gicv3.c revision 1.51 1 1.51 jmcneill /* $NetBSD: gicv3.c,v 1.51 2022/06/25 12:41:55 jmcneill Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2018 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill #include "opt_multiprocessor.h"
30 1.46 jmcneill #include "opt_gic.h"
31 1.1 jmcneill
32 1.1 jmcneill #define _INTR_PRIVATE
33 1.1 jmcneill
34 1.1 jmcneill #include <sys/cdefs.h>
35 1.51 jmcneill __KERNEL_RCSID(0, "$NetBSD: gicv3.c,v 1.51 2022/06/25 12:41:55 jmcneill Exp $");
36 1.1 jmcneill
37 1.1 jmcneill #include <sys/param.h>
38 1.1 jmcneill #include <sys/kernel.h>
39 1.1 jmcneill #include <sys/bus.h>
40 1.1 jmcneill #include <sys/device.h>
41 1.1 jmcneill #include <sys/intr.h>
42 1.1 jmcneill #include <sys/systm.h>
43 1.1 jmcneill #include <sys/cpu.h>
44 1.23 jmcneill #include <sys/vmem.h>
45 1.39 jmcneill #include <sys/kmem.h>
46 1.32 jmcneill #include <sys/atomic.h>
47 1.1 jmcneill
48 1.20 jmcneill #include <machine/cpufunc.h>
49 1.20 jmcneill
50 1.1 jmcneill #include <arm/locore.h>
51 1.1 jmcneill #include <arm/armreg.h>
52 1.1 jmcneill
53 1.1 jmcneill #include <arm/cortex/gicv3.h>
54 1.1 jmcneill #include <arm/cortex/gic_reg.h>
55 1.46 jmcneill
56 1.46 jmcneill #ifdef GIC_SPLFUNCS
57 1.45 jmcneill #include <arm/cortex/gic_splfuncs.h>
58 1.46 jmcneill #endif
59 1.1 jmcneill
60 1.1 jmcneill #define PICTOSOFTC(pic) \
61 1.50 riastrad container_of(pic, struct gicv3_softc, sc_pic)
62 1.5 jmcneill #define LPITOSOFTC(lpi) \
63 1.50 riastrad container_of(lpi, struct gicv3_softc, sc_lpi)
64 1.1 jmcneill
65 1.18 jmcneill #define IPL_TO_PRIORITY(sc, ipl) (((0xff - (ipl)) << (sc)->sc_priority_shift) & 0xff)
66 1.18 jmcneill #define IPL_TO_PMR(sc, ipl) (((0xff - (ipl)) << (sc)->sc_pmr_shift) & 0xff)
67 1.35 jmcneill
68 1.36 jmcneill #define GIC_SUPPORTS_1OFN(sc) (((sc)->sc_gicd_typer & GICD_TYPER_No1N) == 0)
69 1.36 jmcneill
70 1.35 jmcneill #define GIC_PRIO_SHIFT_NS 4
71 1.35 jmcneill #define GIC_PRIO_SHIFT_S 3
72 1.1 jmcneill
73 1.44 jmcneill /*
74 1.44 jmcneill * Set to true if you want to use 1 of N interrupt distribution for SPIs
75 1.44 jmcneill * when available. Disabled by default because it causes issues with the
76 1.44 jmcneill * USB stack.
77 1.44 jmcneill */
78 1.44 jmcneill bool gicv3_use_1ofn = false;
79 1.44 jmcneill
80 1.1 jmcneill static struct gicv3_softc *gicv3_softc;
81 1.1 jmcneill
82 1.1 jmcneill static inline uint32_t
83 1.1 jmcneill gicd_read_4(struct gicv3_softc *sc, bus_size_t reg)
84 1.1 jmcneill {
85 1.1 jmcneill return bus_space_read_4(sc->sc_bst, sc->sc_bsh_d, reg);
86 1.1 jmcneill }
87 1.1 jmcneill
88 1.1 jmcneill static inline void
89 1.1 jmcneill gicd_write_4(struct gicv3_softc *sc, bus_size_t reg, uint32_t val)
90 1.1 jmcneill {
91 1.1 jmcneill bus_space_write_4(sc->sc_bst, sc->sc_bsh_d, reg, val);
92 1.1 jmcneill }
93 1.1 jmcneill
94 1.41 ryo #ifdef MULTIPROCESSOR
95 1.6 jmcneill static inline uint64_t
96 1.6 jmcneill gicd_read_8(struct gicv3_softc *sc, bus_size_t reg)
97 1.6 jmcneill {
98 1.6 jmcneill return bus_space_read_8(sc->sc_bst, sc->sc_bsh_d, reg);
99 1.6 jmcneill }
100 1.41 ryo #endif
101 1.6 jmcneill
102 1.1 jmcneill static inline void
103 1.1 jmcneill gicd_write_8(struct gicv3_softc *sc, bus_size_t reg, uint64_t val)
104 1.1 jmcneill {
105 1.1 jmcneill bus_space_write_8(sc->sc_bst, sc->sc_bsh_d, reg, val);
106 1.1 jmcneill }
107 1.1 jmcneill
108 1.1 jmcneill static inline uint32_t
109 1.1 jmcneill gicr_read_4(struct gicv3_softc *sc, u_int index, bus_size_t reg)
110 1.1 jmcneill {
111 1.1 jmcneill KASSERT(index < sc->sc_bsh_r_count);
112 1.1 jmcneill return bus_space_read_4(sc->sc_bst, sc->sc_bsh_r[index], reg);
113 1.1 jmcneill }
114 1.1 jmcneill
115 1.1 jmcneill static inline void
116 1.1 jmcneill gicr_write_4(struct gicv3_softc *sc, u_int index, bus_size_t reg, uint32_t val)
117 1.1 jmcneill {
118 1.1 jmcneill KASSERT(index < sc->sc_bsh_r_count);
119 1.1 jmcneill bus_space_write_4(sc->sc_bst, sc->sc_bsh_r[index], reg, val);
120 1.1 jmcneill }
121 1.1 jmcneill
122 1.1 jmcneill static inline uint64_t
123 1.1 jmcneill gicr_read_8(struct gicv3_softc *sc, u_int index, bus_size_t reg)
124 1.1 jmcneill {
125 1.1 jmcneill KASSERT(index < sc->sc_bsh_r_count);
126 1.1 jmcneill return bus_space_read_8(sc->sc_bst, sc->sc_bsh_r[index], reg);
127 1.1 jmcneill }
128 1.1 jmcneill
129 1.1 jmcneill static inline void
130 1.1 jmcneill gicr_write_8(struct gicv3_softc *sc, u_int index, bus_size_t reg, uint64_t val)
131 1.1 jmcneill {
132 1.1 jmcneill KASSERT(index < sc->sc_bsh_r_count);
133 1.1 jmcneill bus_space_write_8(sc->sc_bst, sc->sc_bsh_r[index], reg, val);
134 1.1 jmcneill }
135 1.1 jmcneill
136 1.1 jmcneill static void
137 1.1 jmcneill gicv3_unblock_irqs(struct pic_softc *pic, size_t irqbase, uint32_t mask)
138 1.1 jmcneill {
139 1.1 jmcneill struct gicv3_softc * const sc = PICTOSOFTC(pic);
140 1.1 jmcneill struct cpu_info * const ci = curcpu();
141 1.1 jmcneill const u_int group = irqbase / 32;
142 1.1 jmcneill
143 1.1 jmcneill if (group == 0) {
144 1.32 jmcneill atomic_or_32(&sc->sc_enabled_sgippi, mask);
145 1.1 jmcneill gicr_write_4(sc, ci->ci_gic_redist, GICR_ISENABLER0, mask);
146 1.5 jmcneill while (gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR) & GICR_CTLR_RWP)
147 1.1 jmcneill ;
148 1.1 jmcneill } else {
149 1.1 jmcneill gicd_write_4(sc, GICD_ISENABLERn(group), mask);
150 1.1 jmcneill while (gicd_read_4(sc, GICD_CTRL) & GICD_CTRL_RWP)
151 1.1 jmcneill ;
152 1.1 jmcneill }
153 1.1 jmcneill }
154 1.1 jmcneill
