reg_xmtaddrlo,
1744 txq->txq_descmap->dm_segs->ds_addr);
1745 }
1746
1747 static void
1748 bcmeth_ifstart(struct ifnet *ifp)
1749 {
1750 struct bcmeth_softc * const sc = ifp->if_softc;
1751
1752 if (__predict_false((ifp->if_flags & IFF_RUNNING) == 0)) {
1753 return;
1754 }
1755
1756 #ifdef BCMETH_MPSAFETX
1757 if (cpu_intr_p()) {
1758 #endif
1759 atomic_or_uint(&sc->sc_soft_flags, SOFT_TXINTR);
1760 softint_schedule(sc->sc_soft_ih);
1761 #ifdef BCMETH_MPSAFETX
1762 } else {
1763 /*
1764 * Either we are in a softintr thread already or some other
1765 * thread so just borrow it to do the send and save ourselves
1766 * the overhead of a fast soft int.
1767 */
1768 bcmeth_soft_txintr(sc);
1769 }
1770 #endif
1771 }
1772
1773 int
1774 bcmeth_intr(void *arg)
1775 {
1776 struct bcmeth_softc * const sc = arg;
1777 uint32_t soft_flags = 0;
1778 uint32_t work_flags = 0;
1779 int rv = 0;
1780
1781 mutex_enter(sc->sc_hwlock);
1782
1783 uint32_t intmask = sc->sc_intmask;
1784 BCMETH_EVCNT_INCR(sc->sc_ev_intr);
1785
1786 for (;;) {
1787 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
1788 intstatus &= intmask;
1789 bcmeth_write_4(sc, GMAC_INTSTATUS, intstatus); /* write 1 to clear */
1790 if (intstatus == 0) {
1791 break;
1792 }
1793 #if 0
1794 aprint_normal_dev(sc->sc_dev, "%s: intstatus=%#x intmask=%#x\n",
1795 __func__, intstatus, bcmeth_read_4(sc, GMAC_INTMASK));
1796 #endif
1797 if (intstatus & RCVINT) {
1798 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
1799 intmask &= ~RCVINT;
1800
1801 uint32_t rcvsts0 = bcmeth_read_4(sc, rxq->rxq_reg_rcvsts0);
1802 uint32_t descs = __SHIFTOUT(rcvsts0, RCV_CURRDSCR);
1803 if (descs < rxq->rxq_consumer - rxq->rxq_first) {
1804 /*
1805 * We wrapped at the end so count how far
1806 * we are from the end.
1807 */
1808 descs += rxq->rxq_last - rxq->rxq_consumer;
1809 } else {
1810 descs -= rxq->rxq_consumer - rxq->rxq_first;
1811 }
1812 /*
1813 * If we "timedout" we can't be hogging so use
1814 * softints. If we exceeded then we might hogging
1815 * so let the workqueue deal with them.
1816 */
1817 const uint32_t framecount = __SHIFTOUT(sc->sc_rcvlazy,
1818 INTRCVLAZY_FRAMECOUNT);
1819 if (descs < framecount
1820 || (curcpu()->ci_curlwp->l_flag & LW_IDLE)) {
1821 soft_flags |= SOFT_RXINTR;
1822 } else {
1823 work_flags |= WORK_RXINTR;
1824 }
1825 }
1826
1827 if (intstatus & XMTINT_0) {
1828 intmask &= ~XMTINT_0;
1829 soft_flags |= SOFT_TXINTR;
1830 }
1831
1832 if (intstatus & RCVDESCUF) {
1833 intmask &= ~RCVDESCUF;
1834 work_flags |= WORK_RXUNDERFLOW;
1835 }
1836
1837 intstatus &= intmask;
1838 if (intstatus) {
1839 aprint_error_dev(sc->sc_dev,
1840 "intr: intstatus=%#x\n", intstatus);
1841 aprint_error_dev(sc->sc_dev,
1842 "rcvbase=%p/%#lx rcvptr=%#x rcvsts=%#x/%#x\n",
1843 sc->sc_rxq.rxq_first,
1844 sc->sc_rxq.rxq_descmap->dm_segs[0].ds_addr,
1845 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvptr),
1846 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts0),
1847 bcmeth_read_4(sc, sc->sc_rxq.rxq_reg_rcvsts1));
1848 aprint_error_dev(sc->sc_dev,
1849 "xmtbase=%p/%#lx xmtptr=%#x xmtsts=%#x/%#x\n",
1850 sc->sc_txq.txq_first,
1851 sc->sc_txq.txq_descmap->dm_segs[0].ds_addr,
1852 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtptr),
1853 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts0),
1854 bcmeth_read_4(sc, sc->sc_txq.txq_reg_xmtsts1));
1855 intmask &= ~intstatus;
1856 work_flags |= WORK_REINIT;
1857 break;
1858 }
1859 }
1860
1861 if (intmask != sc->sc_intmask) {
1862 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1863 }
1864
1865 if (work_flags) {
1866 if (sc->sc_work_flags == 0) {
1867 workqueue_enqueue(sc->sc_workq, &sc->sc_work, NULL);
1868 }
1869 atomic_or_32(&sc->sc_work_flags, work_flags);
1870 rv = 1;
1871 }
1872
1873 if (soft_flags) {
1874 if (sc->sc_soft_flags == 0) {
1875 softint_schedule(sc->sc_soft_ih);
1876 }
1877 atomic_or_32(&sc->sc_soft_flags, soft_flags);
1878 rv = 1;
1879 }
1880
1881 mutex_exit(sc->sc_hwlock);
1882
1883 return rv;
1884 }
1885
1886 #ifdef BCMETH_MPSAFETX
1887 void
1888 bcmeth_soft_txintr(struct bcmeth_softc *sc)
1889 {
1890 mutex_enter(sc->sc_lock);
1891 /*
1892 * Let's do what we came here for. Consume transmitted
1893 * packets off the transmit ring.
