epe.c revision 1.18 1 /* $NetBSD: epe.c,v 1.18 2008/05/10 15:31:04 martin Exp $ */
2
3 /*
4 * Copyright (c) 2004 Jesse Off
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the NetBSD
18 * Foundation, Inc. and its contributors.
19 * 4. Neither the name of The NetBSD Foundation nor the names of its
20 * contributors may be used to endorse or promote products derived
21 * from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 #include <sys/cdefs.h>
37 __KERNEL_RCSID(0, "$NetBSD: epe.c,v 1.18 2008/05/10 15:31:04 martin Exp $");
38
39 #include <sys/types.h>
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/ioctl.h>
43 #include <sys/kernel.h>
44 #include <sys/proc.h>
45 #include <sys/malloc.h>
46 #include <sys/time.h>
47 #include <sys/device.h>
48 #include <uvm/uvm_extern.h>
49
50 #include <machine/bus.h>
51 #include <machine/intr.h>
52
53 #include <arm/cpufunc.h>
54
55 #include <arm/ep93xx/epsocvar.h>
56 #include <arm/ep93xx/ep93xxvar.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/if_media.h>
62 #include <net/if_ether.h>
63
64 #include <dev/mii/mii.h>
65 #include <dev/mii/miivar.h>
66
67 #ifdef INET
68 #include <netinet/in.h>
69 #include <netinet/in_systm.h>
70 #include <netinet/in_var.h>
71 #include <netinet/ip.h>
72 #include <netinet/if_inarp.h>
73 #endif
74
75 #ifdef NS
76 #include <netns/ns.h>
77 #include <netns/ns_if.h>
78 #endif
79
80 #include "bpfilter.h"
81 #if NBPFILTER > 0
82 #include <net/bpf.h>
83 #include <net/bpfdesc.h>
84 #endif
85
86 #include <arm/ep93xx/ep93xxreg.h>
87 #include <arm/ep93xx/epereg.h>
88 #include <arm/ep93xx/epevar.h>
89
90 #define DEFAULT_MDCDIV 32
91
92 #ifndef EPE_FAST
93 #define EPE_FAST
94 #endif
95
96 #ifndef EPE_FAST
97 #define EPE_READ(x) \
98 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
99 #define EPE_WRITE(x, y) \
100 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
101 #define CTRLPAGE_DMASYNC(x, y, z) \
102 bus_dmamap_sync(sc->sc_dmat, sc->ctrlpage_dmamap, (x), (y), (z))
103 #else
104 #define EPE_READ(x) *(volatile u_int32_t *) \
105 (EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x))
106 #define EPE_WRITE(x, y) *(volatile u_int32_t *) \
107 (EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x)) = y
108 #define CTRLPAGE_DMASYNC(x, y, z)
109 #endif /* ! EPE_FAST */
110
111 static int epe_match(struct device *, struct cfdata *, void *);
112 static void epe_attach(struct device *, struct device *, void *);
113 static void epe_init(struct epe_softc *);
114 static int epe_intr(void* arg);
115 static int epe_gctx(struct epe_softc *);
116 static int epe_mediachange(struct ifnet *);
117 int epe_mii_readreg (struct device *, int, int);
118 void epe_mii_writereg (struct device *, int, int, int);
119 void epe_statchg (struct device *);
120 void epe_tick (void *);
121 static int epe_ifioctl (struct ifnet *, u_long, void *);
122 static void epe_ifstart (struct ifnet *);
123 static void epe_ifwatchdog (struct ifnet *);
124 static int epe_ifinit (struct ifnet *);
125 static void epe_ifstop (struct ifnet *, int);
126 static void epe_setaddr (struct ifnet *);
127
128 CFATTACH_DECL(epe, sizeof(struct epe_softc),
129 epe_match, epe_attach, NULL, NULL);
130
131 static int
132 epe_match(struct device *parent, struct cfdata *match, void *aux)
133 {
134 return 2;
135 }
136
137 static void
138 epe_attach(struct device *parent, struct device *self, void *aux)
139 {
140 struct epe_softc *sc;
141 struct epsoc_attach_args *sa;
142 prop_data_t enaddr;
143
144 printf("\n");
145 sc = (struct epe_softc*) self;
146 sa = aux;
147 sc->sc_iot = sa->sa_iot;
