Home | History | Annotate | Line # | Download | only in ep93xx
epe.c revision 1.43
      1 /*	$NetBSD: epe.c,v 1.43 2019/05/28 07:41:46 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 2004 Jesse Off
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: epe.c,v 1.43 2019/05/28 07:41:46 msaitoh Exp $");
     31 
     32 #include <sys/types.h>
     33 #include <sys/param.h>
     34 #include <sys/systm.h>
     35 #include <sys/ioctl.h>
     36 #include <sys/kernel.h>
     37 #include <sys/proc.h>
     38 #include <sys/malloc.h>
     39 #include <sys/time.h>
     40 #include <sys/device.h>
     41 #include <uvm/uvm_extern.h>
     42 
     43 #include <sys/bus.h>
     44 #include <machine/intr.h>
     45 
     46 #include <arm/cpufunc.h>
     47 
     48 #include <arm/ep93xx/epsocvar.h>
     49 #include <arm/ep93xx/ep93xxvar.h>
     50 
     51 #include <net/if.h>
     52 #include <net/if_dl.h>
     53 #include <net/if_types.h>
     54 #include <net/if_media.h>
     55 #include <net/if_ether.h>
     56 #include <net/bpf.h>
     57 
     58 #include <dev/mii/mii.h>
     59 #include <dev/mii/miivar.h>
     60 
     61 #ifdef INET
     62 #include <netinet/in.h>
     63 #include <netinet/in_systm.h>
     64 #include <netinet/in_var.h>
     65 #include <netinet/ip.h>
     66 #include <netinet/if_inarp.h>
     67 #endif
     68 
     69 #include <arm/ep93xx/ep93xxreg.h>
     70 #include <arm/ep93xx/epereg.h>
     71 #include <arm/ep93xx/epevar.h>
     72 
     73 #define DEFAULT_MDCDIV	32
     74 
     75 #ifndef EPE_FAST
     76 #define EPE_FAST
     77 #endif
     78 
     79 #ifndef EPE_FAST
     80 #define EPE_READ(x) \
     81 	bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
     82 #define EPE_WRITE(x, y) \
     83 	bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
     84 #define CTRLPAGE_DMASYNC(x, y, z) \
     85 	bus_dmamap_sync(sc->sc_dmat, sc->ctrlpage_dmamap, (x), (y), (z))
     86 #else
     87 #define EPE_READ(x) *(volatile uint32_t *) \
     88 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x))
     89 #define EPE_WRITE(x, y) *(volatile uint32_t *) \
     90 	(EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x)) = y
     91 #define CTRLPAGE_DMASYNC(x, y, z)
     92 #endif /* ! EPE_FAST */
     93 
     94 static int	epe_match(device_t , cfdata_t, void *);
     95 static void	epe_attach(device_t, device_t, void *);
     96 static void	epe_init(struct epe_softc *);
     97 static int	epe_intr(void* arg);
     98 static int	epe_gctx(struct epe_softc *);
     99 static int	epe_mediachange(struct ifnet *);
    100 int		epe_mii_readreg (device_t, int, int, uint16_t *);
    101 int		epe_mii_writereg (device_t, int, int, uint16_t);
    102 void		epe_statchg (struct ifnet *);
    103 void		epe_tick (void *);
    104 static int	epe_ifioctl (struct ifnet *, u_long, void *);
    105 static void	epe_ifstart (struct ifnet *);
    106 static void	epe_ifwatchdog (struct ifnet *);
    107 static int	epe_ifinit (struct ifnet *);
    108 static void	epe_ifstop (struct ifnet *, int);
    109 static void	epe_setaddr (struct ifnet *);
    110 
    111 CFATTACH_DECL_NEW(epe, sizeof(struct epe_softc),
    112     epe_match, epe_attach, NULL, NULL);
    113 
    114 static int
    115 epe_match(device_t parent, cfdata_t match, void *aux)
    116 {
    117 	return 2;
    118 }
    119 
    120 static void