155 1.1 jmcneill static void
156 1.1 jmcneill gicv3_block_irqs(struct pic_softc *pic, size_t irqbase, uint32_t mask)
157 1.1 jmcneill {
158 1.1 jmcneill struct gicv3_softc * const sc = PICTOSOFTC(pic);
159 1.1 jmcneill struct cpu_info * const ci = curcpu();
160 1.1 jmcneill const u_int group = irqbase / 32;
161 1.1 jmcneill
162 1.1 jmcneill if (group == 0) {
163 1.32 jmcneill atomic_and_32(&sc->sc_enabled_sgippi, ~mask);
164 1.1 jmcneill gicr_write_4(sc, ci->ci_gic_redist, GICR_ICENABLER0, mask);
165 1.5 jmcneill while (gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR) & GICR_CTLR_RWP)
166 1.1 jmcneill ;
167 1.1 jmcneill } else {
168 1.1 jmcneill gicd_write_4(sc, GICD_ICENABLERn(group), mask);
169 1.1 jmcneill while (gicd_read_4(sc, GICD_CTRL) & GICD_CTRL_RWP)
170 1.1 jmcneill ;
171 1.1 jmcneill }
172 1.1 jmcneill }
173 1.1 jmcneill
174 1.1 jmcneill static void
175 1.1 jmcneill gicv3_establish_irq(struct pic_softc *pic, struct intrsource *is)
176 1.1 jmcneill {
177 1.1 jmcneill struct gicv3_softc * const sc = PICTOSOFTC(pic);
178 1.1 jmcneill const u_int group = is->is_irq / 32;
179 1.1 jmcneill uint32_t ipriority, icfg;
180 1.1 jmcneill uint64_t irouter;
181 1.1 jmcneill u_int n;
182 1.1 jmcneill
183 1.18 jmcneill const u_int ipriority_val = IPL_TO_PRIORITY(sc, is->is_ipl);
184 1.1 jmcneill const u_int ipriority_shift = (is->is_irq & 0x3) * 8;
185 1.1 jmcneill const u_int icfg_shift = (is->is_irq & 0xf) * 2;
186 1.1 jmcneill
187 1.1 jmcneill if (group == 0) {
188 1.48 jmcneill /* SGIs and PPIs are per-CPU and always MP-safe */
189 1.1 jmcneill is->is_mpsafe = true;
190 1.48 jmcneill is->is_percpu = true;
191 1.1 jmcneill
192 1.1 jmcneill /* Update interrupt configuration and priority on all redistributors */
193 1.1 jmcneill for (n = 0; n < sc->sc_bsh_r_count; n++) {
194 1.1 jmcneill icfg = gicr_read_4(sc, n, GICR_ICFGRn(is->is_irq / 16));
195 1.1 jmcneill if (is->is_type == IST_LEVEL)
196 1.1 jmcneill icfg &= ~(0x2 << icfg_shift);
197 1.1 jmcneill if (is->is_type == IST_EDGE)
198 1.1 jmcneill icfg |= (0x2 << icfg_shift);
199 1.1 jmcneill gicr_write_4(sc, n, GICR_ICFGRn(is->is_irq / 16), icfg);
200 1.1 jmcneill
201 1.1 jmcneill ipriority = gicr_read_4(sc, n, GICR_IPRIORITYRn(is->is_irq / 4));
202 1.25 jmcneill ipriority &= ~(0xffU << ipriority_shift);
203 1.2 jmcneill ipriority |= (ipriority_val << ipriority_shift);
204 1.1 jmcneill gicr_write_4(sc, n, GICR_IPRIORITYRn(is->is_irq / 4), ipriority);
205 1.1 jmcneill }
206 1.1 jmcneill } else {
207 1.36 jmcneill /*
208 1.36 jmcneill * If 1 of N SPI routing is supported, route MP-safe interrupts to all
209 1.36 jmcneill * participating PEs. Otherwise, just route to the primary PE.
210 1.36 jmcneill */
211 1.44 jmcneill if (is->is_mpsafe && GIC_SUPPORTS_1OFN(sc) && gicv3_use_1ofn) {
212 1.1 jmcneill irouter = GICD_IROUTER_Interrupt_Routing_mode;
213 1.1 jmcneill } else {
214 1.6 jmcneill irouter = sc->sc_irouter[0];
215 1.1 jmcneill }
216 1.1 jmcneill gicd_write_8(sc, GICD_IROUTER(is->is_irq), irouter);
217 1.1 jmcneill
218 1.1 jmcneill /* Update interrupt configuration */
219 1.1 jmcneill icfg = gicd_read_4(sc, GICD_ICFGRn(is->is_irq / 16));
220 1.1 jmcneill if (is->is_type == IST_LEVEL)
221 1.1 jmcneill icfg &= ~(0x2 << icfg_shift);
222 1.1 jmcneill if (is->is_type == IST_EDGE)
223 1.1 jmcneill icfg |= (0x2 << icfg_shift);
224 1.1 jmcneill gicd_write_4(sc, GICD_ICFGRn(is->is_irq / 16), icfg);
225 1.1 jmcneill
226 1.1 jmcneill /* Update interrupt priority */
227 1.1 jmcneill ipriority = gicd_read_4(sc, GICD_IPRIORITYRn(is->is_irq / 4));
228 1.25 jmcneill ipriority &= ~(0xffU << ipriority_shift);
229 1.2 jmcneill ipriority |= (ipriority_val << ipriority_shift);
230 1.1 jmcneill gicd_write_4(sc, GICD_IPRIORITYRn(is->is_irq / 4), ipriority);
231 1.1 jmcneill }
232 1.1 jmcneill }
233 1.1 jmcneill
234 1.1 jmcneill static void
235 1.1 jmcneill gicv3_set_priority(struct pic_softc *pic, int ipl)
236 1.1 jmcneill {
237 1.18 jmcneill struct gicv3_softc * const sc = PICTOSOFTC(pic);
238 1.42 jmcneill struct cpu_info * const ci = curcpu();
239 1.18 jmcneill
240 1.51 jmcneill while (ipl < ci->ci_hwpl) {
241 1.40 jmcneill /* Lowering priority mask */
242 1.45 jmcneill ci->ci_hwpl = ipl;
243 1.51 jmcneill __insn_barrier();
244 1.45 jmcneill icc_pmr_write(IPL_TO_PMR(sc, ipl));
245 1.40 jmcneill }
246 1.51 jmcneill __insn_barrier();
247 1.51 jmcneill ci->ci_cpl = ipl;
248 1.1 jmcneill }
249 1.1 jmcneill
250 1.1 jmcneill static void
251 1.1 jmcneill gicv3_dist_enable(struct gicv3_softc *sc)
252 1.1 jmcneill {
253 1.1 jmcneill uint32_t gicd_ctrl;
254 1.1 jmcneill u_int n;
255 1.1 jmcneill
256 1.1 jmcneill /* Disable the distributor */
257 1.35 jmcneill gicd_ctrl = gicd_read_4(sc, GICD_CTRL);
258 1.35 jmcneill gicd_ctrl &= ~(GICD_CTRL_EnableGrp1A | GICD_CTRL_ARE_NS);
259 1.35 jmcneill gicd_write_4(sc, GICD_CTRL, gicd_ctrl);
260 1.1 jmcneill
261 1.1 jmcneill /* Wait for register write to complete */
262 1.1 jmcneill while (gicd_read_4(sc, GICD_CTRL) & GICD_CTRL_RWP)
263 1.1 jmcneill ;
264 1.1 jmcneill
265 1.1 jmcneill /* Clear all INTID enable bits */
266 1.1 jmcneill for (n = 32; n < sc->sc_pic.pic_maxsources; n += 32)
267 1.1 jmcneill gicd_write_4(sc, GICD_ICENABLERn(n / 32), ~0);
268 1.1 jmcneill
269 1.1 jmcneill /* Set default priorities to lowest */
270 1.1 jmcneill for (n = 32; n < sc->sc_pic.pic_maxsources; n += 4)
271 1.1 jmcneill gicd_write_4(sc, GICD_IPRIORITYRn(n / 4), ~0);
272 1.1 jmcneill
