if_enet.c revision 1.1 1 1.1 ryo /* $NetBSD: if_enet.c,v 1.1 2014/09/25 05:05:28 ryo Exp $ */
2 1.1 ryo
3 1.1 ryo /*
4 1.1 ryo * Copyright (c) 2014 Ryo Shimizu <ryo (at) nerv.org>
5 1.1 ryo * All rights reserved.
6 1.1 ryo *
7 1.1 ryo * Redistribution and use in source and binary forms, with or without
8 1.1 ryo * modification, are permitted provided that the following conditions
9 1.1 ryo * are met:
10 1.1 ryo * 1. Redistributions of source code must retain the above copyright
11 1.1 ryo * notice, this list of conditions and the following disclaimer.
12 1.1 ryo * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 ryo * notice, this list of conditions and the following disclaimer in the
14 1.1 ryo * documentation and/or other materials provided with the distribution.
15 1.1 ryo *
16 1.1 ryo * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 ryo * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 1.1 ryo * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 1.1 ryo * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20 1.1 ryo * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 1.1 ryo * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 1.1 ryo * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 ryo * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24 1.1 ryo * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25 1.1 ryo * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 1.1 ryo * POSSIBILITY OF SUCH DAMAGE.
27 1.1 ryo */
28 1.1 ryo
29 1.1 ryo /*
30 1.1 ryo * i.MX6 10/100/1000-Mbps ethernet MAC (ENET)
31 1.1 ryo */
32 1.1 ryo
33 1.1 ryo #include <sys/cdefs.h>
34 1.1 ryo __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.1 2014/09/25 05:05:28 ryo Exp $");
35 1.1 ryo
36 1.1 ryo #include "imxocotp.h"
37 1.1 ryo #include "imxccm.h"
38 1.1 ryo #include "vlan.h"
39 1.1 ryo
40 1.1 ryo #include <sys/param.h>
41 1.1 ryo #include <sys/bus.h>
42 1.1 ryo #include <sys/mbuf.h>
43 1.1 ryo #include <sys/device.h>
44 1.1 ryo #include <sys/sockio.h>
45 1.1 ryo #include <sys/kernel.h>
46 1.1 ryo #include <sys/rnd.h>
47 1.1 ryo
48 1.1 ryo #include <lib/libkern/libkern.h>
49 1.1 ryo
50 1.1 ryo #include <net/if.h>
51 1.1 ryo #include <net/if_dl.h>
52 1.1 ryo #include <net/if_media.h>
53 1.1 ryo #include <net/if_ether.h>
54 1.1 ryo #include <net/bpf.h>
55 1.1 ryo #include <net/if_vlanvar.h>
56 1.1 ryo
57 1.1 ryo #include <netinet/in.h>
58 1.1 ryo #include <netinet/in_systm.h>
59 1.1 ryo #include <netinet/ip.h>
60 1.1 ryo
61 1.1 ryo #include <dev/mii/mii.h>
62 1.1 ryo #include <dev/mii/miivar.h>
63 1.1 ryo
64 1.1 ryo #include <arm/imx/imx6var.h>
65 1.1 ryo #include <arm/imx/imx6_reg.h>
66 1.1 ryo #include <arm/imx/imx6_ocotpreg.h>
67 1.1 ryo #include <arm/imx/imx6_ocotpvar.h>
68 1.1 ryo #include <arm/imx/imx6_ccmreg.h>
69 1.1 ryo #include <arm/imx/imx6_ccmvar.h>
70 1.1 ryo #include <arm/imx/if_enetreg.h>
71 1.1 ryo #include "locators.h"
72 1.1 ryo
73 1.1 ryo #undef DEBUG_ENET
74 1.1 ryo #undef ENET_EVENT_COUNTER
75 1.1 ryo
76 1.1 ryo #ifdef DEBUG_ENET
77 1.1 ryo int enet_debug = 0;
78 1.1 ryo # define DEVICE_DPRINTF(args...) \
79 1.1 ryo do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
80 1.1 ryo #else
81 1.1 ryo # define DEVICE_DPRINTF(args...)
82 1.1 ryo #endif
83 1.1 ryo
84 1.1 ryo
85 1.1 ryo #define RXDESC_MAXBUFSIZE 0x07f0
86 1.1 ryo /* iMX6 ENET not work greather than 0x0800... */
87 1.1 ryo
88 1.1 ryo #undef ENET_SUPPORT_JUMBO /* JUMBO FRAME SUPPORT is unstable */
89 1.1 ryo #ifdef ENET_SUPPORT_JUMBO
90 1.1 ryo # define ENET_MAX_PKT_LEN 4034 /* MAX FIFO LEN */
91 1.1 ryo #else
92 1.1 ryo # define ENET_MAX_PKT_LEN 1522
93 1.1 ryo #endif
94 1.1 ryo #define ENET_DEFAULT_PKT_LEN 1522 /* including VLAN tag */
95 1.1 ryo #define MTU2FRAMESIZE(n) \
96 1.1 ryo ((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
97 1.1 ryo
98 1.1 ryo
99 1.1 ryo #define ENET_MAX_PKT_NSEGS 64
100 1.1 ryo #define ENET_TX_RING_CNT 256 /* must be 2^n */
101 1.1 ryo #define ENET_RX_RING_CNT 256 /* must be 2^n */
102 1.1 ryo
103 1.1 ryo #define ENET_TX_NEXTIDX(idx) (((idx) + 1) & (ENET_TX_RING_CNT - 1))
104 1.1 ryo #define ENET_RX_NEXTIDX(idx) (((idx) + 1) & (ENET_RX_RING_CNT - 1))
105 1.1 ryo
106 1.1 ryo struct enet_txsoft {
107 1.1 ryo struct mbuf *txs_mbuf; /* head of our mbuf chain */
108 1.1 ryo bus_dmamap_t txs_dmamap; /* our DMA map */
109 1.1 ryo };
110 1.1 ryo
111 1.1 ryo struct enet_rxsoft {
112 1.1 ryo struct mbuf *rxs_mbuf; /* head of our mbuf chain */
113 1.1 ryo bus_dmamap_t rxs_dmamap; /* our DMA map */
114 1.1 ryo };
115 1.1 ryo
116 1.1 ryo struct enet_softc {
117 1.1 ryo device_t sc_dev;
118 1.1 ryo
119 1.1 ryo bus_addr_t sc_addr;
120 1.1 ryo bus_space_tag_t sc_iot;
121 1.1 ryo bus_space_handle_t sc_ioh;
122 1.1 ryo bus_dma_tag_t sc_dmat;
123 1.1 ryo
124 1.1 ryo /* interrupts */
125 1.1 ryo void *sc_ih;
126 1.1 ryo callout_t sc_tick_ch;
127 1.1 ryo bool sc_stopping;
128 1.1 ryo
129 1.1 ryo /* TX */
130 1.1 ryo struct enet_txdesc *sc_txdesc_ring; /* [ENET_TX_RING_CNT] */
131 1.1 ryo bus_dmamap_t sc_txdesc_dmamap;
132 1.1 ryo struct enet_rxdesc *sc_rxdesc_ring; /* [ENET_RX_RING_CNT] */