148 sc->sc_intr = sa->sa_intr;
149 sc->sc_dmat = sa->sa_dmat;
150
151 if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
152 0, &sc->sc_ioh))
153 panic("%s: Cannot map registers", self->dv_xname);
154
155 /* Fetch the Ethernet address from property if set. */
156 enaddr = prop_dictionary_get(device_properties(self), "mac-addr");
157 if (enaddr != NULL) {
158 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
159 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
160 memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
161 ETHER_ADDR_LEN);
162 bus_space_write_4(sc->sc_iot, sc->sc_ioh, EPE_AFP, 0);
163 bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
164 sc->sc_enaddr, ETHER_ADDR_LEN);
165 }
166
167 ep93xx_intr_establish(sc->sc_intr, IPL_NET, epe_intr, sc);
168 epe_init(sc);
169 }
170
171 static int
172 epe_gctx(struct epe_softc *sc)
173 {
174 struct ifnet * ifp = &sc->sc_ec.ec_if;
175 u_int32_t *cur, ndq = 0;
176
177 /* Handle transmit completions */
178 cur = (u_int32_t *)(EPE_READ(TXStsQCurAdd) -
179 sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
180
181 if (sc->TXStsQ_cur != cur) {
182 CTRLPAGE_DMASYNC(TX_QLEN * 2 * sizeof(u_int32_t),
183 TX_QLEN * sizeof(u_int32_t), BUS_DMASYNC_PREREAD);
184 } else {
185 return 0;
186 }
187
188 do {
189 u_int32_t tbi = *sc->TXStsQ_cur & 0x7fff;
190 struct mbuf *m = sc->txq[tbi].m;
191
192 if ((*sc->TXStsQ_cur & TXStsQ_TxWE) == 0) {
193 ifp->if_oerrors++;
194 }
195 bus_dmamap_unload(sc->sc_dmat, sc->txq[tbi].m_dmamap);
196 m_freem(m);
197 do {
198 sc->txq[tbi].m = NULL;
199 ndq++;
200 tbi = (tbi + 1) % TX_QLEN;
201 } while (sc->txq[tbi].m == m);
202
203 ifp->if_opackets++;
204 sc->TXStsQ_cur++;
205 if (sc->TXStsQ_cur >= sc->TXStsQ + TX_QLEN) {
206 sc->TXStsQ_cur = sc->TXStsQ;
207 }
208 } while (sc->TXStsQ_cur != cur);
209
210 sc->TXDQ_avail += ndq;
211 if (ifp->if_flags & IFF_OACTIVE) {
212 ifp->if_flags &= ~IFF_OACTIVE;
213 /* Disable end-of-tx-chain interrupt */
214 EPE_WRITE(IntEn, IntEn_REOFIE);
215 }
216 return ndq;
217 }
218
219 static int
220 epe_intr(void *arg)
221 {
222 struct epe_softc *sc = (struct epe_softc *)arg;
223 struct ifnet * ifp = &sc->sc_ec.ec_if;
224 u_int32_t ndq = 0, irq, *cur;
225
226 irq = EPE_READ(IntStsC);
227 begin:
228 cur = (u_int32_t *)(EPE_READ(RXStsQCurAdd) -
229 sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
230 CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(u_int32_t),
231 RX_QLEN * 4 * sizeof(u_int32_t),
232 BUS_DMASYNC_PREREAD);
233 while (sc->RXStsQ_cur != cur) {
234 if ((sc->RXStsQ_cur[0] & (RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) ==
235 (RXStsQ_RWE|RXStsQ_RFP|RXStsQ_EOB)) {
236 u_int32_t bi = (sc->RXStsQ_cur[1] >> 16) & 0x7fff;
237 u_int32_t fl = sc->RXStsQ_cur[1] & 0xffff;
238 struct mbuf *m;
239
240 MGETHDR(m, M_DONTWAIT, MT_DATA);
241 if (m != NULL) MCLGET(m, M_DONTWAIT);
242 if (m != NULL && (m->m_flags & M_EXT)) {
243 bus_dmamap_unload(sc->sc_dmat,
244 sc->rxq[bi].m_dmamap);
245 sc->rxq[bi].m->m_pkthdr.rcvif = ifp;
246 sc->rxq[bi].m->m_pkthdr.len =
247 sc->rxq[bi].m->m_len = fl;
248 #if NBPFILTER > 0
249 if (ifp->if_bpf)
250 bpf_mtap(ifp->if_bpf, sc->rxq[bi].m);
251 #endif /* NBPFILTER > 0 */
252 (*ifp->if_input)(ifp, sc->rxq[bi].m);
253 sc->rxq[bi].m = m;
254 bus_dmamap_load(sc->sc_dmat,
255 sc->rxq[bi].m_dmamap,
256 m->m_ext.ext_buf, MCLBYTES,
257 NULL, BUS_DMA_NOWAIT);
258 sc->RXDQ[bi * 2] =
259 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr;
260 } else {
261 /* Drop packets until we can get replacement
262 * empty mbufs for the RXDQ.