273 1.1 jmcneill /* Set all interrupts to G1NS */
274 1.1 jmcneill for (n = 32; n < sc->sc_pic.pic_maxsources; n += 32) {
275 1.1 jmcneill gicd_write_4(sc, GICD_IGROUPRn(n / 32), ~0);
276 1.1 jmcneill gicd_write_4(sc, GICD_IGRPMODRn(n / 32), 0);
277 1.1 jmcneill }
278 1.1 jmcneill
279 1.1 jmcneill /* Set all interrupts level-sensitive by default */
280 1.1 jmcneill for (n = 32; n < sc->sc_pic.pic_maxsources; n += 16)
281 1.1 jmcneill gicd_write_4(sc, GICD_ICFGRn(n / 16), 0);
282 1.1 jmcneill
283 1.1 jmcneill /* Wait for register writes to complete */
284 1.1 jmcneill while (gicd_read_4(sc, GICD_CTRL) & GICD_CTRL_RWP)
285 1.1 jmcneill ;
286 1.1 jmcneill
287 1.1 jmcneill /* Enable Affinity routing and G1NS interrupts */
288 1.19 jmcneill gicd_ctrl = GICD_CTRL_EnableGrp1A | GICD_CTRL_ARE_NS;
289 1.1 jmcneill gicd_write_4(sc, GICD_CTRL, gicd_ctrl);
290 1.1 jmcneill }
291 1.1 jmcneill
292 1.1 jmcneill static void
293 1.1 jmcneill gicv3_redist_enable(struct gicv3_softc *sc, struct cpu_info *ci)
294 1.1 jmcneill {
295 1.1 jmcneill uint32_t icfg;
296 1.1 jmcneill u_int n, o;
297 1.1 jmcneill
298 1.1 jmcneill /* Clear INTID enable bits */
299 1.1 jmcneill gicr_write_4(sc, ci->ci_gic_redist, GICR_ICENABLER0, ~0);
300 1.1 jmcneill
301 1.1 jmcneill /* Wait for register write to complete */
302 1.5 jmcneill while (gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR) & GICR_CTLR_RWP)
303 1.1 jmcneill ;
304 1.1 jmcneill
305 1.1 jmcneill /* Set default priorities */
306 1.1 jmcneill for (n = 0; n < 32; n += 4) {
307 1.1 jmcneill uint32_t priority = 0;
308 1.1 jmcneill size_t byte_shift = 0;
309 1.1 jmcneill for (o = 0; o < 4; o++, byte_shift += 8) {
310 1.1 jmcneill struct intrsource * const is = sc->sc_pic.pic_sources[n + o];
311 1.1 jmcneill if (is == NULL)
312 1.25 jmcneill priority |= (0xffU << byte_shift);
313 1.2 jmcneill else {
314 1.18 jmcneill const u_int ipriority_val = IPL_TO_PRIORITY(sc, is->is_ipl);
315 1.2 jmcneill priority |= ipriority_val << byte_shift;
316 1.2 jmcneill }
317 1.1 jmcneill }
318 1.1 jmcneill gicr_write_4(sc, ci->ci_gic_redist, GICR_IPRIORITYRn(n / 4), priority);
319 1.1 jmcneill }
320 1.1 jmcneill
321 1.1 jmcneill /* Set all interrupts to G1NS */
322 1.1 jmcneill gicr_write_4(sc, ci->ci_gic_redist, GICR_IGROUPR0, ~0);
323 1.1 jmcneill gicr_write_4(sc, ci->ci_gic_redist, GICR_IGRPMODR0, 0);
324 1.1 jmcneill
325 1.1 jmcneill /* Restore PPI configs */
326 1.1 jmcneill for (n = 0, icfg = 0; n < 16; n++) {
327 1.1 jmcneill struct intrsource * const is = sc->sc_pic.pic_sources[16 + n];
328 1.1 jmcneill if (is != NULL && is->is_type == IST_EDGE)
329 1.1 jmcneill icfg |= (0x2 << (n * 2));
330 1.1 jmcneill }
331 1.1 jmcneill gicr_write_4(sc, ci->ci_gic_redist, GICR_ICFGRn(1), icfg);
332 1.1 jmcneill
333 1.1 jmcneill /* Restore current enable bits */
334 1.1 jmcneill gicr_write_4(sc, ci->ci_gic_redist, GICR_ISENABLER0, sc->sc_enabled_sgippi);
335 1.1 jmcneill
336 1.1 jmcneill /* Wait for register write to complete */
337 1.5 jmcneill while (gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR) & GICR_CTLR_RWP)
338 1.1 jmcneill ;
339 1.1 jmcneill }
340 1.1 jmcneill
341 1.1 jmcneill static uint64_t
342 1.1 jmcneill gicv3_cpu_identity(void)
343 1.1 jmcneill {
344 1.1 jmcneill u_int aff3, aff2, aff1, aff0;
345 1.1 jmcneill
346 1.18 jmcneill const register_t mpidr = cpu_mpidr_aff_read();
347 1.1 jmcneill aff0 = __SHIFTOUT(mpidr, MPIDR_AFF0);
348 1.1 jmcneill aff1 = __SHIFTOUT(mpidr, MPIDR_AFF1);
349 1.1 jmcneill aff2 = __SHIFTOUT(mpidr, MPIDR_AFF2);
350 1.1 jmcneill aff3 = __SHIFTOUT(mpidr, MPIDR_AFF3);
351 1.1 jmcneill
352 1.1 jmcneill return __SHIFTIN(aff0, GICR_TYPER_Affinity_Value_Aff0) |
353 1.1 jmcneill __SHIFTIN(aff1, GICR_TYPER_Affinity_Value_Aff1) |
354 1.1 jmcneill __SHIFTIN(aff2, GICR_TYPER_Affinity_Value_Aff2) |
355 1.1 jmcneill __SHIFTIN(aff3, GICR_TYPER_Affinity_Value_Aff3);
356 1.1 jmcneill }
357 1.1 jmcneill
358 1.1 jmcneill static u_int
359 1.1 jmcneill gicv3_find_redist(struct gicv3_softc *sc)
360 1.1 jmcneill {
361 1.1 jmcneill uint64_t gicr_typer;
362 1.1 jmcneill u_int n;
363 1.1 jmcneill
364 1.1 jmcneill const uint64_t cpu_identity = gicv3_cpu_identity();
365 1.1 jmcneill
366 1.1 jmcneill for (n = 0; n < sc->sc_bsh_r_count; n++) {
367 1.1 jmcneill gicr_typer = gicr_read_8(sc, n, GICR_TYPER);
368 1.1 jmcneill if ((gicr_typer & GICR_TYPER_Affinity_Value) == cpu_identity)
369 1.1 jmcneill return n;
370 1.1 jmcneill }
371 1.1 jmcneill
372 1.1 jmcneill const u_int aff0 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff0);
373 1.1 jmcneill const u_int aff1 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff1);
374 1.1 jmcneill const u_int aff2 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff2);
375 1.1 jmcneill const u_int aff3 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff3);
376 1.1 jmcneill
377 1.1 jmcneill panic("%s: could not find GICv3 redistributor for cpu %d.%d.%d.%d",
378 1.1 jmcneill cpu_name(curcpu()), aff3, aff2, aff1, aff0);
379 1.1 jmcneill }
380 1.1 jmcneill
381 1.1 jmcneill static uint64_t
382 1.1 jmcneill gicv3_sgir(struct gicv3_softc *sc)
383 1.1 jmcneill {
384 1.22 skrll const uint64_t cpu_identity = gicv3_cpu_identity();
385 1.1 jmcneill
386 1.1 jmcneill const u_int aff0 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff0);
387 1.1 jmcneill const u_int aff1 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff1);
388 1.1 jmcneill const u_int aff2 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff2);