133 1.1 ryo bus_dmamap_t sc_rxdesc_dmamap;
134 1.1 ryo struct enet_txsoft sc_txsoft[ENET_TX_RING_CNT];
135 1.1 ryo int sc_tx_considx;
136 1.1 ryo int sc_tx_prodidx;
137 1.1 ryo int sc_tx_free;
138 1.1 ryo
139 1.1 ryo /* RX */
140 1.1 ryo struct enet_rxsoft sc_rxsoft[ENET_RX_RING_CNT];
141 1.1 ryo int sc_rx_readidx;
142 1.1 ryo
143 1.1 ryo /* misc */
144 1.1 ryo int sc_if_flags; /* local copy of if_flags */
145 1.1 ryo int sc_flowflags; /* 802.3x flow control flags */
146 1.1 ryo struct ethercom sc_ethercom; /* interface info */
147 1.1 ryo struct mii_data sc_mii;
148 1.1 ryo uint8_t sc_enaddr[ETHER_ADDR_LEN];
149 1.1 ryo krndsource_t sc_rnd_source;
150 1.1 ryo
151 1.1 ryo #ifdef ENET_EVENT_COUNTER
152 1.1 ryo struct evcnt sc_ev_t_drop;
153 1.1 ryo struct evcnt sc_ev_t_packets;
154 1.1 ryo struct evcnt sc_ev_t_bc_pkt;
155 1.1 ryo struct evcnt sc_ev_t_mc_pkt;
156 1.1 ryo struct evcnt sc_ev_t_crc_align;
157 1.1 ryo struct evcnt sc_ev_t_undersize;
158 1.1 ryo struct evcnt sc_ev_t_oversize;
159 1.1 ryo struct evcnt sc_ev_t_frag;
160 1.1 ryo struct evcnt sc_ev_t_jab;
161 1.1 ryo struct evcnt sc_ev_t_col;
162 1.1 ryo struct evcnt sc_ev_t_p64;
163 1.1 ryo struct evcnt sc_ev_t_p65to127n;
164 1.1 ryo struct evcnt sc_ev_t_p128to255n;
165 1.1 ryo struct evcnt sc_ev_t_p256to511;
166 1.1 ryo struct evcnt sc_ev_t_p512to1023;
167 1.1 ryo struct evcnt sc_ev_t_p1024to2047;
168 1.1 ryo struct evcnt sc_ev_t_p_gte2048;
169 1.1 ryo struct evcnt sc_ev_t_octets;
170 1.1 ryo struct evcnt sc_ev_r_packets;
171 1.1 ryo struct evcnt sc_ev_r_bc_pkt;
172 1.1 ryo struct evcnt sc_ev_r_mc_pkt;
173 1.1 ryo struct evcnt sc_ev_r_crc_align;
174 1.1 ryo struct evcnt sc_ev_r_undersize;
175 1.1 ryo struct evcnt sc_ev_r_oversize;
176 1.1 ryo struct evcnt sc_ev_r_frag;
177 1.1 ryo struct evcnt sc_ev_r_jab;
178 1.1 ryo struct evcnt sc_ev_r_p64;
179 1.1 ryo struct evcnt sc_ev_r_p65to127;
180 1.1 ryo struct evcnt sc_ev_r_p128to255;
181 1.1 ryo struct evcnt sc_ev_r_p256to511;
182 1.1 ryo struct evcnt sc_ev_r_p512to1023;
183 1.1 ryo struct evcnt sc_ev_r_p1024to2047;
184 1.1 ryo struct evcnt sc_ev_r_p_gte2048;
185 1.1 ryo struct evcnt sc_ev_r_octets;
186 1.1 ryo #endif /* ENET_EVENT_COUNTER */
187 1.1 ryo };
188 1.1 ryo
189 1.1 ryo #define TXDESC_WRITEOUT(idx) \
190 1.1 ryo bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
191 1.1 ryo sizeof(struct enet_txdesc) * (idx), \
192 1.1 ryo sizeof(struct enet_txdesc), \
193 1.1 ryo BUS_DMASYNC_PREWRITE)
194 1.1 ryo
195 1.1 ryo #define TXDESC_READIN(idx) \
196 1.1 ryo bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
197 1.1 ryo sizeof(struct enet_txdesc) * (idx), \
198 1.1 ryo sizeof(struct enet_txdesc), \
199 1.1 ryo BUS_DMASYNC_PREREAD)
200 1.1 ryo
201 1.1 ryo #define RXDESC_WRITEOUT(idx) \
202 1.1 ryo bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
203 1.1 ryo sizeof(struct enet_rxdesc) * (idx), \
204 1.1 ryo sizeof(struct enet_rxdesc), \
205 1.1 ryo BUS_DMASYNC_PREWRITE)
206 1.1 ryo
207 1.1 ryo #define RXDESC_READIN(idx) \
208 1.1 ryo bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
209 1.1 ryo sizeof(struct enet_rxdesc) * (idx), \
210 1.1 ryo sizeof(struct enet_rxdesc), \
211 1.1 ryo BUS_DMASYNC_PREREAD)
212 1.1 ryo
213 1.1 ryo #define ENET_REG_READ(sc, reg) \
214 1.1 ryo bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
215 1.1 ryo
216 1.1 ryo #define ENET_REG_WRITE(sc, reg, value) \
217 1.1 ryo bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
218 1.1 ryo
219 1.1 ryo static int enet_match(device_t, struct cfdata *, void *);
220 1.1 ryo static void enet_attach(device_t, device_t, void *);
221 1.1 ryo #ifdef ENET_EVENT_COUNTER
222 1.1 ryo static void enet_attach_evcnt(struct enet_softc *);
223 1.1 ryo static void enet_update_evcnt(struct enet_softc *);
224 1.1 ryo #endif
225 1.1 ryo
226 1.1 ryo static int enet_intr(void *);
227 1.1 ryo static void enet_tick(void *);
228 1.1 ryo static int enet_tx_intr(void *);
229 1.1 ryo static int enet_rx_intr(void *);
230 1.1 ryo static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
231 1.1 ryo int);
232 1.1 ryo
233 1.1 ryo static void enet_start(struct ifnet *);
234 1.1 ryo static int enet_ifflags_cb(struct ethercom *);
235 1.1 ryo static int enet_ioctl(struct ifnet *, u_long, void *);
236 1.1 ryo static int enet_init(struct ifnet *);
237 1.1 ryo static void enet_stop(struct ifnet *, int);
238 1.1 ryo static void enet_watchdog(struct ifnet *);
239 1.1 ryo static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
240 1.1 ryo
241 1.1 ryo static int enet_miibus_readreg(device_t, int, int);
242 1.1 ryo static void enet_miibus_writereg(device_t, int, int, int);
243 1.1 ryo static void enet_miibus_statchg(struct ifnet *);
244 1.1 ryo
245 1.1 ryo static void enet_ocotp_getmacaddr(uint8_t *);
246 1.1 ryo static void enet_gethwaddr(struct enet_softc *, uint8_t *);
247 1.1 ryo static void enet_sethwaddr(struct enet_softc *, uint8_t *);
248 1.1 ryo static void enet_setmulti(struct enet_softc *);
249 1.1 ryo static int enet_encap_mbufalign(struct mbuf **);
250 1.1 ryo static int enet_encap_txring(struct enet_softc *, struct mbuf **);