    121 epe_attach(device_t parent, device_t self, void *aux)
    122 {
    123 	struct epe_softc		*sc = device_private(self);
    124 	struct epsoc_attach_args	*sa;
    125 	prop_data_t			 enaddr;
    126 
    127 	aprint_normal("\n");
    128 	sa = aux;
    129 	sc->sc_dev = self;
    130 	sc->sc_iot = sa->sa_iot;
    131 	sc->sc_intr = sa->sa_intr;
    132 	sc->sc_dmat = sa->sa_dmat;
    133 
    134 	if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
    135 		0, &sc->sc_ioh))
    136 		panic("%s: Cannot map registers", device_xname(self));
    137 
    138 	/* Fetch the Ethernet address from property if set. */
    139 	enaddr = prop_dictionary_get(device_properties(self), "mac-address");
    140 	if (enaddr != NULL) {
    141 		KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
    142 		KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
    143 		memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
    144 		       ETHER_ADDR_LEN);
    145 		bus_space_write_4(sc->sc_iot, sc->sc_ioh, EPE_AFP, 0);
    146 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
    147 					 sc->sc_enaddr, ETHER_ADDR_LEN);
    148 	}
    149 
    150 	ep93xx_intr_establish(sc->sc_intr, IPL_NET, epe_intr, sc);
    151 	epe_init(sc);
    152 }
    153 
    154 static int
    155 epe_gctx(struct epe_softc *sc)
    156 {
    157 	struct ifnet * ifp = &sc->sc_ec.ec_if;
    158 	uint32_t *cur, ndq = 0;
    159 
    160 	/* Handle transmit completions */
    161 	cur = (uint32_t *)(EPE_READ(TXStsQCurAdd) -
    162 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
    163 
    164 	if (sc->TXStsQ_cur != cur) {
    165 		CTRLPAGE_DMASYNC(TX_QLEN * 2 * sizeof(uint32_t),
    166 			TX_QLEN * sizeof(uint32_t), BUS_DMASYNC_PREREAD);
    167 	} else
    168 		return 0;
    169 
    170 	do {
    171 		uint32_t tbi = *sc->TXStsQ_cur & 0x7fff;
    172 		struct mbuf *m = sc->txq[tbi].m;
    173 
    174 		if ((*sc->TXStsQ_cur & TXStsQ_TxWE) == 0)
    175 			ifp->if_oerrors++;
    176 
    177 		bus_dmamap_unload(sc->sc_dmat, sc->txq[tbi].m_dmamap);
    178 		m_freem(m);
    179 		do {
    180 			sc->txq[tbi].m = NULL;
    181 			ndq++;
    182 			tbi = (tbi + 1) % TX_QLEN;
    183 		} while (sc->txq[tbi].m == m);
    184 
    185 		ifp->if_opackets++;
    186 		sc->TXStsQ_cur++;
    187 		if (sc->TXStsQ_cur >= sc->TXStsQ + TX_QLEN) {
    188 			sc->TXStsQ_cur = sc->TXStsQ;
    189 		}
    190 	} while (sc->TXStsQ_cur != cur);
    191 
    192 	sc->TXDQ_avail += ndq;
    193 	if (ifp->if_flags & IFF_OACTIVE) {
    194 		ifp->if_flags &= ~IFF_OACTIVE;
    195 		/* Disable end-of-tx-chain interrupt */
    196 		EPE_WRITE(IntEn, IntEn_REOFIE);
    197 	}
    198 	return ndq;
    199 }
    200 
    201 static int
    202 epe_intr(void *arg)
    203 {
    204 	struct epe_softc *sc = (struct epe_softc *)arg;
    205 	struct ifnet * ifp = &sc->sc_ec.ec_if;
    206 	uint32_t ndq = 0, irq, *cur;
    207 
    208 	irq = EPE_READ(IntStsC);
    209 begin:
    210 	cur = (uint32_t *)(EPE_READ(RXStsQCurAdd) -
    211 		sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
    212 	CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
    213 		RX_QLEN * 4 * sizeof(uint32_t),
    214 		BUS_DMASYNC_PREREAD);
    215 	while (sc->RXStsQ_cur != cur) {
    216 		if ((sc->RXStsQ_cur[0] & (RXStsQ_RWE | RXStsQ_RFP |RXStsQ_EOB))
    217 		    == (RXStsQ_RWE | RXStsQ_RFP | RXStsQ_EOB)) {