389 1.1 jmcneill const u_int aff3 = __SHIFTOUT(cpu_identity, GICR_TYPER_Affinity_Value_Aff3);
390 1.1 jmcneill
391 1.1 jmcneill return __SHIFTIN(__BIT(aff0), ICC_SGIR_EL1_TargetList) |
392 1.1 jmcneill __SHIFTIN(aff1, ICC_SGIR_EL1_Aff1) |
393 1.1 jmcneill __SHIFTIN(aff2, ICC_SGIR_EL1_Aff2) |
394 1.22 skrll __SHIFTIN(aff3, ICC_SGIR_EL1_Aff3);
395 1.1 jmcneill }
396 1.1 jmcneill
397 1.1 jmcneill static void
398 1.1 jmcneill gicv3_cpu_init(struct pic_softc *pic, struct cpu_info *ci)
399 1.1 jmcneill {
400 1.1 jmcneill struct gicv3_softc * const sc = PICTOSOFTC(pic);
401 1.1 jmcneill uint32_t icc_sre, icc_ctlr, gicr_waker;
402 1.1 jmcneill
403 1.33 jmcneill evcnt_attach_dynamic(&ci->ci_intr_preempt, EVCNT_TYPE_MISC, NULL,
404 1.33 jmcneill ci->ci_cpuname, "intr preempt");
405 1.33 jmcneill
406 1.1 jmcneill ci->ci_gic_redist = gicv3_find_redist(sc);
407 1.1 jmcneill ci->ci_gic_sgir = gicv3_sgir(sc);
408 1.1 jmcneill
409 1.1 jmcneill /* Enable System register access and disable IRQ/FIQ bypass */
410 1.1 jmcneill icc_sre = ICC_SRE_EL1_SRE | ICC_SRE_EL1_DFB | ICC_SRE_EL1_DIB;
411 1.1 jmcneill icc_sre_write(icc_sre);
412 1.1 jmcneill
413 1.1 jmcneill /* Mark the connected PE as being awake */
414 1.1 jmcneill gicr_waker = gicr_read_4(sc, ci->ci_gic_redist, GICR_WAKER);
415 1.1 jmcneill gicr_waker &= ~GICR_WAKER_ProcessorSleep;
416 1.1 jmcneill gicr_write_4(sc, ci->ci_gic_redist, GICR_WAKER, gicr_waker);
417 1.1 jmcneill while (gicr_read_4(sc, ci->ci_gic_redist, GICR_WAKER) & GICR_WAKER_ChildrenAsleep)
418 1.1 jmcneill ;
419 1.1 jmcneill
420 1.1 jmcneill /* Set initial priority mask */
421 1.45 jmcneill ci->ci_hwpl = IPL_HIGH;
422 1.45 jmcneill icc_pmr_write(IPL_TO_PMR(sc, IPL_HIGH));
423 1.1 jmcneill
424 1.10 jmcneill /* Set the binary point field to the minimum value */
425 1.10 jmcneill icc_bpr1_write(0);
426 1.1 jmcneill
427 1.1 jmcneill /* Enable group 1 interrupt signaling */
428 1.1 jmcneill icc_igrpen1_write(ICC_IGRPEN_EL1_Enable);
429 1.1 jmcneill
430 1.1 jmcneill /* Set EOI mode */
431 1.1 jmcneill icc_ctlr = icc_ctlr_read();
432 1.1 jmcneill icc_ctlr &= ~ICC_CTLR_EL1_EOImode;
433 1.1 jmcneill icc_ctlr_write(icc_ctlr);
434 1.1 jmcneill
435 1.1 jmcneill /* Enable redistributor */
436 1.1 jmcneill gicv3_redist_enable(sc, ci);
437 1.1 jmcneill
438 1.1 jmcneill /* Allow IRQ exceptions */
439 1.40 jmcneill ENABLE_INTERRUPT();
440 1.1 jmcneill }
441 1.1 jmcneill
442 1.1 jmcneill #ifdef MULTIPROCESSOR
443 1.1 jmcneill static void
444 1.1 jmcneill gicv3_ipi_send(struct pic_softc *pic, const kcpuset_t *kcp, u_long ipi)
445 1.1 jmcneill {
446 1.1 jmcneill struct cpu_info *ci;
447 1.27 jmcneill uint64_t sgir;
448 1.1 jmcneill
449 1.27 jmcneill sgir = __SHIFTIN(ipi, ICC_SGIR_EL1_INTID);
450 1.1 jmcneill if (kcp == NULL) {
451 1.1 jmcneill /* Interrupts routed to all PEs, excluding "self" */
452 1.1 jmcneill if (ncpu == 1)
453 1.1 jmcneill return;
454 1.27 jmcneill sgir |= ICC_SGIR_EL1_IRM;
455 1.1 jmcneill } else {
456 1.27 jmcneill /* Interrupt to exactly one PE */
457 1.27 jmcneill ci = cpu_lookup(kcpuset_ffs(kcp) - 1);
458 1.27 jmcneill if (ci == curcpu())
459 1.27 jmcneill return;
460 1.27 jmcneill sgir |= ci->ci_gic_sgir;
461 1.1 jmcneill }
462 1.27 jmcneill icc_sgi1r_write(sgir);
463 1.30 jmcneill isb();
464 1.1 jmcneill }
465 1.6 jmcneill
466 1.6 jmcneill static void
467 1.6 jmcneill gicv3_get_affinity(struct pic_softc *pic, size_t irq, kcpuset_t *affinity)
468 1.6 jmcneill {
469 1.6 jmcneill struct gicv3_softc * const sc = PICTOSOFTC(pic);
470 1.6 jmcneill const size_t group = irq / 32;
471 1.6 jmcneill int n;
472 1.6 jmcneill
473 1.6 jmcneill kcpuset_zero(affinity);
474 1.6 jmcneill if (group == 0) {
475 1.6 jmcneill /* All CPUs are targets for group 0 (SGI/PPI) */
476 1.6 jmcneill for (n = 0; n < ncpu; n++) {
477 1.47 jmcneill kcpuset_set(affinity, n);
478 1.6 jmcneill }
479 1.6 jmcneill } else {
480 1.6 jmcneill /* Find distributor targets (SPI) */
481 1.6 jmcneill const uint64_t irouter = gicd_read_8(sc, GICD_IROUTER(irq));
482 1.6 jmcneill for (n = 0; n < ncpu; n++) {
483 1.6 jmcneill if (irouter == GICD_IROUTER_Interrupt_Routing_mode ||
484 1.6 jmcneill irouter == sc->sc_irouter[n])
485 1.6 jmcneill kcpuset_set(affinity, n);
486 1.6 jmcneill }
487 1.6 jmcneill }
488 1.6 jmcneill }
489 1.6 jmcneill
490 1.6 jmcneill static int
491 1.6 jmcneill gicv3_set_affinity(struct pic_softc *pic, size_t irq, const kcpuset_t *affinity)
492 1.6 jmcneill {
493 1.6 jmcneill struct gicv3_softc * const sc = PICTOSOFTC(pic);
494 1.6 jmcneill const size_t group = irq / 32;
495 1.6 jmcneill uint64_t irouter;
496 1.6 jmcneill
497 1.6 jmcneill if (group == 0)
498 1.6 jmcneill return EINVAL;
499 1.6 jmcneill
500 1.6 jmcneill const int set = kcpuset_countset(affinity);
501 1.36 jmcneill if (set == 1) {
502 1.36 jmcneill irouter = sc->sc_irouter[kcpuset_ffs(affinity) - 1];
503 1.44 jmcneill } else if (set == ncpu && GIC_SUPPORTS_1OFN(sc) && gicv3_use_1ofn) {
504 1.6 jmcneill irouter = GICD_IROUTER_Interrupt_Routing_mode;
505 1.36 jmcneill } else {
506 1.6 jmcneill return EINVAL;
507 1.36 jmcneill }
508 1.6 jmcneill
509 1.6 jmcneill gicd_write_8(sc, GICD_IROUTER(irq), irouter);
510 1.6 jmcneill
511 1.6 jmcneill return 0;
512 1.6 jmcneill }
513 1.1 jmcneill #endif
514 1.1 jmcneill
515 1.1 jmcneill static const struct pic_ops gicv3_picops = {
516 1.1 jmcneill .pic_unblock_irqs = gicv3_unblock_irqs,
517 1.1 jmcneill .pic_block_irqs = gicv3_block_irqs,
518 1.1 jmcneill .pic_establish_irq = gicv3_establish_irq,