251 1.1 ryo static int enet_init_plls(struct enet_softc *);
252 1.1 ryo static int enet_init_regs(struct enet_softc *, int);
253 1.1 ryo static int enet_alloc_ring(struct enet_softc *);
254 1.1 ryo static void enet_init_txring(struct enet_softc *);
255 1.1 ryo static int enet_init_rxring(struct enet_softc *);
256 1.1 ryo static void enet_reset_rxdesc(struct enet_softc *, int);
257 1.1 ryo static int enet_alloc_rxbuf(struct enet_softc *, int);
258 1.1 ryo static void enet_drain_txbuf(struct enet_softc *);
259 1.1 ryo static void enet_drain_rxbuf(struct enet_softc *);
260 1.1 ryo static int enet_alloc_dma(struct enet_softc *, size_t, void **,
261 1.1 ryo bus_dmamap_t *);
262 1.1 ryo
263 1.1 ryo CFATTACH_DECL_NEW(enet, sizeof(struct enet_softc),
264 1.1 ryo enet_match, enet_attach, NULL, NULL);
265 1.1 ryo
266 1.1 ryo /* ARGSUSED */
267 1.1 ryo static int
268 1.1 ryo enet_match(device_t parent __unused, struct cfdata *match __unused, void *aux)
269 1.1 ryo {
270 1.1 ryo struct axi_attach_args *aa;
271 1.1 ryo
272 1.1 ryo aa = aux;
273 1.1 ryo
274 1.1 ryo switch (aa->aa_addr) {
275 1.1 ryo case (IMX6_AIPS2_BASE + AIPS2_ENET_BASE):
276 1.1 ryo return 1;
277 1.1 ryo }
278 1.1 ryo
279 1.1 ryo return 0;
280 1.1 ryo }
281 1.1 ryo
282 1.1 ryo /* ARGSUSED */
283 1.1 ryo static void
284 1.1 ryo enet_attach(device_t parent __unused, device_t self, void *aux)
285 1.1 ryo {
286 1.1 ryo struct enet_softc *sc;
287 1.1 ryo struct axi_attach_args *aa;
288 1.1 ryo struct ifnet *ifp;
289 1.1 ryo
290 1.1 ryo aa = aux;
291 1.1 ryo sc = device_private(self);
292 1.1 ryo sc->sc_dev = self;
293 1.1 ryo sc->sc_iot = aa->aa_iot;
294 1.1 ryo sc->sc_addr = aa->aa_addr;
295 1.1 ryo sc->sc_dmat = aa->aa_dmat;
296 1.1 ryo
297 1.1 ryo if (aa->aa_size == AXICF_SIZE_DEFAULT)
298 1.1 ryo aa->aa_size = AIPS2_ENET_SIZE;
299 1.1 ryo
300 1.1 ryo aprint_naive("\n");
301 1.1 ryo aprint_normal(": Gigabit Ethernet Controller\n");
302 1.1 ryo if (bus_space_map(sc->sc_iot, sc->sc_addr, aa->aa_size, 0,
303 1.1 ryo &sc->sc_ioh)) {
304 1.1 ryo aprint_error_dev(self, "cannot map registers\n");
305 1.1 ryo return;
306 1.1 ryo }
307 1.1 ryo
308 1.1 ryo /* allocate dma buffer */
309 1.1 ryo if (enet_alloc_ring(sc))
310 1.1 ryo return;
311 1.1 ryo
312 1.1 ryo #define IS_ENADDR_ZERO(enaddr) \
313 1.1 ryo ((enaddr[0] | enaddr[1] | enaddr[2] | \
314 1.1 ryo enaddr[3] | enaddr[4] | enaddr[5]) == 0)
315 1.1 ryo
316 1.1 ryo /* get mac-address from SoC eFuse */
317 1.1 ryo enet_ocotp_getmacaddr(sc->sc_enaddr);
318 1.1 ryo if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
319 1.1 ryo /* by any chance, mac-address is already set by bootloader? */
320 1.1 ryo enet_gethwaddr(sc, sc->sc_enaddr);
321 1.1 ryo if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
322 1.1 ryo /* give up. set randomly */
323 1.1 ryo uint32_t addr = random();
324 1.1 ryo /* not multicast */
325 1.1 ryo sc->sc_enaddr[0] = (addr >> 24) & 0xfc;
326 1.1 ryo sc->sc_enaddr[1] = addr >> 16;
327 1.1 ryo sc->sc_enaddr[2] = addr >> 8;
328 1.1 ryo sc->sc_enaddr[3] = addr;
329 1.1 ryo addr = random();
330 1.1 ryo sc->sc_enaddr[4] = addr >> 8;
331 1.1 ryo sc->sc_enaddr[5] = addr;
332 1.1 ryo
333 1.1 ryo aprint_error_dev(self,
334 1.1 ryo "cannot get mac address. set randomly\n");
335 1.1 ryo }
336 1.1 ryo }
337 1.1 ryo enet_sethwaddr(sc, sc->sc_enaddr);
338 1.1 ryo
339 1.1 ryo aprint_normal_dev(self, "Ethernet address %s\n",
340 1.1 ryo ether_sprintf(sc->sc_enaddr));
341 1.1 ryo
342 1.1 ryo /* power up and init */
343 1.1 ryo if (enet_init_plls(sc) != 0)
344 1.1 ryo goto failure;
345 1.1 ryo enet_init_regs(sc, 1);
346 1.1 ryo
347 1.1 ryo /* setup interrupt handlers */
348 1.1 ryo if ((sc->sc_ih = intr_establish(aa->aa_irq, IPL_NET,
349 1.1 ryo IST_EDGE, enet_intr, sc)) == NULL) {
350 1.1 ryo aprint_error_dev(self, "unable to establish interrupt\n");
351 1.1 ryo goto failure;
352 1.1 ryo }
353 1.1 ryo
354 1.1 ryo /* setup ifp */
355 1.1 ryo ifp = &sc->sc_ethercom.ec_if;
356 1.1 ryo strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
357 1.1 ryo ifp->if_softc = sc;
358 1.1 ryo ifp->if_mtu = ETHERMTU;
359 1.1 ryo ifp->if_baudrate = IF_Gbps(1);
360 1.1 ryo ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
361 1.1 ryo ifp->if_ioctl = enet_ioctl;
362 1.1 ryo ifp->if_start = enet_start;
363 1.1 ryo ifp->if_init = enet_init;
364 1.1 ryo ifp->if_stop = enet_stop;
365 1.1 ryo ifp->if_watchdog = enet_watchdog;
366 1.1 ryo
367 1.1 ryo sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
368 1.1 ryo #ifdef ENET_SUPPORT_JUMBO
369 1.1 ryo sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
370 1.1 ryo #endif
371 1.1 ryo
372 1.1 ryo ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
373 1.1 ryo IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
374 1.1 ryo IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
375 1.1 ryo IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
376 1.1 ryo IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
377 1.1 ryo
378 1.1 ryo IFQ_SET_MAXLEN(&ifp->if_snd, max(ENET_TX_RING_CNT, IFQ_MAXLEN));
379 1.1 ryo IFQ_SET_READY(&ifp->if_snd);
