a9ptmr.c revision 1.3 1 1.3 jmcneill /* $NetBSD: a9ptmr.c,v 1.3 2022/11/05 17:30:20 jmcneill Exp $ */
2 1.1 skrll
3 1.1 skrll /*-
4 1.1 skrll * Copyright (c) 2019 The NetBSD Foundation, Inc.
5 1.1 skrll * All rights reserved.
6 1.1 skrll *
7 1.1 skrll * This code is derived from software contributed to The NetBSD Foundation
8 1.1 skrll * by Nick Hudson
9 1.1 skrll *
10 1.1 skrll * Redistribution and use in source and binary forms, with or without
11 1.1 skrll * modification, are permitted provided that the following conditions
12 1.1 skrll * are met:
13 1.1 skrll * 1. Redistributions of source code must retain the above copyright
14 1.1 skrll * notice, this list of conditions and the following disclaimer.
15 1.1 skrll * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 skrll * notice, this list of conditions and the following disclaimer in the
17 1.1 skrll * documentation and/or other materials provided with the distribution.
18 1.1 skrll *
19 1.1 skrll * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 skrll * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 skrll * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 skrll * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 skrll * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 skrll * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 skrll * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 skrll * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 skrll * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 skrll * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 skrll * POSSIBILITY OF SUCH DAMAGE.
30 1.1 skrll */
31 1.1 skrll
32 1.1 skrll #include <sys/cdefs.h>
33 1.3 jmcneill __KERNEL_RCSID(0, "$NetBSD: a9ptmr.c,v 1.3 2022/11/05 17:30:20 jmcneill Exp $");
34 1.1 skrll
35 1.1 skrll #include <sys/param.h>
36 1.1 skrll #include <sys/bus.h>
37 1.1 skrll #include <sys/cpu.h>
38 1.1 skrll #include <sys/device.h>
39 1.1 skrll #include <sys/kernel.h>
40 1.3 jmcneill #include <sys/xcall.h>
41 1.1 skrll
42 1.1 skrll #include <prop/proplib.h>
43 1.1 skrll
44 1.1 skrll #include <arm/cortex/a9tmr_reg.h>
45 1.1 skrll #include <arm/cortex/a9ptmr_var.h>
46 1.1 skrll
47 1.1 skrll #include <arm/cortex/mpcore_var.h>
48 1.1 skrll
49 1.1 skrll static struct a9ptmr_softc *a9ptmr_sc;
50 1.1 skrll
51 1.1 skrll static int a9ptmr_match(device_t, cfdata_t, void *);
52 1.1 skrll static void a9ptmr_attach(device_t, device_t, void *);
53 1.1 skrll
54 1.1 skrll struct a9ptmr_softc {
55 1.1 skrll device_t sc_dev;
56 1.1 skrll bus_space_tag_t sc_memt;
57 1.1 skrll bus_space_handle_t sc_memh;
58 1.1 skrll
59 1.1 skrll uint32_t sc_ctl;
60 1.1 skrll uint32_t sc_freq;
61 1.1 skrll uint32_t sc_load;
62 1.1 skrll
63 1.1 skrll uint32_t sc_prescaler;
64 1.1 skrll };
65 1.1 skrll
66 1.1 skrll
67 1.1 skrll CFATTACH_DECL_NEW(arma9ptmr, sizeof(struct a9ptmr_softc),
68 1.1 skrll a9ptmr_match, a9ptmr_attach, NULL, NULL);
69 1.1 skrll
70 1.1 skrll static bool attached;
71 1.1 skrll
72 1.1 skrll static inline uint32_t
73 1.1 skrll a9ptmr_read(struct a9ptmr_softc *sc, bus_size_t o)
74 1.1 skrll {
75 1.1 skrll return bus_space_read_4(sc->sc_memt, sc->sc_memh, o);
76 1.1 skrll }
77 1.1 skrll
78 1.1 skrll static inline void
79 1.1 skrll a9ptmr_write(struct a9ptmr_softc *sc, bus_size_t o, uint32_t v)
80 1.1 skrll {
81 1.1 skrll bus_space_write_4(sc->sc_memt, sc->sc_memh, o, v);
82 1.1 skrll }
83 1.1 skrll
84 1.1 skrll /* ARGSUSED */
85 1.1 skrll static int
86 1.1 skrll a9ptmr_match(device_t parent, cfdata_t cf, void *aux)
87 1.1 skrll {
88 1.1 skrll struct mpcore_attach_args * const mpcaa = aux;
89 1.1 skrll
90 1.1 skrll if (attached)
91 1.1 skrll return 0;
92 1.1 skrll
93 1.1 skrll if (!CPU_ID_CORTEX_A9_P(curcpu()->ci_arm_cpuid) &&
94 1.1 skrll !CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid))
95 1.1 skrll return 0;
96 1.1 skrll
97 1.1 skrll if (strcmp(mpcaa->mpcaa_name, cf->cf_name) != 0)
98 1.1 skrll return 0;
99 1.1 skrll
100 1.1 skrll #if 0
101 1.1 skrll /*
102 1.1 skrll * This isn't present on UP A9s (since CBAR isn't present).