519 1.1 jmcneill .pic_set_priority = gicv3_set_priority,
520 1.1 jmcneill #ifdef MULTIPROCESSOR
521 1.1 jmcneill .pic_cpu_init = gicv3_cpu_init,
522 1.1 jmcneill .pic_ipi_send = gicv3_ipi_send,
523 1.6 jmcneill .pic_get_affinity = gicv3_get_affinity,
524 1.6 jmcneill .pic_set_affinity = gicv3_set_affinity,
525 1.1 jmcneill #endif
526 1.1 jmcneill };
527 1.1 jmcneill
528 1.5 jmcneill static void
529 1.38 jmcneill gicv3_dcache_wb_range(vaddr_t va, vsize_t len)
530 1.38 jmcneill {
531 1.38 jmcneill cpu_dcache_wb_range(va, len);
532 1.38 jmcneill dsb(sy);
533 1.38 jmcneill }
534 1.38 jmcneill
535 1.38 jmcneill static void
536 1.5 jmcneill gicv3_lpi_unblock_irqs(struct pic_softc *pic, size_t irqbase, uint32_t mask)
537 1.5 jmcneill {
538 1.5 jmcneill struct gicv3_softc * const sc = LPITOSOFTC(pic);
539 1.5 jmcneill int bit;
540 1.5 jmcneill
541 1.5 jmcneill while ((bit = ffs(mask)) != 0) {
542 1.5 jmcneill sc->sc_lpiconf.base[irqbase + bit - 1] |= GIC_LPICONF_Enable;
543 1.20 jmcneill if (sc->sc_lpiconf_flush)
544 1.38 jmcneill gicv3_dcache_wb_range((vaddr_t)&sc->sc_lpiconf.base[irqbase + bit - 1], 1);
545 1.5 jmcneill mask &= ~__BIT(bit - 1);
546 1.5 jmcneill }
547 1.5 jmcneill
548 1.20 jmcneill if (!sc->sc_lpiconf_flush)
549 1.26 skrll dsb(ishst);
550 1.5 jmcneill }
551 1.5 jmcneill
552 1.5 jmcneill static void
553 1.5 jmcneill gicv3_lpi_block_irqs(struct pic_softc *pic, size_t irqbase, uint32_t mask)
554 1.5 jmcneill {
555 1.5 jmcneill struct gicv3_softc * const sc = LPITOSOFTC(pic);
556 1.5 jmcneill int bit;
557 1.5 jmcneill
558 1.5 jmcneill while ((bit = ffs(mask)) != 0) {
559 1.13 jmcneill sc->sc_lpiconf.base[irqbase + bit - 1] &= ~GIC_LPICONF_Enable;
560 1.20 jmcneill if (sc->sc_lpiconf_flush)
561 1.38 jmcneill gicv3_dcache_wb_range((vaddr_t)&sc->sc_lpiconf.base[irqbase + bit - 1], 1);
562 1.5 jmcneill mask &= ~__BIT(bit - 1);
563 1.5 jmcneill }
564 1.5 jmcneill
565 1.20 jmcneill if (!sc->sc_lpiconf_flush)
566 1.26 skrll dsb(ishst);
567 1.5 jmcneill }
568 1.5 jmcneill
569 1.5 jmcneill static void
570 1.5 jmcneill gicv3_lpi_establish_irq(struct pic_softc *pic, struct intrsource *is)
571 1.5 jmcneill {
572 1.5 jmcneill struct gicv3_softc * const sc = LPITOSOFTC(pic);
573 1.5 jmcneill
574 1.35 jmcneill sc->sc_lpiconf.base[is->is_irq] = IPL_TO_PRIORITY(sc, is->is_ipl) | GIC_LPICONF_Res1;
575 1.5 jmcneill
576 1.20 jmcneill if (sc->sc_lpiconf_flush)
577 1.38 jmcneill gicv3_dcache_wb_range((vaddr_t)&sc->sc_lpiconf.base[is->is_irq], 1);
578 1.20 jmcneill else
579 1.26 skrll dsb(ishst);
580 1.5 jmcneill }
581 1.5 jmcneill
582 1.5 jmcneill static void
583 1.5 jmcneill gicv3_lpi_cpu_init(struct pic_softc *pic, struct cpu_info *ci)
584 1.5 jmcneill {
585 1.5 jmcneill struct gicv3_softc * const sc = LPITOSOFTC(pic);
586 1.7 jmcneill struct gicv3_lpi_callback *cb;
587 1.20 jmcneill uint64_t propbase, pendbase;
588 1.5 jmcneill uint32_t ctlr;
589 1.5 jmcneill
590 1.5 jmcneill /* If physical LPIs are not supported on this redistributor, just return. */
591 1.5 jmcneill const uint64_t typer = gicr_read_8(sc, ci->ci_gic_redist, GICR_TYPER);
592 1.5 jmcneill if ((typer & GICR_TYPER_PLPIS) == 0)
593 1.5 jmcneill return;
594 1.5 jmcneill
595 1.5 jmcneill /* Interrupt target address for this CPU, used by ITS when GITS_TYPER.PTA == 0 */
596 1.5 jmcneill sc->sc_processor_id[cpu_index(ci)] = __SHIFTOUT(typer, GICR_TYPER_Processor_Number);
597 1.5 jmcneill
598 1.5 jmcneill /* Disable LPIs before making changes */
599 1.5 jmcneill ctlr = gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR);
600 1.5 jmcneill ctlr &= ~GICR_CTLR_Enable_LPIs;
601 1.5 jmcneill gicr_write_4(sc, ci->ci_gic_redist, GICR_CTLR, ctlr);
602 1.26 skrll dsb(sy);
603 1.5 jmcneill
604 1.5 jmcneill /* Setup the LPI configuration table */
605 1.20 jmcneill propbase = sc->sc_lpiconf.segs[0].ds_addr |
606 1.5 jmcneill __SHIFTIN(ffs(pic->pic_maxsources) - 1, GICR_PROPBASER_IDbits) |
607 1.20 jmcneill __SHIFTIN(GICR_Shareability_IS, GICR_PROPBASER_Shareability) |
608 1.20 jmcneill __SHIFTIN(GICR_Cache_NORMAL_RA_WA_WB, GICR_PROPBASER_InnerCache);
609 1.5 jmcneill gicr_write_8(sc, ci->ci_gic_redist, GICR_PROPBASER, propbase);
610 1.20 jmcneill propbase = gicr_read_8(sc, ci->ci_gic_redist, GICR_PROPBASER);
611 1.20 jmcneill if (__SHIFTOUT(propbase, GICR_PROPBASER_Shareability) != GICR_Shareability_IS) {
612 1.20 jmcneill if (__SHIFTOUT(propbase, GICR_PROPBASER_Shareability) == GICR_Shareability_NS) {
613 1.20 jmcneill propbase &= ~GICR_PROPBASER_Shareability;
614 1.20 jmcneill propbase |= __SHIFTIN(GICR_Shareability_NS, GICR_PROPBASER_Shareability);
615 1.20 jmcneill propbase &= ~GICR_PROPBASER_InnerCache;
616 1.20 jmcneill propbase |= __SHIFTIN(GICR_Cache_NORMAL_NC, GICR_PROPBASER_InnerCache);
617 1.20 jmcneill gicr_write_8(sc, ci->ci_gic_redist, GICR_PROPBASER, propbase);
618 1.20 jmcneill }
619 1.20 jmcneill sc->sc_lpiconf_flush = true;
620 1.20 jmcneill }
621 1.5 jmcneill
622 1.5 jmcneill /* Setup the LPI pending table */
623 1.20 jmcneill pendbase = sc->sc_lpipend[cpu_index(ci)].segs[0].ds_addr |
624 1.20 jmcneill __SHIFTIN(GICR_Shareability_IS, GICR_PENDBASER_Shareability) |
625 1.20 jmcneill __SHIFTIN(GICR_Cache_NORMAL_RA_WA_WB, GICR_PENDBASER_InnerCache);
626 1.5 jmcneill gicr_write_8(sc, ci->ci_gic_redist, GICR_PENDBASER, pendbase);
627 1.20 jmcneill pendbase = gicr_read_8(sc, ci->ci_gic_redist, GICR_PENDBASER);
628 1.20 jmcneill if (__SHIFTOUT(pendbase, GICR_PENDBASER_Shareability) == GICR_Shareability_NS) {