263 */
264 if (m != NULL) {
265 m_freem(m);
266 }
267 ifp->if_ierrors++;
268 }
269 } else {
270 ifp->if_ierrors++;
271 }
272
273 ndq++;
274
275 sc->RXStsQ_cur += 2;
276 if (sc->RXStsQ_cur >= sc->RXStsQ + (RX_QLEN * 2)) {
277 sc->RXStsQ_cur = sc->RXStsQ;
278 }
279 }
280
281 if (ndq > 0) {
282 ifp->if_ipackets += ndq;
283 CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(u_int32_t),
284 RX_QLEN * 4 * sizeof(u_int32_t),
285 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
286 EPE_WRITE(RXStsEnq, ndq);
287 EPE_WRITE(RXDEnq, ndq);
288 ndq = 0;
289 }
290
291 if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
292 epe_ifstart(ifp);
293 }
294
295 irq = EPE_READ(IntStsC);
296 if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
297 goto begin;
298
299 return (1);
300 }
301
302
303 static void
304 epe_init(struct epe_softc *sc)
305 {
306 bus_dma_segment_t segs;
307 char *addr;
308 int rsegs, err, i;
309 struct ifnet * ifp = &sc->sc_ec.ec_if;
310 int mdcdiv = DEFAULT_MDCDIV;
311
312 callout_init(&sc->epe_tick_ch, 0);
313
314 /* Select primary Individual Address in Address Filter Pointer */
315 EPE_WRITE(AFP, 0);
316 /* Read ethernet MAC, should already be set by bootrom */
317 bus_space_read_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
318 sc->sc_enaddr, ETHER_ADDR_LEN);
319 printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
320 ether_sprintf(sc->sc_enaddr));
321
322 /* Soft Reset the MAC */
323 EPE_WRITE(SelfCtl, SelfCtl_RESET);
324 while(EPE_READ(SelfCtl) & SelfCtl_RESET);
325
326 /* suggested magic initialization values from datasheet */
327 EPE_WRITE(RXBufThrshld, 0x800040);
328 EPE_WRITE(TXBufThrshld, 0x200010);
329 EPE_WRITE(RXStsThrshld, 0x40002);
330 EPE_WRITE(TXStsThrshld, 0x40002);
331 EPE_WRITE(RXDThrshld, 0x40002);
332 EPE_WRITE(TXDThrshld, 0x40002);
333
334 /* Allocate a page of memory for descriptor and status queues */
335 err = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, 0, PAGE_SIZE,
336 &segs, 1, &rsegs, BUS_DMA_WAITOK);
337 if (err == 0) {
338 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, PAGE_SIZE,
339 &sc->ctrlpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
340 }
341 if (err == 0) {
342 err = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
343 0, BUS_DMA_WAITOK, &sc->ctrlpage_dmamap);
344 }
345 if (err == 0) {
346 err = bus_dmamap_load(sc->sc_dmat, sc->ctrlpage_dmamap,
347 sc->ctrlpage, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
348 }
349 if (err != 0) {
350 panic("%s: Cannot get DMA memory", sc->sc_dev.dv_xname);
351 }
352 sc->ctrlpage_dsaddr = sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
353 bzero(sc->ctrlpage, PAGE_SIZE);
354
355 /* Set up pointers to start of each queue in kernel addr space.