    218 			uint32_t bi = (sc->RXStsQ_cur[1] >> 16) & 0x7fff;
    219 			uint32_t fl = sc->RXStsQ_cur[1] & 0xffff;
    220 			struct mbuf *m;
    221 
    222 			MGETHDR(m, M_DONTWAIT, MT_DATA);
    223 			if (m != NULL) MCLGET(m, M_DONTWAIT);
    224 			if (m != NULL && (m->m_flags & M_EXT)) {
    225 				bus_dmamap_unload(sc->sc_dmat,
    226 					sc->rxq[bi].m_dmamap);
    227 				m_set_rcvif(sc->rxq[bi].m, ifp);
    228 				sc->rxq[bi].m->m_pkthdr.len =
    229 					sc->rxq[bi].m->m_len = fl;
    230 				if_percpuq_enqueue(ifp->if_percpuq,
    231 				    sc->rxq[bi].m);
    232 				sc->rxq[bi].m = m;
    233 				bus_dmamap_load(sc->sc_dmat,
    234 					sc->rxq[bi].m_dmamap,
    235 					m->m_ext.ext_buf, MCLBYTES,
    236 					NULL, BUS_DMA_NOWAIT);
    237 				sc->RXDQ[bi * 2] =
    238 					sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr;
    239 			} else {
    240 				/* Drop packets until we can get replacement
    241 				 * empty mbufs for the RXDQ.
    242 				 */
    243 				if (m != NULL)
    244 					m_freem(m);
    245 
    246 				ifp->if_ierrors++;
    247 			}
    248 		} else
    249 			ifp->if_ierrors++;
    250 
    251 		ndq++;
    252 
    253 		sc->RXStsQ_cur += 2;
    254 		if (sc->RXStsQ_cur >= sc->RXStsQ + (RX_QLEN * 2))
    255 			sc->RXStsQ_cur = sc->RXStsQ;
    256 	}
    257 
    258 	if (ndq > 0) {
    259 		ifp->if_ipackets += ndq;
    260 		CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
    261 			RX_QLEN * 4 * sizeof(uint32_t),
    262 			BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    263 		EPE_WRITE(RXStsEnq, ndq);
    264 		EPE_WRITE(RXDEnq, ndq);
    265 		ndq = 0;
    266 	}
    267 
    268 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
    269 		if_schedule_deferred_start(ifp);
    270 	}
    271 
    272 	irq = EPE_READ(IntStsC);
    273 	if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
    274 		goto begin;
    275 
    276 	return 1;
    277 }
    278 
    279 
    280 static void
    281 epe_init(struct epe_softc *sc)
    282 {
    283 	bus_dma_segment_t segs;
    284 	char *addr;
    285 	int rsegs, err, i;
    286 	struct ifnet * ifp = &sc->sc_ec.ec_if;
    287 	int mdcdiv = DEFAULT_MDCDIV;
    288 
    289 	callout_init(&sc->epe_tick_ch, 0);
    290 
    291 	/* Select primary Individual Address in Address Filter Pointer */
    292 	EPE_WRITE(AFP, 0);
    293 	/* Read ethernet MAC, should already be set by bootrom */
    294 	bus_space_read_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
    295 		sc->sc_enaddr, ETHER_ADDR_LEN);
    296 	aprint_normal_dev(sc->sc_dev, "MAC address %s\n",
    297 		ether_sprintf(sc->sc_enaddr));
    298 
    299 	/* Soft Reset the MAC */
    300 	EPE_WRITE(SelfCtl, SelfCtl_RESET);
    301 	while (EPE_READ(SelfCtl) & SelfCtl_RESET)
    302 		;
    303 
    304 	/* suggested magic initialization values from datasheet */
    305 	EPE_WRITE(RXBufThrshld, 0x800040);
    306 	EPE_WRITE(TXBufThrshld, 0x200010);
    307 	EPE_WRITE(RXStsThrshld, 0x40002);
    308 	EPE_WRITE(TXStsThrshld, 0x40002);
    309 	EPE_WRITE(RXDThrshld, 0x40002);
    310 	EPE_WRITE(TXDThrshld, 0x40002);
    311 
    312 	/* Allocate a page of memory for descriptor and status queues */
    313 	err = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, 0, PAGE_SIZE,
    314 		&segs, 1, &rsegs, BUS_DMA_WAITOK);