629 1.20 jmcneill pendbase &= ~GICR_PENDBASER_Shareability;
630 1.20 jmcneill pendbase |= __SHIFTIN(GICR_Shareability_NS, GICR_PENDBASER_Shareability);
631 1.20 jmcneill pendbase &= ~GICR_PENDBASER_InnerCache;
632 1.20 jmcneill pendbase |= __SHIFTIN(GICR_Cache_NORMAL_NC, GICR_PENDBASER_InnerCache);
633 1.20 jmcneill gicr_write_8(sc, ci->ci_gic_redist, GICR_PENDBASER, pendbase);
634 1.20 jmcneill }
635 1.5 jmcneill
636 1.5 jmcneill /* Enable LPIs */
637 1.5 jmcneill ctlr = gicr_read_4(sc, ci->ci_gic_redist, GICR_CTLR);
638 1.5 jmcneill ctlr |= GICR_CTLR_Enable_LPIs;
639 1.5 jmcneill gicr_write_4(sc, ci->ci_gic_redist, GICR_CTLR, ctlr);
640 1.26 skrll dsb(sy);
641 1.5 jmcneill
642 1.5 jmcneill /* Setup ITS if present */
643 1.7 jmcneill LIST_FOREACH(cb, &sc->sc_lpi_callbacks, list)
644 1.7 jmcneill cb->cpu_init(cb->priv, ci);
645 1.5 jmcneill }
646 1.5 jmcneill
647 1.7 jmcneill #ifdef MULTIPROCESSOR
648 1.7 jmcneill static void
649 1.7 jmcneill gicv3_lpi_get_affinity(struct pic_softc *pic, size_t irq, kcpuset_t *affinity)
650 1.7 jmcneill {
651 1.7 jmcneill struct gicv3_softc * const sc = LPITOSOFTC(pic);
652 1.7 jmcneill struct gicv3_lpi_callback *cb;
653 1.7 jmcneill
654 1.24 jmcneill kcpuset_zero(affinity);
655 1.7 jmcneill LIST_FOREACH(cb, &sc->sc_lpi_callbacks, list)
656 1.7 jmcneill cb->get_affinity(cb->priv, irq, affinity);
657 1.7 jmcneill }
658 1.7 jmcneill
659 1.7 jmcneill static int
660 1.7 jmcneill gicv3_lpi_set_affinity(struct pic_softc *pic, size_t irq, const kcpuset_t *affinity)
661 1.7 jmcneill {
662 1.7 jmcneill struct gicv3_softc * const sc = LPITOSOFTC(pic);
663 1.7 jmcneill struct gicv3_lpi_callback *cb;
664 1.7 jmcneill int error = EINVAL;
665 1.7 jmcneill
666 1.7 jmcneill LIST_FOREACH(cb, &sc->sc_lpi_callbacks, list) {
667 1.7 jmcneill error = cb->set_affinity(cb->priv, irq, affinity);
668 1.24 jmcneill if (error != EPASSTHROUGH)
669 1.7 jmcneill return error;
670 1.7 jmcneill }
671 1.7 jmcneill
672 1.24 jmcneill return EINVAL;
673 1.7 jmcneill }
674 1.7 jmcneill #endif
675 1.7 jmcneill
676 1.5 jmcneill static const struct pic_ops gicv3_lpiops = {
677 1.5 jmcneill .pic_unblock_irqs = gicv3_lpi_unblock_irqs,
678 1.5 jmcneill .pic_block_irqs = gicv3_lpi_block_irqs,
679 1.5 jmcneill .pic_establish_irq = gicv3_lpi_establish_irq,
680 1.5 jmcneill #ifdef MULTIPROCESSOR
681 1.5 jmcneill .pic_cpu_init = gicv3_lpi_cpu_init,
682 1.7 jmcneill .pic_get_affinity = gicv3_lpi_get_affinity,
683 1.7 jmcneill .pic_set_affinity = gicv3_lpi_set_affinity,
684 1.5 jmcneill #endif
685 1.5 jmcneill };
686 1.5 jmcneill
687 1.5 jmcneill void
688 1.5 jmcneill gicv3_dma_alloc(struct gicv3_softc *sc, struct gicv3_dma *dma, bus_size_t len, bus_size_t align)
689 1.5 jmcneill {
690 1.5 jmcneill int nsegs, error;
691 1.5 jmcneill
692 1.5 jmcneill dma->len = len;
693 1.5 jmcneill error = bus_dmamem_alloc(sc->sc_dmat, dma->len, align, 0, dma->segs, 1, &nsegs, BUS_DMA_WAITOK);
694 1.5 jmcneill if (error)
695 1.5 jmcneill panic("bus_dmamem_alloc failed: %d", error);
696 1.5 jmcneill error = bus_dmamem_map(sc->sc_dmat, dma->segs, nsegs, len, (void **)&dma->base, BUS_DMA_WAITOK);
697 1.5 jmcneill if (error)
698 1.5 jmcneill panic("bus_dmamem_map failed: %d", error);
699 1.5 jmcneill error = bus_dmamap_create(sc->sc_dmat, len, 1, len, 0, BUS_DMA_WAITOK, &dma->map);
700 1.5 jmcneill if (error)
701 1.5 jmcneill panic("bus_dmamap_create failed: %d", error);
702 1.5 jmcneill error = bus_dmamap_load(sc->sc_dmat, dma->map, dma->base, dma->len, NULL, BUS_DMA_WAITOK);
703 1.5 jmcneill if (error)
704 1.5 jmcneill panic("bus_dmamap_load failed: %d", error);
705 1.5 jmcneill
706 1.5 jmcneill memset(dma->base, 0, dma->len);
707 1.5 jmcneill bus_dmamap_sync(sc->sc_dmat, dma->map, 0, dma->len, BUS_DMASYNC_PREWRITE);
708 1.5 jmcneill }
709 1.5 jmcneill
710 1.5 jmcneill static void
711 1.5 jmcneill gicv3_lpi_init(struct gicv3_softc *sc)
712 1.5 jmcneill {
713 1.5 jmcneill /*
714 1.5 jmcneill * Allocate LPI configuration table
715 1.5 jmcneill */
716 1.5 jmcneill gicv3_dma_alloc(sc, &sc->sc_lpiconf, sc->sc_lpi.pic_maxsources, 0x1000);
717 1.5 jmcneill KASSERT((sc->sc_lpiconf.segs[0].ds_addr & ~GICR_PROPBASER_Physical_Address) == 0);
718 1.5 jmcneill
719 1.5 jmcneill /*
720 1.5 jmcneill * Allocate LPI pending tables
721 1.5 jmcneill */
722 1.20 jmcneill const bus_size_t lpipend_sz = (8192 + sc->sc_lpi.pic_maxsources) / NBBY;
723 1.8 jmcneill for (int cpuindex = 0; cpuindex < ncpu; cpuindex++) {
724 1.5 jmcneill gicv3_dma_alloc(sc, &sc->sc_lpipend[cpuindex], lpipend_sz, 0x10000);
725 1.5 jmcneill KASSERT((sc->sc_lpipend[cpuindex].segs[0].ds_addr & ~GICR_PENDBASER_Physical_Address) == 0);
726 1.5 jmcneill }
727 1.5 jmcneill }
728 1.5 jmcneill
729 1.1 jmcneill void
730 1.1 jmcneill gicv3_irq_handler(void *frame)
731 1.1 jmcneill {
732 1.1 jmcneill struct cpu_info * const ci = curcpu();
733 1.1 jmcneill struct gicv3_softc * const sc = gicv3_softc;
734 1.5 jmcneill struct pic_softc *pic;
735 1.1 jmcneill const int oldipl = ci->ci_cpl;
736 1.1 jmcneill
737 1.1 jmcneill ci->ci_data.cpu_nintr++;
738 1.1 jmcneill
739 1.45 jmcneill if (ci->ci_hwpl != oldipl) {
740 1.45 jmcneill ci->ci_hwpl = oldipl;
741 1.45 jmcneill icc_pmr_write(IPL_TO_PMR(sc, oldipl));
742 1.43 jmcneill if (oldipl == IPL_HIGH) {
743 1.43 jmcneill return;
744 1.43 jmcneill }
745 1.40 jmcneill }
746 1.40 jmcneill
747 1.1 jmcneill for (;;) {
748 1.1 jmcneill const uint32_t iar = icc_iar1_read();
749 1.26 skrll dsb(sy);