356 * Each descriptor queue or status queue entry uses 2 words
357 */
358 sc->TXDQ = (u_int32_t *)sc->ctrlpage;
359 sc->TXDQ_cur = sc->TXDQ;
360 sc->TXDQ_avail = TX_QLEN - 1;
361 sc->TXStsQ = &sc->TXDQ[TX_QLEN * 2];
362 sc->TXStsQ_cur = sc->TXStsQ;
363 sc->RXDQ = &sc->TXStsQ[TX_QLEN];
364 sc->RXStsQ = &sc->RXDQ[RX_QLEN * 2];
365 sc->RXStsQ_cur = sc->RXStsQ;
366
367 /* Program each queue's start addr, cur addr, and len registers
368 * with the physical addresses.
369 */
370 addr = (char *)sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
371 EPE_WRITE(TXDQBAdd, (u_int32_t)addr);
372 EPE_WRITE(TXDQCurAdd, (u_int32_t)addr);
373 EPE_WRITE(TXDQBLen, TX_QLEN * 2 * sizeof(u_int32_t));
374
375 addr += (sc->TXStsQ - sc->TXDQ) * sizeof(u_int32_t);
376 EPE_WRITE(TXStsQBAdd, (u_int32_t)addr);
377 EPE_WRITE(TXStsQCurAdd, (u_int32_t)addr);
378 EPE_WRITE(TXStsQBLen, TX_QLEN * sizeof(u_int32_t));
379
380 addr += (sc->RXDQ - sc->TXStsQ) * sizeof(u_int32_t);
381 EPE_WRITE(RXDQBAdd, (u_int32_t)addr);
382 EPE_WRITE(RXDCurAdd, (u_int32_t)addr);
383 EPE_WRITE(RXDQBLen, RX_QLEN * 2 * sizeof(u_int32_t));
384
385 addr += (sc->RXStsQ - sc->RXDQ) * sizeof(u_int32_t);
386 EPE_WRITE(RXStsQBAdd, (u_int32_t)addr);
387 EPE_WRITE(RXStsQCurAdd, (u_int32_t)addr);
388 EPE_WRITE(RXStsQBLen, RX_QLEN * 2 * sizeof(u_int32_t));
389
390 /* Populate the RXDQ with mbufs */
391 for(i = 0; i < RX_QLEN; i++) {
392 struct mbuf *m;
393
394 bus_dmamap_create(sc->sc_dmat, MCLBYTES, TX_QLEN/4, MCLBYTES, 0,
395 BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
396 MGETHDR(m, M_WAIT, MT_DATA);
397 MCLGET(m, M_WAIT);
398 sc->rxq[i].m = m;
399 bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
400 m->m_ext.ext_buf, MCLBYTES, NULL,
401 BUS_DMA_WAITOK);
402
403 sc->RXDQ[i * 2] = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr;
404 sc->RXDQ[i * 2 + 1] = (i << 16) | MCLBYTES;
405 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
406 MCLBYTES, BUS_DMASYNC_PREREAD);
407 }
408
409 for(i = 0; i < TX_QLEN; i++) {
410 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
411 (BUS_DMA_WAITOK|BUS_DMA_ALLOCNOW),
412 &sc->txq[i].m_dmamap);
413 sc->txq[i].m = NULL;
414 sc->TXDQ[i * 2 + 1] = (i << 16);
415 }
416
417 /* Divide HCLK by 32 for MDC clock */
418 if (device_cfdata(&sc->sc_dev)->cf_flags)
419 mdcdiv = device_cfdata(&sc->sc_dev)->cf_flags;
420 EPE_WRITE(SelfCtl, (SelfCtl_MDCDIV(mdcdiv)|SelfCtl_PSPRS));
421
422 sc->sc_mii.mii_ifp = ifp;
423 sc->sc_mii.mii_readreg = epe_mii_readreg;
424 sc->sc_mii.mii_writereg = epe_mii_writereg;
425 sc->sc_mii.mii_statchg = epe_statchg;
426 sc->sc_ec.ec_mii = &sc->sc_mii;
427 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epe_mediachange,
428 ether_mediastatus);
429 mii_attach((struct device *)sc, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
430 MII_OFFSET_ANY, 0);
431 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
432
433 EPE_WRITE(BMCtl, BMCtl_RxEn|BMCtl_TxEn);
434 EPE_WRITE(IntEn, IntEn_REOFIE);
435 /* maximum valid max frame length */
436 EPE_WRITE(MaxFrmLen, (0x7ff << 16)|MHLEN);
437 /* wait for receiver ready */
438 while((EPE_READ(BMSts) & BMSts_RxAct) == 0);
439 /* enqueue the entries in RXStsQ and RXDQ */
440 CTRLPAGE_DMASYNC(0, sc->ctrlpage_dmamap->dm_mapsize,
441 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
442 EPE_WRITE(RXDEnq, RX_QLEN - 1);
443 EPE_WRITE(RXStsEnq, RX_QLEN - 1);
444
445 /*
446 * We can support 802.1Q VLAN-sized frames.
