epe.c revision 1.52 1 /* $NetBSD: epe.c,v 1.52 2025/10/04 04:44:19 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 2004 Jesse Off
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 #include <sys/cdefs.h>
30 __KERNEL_RCSID(0, "$NetBSD: epe.c,v 1.52 2025/10/04 04:44:19 thorpej Exp $");
31
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/systm.h>
35 #include <sys/ioctl.h>
36 #include <sys/kernel.h>
37 #include <sys/proc.h>
38 #include <sys/time.h>
39 #include <sys/device.h>
40 #include <uvm/uvm_extern.h>
41
42 #include <sys/bus.h>
43 #include <machine/intr.h>
44
45 #include <arm/cpufunc.h>
46
47 #include <arm/ep93xx/epsocvar.h>
48 #include <arm/ep93xx/ep93xxvar.h>
49
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_types.h>
53 #include <net/if_media.h>
54 #include <net/if_ether.h>
55 #include <net/bpf.h>
56
57 #include <dev/mii/mii.h>
58 #include <dev/mii/miivar.h>
59
60 #ifdef INET
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/in_var.h>
64 #include <netinet/ip.h>
65 #include <netinet/if_inarp.h>
66 #endif
67
68 #include <arm/ep93xx/ep93xxreg.h>
69 #include <arm/ep93xx/epereg.h>
70 #include <arm/ep93xx/epevar.h>
71
72 #define DEFAULT_MDCDIV 32
73
74 #ifndef EPE_FAST
75 #define EPE_FAST
76 #endif
77
78 #ifndef EPE_FAST
79 #define EPE_READ(x) \
80 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x))
81 #define EPE_WRITE(x, y) \
82 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (EPE_ ## x), (y))
83 #define CTRLPAGE_DMASYNC(x, y, z) \
84 bus_dmamap_sync(sc->sc_dmat, sc->ctrlpage_dmamap, (x), (y), (z))
85 #else
86 #define EPE_READ(x) *(volatile uint32_t *) \
87 (EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x))
88 #define EPE_WRITE(x, y) *(volatile uint32_t *) \
89 (EP93XX_AHB_VBASE + EP93XX_AHB_EPE + (EPE_ ## x)) = y
90 #define CTRLPAGE_DMASYNC(x, y, z)
91 #endif /* ! EPE_FAST */
92
93 static int epe_match(device_t , cfdata_t, void *);
94 static void epe_attach(device_t, device_t, void *);
95 static void epe_init(struct epe_softc *);
96 static int epe_intr(void* arg);
97 static int epe_gctx(struct epe_softc *);
98 int epe_mii_readreg (device_t, int, int, uint16_t *);
99 int epe_mii_writereg (device_t, int, int, uint16_t);
100 void epe_statchg (struct ifnet *);
101 void epe_tick (void *);
102 static int epe_ifioctl (struct ifnet *, u_long, void *);
103 static void epe_ifstart (struct ifnet *);
104 static void epe_ifwatchdog (struct ifnet *);
105 static int epe_ifinit (struct ifnet *);
106 static void epe_ifstop (struct ifnet *, int);
107 static void epe_setaddr (struct ifnet *);
108
109 CFATTACH_DECL_NEW(epe, sizeof(struct epe_softc),
110 epe_match, epe_attach, NULL, NULL);
111
112 static int
113 epe_match(device_t parent, cfdata_t match, void *aux)
114 {
115 return 2;
116 }
117
118 static void
119 epe_attach(device_t parent, device_t self, void *aux)
120 {
121 struct epe_softc *sc = device_private(self);
122 struct epsoc_attach_args *sa;
123
124 aprint_normal("\n");
125 sa = aux;
126 sc->sc_dev = self;
127 sc->sc_iot = sa->sa_iot;
128 sc->sc_intr = sa->sa_intr;
129 sc->sc_dmat = sa->sa_dmat;