750 1.1 jmcneill const uint32_t irq = __SHIFTOUT(iar, ICC_IAR_INTID);
751 1.1 jmcneill if (irq == ICC_IAR_INTID_SPURIOUS)
752 1.1 jmcneill break;
753 1.1 jmcneill
754 1.5 jmcneill pic = irq >= GIC_LPI_BASE ? &sc->sc_lpi : &sc->sc_pic;
755 1.5 jmcneill if (irq - pic->pic_irqbase >= pic->pic_maxsources)
756 1.1 jmcneill continue;
757 1.1 jmcneill
758 1.5 jmcneill struct intrsource * const is = pic->pic_sources[irq - pic->pic_irqbase];
759 1.1 jmcneill KASSERT(is != NULL);
760 1.1 jmcneill
761 1.21 jmcneill const bool early_eoi = irq < GIC_LPI_BASE && is->is_type == IST_EDGE;
762 1.21 jmcneill
763 1.1 jmcneill const int ipl = is->is_ipl;
764 1.21 jmcneill if (__predict_false(ipl < ci->ci_cpl)) {
765 1.21 jmcneill pic_do_pending_ints(I32_bit, ipl, frame);
766 1.28 jmcneill } else if (ci->ci_cpl != ipl) {
767 1.40 jmcneill icc_pmr_write(IPL_TO_PMR(sc, ipl));
768 1.42 jmcneill ci->ci_hwpl = ci->ci_cpl = ipl;
769 1.21 jmcneill }
770 1.21 jmcneill
771 1.21 jmcneill if (early_eoi) {
772 1.21 jmcneill icc_eoi1r_write(iar);
773 1.26 skrll isb();
774 1.21 jmcneill }
775 1.1 jmcneill
776 1.33 jmcneill const int64_t nintr = ci->ci_data.cpu_nintr;
777 1.33 jmcneill
778 1.40 jmcneill ENABLE_INTERRUPT();
779 1.1 jmcneill pic_dispatch(is, frame);
780 1.40 jmcneill DISABLE_INTERRUPT();
781 1.1 jmcneill
782 1.33 jmcneill if (nintr != ci->ci_data.cpu_nintr)
783 1.33 jmcneill ci->ci_intr_preempt.ev_count++;
784 1.33 jmcneill
785 1.21 jmcneill if (!early_eoi) {
786 1.21 jmcneill icc_eoi1r_write(iar);
787 1.26 skrll isb();
788 1.21 jmcneill }
789 1.1 jmcneill }
790 1.1 jmcneill
791 1.21 jmcneill pic_do_pending_ints(I32_bit, oldipl, frame);
792 1.1 jmcneill }
793 1.1 jmcneill
794 1.34 jmcneill static bool
795 1.35 jmcneill gicv3_cpuif_is_nonsecure(struct gicv3_softc *sc)
796 1.34 jmcneill {
797 1.35 jmcneill /*
798 1.35 jmcneill * Write 0 to bit7 and see if it sticks. This is only possible if
799 1.35 jmcneill * we have a non-secure view of the PMR register.
800 1.35 jmcneill */
801 1.35 jmcneill const uint32_t opmr = icc_pmr_read();
802 1.35 jmcneill icc_pmr_write(0);
803 1.35 jmcneill const uint32_t npmr = icc_pmr_read();
804 1.35 jmcneill icc_pmr_write(opmr);
805 1.34 jmcneill
806 1.35 jmcneill return (npmr & GICC_PMR_NONSECURE) == 0;
807 1.34 jmcneill }
808 1.34 jmcneill
809 1.35 jmcneill static bool
810 1.35 jmcneill gicv3_dist_is_nonsecure(struct gicv3_softc *sc)
811 1.19 jmcneill {
812 1.35 jmcneill const uint32_t gicd_ctrl = gicd_read_4(sc, GICD_CTRL);
813 1.19 jmcneill
814 1.35 jmcneill /*
815 1.35 jmcneill * If security is enabled, we have a non-secure view of the IPRIORITYRn
816 1.35 jmcneill * registers and LPI configuration priority fields.
817 1.35 jmcneill */
818 1.35 jmcneill return (gicd_ctrl & GICD_CTRL_DS) == 0;
819 1.19 jmcneill }
820 1.19 jmcneill
821 1.35 jmcneill /*
822 1.35 jmcneill * Rockchip RK3399 provides a different view of int priority registers
823 1.35 jmcneill * depending on which firmware is in use. This is hard to detect in
824 1.35 jmcneill * a way that could possibly break other boards, so only do this
825 1.35 jmcneill * detection if we know we are on a RK3399 SoC.
826 1.35 jmcneill */
827 1.35 jmcneill static void
828 1.35 jmcneill gicv3_quirk_rockchip_rk3399(struct gicv3_softc *sc)
829 1.19 jmcneill {
830 1.35 jmcneill /* Detect the number of supported PMR bits */
831 1.35 jmcneill icc_pmr_write(0xff);
832 1.35 jmcneill const uint8_t pmrbits = icc_pmr_read();
833 1.19 jmcneill
834 1.35 jmcneill /* Detect the number of supported IPRIORITYRn bits */
835 1.35 jmcneill const uint32_t oiprio = gicd_read_4(sc, GICD_IPRIORITYRn(8));
836 1.35 jmcneill gicd_write_4(sc, GICD_IPRIORITYRn(8), oiprio | 0xff);
837 1.35 jmcneill const uint8_t pribits = gicd_read_4(sc, GICD_IPRIORITYRn(8)) & 0xff;
838 1.35 jmcneill gicd_write_4(sc, GICD_IPRIORITYRn(8), oiprio);
839 1.35 jmcneill
840 1.35 jmcneill /*
841 1.35 jmcneill * If we see fewer PMR bits than IPRIORITYRn bits here, it means
842 1.35 jmcneill * we have a secure view of IPRIORITYRn (this is not supposed to
843 1.49 skrll * happen!).
844 1.35 jmcneill */
845 1.35 jmcneill if (pmrbits < pribits) {
846 1.35 jmcneill aprint_verbose_dev(sc->sc_dev,
847 1.35 jmcneill "buggy RK3399 firmware detected; applying workaround\n");
848 1.35 jmcneill sc->sc_priority_shift = GIC_PRIO_SHIFT_S;
849 1.35 jmcneill }
850 1.19 jmcneill }
851 1.19 jmcneill
852 1.1 jmcneill int
853 1.1 jmcneill gicv3_init(struct gicv3_softc *sc)
854 1.1 jmcneill {
855 1.47 jmcneill CPU_INFO_ITERATOR cii;
856 1.47 jmcneill struct cpu_info *ci;
857 1.1 jmcneill
858 1.1 jmcneill KASSERT(CPU_IS_PRIMARY(curcpu()));
859 1.1 jmcneill
860 1.7 jmcneill LIST_INIT(&sc->sc_lpi_callbacks);
861 1.5 jmcneill
862 1.47 jmcneill /* Store route to CPU for SPIs */
863 1.39 jmcneill sc->sc_irouter = kmem_zalloc(sizeof(*sc->sc_irouter) * ncpu, KM_SLEEP);
864 1.47 jmcneill for (CPU_INFO_FOREACH(cii, ci)) {
865 1.47 jmcneill KASSERT(cpu_index(ci) < ncpu);
866 1.47 jmcneill sc->sc_irouter[cpu_index(ci)] = ci->ci_cpuid;
867 1.47 jmcneill }
868 1.6 jmcneill
869 1.36 jmcneill sc->sc_gicd_typer = gicd_read_4(sc, GICD_TYPER);
870 1.36 jmcneill
871 1.35 jmcneill /*
872 1.37 jmcneill * We don't always have a consistent view of priorities between the
873 1.35 jmcneill * CPU interface (ICC_PMR_EL1) and the GICD/GICR registers. Detect
874 1.35 jmcneill * if we are making secure or non-secure accesses to each, and adjust
875 1.35 jmcneill * the values that we write to each accordingly.