380 1.1 ryo
381 1.1 ryo /* setup MII */
382 1.1 ryo sc->sc_ethercom.ec_mii = &sc->sc_mii;
383 1.1 ryo sc->sc_mii.mii_ifp = ifp;
384 1.1 ryo sc->sc_mii.mii_readreg = enet_miibus_readreg;
385 1.1 ryo sc->sc_mii.mii_writereg = enet_miibus_writereg;
386 1.1 ryo sc->sc_mii.mii_statchg = enet_miibus_statchg;
387 1.1 ryo ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
388 1.1 ryo enet_mediastatus);
389 1.1 ryo
390 1.1 ryo /* try to attach PHY */
391 1.1 ryo mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
392 1.1 ryo MII_OFFSET_ANY, 0);
393 1.1 ryo if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
394 1.1 ryo ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
395 1.1 ryo 0, NULL);
396 1.1 ryo ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
397 1.1 ryo } else {
398 1.1 ryo ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
399 1.1 ryo }
400 1.1 ryo
401 1.1 ryo if_attach(ifp);
402 1.1 ryo ether_ifattach(ifp, sc->sc_enaddr);
403 1.1 ryo ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
404 1.1 ryo
405 1.1 ryo rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
406 1.1 ryo RND_TYPE_NET, RND_FLAG_DEFAULT);
407 1.1 ryo
408 1.1 ryo #ifdef ENET_EVENT_COUNTER
409 1.1 ryo enet_attach_evcnt(sc);
410 1.1 ryo #endif
411 1.1 ryo
412 1.1 ryo sc->sc_stopping = false;
413 1.1 ryo callout_init(&sc->sc_tick_ch, 0);
414 1.1 ryo callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
415 1.1 ryo callout_schedule(&sc->sc_tick_ch, hz);
416 1.1 ryo
417 1.1 ryo return;
418 1.1 ryo
419 1.1 ryo failure:
420 1.1 ryo bus_space_unmap(sc->sc_iot, sc->sc_ioh, aa->aa_size);
421 1.1 ryo return;
422 1.1 ryo }
423 1.1 ryo
424 1.1 ryo #ifdef ENET_EVENT_COUNTER
425 1.1 ryo static void
426 1.1 ryo enet_attach_evcnt(struct enet_softc *sc)
427 1.1 ryo {
428 1.1 ryo const char *xname;
429 1.1 ryo
430 1.1 ryo xname = device_xname(sc->sc_dev);
431 1.1 ryo
432 1.1 ryo #define ENET_EVCNT_ATTACH(name) \
433 1.1 ryo evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC, \
434 1.1 ryo NULL, xname, #name);
435 1.1 ryo
436 1.1 ryo ENET_EVCNT_ATTACH(t_drop);
437 1.1 ryo ENET_EVCNT_ATTACH(t_packets);
438 1.1 ryo ENET_EVCNT_ATTACH(t_bc_pkt);
439 1.1 ryo ENET_EVCNT_ATTACH(t_mc_pkt);
440 1.1 ryo ENET_EVCNT_ATTACH(t_crc_align);
441 1.1 ryo ENET_EVCNT_ATTACH(t_undersize);
442 1.1 ryo ENET_EVCNT_ATTACH(t_oversize);
443 1.1 ryo ENET_EVCNT_ATTACH(t_frag);
444 1.1 ryo ENET_EVCNT_ATTACH(t_jab);
445 1.1 ryo ENET_EVCNT_ATTACH(t_col);
446 1.1 ryo ENET_EVCNT_ATTACH(t_p64);
447 1.1 ryo ENET_EVCNT_ATTACH(t_p65to127n);
448 1.1 ryo ENET_EVCNT_ATTACH(t_p128to255n);
449 1.1 ryo ENET_EVCNT_ATTACH(t_p256to511);
450 1.1 ryo ENET_EVCNT_ATTACH(t_p512to1023);
451 1.1 ryo ENET_EVCNT_ATTACH(t_p1024to2047);
452 1.1 ryo ENET_EVCNT_ATTACH(t_p_gte2048);
453 1.1 ryo ENET_EVCNT_ATTACH(t_octets);
454 1.1 ryo ENET_EVCNT_ATTACH(r_packets);
455 1.1 ryo ENET_EVCNT_ATTACH(r_bc_pkt);
456 1.1 ryo ENET_EVCNT_ATTACH(r_mc_pkt);
457 1.1 ryo ENET_EVCNT_ATTACH(r_crc_align);
458 1.1 ryo ENET_EVCNT_ATTACH(r_undersize);
459 1.1 ryo ENET_EVCNT_ATTACH(r_oversize);
460 1.1 ryo ENET_EVCNT_ATTACH(r_frag);
461 1.1 ryo ENET_EVCNT_ATTACH(r_jab);
462 1.1 ryo ENET_EVCNT_ATTACH(r_p64);
463 1.1 ryo ENET_EVCNT_ATTACH(r_p65to127);
464 1.1 ryo ENET_EVCNT_ATTACH(r_p128to255);
465 1.1 ryo ENET_EVCNT_ATTACH(r_p256to511);
466 1.1 ryo ENET_EVCNT_ATTACH(r_p512to1023);
467 1.1 ryo ENET_EVCNT_ATTACH(r_p1024to2047);
468 1.1 ryo ENET_EVCNT_ATTACH(r_p_gte2048);
469 1.1 ryo ENET_EVCNT_ATTACH(r_octets);
470 1.1 ryo }
471 1.1 ryo
472 1.1 ryo static void
473 1.1 ryo enet_update_evcnt(struct enet_softc *sc)
474 1.1 ryo {
475 1.1 ryo sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
476 1.1 ryo sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
477 1.1 ryo sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
478 1.1 ryo sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
479 1.1 ryo sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
480 1.1 ryo sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
481 1.1 ryo sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
482 1.1 ryo sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
483 1.1 ryo sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
484 1.1 ryo sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
485 1.1 ryo sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
486 1.1 ryo sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
487 1.1 ryo sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
488 1.1 ryo sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
489 1.1 ryo sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
490 1.1 ryo sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
491 1.1 ryo sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
492 1.1 ryo sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
493 1.1 ryo sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
494 1.1 ryo sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
495 1.1 ryo sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
496 1.1 ryo sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