130
131 if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
132 0, &sc->sc_ioh))
133 panic("%s: Cannot map registers", device_xname(self));
134
135 /* Fetch the Ethernet address from property if set. */
136 if (ether_getaddr(self, sc->sc_enaddr)) {
137 bus_space_write_4(sc->sc_iot, sc->sc_ioh, EPE_AFP, 0);
138 bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
139 sc->sc_enaddr, ETHER_ADDR_LEN);
140 }
141
142 ep93xx_intr_establish(sc->sc_intr, IPL_NET, epe_intr, sc);
143 epe_init(sc);
144 }
145
146 static int
147 epe_gctx(struct epe_softc *sc)
148 {
149 struct ifnet * ifp = &sc->sc_ec.ec_if;
150 uint32_t *cur, ndq = 0;
151
152 /* Handle transmit completions */
153 cur = (uint32_t *)(EPE_READ(TXStsQCurAdd) -
154 sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
155
156 if (sc->TXStsQ_cur != cur) {
157 CTRLPAGE_DMASYNC(TX_QLEN * 2 * sizeof(uint32_t),
158 TX_QLEN * sizeof(uint32_t), BUS_DMASYNC_PREREAD);
159 } else
160 return 0;
161
162 do {
163 uint32_t tbi = *sc->TXStsQ_cur & 0x7fff;
164 struct mbuf *m = sc->txq[tbi].m;
165
166 if ((*sc->TXStsQ_cur & TXStsQ_TxWE) == 0)
167 if_statinc(ifp, if_oerrors);
168
169 bus_dmamap_unload(sc->sc_dmat, sc->txq[tbi].m_dmamap);
170 m_freem(m);
171 do {
172 sc->txq[tbi].m = NULL;
173 ndq++;
174 tbi = (tbi + 1) % TX_QLEN;
175 } while (sc->txq[tbi].m == m);
176
177 if_statinc(ifp, if_opackets);
178 sc->TXStsQ_cur++;
179 if (sc->TXStsQ_cur >= sc->TXStsQ + TX_QLEN) {
180 sc->TXStsQ_cur = sc->TXStsQ;
181 }
182 } while (sc->TXStsQ_cur != cur);
183
184 sc->TXDQ_avail += ndq;
185 if (sc->tx_busy) {
186 sc->tx_busy = false;
187 /* Disable end-of-tx-chain interrupt */
188 EPE_WRITE(IntEn, IntEn_REOFIE);
189 }
190 return ndq;
191 }
192
193 static int
194 epe_intr(void *arg)
195 {
196 struct epe_softc *sc = (struct epe_softc *)arg;
197 struct ifnet * ifp = &sc->sc_ec.ec_if;
198 uint32_t ndq = 0, irq, *cur;
199
200 irq = EPE_READ(IntStsC);
201 begin:
202 cur = (uint32_t *)(EPE_READ(RXStsQCurAdd) -
203 sc->ctrlpage_dsaddr + (char*)sc->ctrlpage);
204 CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
205 RX_QLEN * 4 * sizeof(uint32_t),
206 BUS_DMASYNC_PREREAD);
207 while (sc->RXStsQ_cur != cur) {
208 if ((sc->RXStsQ_cur[0] & (RXStsQ_RWE | RXStsQ_RFP |RXStsQ_EOB))
209 == (RXStsQ_RWE | RXStsQ_RFP | RXStsQ_EOB)) {
210 uint32_t bi = (sc->RXStsQ_cur[1] >> 16) & 0x7fff;
211 uint32_t fl = sc->RXStsQ_cur[1] & 0xffff;
212 struct mbuf *m;
213
214 MGETHDR(m, M_DONTWAIT, MT_DATA);
215 if (m != NULL) MCLGET(m, M_DONTWAIT);
216 if (m != NULL && (m->m_flags & M_EXT)) {
217 bus_dmamap_unload(sc->sc_dmat,
218 sc->rxq[bi].m_dmamap);
219 m_set_rcvif(sc->rxq[bi].m, ifp);
220 sc->rxq[bi].m->m_pkthdr.len =
221 sc->rxq[bi].m->m_len = fl;
222 if_percpuq_enqueue(ifp->if_percpuq,
223 sc->rxq[bi].m);
224 sc->rxq[bi].m = m;
225 bus_dmamap_load(sc->sc_dmat,
226 sc->rxq[bi].m_dmamap,
227 m->m_ext.ext_buf, MCLBYTES,
228 NULL, BUS_DMA_NOWAIT);
229 sc->RXDQ[bi * 2] =
230 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr;
231 } else {
232 /* Drop packets until we can get replacement
233 * empty mbufs for the RXDQ.