447 */
448 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
449
450 strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
451 ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_NOTRAILERS|IFF_MULTICAST;
452 ifp->if_ioctl = epe_ifioctl;
453 ifp->if_start = epe_ifstart;
454 ifp->if_watchdog = epe_ifwatchdog;
455 ifp->if_init = epe_ifinit;
456 ifp->if_stop = epe_ifstop;
457 ifp->if_timer = 0;
458 ifp->if_softc = sc;
459 IFQ_SET_READY(&ifp->if_snd);
460 if_attach(ifp);
461 ether_ifattach(ifp, (sc)->sc_enaddr);
462 }
463
464 static int
465 epe_mediachange(ifp)
466 struct ifnet *ifp;
467 {
468 if (ifp->if_flags & IFF_UP)
469 epe_ifinit(ifp);
470 return (0);
471 }
472
473 int
474 epe_mii_readreg(self, phy, reg)
475 struct device *self;
476 int phy, reg;
477 {
478 u_int32_t d, v;
479 struct epe_softc *sc;
480
481 sc = (struct epe_softc *)self;
482 d = EPE_READ(SelfCtl);
483 EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
484 EPE_WRITE(MIICmd, (MIICmd_READ | (phy << 5) | reg));
485 while(EPE_READ(MIISts) & MIISts_BUSY);
486 v = EPE_READ(MIIData);
487 EPE_WRITE(SelfCtl, d); /* restore old value */
488 return v;
489 }
490
491 void
492 epe_mii_writereg(self, phy, reg, val)
493 struct device *self;
494 int phy, reg, val;
495 {
496 struct epe_softc *sc;
497 u_int32_t d;
498
499 sc = (struct epe_softc *)self;
500 d = EPE_READ(SelfCtl);
501 EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
502 EPE_WRITE(MIIData, val);
503 EPE_WRITE(MIICmd, (MIICmd_WRITE | (phy << 5) | reg));
504 while(EPE_READ(MIISts) & MIISts_BUSY);
505 EPE_WRITE(SelfCtl, d); /* restore old value */
506 }
507
508
509 void
510 epe_statchg(self)
511 struct device *self;
512 {
513 struct epe_softc *sc = (struct epe_softc *)self;
514 u_int32_t reg;
515
516 /*
517 * We must keep the MAC and the PHY in sync as
518 * to the status of full-duplex!
519 */
520 reg = EPE_READ(TestCtl);
521 if (sc->sc_mii.mii_media_active & IFM_FDX)
522 reg |= TestCtl_MFDX;
523 else
524 reg &= ~TestCtl_MFDX;
525 EPE_WRITE(TestCtl, reg);
526 }
527
528 void
529 epe_tick(arg)
530 void *arg;
531 {
532 struct epe_softc* sc = (struct epe_softc *)arg;
533 struct ifnet * ifp = &sc->sc_ec.ec_if;
534 int s;
535 u_int32_t misses;
536
537 ifp->if_collisions += EPE_READ(TXCollCnt);
538 /* These misses are ok, they will happen if the RAM/CPU can't keep up */
539 misses = EPE_READ(RXMissCnt);
540 if (misses > 0)
541 printf("%s: %d rx misses\n", sc->sc_dev.dv_xname, misses);
542
543 s = splnet();
544 if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
545 epe_ifstart(ifp);
546 }
547 splx(s);
548
549 mii_tick(&sc->sc_mii);
550 callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
551 }
552
553
554 static int
555 epe_ifioctl(ifp, cmd, data)
556 struct ifnet *ifp;
557 u_long cmd;
558 void *data;
559 {
560 int s, error;
561
562 s = splnet();
563 error = ether_ioctl(ifp, cmd, data);
564 if (error == ENETRESET) {
565 if (ifp->if_flags & IFF_RUNNING)
566 epe_setaddr(ifp);
567 error = 0;
568 }
569 splx(s);
570 return error;
571 }
572
573 static void
574 epe_ifstart(ifp)
575 struct ifnet *ifp;
576 {
577 struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
578 struct mbuf *m;
579 bus_dma_segment_t *segs;
580 int s, bi, err, nsegs, ndq;
581
582 s = splnet();
583 start:
584 ndq = 0;
585 if (sc->TXDQ_avail == 0) {
586 if (epe_gctx(sc) == 0) {
587 /* Enable End-Of-TX-Chain interrupt */
588 EPE_WRITE(IntEn, IntEn_REOFIE|IntEn_ECIE);
589 ifp->if_flags |= IFF_OACTIVE;
590 ifp->if_timer = 10;
591 splx(s);
592 return;
593 }
594 }
595
596 bi = sc->TXDQ_cur - sc->TXDQ;
597
598 IFQ_POLL(&ifp->if_snd, m);
599 if (m == NULL) {
600 splx(s);
601 return;
602 }
603 more:
604 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
605 BUS_DMA_NOWAIT)) ||
606 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
607 sc->txq[bi].m_dmamap->dm_nsegs > (sc->TXDQ_avail - ndq)) {
608 /* Copy entire mbuf chain to new and 32-bit aligned storage */
609 struct mbuf *mn;
610
611 if (err == 0)
612 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
613
614 MGETHDR(mn, M_DONTWAIT, MT_DATA);
615 if (mn == NULL) goto stop;
616 if (m->m_pkthdr.len > (MHLEN & (~0x3))) {
617 MCLGET(mn, M_DONTWAIT);
618 if ((mn->m_flags & M_EXT) == 0) {
619 m_freem(mn);
620 goto stop;
621 }
622 }
623 mn->m_data = (void *)(((u_int32_t)mn->m_data + 0x3) & (~0x3));
624 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
625 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
626 IFQ_DEQUEUE(&ifp->if_snd, m);
627 m_freem(m);
628 m = mn;
629 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
630 BUS_DMA_NOWAIT);
631 } else {
632 IFQ_DEQUEUE(&ifp->if_snd, m);
633 }
634
635 #if NBPFILTER > 0
636 if (ifp->if_bpf)
637 bpf_mtap(ifp->if_bpf, m);
638 #endif /* NBPFILTER > 0 */
639
640 nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
641 segs = sc->txq[bi].m_dmamap->dm_segs;
642 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
643 sc->txq[bi].m_dmamap->dm_mapsize,
644 BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
645
646 /* XXX: This driver hasn't been tested w/nsegs > 1 */
647 while (nsegs > 0) {
648 nsegs--;
649 sc->txq[bi].m = m;
650 sc->TXDQ[bi * 2] = segs->ds_addr;
651 if (nsegs == 0)
652 sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16) |
653 (1 << 31);
654 else
655 sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16);
656 segs++;
657 bi = (bi + 1) % TX_QLEN;
658 ndq++;
659 }
660
661
662 /*
663 * Enqueue another. Don't do more than half the available
664 * descriptors before telling the MAC about them
665 */
666 if ((sc->TXDQ_avail - ndq) > 0 && ndq < TX_QLEN / 2) {
667 IFQ_POLL(&ifp->if_snd, m);
668 if (m != NULL) {
669 goto more;
670 }
671 }
672 stop:
673 if (ndq > 0) {
674 sc->TXDQ_avail -= ndq;
675 sc->TXDQ_cur = &sc->TXDQ[bi];
676 CTRLPAGE_DMASYNC(0, TX_QLEN * 2 * sizeof(u_int32_t),
677 BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
678 EPE_WRITE(TXDEnq, ndq);
679 }
680
681 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
682 goto start;
683
684 splx(s);
685 return;
686 }
687
688 static void
689 epe_ifwatchdog(ifp)
690 struct ifnet *ifp;
691 {
692 struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
693
694 if ((ifp->if_flags & IFF_RUNNING) == 0)
695 return;
696 printf("%s: device timeout, BMCtl = 0x%08x, BMSts = 0x%08x\n",
697 sc->sc_dev.dv_xname, EPE_READ(BMCtl), EPE_READ(BMSts));
698 }
699
700 static int
701 epe_ifinit(ifp)
702 struct ifnet *ifp;
703 {
704 struct epe_softc *sc = ifp->if_softc;
705 int rc, s = splnet();
706
707 callout_stop(&sc->epe_tick_ch);