497 1.1 ryo sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
498 1.1 ryo sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
499 1.1 ryo sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
500 1.1 ryo sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
501 1.1 ryo sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
502 1.1 ryo sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
503 1.1 ryo sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
504 1.1 ryo sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
505 1.1 ryo sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
506 1.1 ryo sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
507 1.1 ryo sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
508 1.1 ryo sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
509 1.1 ryo }
510 1.1 ryo #endif /* ENET_EVENT_COUNTER */
511 1.1 ryo
512 1.1 ryo static void
513 1.1 ryo enet_tick(void *arg)
514 1.1 ryo {
515 1.1 ryo struct enet_softc *sc;
516 1.1 ryo struct mii_data *mii;
517 1.1 ryo struct ifnet *ifp;
518 1.1 ryo int s;
519 1.1 ryo
520 1.1 ryo sc = arg;
521 1.1 ryo mii = &sc->sc_mii;
522 1.1 ryo ifp = &sc->sc_ethercom.ec_if;
523 1.1 ryo
524 1.1 ryo s = splnet();
525 1.1 ryo
526 1.1 ryo if (sc->sc_stopping)
527 1.1 ryo goto out;
528 1.1 ryo
529 1.1 ryo
530 1.1 ryo #ifdef ENET_EVENT_COUNTER
531 1.1 ryo enet_update_evcnt(sc);
532 1.1 ryo #endif
533 1.1 ryo
534 1.1 ryo /* update counters */
535 1.1 ryo ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
536 1.1 ryo ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
537 1.1 ryo ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_JAB);
538 1.1 ryo
539 1.1 ryo /* clear counters */
540 1.1 ryo ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
541 1.1 ryo ENET_REG_WRITE(sc, ENET_MIBC, 0);
542 1.1 ryo
543 1.1 ryo mii_tick(mii);
544 1.1 ryo out:
545 1.1 ryo
546 1.1 ryo if (!sc->sc_stopping)
547 1.1 ryo callout_schedule(&sc->sc_tick_ch, hz);
548 1.1 ryo
549 1.1 ryo splx(s);
550 1.1 ryo }
551 1.1 ryo
552 1.1 ryo static int
553 1.1 ryo enet_intr(void *arg)
554 1.1 ryo {
555 1.1 ryo struct enet_softc *sc;
556 1.1 ryo struct ifnet *ifp;
557 1.1 ryo uint32_t status;
558 1.1 ryo
559 1.1 ryo sc = arg;
560 1.1 ryo status = ENET_REG_READ(sc, ENET_EIR);
561 1.1 ryo
562 1.1 ryo if (status & ENET_EIR_TXF)
563 1.1 ryo enet_tx_intr(arg);
564 1.1 ryo
565 1.1 ryo if (status & ENET_EIR_RXF)
566 1.1 ryo enet_rx_intr(arg);
567 1.1 ryo
568 1.1 ryo if (status & ENET_EIR_EBERR) {
569 1.1 ryo device_printf(sc->sc_dev, "Ethernet Bus Error\n");
570 1.1 ryo ifp = &sc->sc_ethercom.ec_if;
571 1.1 ryo enet_stop(ifp, 1);
572 1.1 ryo enet_init(ifp);
573 1.1 ryo } else {
574 1.1 ryo ENET_REG_WRITE(sc, ENET_EIR, status);
575 1.1 ryo }
576 1.1 ryo
577 1.1 ryo rnd_add_uint32(&sc->sc_rnd_source, status);
578 1.1 ryo
579 1.1 ryo return 1;
580 1.1 ryo }
581 1.1 ryo
582 1.1 ryo static int
583 1.1 ryo enet_tx_intr(void *arg)
584 1.1 ryo {
585 1.1 ryo struct enet_softc *sc;
586 1.1 ryo struct ifnet *ifp;
587 1.1 ryo struct enet_txsoft *txs;
588 1.1 ryo int idx;
589 1.1 ryo
590 1.1 ryo sc = (struct enet_softc *)arg;
591 1.1 ryo ifp = &sc->sc_ethercom.ec_if;
592 1.1 ryo
593 1.1 ryo for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
594 1.1 ryo idx = ENET_TX_NEXTIDX(idx)) {
595 1.1 ryo
596 1.1 ryo txs = &sc->sc_txsoft[idx];
597 1.1 ryo
598 1.1 ryo TXDESC_READIN(idx);
599 1.1 ryo if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
600 1.1 ryo /* This TX Descriptor has not been transmitted yet */
601 1.1 ryo break;
602 1.1 ryo }
603 1.1 ryo
604 1.1 ryo /* txsoft is available on first segment (TXFLAGS1_T1) */
605 1.1 ryo if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
606 1.1 ryo bus_dmamap_unload(sc->sc_dmat,
607 1.1 ryo txs->txs_dmamap);
608 1.1 ryo m_freem(txs->txs_mbuf);
609 1.1 ryo ifp->if_opackets++;
610 1.1 ryo }
611 1.1 ryo
612 1.1 ryo /* checking error */
613 1.1 ryo if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
614 1.1 ryo uint32_t flags2;
615 1.1 ryo
616 1.1 ryo flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
617 1.1 ryo
618 1.1 ryo if (flags2 & (TXFLAGS2_TXE |
619 1.1 ryo TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
620 1.1 ryo TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
621 1.1 ryo #ifdef DEBUG_ENET
622 1.1 ryo if (enet_debug) {
623 1.1 ryo char flagsbuf[128];
624 1.1 ryo
625 1.1 ryo snprintb(flagsbuf, sizeof(flagsbuf),
626 1.1 ryo "\20" "\20TRANSMIT" "\16UNDERFLOW"
627 1.1 ryo "\15COLLISION" "\14FRAME"
628 1.1 ryo "\13LATECOLLISION" "\12OVERFLOW",
629 1.1 ryo flags2);
630 1.1 ryo
631 1.1 ryo device_printf(sc->sc_dev,
632 1.1 ryo "txdesc[%d]: transmit error: "
633 1.1 ryo "flags2=%s\n", idx, flagsbuf);
634 1.1 ryo }
635 1.1 ryo #endif /* DEBUG_ENET */
636 1.1 ryo ifp->if_oerrors++;
637 1.1 ryo }
638 1.1 ryo }
639 1.1 ryo
640 1.1 ryo sc->sc_tx_free++;
641 1.1 ryo }
642 1.1 ryo sc->sc_tx_considx = idx;
643 1.1 ryo
644 1.1 ryo if (sc->sc_tx_free > 0)
645 1.1 ryo ifp->if_flags &= ~IFF_OACTIVE;
646 1.1 ryo
647 1.1 ryo /*
648 1.1 ryo * No more pending TX descriptor,
649 1.1 ryo * cancel the watchdog timer.