234 */
235 m_freem(m);
236
237 if_statinc(ifp, if_ierrors);
238 }
239 } else
240 if_statinc(ifp, if_ierrors);
241
242 ndq++;
243
244 sc->RXStsQ_cur += 2;
245 if (sc->RXStsQ_cur >= sc->RXStsQ + (RX_QLEN * 2))
246 sc->RXStsQ_cur = sc->RXStsQ;
247 }
248
249 if (ndq > 0) {
250 CTRLPAGE_DMASYNC(TX_QLEN * 3 * sizeof(uint32_t),
251 RX_QLEN * 4 * sizeof(uint32_t),
252 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
253 EPE_WRITE(RXStsEnq, ndq);
254 EPE_WRITE(RXDEnq, ndq);
255 ndq = 0;
256 }
257
258 if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
259 if_schedule_deferred_start(ifp);
260 }
261
262 irq = EPE_READ(IntStsC);
263 if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
264 goto begin;
265
266 return 1;
267 }
268
269
270 static void
271 epe_init(struct epe_softc *sc)
272 {
273 bus_dma_segment_t segs;
274 char *addr;
275 int rsegs, err, i;
276 struct ifnet * ifp = &sc->sc_ec.ec_if;
277 struct mii_data *mii = &sc->sc_mii;
278 int mdcdiv = DEFAULT_MDCDIV;
279
280 callout_init(&sc->epe_tick_ch, 0);
281
282 /* Select primary Individual Address in Address Filter Pointer */
283 EPE_WRITE(AFP, 0);
284 /* Read ethernet MAC, should already be set by bootrom */
285 bus_space_read_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
286 sc->sc_enaddr, ETHER_ADDR_LEN);
287 aprint_normal_dev(sc->sc_dev, "MAC address %s\n",
288 ether_sprintf(sc->sc_enaddr));
289
290 /* Soft Reset the MAC */
291 EPE_WRITE(SelfCtl, SelfCtl_RESET);
292 while (EPE_READ(SelfCtl) & SelfCtl_RESET)
293 ;
294
295 /* suggested magic initialization values from datasheet */
296 EPE_WRITE(RXBufThrshld, 0x800040);
297 EPE_WRITE(TXBufThrshld, 0x200010);
298 EPE_WRITE(RXStsThrshld, 0x40002);
299 EPE_WRITE(TXStsThrshld, 0x40002);
300 EPE_WRITE(RXDThrshld, 0x40002);
301 EPE_WRITE(TXDThrshld, 0x40002);
302
303 /* Allocate a page of memory for descriptor and status queues */
304 err = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, 0, PAGE_SIZE,
305 &segs, 1, &rsegs, BUS_DMA_WAITOK);
306 if (err == 0) {
307 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, PAGE_SIZE,
308 &sc->ctrlpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
309 }
310 if (err == 0) {
311 err = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1, PAGE_SIZE,
312 0, BUS_DMA_WAITOK, &sc->ctrlpage_dmamap);
313 }
314 if (err == 0) {
315 err = bus_dmamap_load(sc->sc_dmat, sc->ctrlpage_dmamap,
316 sc->ctrlpage, PAGE_SIZE, NULL, BUS_DMA_WAITOK);
317 }
318 if (err != 0) {
319 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
320 }
321 sc->ctrlpage_dsaddr = sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
322 memset(sc->ctrlpage, 0, PAGE_SIZE);
323
324 /* Set up pointers to start of each queue in kernel addr space.
325 * Each descriptor queue or status queue entry uses 2 words
326 */
327 sc->TXDQ = (uint32_t *)sc->ctrlpage;
328 sc->TXDQ_cur = sc->TXDQ;
329 sc->TXDQ_avail = TX_QLEN - 1;
330 sc->TXStsQ = &sc->TXDQ[TX_QLEN * 2];
331 sc->TXStsQ_cur = sc->TXStsQ;
332 sc->RXDQ = &sc->TXStsQ[TX_QLEN];
333 sc->RXStsQ = &sc->RXDQ[RX_QLEN * 2];
334 sc->RXStsQ_cur = sc->RXStsQ;
335
336 /* Program each queue's start addr, cur addr, and len registers
337 * with the physical addresses.