    315 	if (err == 0) {
    316 		err = bus_dmamem_map(sc->sc_dmat, &segs, 1, PAGE_SIZE,
    317 			&sc->ctrlpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
    318 	}
    319 	if (err == 0) {
    320 		err = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
    321 			0, BUS_DMA_WAITOK, &sc->ctrlpage_dmamap);
    322 	}
    323 	if (err == 0) {
    324 		err = bus_dmamap_load(sc->sc_dmat, sc->ctrlpage_dmamap,
    325 			sc->ctrlpage, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
    326 	}
    327 	if (err != 0) {
    328 		panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
    329 	}
    330 	sc->ctrlpage_dsaddr = sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
    331 	memset(sc->ctrlpage, 0, PAGE_SIZE);
    332 
    333 	/* Set up pointers to start of each queue in kernel addr space.
    334 	 * Each descriptor queue or status queue entry uses 2 words
    335 	 */
    336 	sc->TXDQ = (uint32_t *)sc->ctrlpage;
    337 	sc->TXDQ_cur = sc->TXDQ;
    338 	sc->TXDQ_avail = TX_QLEN - 1;
    339 	sc->TXStsQ = &sc->TXDQ[TX_QLEN * 2];
    340 	sc->TXStsQ_cur = sc->TXStsQ;
    341 	sc->RXDQ = &sc->TXStsQ[TX_QLEN];
    342 	sc->RXStsQ = &sc->RXDQ[RX_QLEN * 2];
    343 	sc->RXStsQ_cur = sc->RXStsQ;
    344 
    345 	/* Program each queue's start addr, cur addr, and len registers
    346 	 * with the physical addresses.
    347 	 */
    348 	addr = (char *)sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
    349 	EPE_WRITE(TXDQBAdd, (uint32_t)addr);
    350 	EPE_WRITE(TXDQCurAdd, (uint32_t)addr);
    351 	EPE_WRITE(TXDQBLen, TX_QLEN * 2 * sizeof(uint32_t));
    352 
    353 	addr += (sc->TXStsQ - sc->TXDQ) * sizeof(uint32_t);
    354 	EPE_WRITE(TXStsQBAdd, (uint32_t)addr);
    355 	EPE_WRITE(TXStsQCurAdd, (uint32_t)addr);
    356 	EPE_WRITE(TXStsQBLen, TX_QLEN * sizeof(uint32_t));
    357 
    358 	addr += (sc->RXDQ - sc->TXStsQ) * sizeof(uint32_t);
    359 	EPE_WRITE(RXDQBAdd, (uint32_t)addr);
    360 	EPE_WRITE(RXDCurAdd, (uint32_t)addr);
    361 	EPE_WRITE(RXDQBLen, RX_QLEN * 2 * sizeof(uint32_t));
    362 
    363 	addr += (sc->RXStsQ - sc->RXDQ) * sizeof(uint32_t);
    364 	EPE_WRITE(RXStsQBAdd, (uint32_t)addr);
    365 	EPE_WRITE(RXStsQCurAdd, (uint32_t)addr);
    366 	EPE_WRITE(RXStsQBLen, RX_QLEN * 2 * sizeof(uint32_t));
    367 
    368 	/* Populate the RXDQ with mbufs */
    369 	for (i = 0; i < RX_QLEN; i++) {
    370 		struct mbuf *m;
    371 
    372 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, TX_QLEN/4, MCLBYTES,
    373 		    0, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
    374 		MGETHDR(m, M_WAIT, MT_DATA);
    375 		MCLGET(m, M_WAIT);
    376 		sc->rxq[i].m = m;
    377 		bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
    378 			m->m_ext.ext_buf, MCLBYTES, NULL, BUS_DMA_WAITOK);
    379 
    380 		sc->RXDQ[i * 2] = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr;
    381 		sc->RXDQ[i * 2 + 1] = (i << 16) | MCLBYTES;
    382 		bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
    383 			MCLBYTES, BUS_DMASYNC_PREREAD);
    384 	}
    385 
    386 	for (i = 0; i < TX_QLEN; i++) {
    387 		bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
    388 			(BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
    389 			&sc->txq[i].m_dmamap);
    390 		sc->txq[i].m = NULL;
    391 		sc->TXDQ[i * 2 + 1] = (i << 16);
    392 	}
    393 