1894 */
1895 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1896 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1897 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1898 }
1899 if (sc->sc_if.if_flags & IFF_RUNNING) {
1900 mutex_spin_enter(sc->sc_hwlock);
1901 sc->sc_intmask |= XMTINT_0;
1902 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1903 mutex_spin_exit(sc->sc_hwlock);
1904 }
1905 mutex_exit(sc->sc_lock);
1906 }
1907 #endif /* BCMETH_MPSAFETX */
1908
1909 void
1910 bcmeth_soft_intr(void *arg)
1911 {
1912 struct bcmeth_softc * const sc = arg;
1913 struct ifnet * const ifp = &sc->sc_if;
1914 uint32_t intmask = 0;
1915
1916 mutex_enter(sc->sc_lock);
1917
1918 u_int soft_flags = atomic_swap_uint(&sc->sc_soft_flags, 0);
1919
1920 BCMETH_EVCNT_INCR(sc->sc_ev_soft_intr);
1921
1922 if ((soft_flags & SOFT_TXINTR)
1923 || bcmeth_txq_active_p(sc, &sc->sc_txq)) {
1924 /*
1925 * Let's do what we came here for. Consume transmitted
1926 * packets off the transmit ring.
1927 */
1928 if (!bcmeth_txq_consume(sc, &sc->sc_txq)
1929 || !bcmeth_txq_enqueue(sc, &sc->sc_txq)) {
1930 BCMETH_EVCNT_INCR(sc->sc_ev_tx_stall);
1931 }
1932 intmask |= XMTINT_0;
1933 }
1934
1935 if (soft_flags & SOFT_RXINTR) {
1936 /*
1937 * Let's consume
1938 */
1939 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
1940 sc->sc_rxq.rxq_threshold / 4)) {
1941 /*
1942 * We've consumed a quarter of the ring and still have
1943 * more to do. Refill the ring.
1944 */
1945 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1946 }
1947 intmask |= RCVINT;
1948 }
1949
1950 if (ifp->if_flags & IFF_RUNNING) {
1951 bcmeth_rxq_produce(sc, &sc->sc_rxq);
1952 mutex_spin_enter(sc->sc_hwlock);
1953 sc->sc_intmask |= intmask;
1954 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
1955 mutex_spin_exit(sc->sc_hwlock);
1956 }
1957
1958 mutex_exit(sc->sc_lock);
1959 }
1960
1961 void
1962 bcmeth_worker(struct work *wk, void *arg)
1963 {
1964 struct bcmeth_softc * const sc = arg;
1965 struct ifnet * const ifp = &sc->sc_if;
1966 uint32_t intmask = 0;
1967
1968 mutex_enter(sc->sc_lock);
1969
1970 BCMETH_EVCNT_INCR(sc->sc_ev_work);
1971
1972 uint32_t work_flags = atomic_swap_32(&sc->sc_work_flags, 0);
1973 if (work_flags & WORK_REINIT) {
1974 int s = splnet();
1975 sc->sc_soft_flags = 0;
1976 bcmeth_ifinit(ifp);
1977 splx(s);
1978 work_flags &= ~WORK_RXUNDERFLOW;
1979 }
1980
1981 if (work_flags & WORK_RXUNDERFLOW) {
1982 struct bcmeth_rxqueue * const rxq = &sc->sc_rxq;
1983 size_t threshold = 5 * rxq->rxq_threshold / 4;
1984 if (threshold >= rxq->rxq_last - rxq->rxq_first) {
1985 threshold = rxq->rxq_last - rxq->rxq_first - 1;
1986 } else {
1987 intmask |= RCVDESCUF;
1988 }
1989 aprint_normal_dev(sc->sc_dev,
1990 "increasing receive buffers from %zu to %zu\n",
1991 rxq->rxq_threshold, threshold);
1992 rxq->rxq_threshold = threshold;
1993 }
1994
1995 if (work_flags & WORK_RXINTR) {
1996 /*
1997 * Let's consume
1998 */
1999 while (bcmeth_rxq_consume(sc, &sc->sc_rxq,
2000 sc->sc_rxq.rxq_threshold / 4)) {
2001 /*
2002 * We've consumed a quarter of the ring and still have
2003 * more to do. Refill the ring.
2004 */
2005 bcmeth_rxq_produce(sc, &sc->sc_rxq);
2006 }
2007 intmask |= RCVINT;
2008 }
2009
2010 if (ifp->if_flags & IFF_RUNNING) {
2011 bcmeth_rxq_produce(sc, &sc->sc_rxq);
2012 #if 0
2013 uint32_t intstatus = bcmeth_read_4(sc, GMAC_INTSTATUS);
2014 if (intstatus & RCVINT) {
2015 bcmeth_write_4(sc, GMAC_INTSTATUS, RCVINT);
2016 work_flags |= WORK_RXINTR;
2017 continue;
2018 }
2019 #endif
2020 mutex_spin_enter(sc->sc_hwlock);
2021 sc->sc_intmask |= intmask;
2022 bcmeth_write_4(sc, GMAC_INTMASK, sc->sc_intmask);
2023 mutex_spin_exit(sc->sc_hwlock);
2024 }
2025
2026 mutex_exit(sc->sc_lock);
2027 }
2028