338 */
339 addr = (char *)sc->ctrlpage_dmamap->dm_segs[0].ds_addr;
340 EPE_WRITE(TXDQBAdd, (uint32_t)addr);
341 EPE_WRITE(TXDQCurAdd, (uint32_t)addr);
342 EPE_WRITE(TXDQBLen, TX_QLEN * 2 * sizeof(uint32_t));
343
344 addr += (sc->TXStsQ - sc->TXDQ) * sizeof(uint32_t);
345 EPE_WRITE(TXStsQBAdd, (uint32_t)addr);
346 EPE_WRITE(TXStsQCurAdd, (uint32_t)addr);
347 EPE_WRITE(TXStsQBLen, TX_QLEN * sizeof(uint32_t));
348
349 addr += (sc->RXDQ - sc->TXStsQ) * sizeof(uint32_t);
350 EPE_WRITE(RXDQBAdd, (uint32_t)addr);
351 EPE_WRITE(RXDCurAdd, (uint32_t)addr);
352 EPE_WRITE(RXDQBLen, RX_QLEN * 2 * sizeof(uint32_t));
353
354 addr += (sc->RXStsQ - sc->RXDQ) * sizeof(uint32_t);
355 EPE_WRITE(RXStsQBAdd, (uint32_t)addr);
356 EPE_WRITE(RXStsQCurAdd, (uint32_t)addr);
357 EPE_WRITE(RXStsQBLen, RX_QLEN * 2 * sizeof(uint32_t));
358
359 /* Populate the RXDQ with mbufs */
360 for (i = 0; i < RX_QLEN; i++) {
361 struct mbuf *m;
362
363 bus_dmamap_create(sc->sc_dmat, MCLBYTES, TX_QLEN/4, MCLBYTES,
364 0, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
365 MGETHDR(m, M_WAIT, MT_DATA);
366 MCLGET(m, M_WAIT);
367 sc->rxq[i].m = m;
368 bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
369 m->m_ext.ext_buf, MCLBYTES, NULL, BUS_DMA_WAITOK);
370
371 sc->RXDQ[i * 2] = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr;
372 sc->RXDQ[i * 2 + 1] = (i << 16) | MCLBYTES;
373 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
374 MCLBYTES, BUS_DMASYNC_PREREAD);
375 }
376
377 for (i = 0; i < TX_QLEN; i++) {
378 bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
379 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
380 &sc->txq[i].m_dmamap);
381 sc->txq[i].m = NULL;
382 sc->TXDQ[i * 2 + 1] = (i << 16);
383 }
384
385 /* Divide HCLK by 32 for MDC clock */
386 if (device_cfdata(sc->sc_dev)->cf_flags)
387 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
388 EPE_WRITE(SelfCtl, (SelfCtl_MDCDIV(mdcdiv) | SelfCtl_PSPRS));
389
390 mii->mii_ifp = ifp;
391 mii->mii_readreg = epe_mii_readreg;
392 mii->mii_writereg = epe_mii_writereg;
393 mii->mii_statchg = epe_statchg;
394 sc->sc_ec.ec_mii = mii;
395 ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
396 ether_mediastatus);
397 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY,
398 MII_OFFSET_ANY, 0);
399 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
400
401 EPE_WRITE(BMCtl, BMCtl_RxEn | BMCtl_TxEn);
402 EPE_WRITE(IntEn, IntEn_REOFIE);
403 /* maximum valid max frame length */
404 EPE_WRITE(MaxFrmLen, (0x7ff << 16) | MHLEN);
405 /* wait for receiver ready */
406 while ((EPE_READ(BMSts) & BMSts_RxAct) == 0)
407 continue;
408 /* enqueue the entries in RXStsQ and RXDQ */
409 CTRLPAGE_DMASYNC(0, sc->ctrlpage_dmamap->dm_mapsize,
410 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
411 EPE_WRITE(RXDEnq, RX_QLEN - 1);
412 EPE_WRITE(RXStsEnq, RX_QLEN - 1);
413
414 /*
415 * We can support 802.1Q VLAN-sized frames.