708 EPE_WRITE(RXCtl, RXCtl_IA0|RXCtl_BA|RXCtl_RCRCA|RXCtl_SRxON);
709 EPE_WRITE(TXCtl, TXCtl_STxON);
710 EPE_WRITE(GIIntMsk, GIIntMsk_INT); /* start interrupting */
711
712 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
713 rc = 0;
714 else if (rc != 0)
715 goto out;
716
717 callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
718 ifp->if_flags |= IFF_RUNNING;
719 out:
720 splx(s);
721 return 0;
722 }
723
724 static void
725 epe_ifstop(ifp, disable)
726 struct ifnet *ifp;
727 int disable;
728 {
729 struct epe_softc *sc = ifp->if_softc;
730
731
732 EPE_WRITE(RXCtl, 0);
733 EPE_WRITE(TXCtl, 0);
734 EPE_WRITE(GIIntMsk, 0);
735 callout_stop(&sc->epe_tick_ch);
736
737 /* Down the MII. */
738 mii_down(&sc->sc_mii);
739
740 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
741 ifp->if_timer = 0;
742 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
743 }
744
745 static void
746 epe_setaddr(ifp)
747 struct ifnet *ifp;
748 {
749 struct epe_softc *sc = ifp->if_softc;
750 struct ethercom *ac = &sc->sc_ec;
751 struct ether_multi *enm;
752 struct ether_multistep step;
753 u_int8_t ias[2][ETHER_ADDR_LEN];
754 u_int32_t h, nma = 0, hashes[2] = { 0, 0 };
755 u_int32_t rxctl = EPE_READ(RXCtl);
756
757 /* disable receiver temporarily */
758 EPE_WRITE(RXCtl, rxctl & ~RXCtl_SRxON);
759
760 rxctl &= ~(RXCtl_MA|RXCtl_PA|RXCtl_IA2|RXCtl_IA3);
761
762 if (ifp->if_flags & IFF_PROMISC) {
763 rxctl |= RXCtl_PA;
764 }
765
766 ifp->if_flags &= ~IFF_ALLMULTI;
767
768 ETHER_FIRST_MULTI(step, ac, enm);
769 while (enm != NULL) {
770 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
771 /*
772 * We must listen to a range of multicast addresses.
773 * For now, just accept all multicasts, rather than
774 * trying to set only those filter bits needed to match
775 * the range. (At this time, the only use of address
776 * ranges is for IP multicast routing, for which the
777 * range is big enough to require all bits set.)
778 */
779 rxctl &= ~(RXCtl_IA2|RXCtl_IA3);
780 rxctl |= RXCtl_MA;
781 hashes[0] = 0xffffffffUL;
782 hashes[1] = 0xffffffffUL;
783 ifp->if_flags |= IFF_ALLMULTI;
784 break;
785 }
786
787 if (nma < 2) {
788 /* We can program 2 perfect address filters for mcast */
789 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
790 rxctl |= (1 << (nma + 2));
791 } else {
792 /*
793 * XXX: Datasheet is not very clear here, I'm not sure
794 * if I'm doing this right. --joff
795 */
796 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
797
798 /* Just want the 6 most-significant bits. */
799 h = h >> 26;
800
801 hashes[ h / 32 ] |= (1 << (h % 32));
802 rxctl |= RXCtl_MA;
803 }
804 ETHER_NEXT_MULTI(step, enm);
805 nma++;
806 }
807
808 EPE_WRITE(AFP, 0);
809 bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
810 sc->sc_enaddr, ETHER_ADDR_LEN);
811 if (rxctl & RXCtl_IA2) {
812 EPE_WRITE(AFP, 2);
813 bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
814 ias[0], ETHER_ADDR_LEN);
815 }
816 if (rxctl & RXCtl_IA3) {
817 EPE_WRITE(AFP, 3);
818 bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
819 ias[1], ETHER_ADDR_LEN);
820 }
821 if (hashes[0] != 0 && hashes[1] != 0) {
822 EPE_WRITE(AFP, 7);
823 EPE_WRITE(HashTbl, hashes[0]);
824 EPE_WRITE(HashTbl + 4, hashes[1]);
825 }
826 EPE_WRITE(RXCtl, rxctl);
827 }
828