    394 	/* Divide HCLK by 32 for MDC clock */
    395 	if (device_cfdata(sc->sc_dev)->cf_flags)
    396 		mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
    397 	EPE_WRITE(SelfCtl, (SelfCtl_MDCDIV(mdcdiv) | SelfCtl_PSPRS));
    398 
    399 	sc->sc_mii.mii_ifp = ifp;
    400 	sc->sc_mii.mii_readreg = epe_mii_readreg;
    401 	sc->sc_mii.mii_writereg = epe_mii_writereg;
    402 	sc->sc_mii.mii_statchg = epe_statchg;
    403 	sc->sc_ec.ec_mii = &sc->sc_mii;
    404 	ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, epe_mediachange,
    405 		ether_mediastatus);
    406 	mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
    407 		MII_OFFSET_ANY, 0);
    408 	ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
    409 
    410 	EPE_WRITE(BMCtl, BMCtl_RxEn | BMCtl_TxEn);
    411 	EPE_WRITE(IntEn, IntEn_REOFIE);
    412 	/* maximum valid max frame length */
    413 	EPE_WRITE(MaxFrmLen, (0x7ff << 16) | MHLEN);
    414 	/* wait for receiver ready */
    415 	while ((EPE_READ(BMSts) & BMSts_RxAct) == 0)
    416 		continue;
    417 	/* enqueue the entries in RXStsQ and RXDQ */
    418 	CTRLPAGE_DMASYNC(0, sc->ctrlpage_dmamap->dm_mapsize,
    419 		BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    420 	EPE_WRITE(RXDEnq, RX_QLEN - 1);
    421 	EPE_WRITE(RXStsEnq, RX_QLEN - 1);
    422 
    423 	/*
    424 	 * We can support 802.1Q VLAN-sized frames.
    425 	 */
    426 	sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
    427 
    428 	strcpy(ifp->if_xname, device_xname(sc->sc_dev));
    429 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    430 	ifp->if_ioctl = epe_ifioctl;
    431 	ifp->if_start = epe_ifstart;
    432 	ifp->if_watchdog = epe_ifwatchdog;
    433 	ifp->if_init = epe_ifinit;
    434 	ifp->if_stop = epe_ifstop;
    435 	ifp->if_timer = 0;
    436 	ifp->if_softc = sc;
    437 	IFQ_SET_READY(&ifp->if_snd);
    438 	if_attach(ifp);
    439 	if_deferred_start_init(ifp, NULL);
    440 	ether_ifattach(ifp, (sc)->sc_enaddr);
    441 }
    442 
    443 static int
    444 epe_mediachange(struct ifnet *ifp)
    445 {
    446 	if (ifp->if_flags & IFF_UP)
    447 		epe_ifinit(ifp);
    448 	return 0;
    449 }
    450 
    451 int
    452 epe_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
    453 {
    454 	uint32_t d;
    455 
    456 	d = EPE_READ(SelfCtl);
    457 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
    458 	EPE_WRITE(MIICmd, (MIICmd_READ | (phy << 5) | reg));
    459 	while (EPE_READ(MIISts) & MIISts_BUSY)
    460 		;
    461 	*val = EPE_READ(MIIData) & 0xffff;
    462 	EPE_WRITE(SelfCtl, d); /* restore old value */
    463 	return 0;
    464 }
    465 
    466 int
    467 epe_mii_writereg(device_t self, int phy, int reg, uint16_t val)
    468 {
    469 	uint32_t d;
    470 
    471 	d = EPE_READ(SelfCtl);
    472 	EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
    473 	EPE_WRITE(MIIData, val);
    474 	EPE_WRITE(MIICmd, (MIICmd_WRITE | (phy << 5) | reg));
    475 	while (EPE_READ(MIISts) & MIISts_BUSY)
    476 		;
    477 	EPE_WRITE(SelfCtl, d); /* restore old value */
    478 
    479 	return 0;
    480 }
    481 
    482 void
    483 epe_statchg(struct ifnet *ifp)
    484 {
    485 	struct epe_softc *sc = ifp->if_softc;
    486 	uint32_t reg;
    487 
    488 	/*
    489 	 * We must keep the MAC and the PHY in sync as
    490 	 * to the status of full-duplex!