416 */
417 sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
418
419 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
420 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
421 ifp->if_ioctl = epe_ifioctl;
422 ifp->if_start = epe_ifstart;
423 ifp->if_watchdog = epe_ifwatchdog;
424 ifp->if_init = epe_ifinit;
425 ifp->if_stop = epe_ifstop;
426 ifp->if_timer = 0;
427 ifp->if_softc = sc;
428 IFQ_SET_READY(&ifp->if_snd);
429 if_attach(ifp);
430 if_deferred_start_init(ifp, NULL);
431 ether_ifattach(ifp, (sc)->sc_enaddr);
432 }
433
434 int
435 epe_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
436 {
437 uint32_t d;
438
439 d = EPE_READ(SelfCtl);
440 EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
441 EPE_WRITE(MIICmd, (MIICmd_READ | (phy << 5) | reg));
442 while (EPE_READ(MIISts) & MIISts_BUSY)
443 ;
444 *val = EPE_READ(MIIData) & 0xffff;
445 EPE_WRITE(SelfCtl, d); /* restore old value */
446 return 0;
447 }
448
449 int
450 epe_mii_writereg(device_t self, int phy, int reg, uint16_t val)
451 {
452 uint32_t d;
453
454 d = EPE_READ(SelfCtl);
455 EPE_WRITE(SelfCtl, d & ~SelfCtl_PSPRS); /* no preamble suppress */
456 EPE_WRITE(MIIData, val);
457 EPE_WRITE(MIICmd, (MIICmd_WRITE | (phy << 5) | reg));
458 while (EPE_READ(MIISts) & MIISts_BUSY)
459 ;
460 EPE_WRITE(SelfCtl, d); /* restore old value */
461
462 return 0;
463 }
464
465 void
466 epe_statchg(struct ifnet *ifp)
467 {
468 struct epe_softc *sc = ifp->if_softc;
469 uint32_t reg;
470
471 /*
472 * We must keep the MAC and the PHY in sync as
473 * to the status of full-duplex!
474 */
475 reg = EPE_READ(TestCtl);
476 if (sc->sc_mii.mii_media_active & IFM_FDX)
477 reg |= TestCtl_MFDX;
478 else
479 reg &= ~TestCtl_MFDX;
480 EPE_WRITE(TestCtl, reg);
481 }
482
483 void
484 epe_tick(void *arg)
485 {
486 struct epe_softc* sc = (struct epe_softc *)arg;
487 struct ifnet * ifp = &sc->sc_ec.ec_if;
488 int s;
489 uint32_t misses;
490
491 if_statadd(ifp, if_collisions, EPE_READ(TXCollCnt));
492 /* These misses are ok, they will happen if the RAM/CPU can't keep up */
493 misses = EPE_READ(RXMissCnt);
494 if (misses > 0)
495 printf("%s: %d rx misses\n", device_xname(sc->sc_dev), misses);
496
497 s = splnet();
498 if (epe_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0) {
499 epe_ifstart(ifp);
500 }
501 splx(s);
502
503 mii_tick(&sc->sc_mii);
504 callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
505 }
506
507
508 static int
509 epe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
510 {
511 int s, error;
512
513 s = splnet();
514 error = ether_ioctl(ifp, cmd, data);
515 if (error == ENETRESET) {
516 if (ifp->if_flags & IFF_RUNNING)
517 epe_setaddr(ifp);
518 error = 0;
519 }
520 splx(s);
521 return error;
522 }
523
524 static void
525 epe_ifstart(struct ifnet *ifp)
526 {
527 struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
528 struct mbuf *m;
529 bus_dma_segment_t *segs;
530 int s, bi, err, nsegs, ndq;
531
532 s = splnet();
533 start:
534 ndq = 0;
535 if (sc->TXDQ_avail == 0) {
536 if (epe_gctx(sc) == 0) {
537 /* Enable End-Of-TX-Chain interrupt */
538 EPE_WRITE(IntEn, IntEn_REOFIE | IntEn_ECIE);