650 1.1 ryo */
651 1.1 ryo if (sc->sc_tx_free == ENET_TX_RING_CNT)
652 1.1 ryo ifp->if_timer = 0;
653 1.1 ryo
654 1.1 ryo return 1;
655 1.1 ryo }
656 1.1 ryo
657 1.1 ryo static int
658 1.1 ryo enet_rx_intr(void *arg)
659 1.1 ryo {
660 1.1 ryo struct enet_softc *sc;
661 1.1 ryo struct ifnet *ifp;
662 1.1 ryo struct enet_rxsoft *rxs;
663 1.1 ryo int idx, len, amount;
664 1.1 ryo uint32_t flags1, flags2;
665 1.1 ryo struct mbuf *m, *m0, *mprev;
666 1.1 ryo
667 1.1 ryo sc = arg;
668 1.1 ryo ifp = &sc->sc_ethercom.ec_if;
669 1.1 ryo
670 1.1 ryo m0 = mprev = NULL;
671 1.1 ryo amount = 0;
672 1.1 ryo for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
673 1.1 ryo
674 1.1 ryo rxs = &sc->sc_rxsoft[idx];
675 1.1 ryo
676 1.1 ryo RXDESC_READIN(idx);
677 1.1 ryo if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
678 1.1 ryo /* This RX Descriptor has not been received yet */
679 1.1 ryo break;
680 1.1 ryo }
681 1.1 ryo
682 1.1 ryo /*
683 1.1 ryo * build mbuf from RX Descriptor if needed
684 1.1 ryo */
685 1.1 ryo m = rxs->rxs_mbuf;
686 1.1 ryo rxs->rxs_mbuf = NULL;
687 1.1 ryo
688 1.1 ryo flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
689 1.1 ryo len = RXFLAGS1_LEN(flags1);
690 1.1 ryo
691 1.1 ryo #define RACC_SHIFT16 2
692 1.1 ryo if (m0 == NULL) {
693 1.1 ryo m0 = m;
694 1.1 ryo m_adj(m0, RACC_SHIFT16);
695 1.1 ryo len -= RACC_SHIFT16;
696 1.1 ryo m->m_len = len;
697 1.1 ryo amount = len;
698 1.1 ryo } else {
699 1.1 ryo if (flags1 & RXFLAGS1_L)
700 1.1 ryo len = len - amount - RACC_SHIFT16;
701 1.1 ryo
702 1.1 ryo m->m_len = len;
703 1.1 ryo amount += len;
704 1.1 ryo m->m_flags &= ~M_PKTHDR;
705 1.1 ryo mprev->m_next = m;
706 1.1 ryo }
707 1.1 ryo mprev = m;
708 1.1 ryo
709 1.1 ryo flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
710 1.1 ryo
711 1.1 ryo if (flags1 & RXFLAGS1_L) {
712 1.1 ryo /* last buffer */
713 1.1 ryo if ((amount < ETHER_HDR_LEN) ||
714 1.1 ryo ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
715 1.1 ryo RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
716 1.1 ryo (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
717 1.1 ryo RXFLAGS2_CE)))) {
718 1.1 ryo
719 1.1 ryo #ifdef DEBUG_ENET
720 1.1 ryo if (enet_debug) {
721 1.1 ryo char flags1buf[128], flags2buf[128];
722 1.1 ryo snprintb(flags1buf, sizeof(flags1buf),
723 1.1 ryo "\20" "\31MISS" "\26LENGTHVIOLATION"
724 1.1 ryo "\25NONOCTET" "\23CRC" "\22OVERRUN"a
725 1.1 ryo "\21TRUNCATED", flags1);
726 1.1 ryo snprintb(flags2buf, sizeof(flags2buf),
727 1.1 ryo "\20" "\40MAC" "\33PHY"
728 1.1 ryo "\32COLLISION", flags2);
729 1.1 ryo
730 1.1 ryo DEVICE_DPRINTF(
731 1.1 ryo "rxdesc[%d]: receive error: "
732 1.1 ryo "flags1=%s,flags2=%s,len=%d\n",
733 1.1 ryo idx, flags1buf, flags2buf, amount);
734 1.1 ryo }
735 1.1 ryo #endif /* DEBUG_ENET */
736 1.1 ryo ifp->if_ierrors++;
737 1.1 ryo m_freem(m0);
738 1.1 ryo
739 1.1 ryo } else {
740 1.1 ryo /* packet receive ok */
741 1.1 ryo ifp->if_ipackets++;
742 1.1 ryo m0->m_pkthdr.rcvif = ifp;
743 1.1 ryo m0->m_pkthdr.len = amount;
744 1.1 ryo
745 1.1 ryo bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
746 1.1 ryo rxs->rxs_dmamap->dm_mapsize,
747 1.1 ryo BUS_DMASYNC_PREREAD);
748 1.1 ryo
749 1.1 ryo if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
750 1.1 ryo M_CSUM_TCPv4 | M_CSUM_UDPv4 |
751 1.1 ryo M_CSUM_TCPv6 | M_CSUM_UDPv6))
752 1.1 ryo enet_rx_csum(sc, ifp, m0, idx);
753 1.1 ryo
754 1.1 ryo /* Pass this up to any BPF listeners */
755 1.1 ryo bpf_mtap(ifp, m0);
756 1.1 ryo
757 1.1 ryo (*ifp->if_input)(ifp, m0);
758 1.1 ryo }
759 1.1 ryo
760 1.1 ryo m0 = NULL;
761 1.1 ryo mprev = NULL;
762 1.1 ryo amount = 0;
763 1.1 ryo
764 1.1 ryo } else {
765 1.1 ryo /* continued from previous buffer */
766 1.1 ryo bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
767 1.1 ryo rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
768 1.1 ryo }
769 1.1 ryo
770 1.1 ryo bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
771 1.1 ryo if (enet_alloc_rxbuf(sc, idx) != 0) {
772 1.1 ryo panic("enet_alloc_rxbuf NULL\n");
773 1.1 ryo }
774 1.1 ryo }
775 1.1 ryo sc->sc_rx_readidx = idx;
776 1.1 ryo
777 1.1 ryo /* re-enable RX DMA to make sure */
778 1.1 ryo ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
779 1.1 ryo
780 1.1 ryo return 1;
781 1.1 ryo }
782 1.1 ryo
783 1.1 ryo static void
784 1.1 ryo enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
785 1.1 ryo {
786 1.1 ryo uint32_t flags2;
787 1.1 ryo uint8_t proto;
788 1.1 ryo
789 1.1 ryo flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
790 1.1 ryo
791 1.1 ryo if (flags2 & RXFLAGS2_IPV6) {
792 1.1 ryo proto = sc->sc_rxdesc_ring[idx].rx_proto;
793 1.1 ryo
794 1.1 ryo /* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
795 1.1 ryo if ((proto == IPPROTO_TCP) &&
796 1.1 ryo (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
797 1.1 ryo m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