    491 	 */
    492 	reg = EPE_READ(TestCtl);
    493 	if (sc->sc_mii.mii_media_active & IFM_FDX)
    494 		reg |= TestCtl_MFDX;
    495 	else
    496 		reg &= ~TestCtl_MFDX;
    497 	EPE_WRITE(TestCtl, reg);
    498 }
    499 
    500 void
    501 epe_tick(void *arg)
    502 {
    503 	struct epe_softc* sc = (struct epe_softc *)arg;
    504 	struct ifnet * ifp = &sc->sc_ec.ec_if;
    505 	int s;
    506 	uint32_t misses;
    507 
    508 	ifp->if_collisions += EPE_READ(TXCollCnt);
    509 	/* These misses are ok, they will happen if the RAM/CPU can't keep up */
    510 	misses = EPE_READ(RXMissCnt);
    511 	if (misses > 0)
    512 		printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
    513 
    514 	s = splnet();
    515 	if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
    516 		epe_ifstart(ifp);
    517 	}
    518 	splx(s);
    519 
    520 	mii_tick(&sc->sc_mii);
    521 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
    522 }
    523 
    524 
    525 static int
    526 epe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
    527 {
    528 	int s, error;
    529 
    530 	s = splnet();
    531 	error = ether_ioctl(ifp, cmd, data);
    532 	if (error == ENETRESET) {
    533 		if (ifp->if_flags & IFF_RUNNING)
    534 			epe_setaddr(ifp);
    535 		error = 0;
    536 	}
    537 	splx(s);
    538 	return error;
    539 }
    540 
    541 static void
    542 epe_ifstart(struct ifnet *ifp)
    543 {
    544 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
    545 	struct mbuf *m;
    546 	bus_dma_segment_t *segs;
    547 	int s, bi, err, nsegs, ndq;
    548 
    549 	s = splnet();
    550 start:
    551 	ndq = 0;
    552 	if (sc->TXDQ_avail == 0) {
    553 		if (epe_gctx(sc) == 0) {
    554 			/* Enable End-Of-TX-Chain interrupt */
    555 			EPE_WRITE(IntEn, IntEn_REOFIE | IntEn_ECIE);
    556 			ifp->if_flags |= IFF_OACTIVE;
    557 			ifp->if_timer = 10;
    558 			splx(s);
    559 			return;
    560 		}
    561 	}
    562 
    563 	bi = sc->TXDQ_cur - sc->TXDQ;
    564 
    565 	IFQ_POLL(&ifp->if_snd, m);
    566 	if (m == NULL) {
    567 		splx(s);
    568 		return;
    569 	}
    570 more:
    571 	if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
    572 		BUS_DMA_NOWAIT)) ||
    573 		sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
    574 		sc->txq[bi].m_dmamap->dm_nsegs > (sc->TXDQ_avail - ndq)) {
    575 		/* Copy entire mbuf chain to new and 32-bit aligned storage */
    576 		struct mbuf *mn;
    577 
    578 		if (err == 0)
    579 			bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
    580 
    581 		MGETHDR(mn, M_DONTWAIT, MT_DATA);
    582 		if (mn == NULL) goto stop;
    583 		if (m->m_pkthdr.len > (MHLEN & (~0x3))) {
    584 			MCLGET(mn, M_DONTWAIT);
    585 			if ((mn->m_flags & M_EXT) == 0) {
    586 				m_freem(mn);
    587 				goto stop;
    588 			}
    589 		}
    590 		mn->m_data = (void *)(((uint32_t)mn->m_data + 0x3) & (~0x3));
    591 		m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
    592 		mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
    593 		IFQ_DEQUEUE(&ifp->if_snd, m);
    594 		m_freem(m);