539 sc->tx_busy = true;
540 ifp->if_timer = 10;
541 splx(s);
542 return;
543 }
544 }
545
546 bi = sc->TXDQ_cur - sc->TXDQ;
547
548 IFQ_POLL(&ifp->if_snd, m);
549 if (m == NULL) {
550 splx(s);
551 return;
552 }
553 more:
554 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
555 BUS_DMA_NOWAIT)) ||
556 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
557 sc->txq[bi].m_dmamap->dm_nsegs > (sc->TXDQ_avail - ndq)) {
558 /* Copy entire mbuf chain to new and 32-bit aligned storage */
559 struct mbuf *mn;
560
561 if (err == 0)
562 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
563
564 MGETHDR(mn, M_DONTWAIT, MT_DATA);
565 if (mn == NULL) goto stop;
566 if (m->m_pkthdr.len > (MHLEN & (~0x3))) {
567 MCLGET(mn, M_DONTWAIT);
568 if ((mn->m_flags & M_EXT) == 0) {
569 m_freem(mn);
570 goto stop;
571 }
572 }
573 mn->m_data = (void *)(((uint32_t)mn->m_data + 0x3) & (~0x3));
574 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
575 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
576 IFQ_DEQUEUE(&ifp->if_snd, m);
577 m_freem(m);
578 m = mn;
579 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
580 BUS_DMA_NOWAIT);
581 } else {
582 IFQ_DEQUEUE(&ifp->if_snd, m);
583 }
584
585 bpf_mtap(ifp, m, BPF_D_OUT);
586
587 nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
588 segs = sc->txq[bi].m_dmamap->dm_segs;
589 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
590 sc->txq[bi].m_dmamap->dm_mapsize,
591 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
592
593 /* XXX: This driver hasn't been tested w/nsegs > 1 */
594 while (nsegs > 0) {
595 nsegs--;
596 sc->txq[bi].m = m;
597 sc->TXDQ[bi * 2] = segs->ds_addr;
598 if (nsegs == 0)
599 sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16) |
600 (1 << 31);
601 else
602 sc->TXDQ[bi * 2 + 1] = segs->ds_len | (bi << 16);
603 segs++;
604 bi = (bi + 1) % TX_QLEN;
605 ndq++;
606 }
607
608
609 /*
610 * Enqueue another. Don't do more than half the available
611 * descriptors before telling the MAC about them
612 */
613 if ((sc->TXDQ_avail - ndq) > 0 && ndq < TX_QLEN / 2) {
614 IFQ_POLL(&ifp->if_snd, m);
615 if (m != NULL)
616 goto more;
617 }
618 stop:
619 if (ndq > 0) {
620 sc->TXDQ_avail -= ndq;
621 sc->TXDQ_cur = &sc->TXDQ[bi];
622 CTRLPAGE_DMASYNC(0, TX_QLEN * 2 * sizeof(uint32_t),
623 BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
624 EPE_WRITE(TXDEnq, ndq);
625 }
626
627 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
628 goto start;
629
630 splx(s);
631 return;
632 }
633
634 static void
635 epe_ifwatchdog(struct ifnet *ifp)
636 {
637 struct epe_softc *sc = (struct epe_softc *)ifp->if_softc;
638
639 if ((ifp->if_flags & IFF_RUNNING) == 0)
640 return;
641 printf("%s: device timeout, BMCtl = 0x%08x, BMSts = 0x%08x\n",
642 device_xname(sc->sc_dev), EPE_READ(BMCtl), EPE_READ(BMSts));
643 }
644
645 static int
646 epe_ifinit(struct ifnet *ifp)
647 {
648 struct epe_softc *sc = ifp->if_softc;
649 int rc, s = splnet();
650
651 callout_stop(&sc->epe_tick_ch);
652 EPE_WRITE(RXCtl, RXCtl_IA0 | RXCtl_BA | RXCtl_RCRCA | RXCtl_SRxON);
653 EPE_WRITE(TXCtl, TXCtl_STxON);