798 1.1 ryo else if ((proto == IPPROTO_UDP) &&
799 1.1 ryo (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
800 1.1 ryo m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
801 1.1 ryo else
802 1.1 ryo return;
803 1.1 ryo
804 1.1 ryo /* IPv6 protocol checksum error */
805 1.1 ryo if (flags2 & RXFLAGS2_PCR)
806 1.1 ryo m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
807 1.1 ryo
808 1.1 ryo } else {
809 1.1 ryo struct ether_header *eh;
810 1.1 ryo uint8_t *ip;
811 1.1 ryo
812 1.1 ryo eh = mtod(m, struct ether_header *);
813 1.1 ryo
814 1.1 ryo /* XXX: is an IPv4? */
815 1.1 ryo if (ntohs(eh->ether_type) != ETHERTYPE_IP)
816 1.1 ryo return;
817 1.1 ryo ip = (uint8_t *)(eh + 1);
818 1.1 ryo if ((ip[0] & 0xf0) == 0x40)
819 1.1 ryo return;
820 1.1 ryo
821 1.1 ryo proto = sc->sc_rxdesc_ring[idx].rx_proto;
822 1.1 ryo if (flags2 & RXFLAGS2_ICE) {
823 1.1 ryo if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
824 1.1 ryo m->m_pkthdr.csum_flags |=
825 1.1 ryo M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
826 1.1 ryo }
827 1.1 ryo } else {
828 1.1 ryo if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
829 1.1 ryo m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
830 1.1 ryo }
831 1.1 ryo
832 1.1 ryo /*
833 1.1 ryo * PCR is valid when
834 1.1 ryo * ICE == 0 and FRAG == 0
835 1.1 ryo */
836 1.1 ryo if (flags2 & RXFLAGS2_FRAG)
837 1.1 ryo return;
838 1.1 ryo
839 1.1 ryo /*
840 1.1 ryo * PCR is valid when proto is TCP or UDP
841 1.1 ryo */
842 1.1 ryo if ((proto == IPPROTO_TCP) &&
843 1.1 ryo (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
844 1.1 ryo m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
845 1.1 ryo else if ((proto == IPPROTO_UDP) &&
846 1.1 ryo (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
847 1.1 ryo m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
848 1.1 ryo else
849 1.1 ryo return;
850 1.1 ryo
851 1.1 ryo /* IPv4 protocol cksum error */
852 1.1 ryo if (flags2 & RXFLAGS2_PCR)
853 1.1 ryo m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
854 1.1 ryo }
855 1.1 ryo }
856 1.1 ryo }
857 1.1 ryo
858 1.1 ryo static void
859 1.1 ryo enet_setmulti(struct enet_softc *sc)
860 1.1 ryo {
861 1.1 ryo struct ifnet *ifp;
862 1.1 ryo struct ether_multi *enm;
863 1.1 ryo struct ether_multistep step;
864 1.1 ryo int promisc;
865 1.1 ryo uint32_t crc;
866 1.1 ryo uint32_t gaddr[2];
867 1.1 ryo
868 1.1 ryo ifp = &sc->sc_ethercom.ec_if;
869 1.1 ryo
870 1.1 ryo promisc = 0;
871 1.1 ryo if ((ifp->if_flags & IFF_PROMISC) || sc->sc_ethercom.ec_multicnt > 0) {
872 1.1 ryo ifp->if_flags |= IFF_ALLMULTI;
873 1.1 ryo if (ifp->if_flags & IFF_PROMISC)
874 1.1 ryo promisc = 1;
875 1.1 ryo gaddr[0] = gaddr[1] = 0xffffffff;
876 1.1 ryo } else {
877 1.1 ryo gaddr[0] = gaddr[1] = 0;
878 1.1 ryo
879 1.1 ryo ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
880 1.1 ryo while (enm != NULL) {
881 1.1 ryo crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
882 1.1 ryo gaddr[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
883 1.1 ryo ETHER_NEXT_MULTI(step, enm);
884 1.1 ryo }
885 1.1 ryo }
886 1.1 ryo
887 1.1 ryo ENET_REG_WRITE(sc, ENET_GAUR, gaddr[0]);
888 1.1 ryo ENET_REG_WRITE(sc, ENET_GALR, gaddr[1]);
889 1.1 ryo
890 1.1 ryo if (promisc) {
891 1.1 ryo /* match all packet */
892 1.1 ryo ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
893 1.1 ryo ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
894 1.1 ryo } else {
895 1.1 ryo /* don't match any packet */
896 1.1 ryo ENET_REG_WRITE(sc, ENET_IAUR, 0);
897 1.1 ryo ENET_REG_WRITE(sc, ENET_IALR, 0);
898 1.1 ryo }
899 1.1 ryo }
900 1.1 ryo
901 1.1 ryo static void
902 1.1 ryo enet_ocotp_getmacaddr(uint8_t *macaddr)
903 1.1 ryo {
904 1.1 ryo #if NIMXOCOTP > 0
905 1.1 ryo uint32_t addr;
906 1.1 ryo
907 1.1 ryo addr = imxocotp_read(OCOTP_MAC1);
908 1.1 ryo macaddr[0] = addr >> 8;
909 1.1 ryo macaddr[1] = addr;
910 1.1 ryo
911 1.1 ryo addr = imxocotp_read(OCOTP_MAC0);
912 1.1 ryo macaddr[2] = addr >> 24;
913 1.1 ryo macaddr[3] = addr >> 16;
914 1.1 ryo macaddr[4] = addr >> 8;
915 1.1 ryo macaddr[5] = addr;
916 1.1 ryo #endif
917 1.1 ryo }
918 1.1 ryo
919 1.1 ryo static void
920 1.1 ryo enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
921 1.1 ryo {
922 1.1 ryo uint32_t paddr;
923 1.1 ryo
924 1.1 ryo paddr = ENET_REG_READ(sc, ENET_PALR);
925 1.1 ryo hwaddr[0] = paddr >> 24;
926 1.1 ryo hwaddr[1] = paddr >> 16;
927 1.1 ryo hwaddr[2] = paddr >> 8;
928 1.1 ryo hwaddr[3] = paddr;
929 1.1 ryo
930 1.1 ryo paddr = ENET_REG_READ(sc, ENET_PAUR);
931 1.1 ryo hwaddr[4] = paddr >> 24;
932 1.1 ryo hwaddr[5] = paddr >> 16;
933 1.1 ryo }
934 1.1 ryo
935 1.1 ryo static void
936 1.1 ryo enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
937 1.1 ryo {
938 1.1 ryo uint32_t paddr;
939 1.1 ryo
940 1.1 ryo paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
941 1.1 ryo hwaddr[3];
942 1.1 ryo ENET_REG_WRITE(sc, ENET_PALR, paddr);