103 1.1 skrll */
104 1.1 skrll uint32_t mpidr = armreg_mpidr_read();
105 1.1 skrll if (mpidr == 0 || (mpidr & MPIDR_U))
106 1.1 skrll return 0;
107 1.1 skrll #endif
108 1.1 skrll
109 1.1 skrll return 1;
110 1.1 skrll }
111 1.1 skrll
112 1.1 skrll
113 1.1 skrll static void
114 1.1 skrll a9ptmr_attach(device_t parent, device_t self, void *aux)
115 1.1 skrll {
116 1.1 skrll struct a9ptmr_softc * const sc = device_private(self);
117 1.1 skrll struct mpcore_attach_args * const mpcaa = aux;
118 1.1 skrll prop_dictionary_t dict = device_properties(self);
119 1.1 skrll char freqbuf[sizeof("XXX SHz")];
120 1.1 skrll const char *cpu_type;
121 1.1 skrll
122 1.1 skrll
123 1.1 skrll sc->sc_dev = self;
124 1.1 skrll sc->sc_memt = mpcaa->mpcaa_memt;
125 1.1 skrll
126 1.1 skrll bus_space_subregion(sc->sc_memt, mpcaa->mpcaa_memh,
127 1.1 skrll mpcaa->mpcaa_off1, TMR_PRIVATE_SIZE, &sc->sc_memh);
128 1.1 skrll
129 1.1 skrll /*
130 1.1 skrll * This runs at the ARM PERIPHCLOCK.
131 1.1 skrll * The MD code should have setup our frequency for us.
132 1.1 skrll */
133 1.1 skrll if (!prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq)) {
134 1.1 skrll dict = device_properties(parent);
135 1.1 skrll prop_dictionary_get_uint32(dict, "frequency", &sc->sc_freq);
136 1.1 skrll }
137 1.1 skrll
138 1.1 skrll humanize_number(freqbuf, sizeof(freqbuf), sc->sc_freq, "Hz", 1000);
139 1.1 skrll
140 1.1 skrll a9ptmr_sc = sc;
141 1.1 skrll sc->sc_dev = self;
142 1.1 skrll sc->sc_memt = mpcaa->mpcaa_memt;
143 1.1 skrll sc->sc_memh = mpcaa->mpcaa_memh;
144 1.1 skrll
145 1.1 skrll sc->sc_ctl = a9ptmr_read(sc, TMR_CTL);
146 1.1 skrll
147 1.1 skrll sc->sc_prescaler = 1;
148 1.2 skrll #if 0
149 1.1 skrll /*
150 1.1 skrll * Let's hope the timer frequency isn't prime.
151 1.1 skrll */
152 1.1 skrll for (size_t div = 256; div >= 2; div--) {
153 1.1 skrll if (sc->sc_freq % div == 0) {
154 1.1 skrll sc->sc_prescaler = div;
155 1.1 skrll break;
156 1.1 skrll }
157 1.1 skrll }
158 1.1 skrll sc->sc_freq /= sc->sc_prescaler;
159 1.2 skrll #endif
160 1.1 skrll
161 1.2 skrll aprint_debug(": freq %d prescaler %d", sc->sc_freq,
162 1.1 skrll sc->sc_prescaler);
163 1.1 skrll sc->sc_ctl = TMR_CTL_INT_ENABLE | TMR_CTL_AUTO_RELOAD | TMR_CTL_ENABLE;
164 1.1 skrll sc->sc_ctl |= __SHIFTIN(sc->sc_prescaler - 1, TMR_CTL_PRESCALER);
165 1.1 skrll
166 1.1 skrll sc->sc_load = (sc->sc_freq / hz) - 1;
167 1.1 skrll
168 1.2 skrll aprint_debug(": load %d ", sc->sc_load);
169 1.2 skrll
170 1.1 skrll a9ptmr_init_cpu_clock(curcpu());
171 1.1 skrll
172 1.1 skrll aprint_naive("\n");
173 1.1 skrll if (CPU_ID_CORTEX_A5_P(curcpu()->ci_arm_cpuid)) {
174 1.1 skrll cpu_type = "A5";
175 1.1 skrll } else {
176 1.1 skrll cpu_type = "A9";
177 1.1 skrll }
178 1.1 skrll aprint_normal(": %s Private Timer (%s)\n", cpu_type, freqbuf);
179 1.1 skrll
180 1.1 skrll attached = true;
181 1.1 skrll }
182 1.1 skrll
183 1.1 skrll
184 1.1 skrll
185 1.1 skrll void
186 1.1 skrll a9ptmr_delay(unsigned int n)
187 1.1 skrll {
188 1.1 skrll struct a9ptmr_softc * const sc = a9ptmr_sc;
189 1.1 skrll
190 1.1 skrll KASSERT(sc != NULL);
191 1.1 skrll