876 1.35 jmcneill */
877 1.35 jmcneill const bool dist_ns = gicv3_dist_is_nonsecure(sc);
878 1.35 jmcneill sc->sc_priority_shift = dist_ns ? GIC_PRIO_SHIFT_NS : GIC_PRIO_SHIFT_S;
879 1.35 jmcneill const bool cpuif_ns = gicv3_cpuif_is_nonsecure(sc);
880 1.35 jmcneill sc->sc_pmr_shift = cpuif_ns ? GIC_PRIO_SHIFT_NS : GIC_PRIO_SHIFT_S;
881 1.34 jmcneill
882 1.35 jmcneill if ((sc->sc_quirks & GICV3_QUIRK_RK3399) != 0)
883 1.35 jmcneill gicv3_quirk_rockchip_rk3399(sc);
884 1.19 jmcneill
885 1.34 jmcneill aprint_verbose_dev(sc->sc_dev,
886 1.35 jmcneill "iidr 0x%08x, cpuif %ssecure, dist %ssecure, "
887 1.35 jmcneill "priority shift %d, pmr shift %d, quirks %#x\n",
888 1.35 jmcneill gicd_read_4(sc, GICD_IIDR),
889 1.35 jmcneill cpuif_ns ? "non-" : "",
890 1.35 jmcneill dist_ns ? "non-" : "",
891 1.35 jmcneill sc->sc_priority_shift,
892 1.35 jmcneill sc->sc_pmr_shift,
893 1.35 jmcneill sc->sc_quirks);
894 1.18 jmcneill
895 1.1 jmcneill sc->sc_pic.pic_ops = &gicv3_picops;
896 1.36 jmcneill sc->sc_pic.pic_maxsources = GICD_TYPER_LINES(sc->sc_gicd_typer);
897 1.1 jmcneill snprintf(sc->sc_pic.pic_name, sizeof(sc->sc_pic.pic_name), "gicv3");
898 1.1 jmcneill #ifdef MULTIPROCESSOR
899 1.1 jmcneill sc->sc_pic.pic_cpus = kcpuset_running;
900 1.1 jmcneill #endif
901 1.1 jmcneill pic_add(&sc->sc_pic, 0);
902 1.1 jmcneill
903 1.36 jmcneill if ((sc->sc_gicd_typer & GICD_TYPER_LPIS) != 0) {
904 1.39 jmcneill sc->sc_lpipend = kmem_zalloc(sizeof(*sc->sc_lpipend) * ncpu, KM_SLEEP);
905 1.39 jmcneill sc->sc_processor_id = kmem_zalloc(sizeof(*sc->sc_processor_id) * ncpu, KM_SLEEP);
906 1.39 jmcneill
907 1.5 jmcneill sc->sc_lpi.pic_ops = &gicv3_lpiops;
908 1.5 jmcneill sc->sc_lpi.pic_maxsources = 8192; /* Min. required by GICv3 spec */
909 1.5 jmcneill snprintf(sc->sc_lpi.pic_name, sizeof(sc->sc_lpi.pic_name), "gicv3-lpi");
910 1.5 jmcneill pic_add(&sc->sc_lpi, GIC_LPI_BASE);
911 1.5 jmcneill
912 1.23 jmcneill sc->sc_lpi_pool = vmem_create("gicv3-lpi", 0, sc->sc_lpi.pic_maxsources,
913 1.23 jmcneill 1, NULL, NULL, NULL, 0, VM_SLEEP, IPL_HIGH);
914 1.23 jmcneill if (sc->sc_lpi_pool == NULL)
915 1.23 jmcneill panic("failed to create gicv3 lpi pool\n");
916 1.23 jmcneill
917 1.5 jmcneill gicv3_lpi_init(sc);
918 1.5 jmcneill }
919 1.5 jmcneill
920 1.1 jmcneill KASSERT(gicv3_softc == NULL);
921 1.1 jmcneill gicv3_softc = sc;
922 1.1 jmcneill
923 1.1 jmcneill for (int i = 0; i < sc->sc_bsh_r_count; i++) {
924 1.1 jmcneill const uint64_t gicr_typer = gicr_read_8(sc, i, GICR_TYPER);
925 1.1 jmcneill const u_int aff0 = __SHIFTOUT(gicr_typer, GICR_TYPER_Affinity_Value_Aff0);
926 1.1 jmcneill const u_int aff1 = __SHIFTOUT(gicr_typer, GICR_TYPER_Affinity_Value_Aff1);
927 1.1 jmcneill const u_int aff2 = __SHIFTOUT(gicr_typer, GICR_TYPER_Affinity_Value_Aff2);
928 1.1 jmcneill const u_int aff3 = __SHIFTOUT(gicr_typer, GICR_TYPER_Affinity_Value_Aff3);
929 1.1 jmcneill
930 1.1 jmcneill aprint_debug_dev(sc->sc_dev, "redist %d: cpu %d.%d.%d.%d\n",
931 1.1 jmcneill i, aff3, aff2, aff1, aff0);
932 1.1 jmcneill }
933 1.1 jmcneill
934 1.1 jmcneill gicv3_dist_enable(sc);
935 1.1 jmcneill
936 1.1 jmcneill gicv3_cpu_init(&sc->sc_pic, curcpu());
937 1.36 jmcneill if ((sc->sc_gicd_typer & GICD_TYPER_LPIS) != 0)
938 1.5 jmcneill gicv3_lpi_cpu_init(&sc->sc_lpi, curcpu());
939 1.1 jmcneill
940 1.1 jmcneill #ifdef MULTIPROCESSOR
941 1.11 jmcneill intr_establish_xname(IPI_AST, IPL_VM, IST_MPSAFE | IST_EDGE, pic_ipi_ast, (void *)-1, "IPI ast");
942 1.11 jmcneill intr_establish_xname(IPI_XCALL, IPL_HIGH, IST_MPSAFE | IST_EDGE, pic_ipi_xcall, (void *)-1, "IPI xcall");
943 1.11 jmcneill intr_establish_xname(IPI_GENERIC, IPL_HIGH, IST_MPSAFE | IST_EDGE, pic_ipi_generic, (void *)-1, "IPI generic");
944 1.11 jmcneill intr_establish_xname(IPI_NOP, IPL_VM, IST_MPSAFE | IST_EDGE, pic_ipi_nop, (void *)-1, "IPI nop");
945 1.11 jmcneill intr_establish_xname(IPI_SHOOTDOWN, IPL_SCHED, IST_MPSAFE | IST_EDGE, pic_ipi_shootdown, (void *)-1, "IPI shootdown");
946 1.1 jmcneill #ifdef DDB
947 1.11 jmcneill intr_establish_xname(IPI_DDB, IPL_HIGH, IST_MPSAFE | IST_EDGE, pic_ipi_ddb, NULL, "IPI ddb");
948 1.1 jmcneill #endif
949 1.1 jmcneill #ifdef __HAVE_PREEMPTION
950 1.11 jmcneill intr_establish_xname(IPI_KPREEMPT, IPL_VM, IST_MPSAFE | IST_EDGE, pic_ipi_kpreempt, (void *)-1, "IPI kpreempt");
951 1.1 jmcneill #endif
952 1.1 jmcneill #endif
953 1.1 jmcneill
954 1.46 jmcneill #ifdef GIC_SPLFUNCS
955 1.45 jmcneill gic_spl_init();
956 1.46 jmcneill #endif
957 1.45 jmcneill
958 1.1 jmcneill return 0;
959 1.1 jmcneill }
960