654 EPE_WRITE(GIIntMsk, GIIntMsk_INT); /* start interrupting */
655
656 if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
657 rc = 0;
658 else if (rc != 0)
659 goto out;
660
661 callout_reset(&sc->epe_tick_ch, hz, epe_tick, sc);
662 ifp->if_flags |= IFF_RUNNING;
663 out:
664 splx(s);
665 return 0;
666 }
667
668 static void
669 epe_ifstop(struct ifnet *ifp, int disable)
670 {
671 struct epe_softc *sc = ifp->if_softc;
672
673
674 EPE_WRITE(RXCtl, 0);
675 EPE_WRITE(TXCtl, 0);
676 EPE_WRITE(GIIntMsk, 0);
677 callout_stop(&sc->epe_tick_ch);
678
679 /* Down the MII. */
680 mii_down(&sc->sc_mii);
681
682 ifp->if_flags &= ~IFF_RUNNING;
683 ifp->if_timer = 0;
684 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
685 }
686
687 static void
688 epe_setaddr(struct ifnet *ifp)
689 {
690 struct epe_softc *sc = ifp->if_softc;
691 struct ethercom *ec = &sc->sc_ec;
692 struct ether_multi *enm;
693 struct ether_multistep step;
694 uint8_t ias[2][ETHER_ADDR_LEN];
695 uint32_t h, nma = 0, hashes[2] = { 0, 0 };
696 uint32_t rxctl = EPE_READ(RXCtl);
697
698 /* disable receiver temporarily */
699 EPE_WRITE(RXCtl, rxctl & ~RXCtl_SRxON);
700
701 rxctl &= ~(RXCtl_MA | RXCtl_PA | RXCtl_IA2 | RXCtl_IA3);
702
703 if (ifp->if_flags & IFF_PROMISC)
704 rxctl |= RXCtl_PA;
705
706 ifp->if_flags &= ~IFF_ALLMULTI;
707
708 ETHER_LOCK(ec);
709 ETHER_FIRST_MULTI(step, ec, enm);
710 while (enm != NULL) {
711 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
712 /*
713 * We must listen to a range of multicast addresses.
714 * For now, just accept all multicasts, rather than
715 * trying to set only those filter bits needed to match
716 * the range. (At this time, the only use of address
717 * ranges is for IP multicast routing, for which the
718 * range is big enough to require all bits set.)
719 */
720 rxctl &= ~(RXCtl_IA2 | RXCtl_IA3);
721 rxctl |= RXCtl_MA;
722 hashes[0] = 0xffffffffUL;
723 hashes[1] = 0xffffffffUL;
724 ifp->if_flags |= IFF_ALLMULTI;
725 break;
726 }
727
728 if (nma < 2) {
729 /* We can program 2 perfect address filters for mcast */
730 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
731 rxctl |= (1 << (nma + 2));
732 } else {
733 /*
734 * XXX: Datasheet is not very clear here, I'm not sure
735 * if I'm doing this right. --joff
736 */
737 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
738
739 /* Just want the 6 most-significant bits. */
740 h = h >> 26;
741
742 hashes[ h / 32 ] |= (1 << (h % 32));
743 rxctl |= RXCtl_MA;
744 }
745 ETHER_NEXT_MULTI(step, enm);
746 nma++;
747 }
748 ETHER_UNLOCK(ec);
749
750 EPE_WRITE(AFP, 0);
751 bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
752 sc->sc_enaddr, ETHER_ADDR_LEN);
753 if (rxctl & RXCtl_IA2) {
754 EPE_WRITE(AFP, 2);
755 bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
756 ias[0], ETHER_ADDR_LEN);
757 }
758 if (rxctl & RXCtl_IA3) {
759 EPE_WRITE(AFP, 3);
760 bus_space_write_region_1(sc->sc_iot, sc->sc_ioh, EPE_IndAd,
761 ias[1], ETHER_ADDR_LEN);
762 }
763 if (hashes[0] != 0 && hashes[1] != 0) {
764 EPE_WRITE(AFP, 7);
765 EPE_WRITE(HashTbl, hashes[0]);
766 EPE_WRITE(HashTbl + 4, hashes[1]);
767 }
768 EPE_WRITE(RXCtl, rxctl);
769 }
770