192 1.1 skrll uint32_t freq = sc->sc_freq ? sc->sc_freq :
193 1.1 skrll curcpu()->ci_data.cpu_cc_freq / 2;
194 1.1 skrll KASSERT(freq != 0);
195 1.1 skrll
196 1.1 skrll const uint64_t counts_per_usec = freq / 1000000;
197 1.1 skrll uint32_t delta, usecs, last, curr;
198 1.1 skrll
199 1.1 skrll KASSERT(sc != NULL);
200 1.1 skrll
201 1.1 skrll last = a9ptmr_read(sc, TMR_CTR);
202 1.1 skrll
203 1.1 skrll delta = usecs = 0;
204 1.1 skrll while (n > usecs) {
205 1.1 skrll curr = a9ptmr_read(sc, TMR_CTR);
206 1.1 skrll
207 1.2 skrll /* Check to see if the timer has reloaded. */
208 1.2 skrll if (curr > last)
209 1.2 skrll delta += (sc->sc_load - curr) + last;
210 1.1 skrll else
211 1.2 skrll delta += last - curr;
212 1.1 skrll
213 1.1 skrll last = curr;
214 1.1 skrll
215 1.1 skrll if (delta >= counts_per_usec) {
216 1.1 skrll usecs += delta / counts_per_usec;
217 1.1 skrll delta %= counts_per_usec;
218 1.1 skrll }
219 1.1 skrll }
220 1.1 skrll }
221 1.1 skrll
222 1.1 skrll
223 1.1 skrll void
224 1.1 skrll a9ptmr_cpu_initclocks(void)
225 1.1 skrll {
226 1.1 skrll struct a9ptmr_softc * const sc __diagused = a9ptmr_sc;
227 1.1 skrll
228 1.1 skrll KASSERT(sc->sc_dev != NULL);
229 1.1 skrll KASSERT(sc->sc_freq != 0);
230 1.1 skrll
231 1.1 skrll }
232 1.1 skrll
233 1.1 skrll void
234 1.1 skrll a9ptmr_init_cpu_clock(struct cpu_info *ci)
235 1.1 skrll {
236 1.1 skrll struct a9ptmr_softc * const sc = a9ptmr_sc;
237 1.1 skrll
238 1.1 skrll /* Disable Private timer and acknowledge any event */
239 1.1 skrll a9ptmr_write(sc, TMR_CTL, 0);
240 1.1 skrll a9ptmr_write(sc, TMR_INT, TMR_INT_EVENT);
241 1.1 skrll
242 1.1 skrll /*
243 1.1 skrll * Provide the auto load value for the decrementing counter and
244 1.1 skrll * start it.
245 1.1 skrll */
246 1.1 skrll a9ptmr_write(sc, TMR_LOAD, sc->sc_load);
247 1.1 skrll a9ptmr_write(sc, TMR_CTL, sc->sc_ctl);
248 1.1 skrll
249 1.1 skrll }
250 1.1 skrll
251 1.1 skrll
252 1.1 skrll
253 1.1 skrll /*
254 1.1 skrll * a9ptmr_intr:
255 1.1 skrll *
256 1.1 skrll * Handle the hardclock interrupt.
257 1.1 skrll */
258 1.1 skrll int
259 1.1 skrll a9ptmr_intr(void *arg)
260 1.1 skrll {
261 1.1 skrll struct clockframe * const cf = arg;
262 1.1 skrll struct a9ptmr_softc * const sc = a9ptmr_sc;
263 1.1 skrll
264 1.1 skrll a9ptmr_write(sc, TMR_INT, TMR_INT_EVENT);
265 1.1 skrll hardclock(cf);
266 1.1 skrll
267 1.1 skrll return 1;
268 1.1 skrll }
269 1.3 jmcneill
270 1.3 jmcneill static void
271 1.3 jmcneill a9ptmr_update_freq_cb(void *arg1, void *arg2)
272 1.3 jmcneill {
273 1.3 jmcneill a9ptmr_init_cpu_clock(curcpu());
274 1.3 jmcneill }
275 1.3 jmcneill
276 1.3 jmcneill void
277 1.3 jmcneill a9ptmr_update_freq(uint32_t freq)
278 1.3 jmcneill {
279 1.3 jmcneill struct a9ptmr_softc * const sc = a9ptmr_sc;
280 1.3 jmcneill uint64_t xc;
281 1.3 jmcneill
282 1.3 jmcneill KASSERT(sc->sc_dev != NULL);
283 1.3 jmcneill KASSERT(freq != 0);
284 1.3 jmcneill
285 1.3 jmcneill sc->sc_freq = freq;
286 1.3 jmcneill sc->sc_load = (sc->sc_freq / hz) - 1;
287 1.3 jmcneill
288 1.3 jmcneill xc = xc_broadcast(0, a9ptmr_update_freq_cb, NULL, NULL);
289 1.3 jmcneill xc_wait(xc);
290 1.3 jmcneill }
291