    595 		m = mn;
    596 		bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
    597 			BUS_DMA_NOWAIT);
    598 	} else {
    599 		IFQ_DEQUEUE(&ifp->if_snd, m);
    600 	}
    601 
    602 	bpf_mtap(ifp, m, BPF_D_OUT);
    603 
    604 	nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
    605 	segs = sc->txq[bi].m_dmamap->dm_segs;
    606 	bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
    607 		sc->txq[bi].m_dmamap->dm_mapsize,
    608 		BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
    609 
    610 	/* XXX: This driver hasn't been tested w/nsegs > 1 */
    611 	while (nsegs > 0) {
    612 		nsegs--;
    613 		sc->txq[bi].m = m;
    614 		sc->TXDQ[bi * 2] = segs->ds_addr;
    615 		if (nsegs == 0)
    616 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16) |
    617 				(1 << 31);
    618 		else
    619 			sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16);
    620 		segs++;
    621 		bi = (bi + 1) % TX_QLEN;
    622 		ndq++;
    623 	}
    624 
    625 
    626 	/*
    627 	 * Enqueue another.  Don't do more than half the available
    628 	 * descriptors before telling the MAC about them
    629 	 */
    630 	if ((sc->TXDQ_avail - ndq) > 0 && ndq < TX_QLEN / 2) {
    631 		IFQ_POLL(&ifp->if_snd, m);
    632 		if (m != NULL)
    633 			goto more;
    634 	}
    635 stop:
    636 	if (ndq > 0) {
    637 		sc->TXDQ_avail -= ndq;
    638 		sc->TXDQ_cur = &sc->TXDQ[bi];
    639 		CTRLPAGE_DMASYNC(0, TX_QLEN * 2 * sizeof(uint32_t),
    640 			BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
    641 		EPE_WRITE(TXDEnq, ndq);
    642 	}
    643 
    644 	if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
    645 		goto start;
    646 
    647 	splx(s);
    648 	return;
    649 }
    650 
    651 static void
    652 epe_ifwatchdog(struct ifnet *ifp)
    653 {
    654 	struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
    655 
    656 	if ((ifp->if_flags & IFF_RUNNING) == 0)
    657 		return;
    658 	printf("%s: device timeout, BMCtl = 0x%08x, BMSts = 0x%08x\n",
    659 		device_xname(sc->sc_dev), EPE_READ(BMCtl), EPE_READ(BMSts));
    660 }
    661 
    662 static int
    663 epe_ifinit(struct ifnet *ifp)
    664 {
    665 	struct epe_softc *sc = ifp->if_softc;
    666 	int rc, s = splnet();
    667 
    668 	callout_stop(&sc->epe_tick_ch);
    669 	EPE_WRITE(RXCtl, RXCtl_IA0 | RXCtl_BA | RXCtl_RCRCA | RXCtl_SRxON);
    670 	EPE_WRITE(TXCtl, TXCtl_STxON);
    671 	EPE_WRITE(GIIntMsk, GIIntMsk_INT); /* start interrupting */
    672 
    673 	if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
    674 		rc = 0;
    675 	else if (rc != 0)
    676 		goto out;
    677 
    678 	callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
    679 	ifp->if_flags |= IFF_RUNNING;
    680 out:
    681 	splx(s);
    682 	return 0;
    683 }
    684 
    685 static void
    686 epe_ifstop(struct ifnet *ifp, int disable)
    687 {
    688 	struct epe_softc *sc = ifp->if_softc;
    689 
    690 
    691 	EPE_WRITE(RXCtl, 0);
    692 	EPE_WRITE(TXCtl, 0);
    693 	EPE_WRITE(GIIntMsk, 0);
    694 	callout_stop(&sc->epe_tick_ch);
    695 
    696 	/* Down the MII. */
    697 	mii_down(&sc->sc_mii);
    698 
    699 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
    700 	ifp->if_timer = 0;
    701 	sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
    702 }
    703 
    704 static void
    705 epe_setaddr(struct ifnet *ifp)
    706 {
    707 	struct epe_softc *sc = ifp->if_softc;
    708 	struct ethercom *ec = &sc->sc_ec;
    709 	struct ether_multi *enm;
    710 	struct ether_multistep step;
    711 	uint8_t ias[2][ETHER_ADDR_LEN];
    712 	uint32_t h, nma = 0, hashes[2] = { 0, 0 };
    713 	uint32_t rxctl = EPE_READ(RXCtl);
    714 
    715 	/* disable receiver temporarily */
    716 	EPE_WRITE(RXCtl, rxctl & ~RXCtl_SRxON);
    717 
    718 	rxctl &= ~(RXCtl_MA | RXCtl_PA | RXCtl_IA2 | RXCtl_IA3);
    719 
    720 	if (ifp->if_flags & IFF_PROMISC)
    721 		rxctl |= RXCtl_PA;
    722 
    723 	ifp->if_flags &= ~IFF_ALLMULTI;
    724 
    725 	ETHER_LOCK(ec);
    726 	ETHER_FIRST_MULTI(step, ec, enm);
    727 	while (enm != NULL) {
    728 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
    729 			/*
    730 			 * We must listen to a range of multicast addresses.
    731 			 * For now, just accept all multicasts, rather than
    732 			 * trying to set only those filter bits needed to match
    733 			 * the range.  (At this time, the only use of address
    734 			 * ranges is for IP multicast routing, for which the
    735 			 * range is big enough to require all bits set.)
    736 			 */
    737 			rxctl &= ~(RXCtl_IA2 | RXCtl_IA3);
    738 			rxctl |= RXCtl_MA;
    739 			hashes[0] = 0xffffffffUL;
    740 			hashes[1] = 0xffffffffUL;
    741 			ifp->if_flags |= IFF_ALLMULTI;
    742 			break;
    743 		}
    744 
    745 		if (nma < 2) {
    746 			/* We can program 2 perfect address filters for mcast */
    747 			memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
    748 			rxctl |= (1 << (nma + 2));
    749 		} else {
    750 			/*
    751 			 * XXX: Datasheet is not very clear here, I'm not sure
    752 			 * if I'm doing this right.  --joff
    753 			 */
    754 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
    755 
    756 			/* Just want the 6 most-significant bits. */
    757 			h = h >> 26;
    758 
    759 			hashes[ h / 32 ] |=  (1 << (h % 32));
    760 			rxctl |= RXCtl_MA;
    761 		}
    762 		ETHER_NEXT_MULTI(step, enm);
    763 		nma++;
    764 	}
    765 	ETHER_UNLOCK(ec);
    766 
    767 	EPE_WRITE(AFP, 0);
    768 	bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
    769 		sc->sc_enaddr, ETHER_ADDR_LEN);
    770 	if (rxctl & RXCtl_IA2) {
    771 		EPE_WRITE(AFP, 2);
    772 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
    773 			ias[0], ETHER_ADDR_LEN);
    774 	}
    775 	if (rxctl & RXCtl_IA3) {
    776 		EPE_WRITE(AFP, 3);
    777 		bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
    778 			ias[1], ETHER_ADDR_LEN);
    779 	}
    780 	if (hashes[0] != 0 && hashes[1] != 0) {
    781 		EPE_WRITE(AFP, 7);
    782 		EPE_WRITE(HashTbl, hashes[0]);
    783 		EPE_WRITE(HashTbl + 4, hashes[1]);
    784 	}
    785 	EPE_WRITE(RXCtl, rxctl);
    786 }
    787