943 1.1 ryo paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
944 1.1 ryo ENET_REG_WRITE(sc, ENET_PAUR, paddr);
945 1.1 ryo }
946 1.1 ryo
947 1.1 ryo /*
948 1.1 ryo * ifnet interfaces
949 1.1 ryo */
950 1.1 ryo static int
951 1.1 ryo enet_init(struct ifnet *ifp)
952 1.1 ryo {
953 1.1 ryo struct enet_softc *sc;
954 1.1 ryo int s, error;
955 1.1 ryo
956 1.1 ryo sc = ifp->if_softc;
957 1.1 ryo
958 1.1 ryo s = splnet();
959 1.1 ryo
960 1.1 ryo enet_init_regs(sc, 0);
961 1.1 ryo enet_init_txring(sc);
962 1.1 ryo error = enet_init_rxring(sc);
963 1.1 ryo if (error != 0) {
964 1.1 ryo enet_drain_rxbuf(sc);
965 1.1 ryo device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
966 1.1 ryo goto init_failure;
967 1.1 ryo }
968 1.1 ryo
969 1.1 ryo /* reload mac address */
970 1.1 ryo memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
971 1.1 ryo enet_sethwaddr(sc, sc->sc_enaddr);
972 1.1 ryo
973 1.1 ryo /* program multicast address */
974 1.1 ryo enet_setmulti(sc);
975 1.1 ryo
976 1.1 ryo /* update if_flags */
977 1.1 ryo ifp->if_flags |= IFF_RUNNING;
978 1.1 ryo ifp->if_flags &= ~IFF_OACTIVE;
979 1.1 ryo
980 1.1 ryo /* update local copy of if_flags */
981 1.1 ryo sc->sc_if_flags = ifp->if_flags;
982 1.1 ryo
983 1.1 ryo /* mii */
984 1.1 ryo mii_mediachg(&sc->sc_mii);
985 1.1 ryo
986 1.1 ryo /* enable RX DMA */
987 1.1 ryo ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
988 1.1 ryo
989 1.1 ryo sc->sc_stopping = false;
990 1.1 ryo
991 1.1 ryo init_failure:
992 1.1 ryo splx(s);
993 1.1 ryo
994 1.1 ryo return error;
995 1.1 ryo }
996 1.1 ryo
997 1.1 ryo static void
998 1.1 ryo enet_start(struct ifnet *ifp)
999 1.1 ryo {
1000 1.1 ryo struct enet_softc *sc;
1001 1.1 ryo struct mbuf *m;
1002 1.1 ryo int npkt;
1003 1.1 ryo
1004 1.1 ryo if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1005 1.1 ryo return;
1006 1.1 ryo
1007 1.1 ryo sc = ifp->if_softc;
1008 1.1 ryo for (npkt = 0; ; npkt++) {
1009 1.1 ryo IFQ_POLL(&ifp->if_snd, m);
1010 1.1 ryo if (m == NULL)
1011 1.1 ryo break;
1012 1.1 ryo
1013 1.1 ryo if (sc->sc_tx_free <= 0) {
1014 1.1 ryo /* no tx descriptor now... */
1015 1.1 ryo ifp->if_flags |= IFF_OACTIVE;
1016 1.1 ryo DEVICE_DPRINTF("TX descriptor is full\n");
1017 1.1 ryo break;
1018 1.1 ryo }
1019 1.1 ryo
1020 1.1 ryo IFQ_DEQUEUE(&ifp->if_snd, m);
1021 1.1 ryo
1022 1.1 ryo if (enet_encap_txring(sc, &m) != 0) {
1023 1.1 ryo /* too many mbuf chains? */
1024 1.1 ryo ifp->if_flags |= IFF_OACTIVE;
1025 1.1 ryo DEVICE_DPRINTF(
1026 1.1 ryo "TX descriptor is full. dropping packet\n");
1027 1.1 ryo m_freem(m);
1028 1.1 ryo ifp->if_oerrors++;
1029 1.1 ryo break;
1030 1.1 ryo }
1031 1.1 ryo
1032 1.1 ryo /* Pass the packet to any BPF listeners */
1033 1.1 ryo bpf_mtap(ifp, m);
1034 1.1 ryo }
1035 1.1 ryo
1036 1.1 ryo if (npkt) {
1037 1.1 ryo /* enable TX DMA */
1038 1.1 ryo ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
1039 1.1 ryo
1040 1.1 ryo ifp->if_timer = 5;
1041 1.1 ryo }
1042 1.1 ryo }
1043 1.1 ryo
1044 1.1 ryo static void
1045 1.1 ryo enet_stop(struct ifnet *ifp, int disable)
1046 1.1 ryo {
1047 1.1 ryo struct enet_softc *sc;
1048 1.1 ryo int s;
1049 1.1 ryo uint32_t v;
1050 1.1 ryo
1051 1.1 ryo sc = ifp->if_softc;
1052 1.1 ryo
1053 1.1 ryo s = splnet();
1054 1.1 ryo
1055 1.1 ryo sc->sc_stopping = true;
1056 1.1 ryo callout_stop(&sc->sc_tick_ch);
1057 1.1 ryo
1058 1.1 ryo /* clear ENET_ECR[ETHEREN] to abort receive and transmit */
1059 1.1 ryo v = ENET_REG_READ(sc, ENET_ECR);
1060 1.1 ryo ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
1061 1.1 ryo
1062 1.1 ryo /* Mark the interface as down and cancel the watchdog timer. */
1063 1.1 ryo ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1064 1.1 ryo ifp->if_timer = 0;
1065 1.1 ryo
1066 1.1 ryo if (disable) {
1067 1.1 ryo enet_drain_txbuf(sc);
1068 1.1 ryo enet_drain_rxbuf(sc);
1069 1.1 ryo }
1070 1.1 ryo
1071 1.1 ryo splx(s);
1072 1.1 ryo }
1073 1.1 ryo
1074 1.1 ryo static void
1075 1.1 ryo enet_watchdog(struct ifnet *ifp)
1076 1.1 ryo {
1077 1.1 ryo struct enet_softc *sc;
1078 1.1 ryo int s;
1079 1.1 ryo
1080 1.1 ryo sc = ifp->if_softc;
1081 1.1 ryo s = splnet();
1082 1.1 ryo
1083 1.1 ryo device_printf(sc->sc_dev, "watchdog timeout\n");
1084 1.1 ryo ifp->if_oerrors++;
1085 1.1 ryo
1086 1.1 ryo /* salvage packets left in descriptors */
1087 1.1 ryo enet_tx_intr(sc);
1088 1.1 ryo enet_rx_intr(sc);
1089 1.1 ryo
1090 1.1 ryo /* reset */
1091 1.1 ryo enet_stop(ifp, 1);
1092 1.1 ryo enet_init(ifp);
1093 1.1 ryo
1094 1.1 ryo splx(s);
1095 1.1 ryo }
1096 1.1 ryo
1097 1.1 ryo static void
1098 1.1 ryo enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1099 1.1 ryo {
1100 1.1 ryo struct enet_softc *sc = ifp->if_softc;
1101 1.1 ryo
1102 1.1 ryo ether_mediastatus(ifp, ifmr);
1103 1.1 ryo ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
1104 1.1 ryo | sc->sc_flowflags;
1105 1.1 ryo }
1106 1.1 ryo
1107 1.1 ryo static int
1108 1.1 ryo enet_ifflags_cb(struct ethercom *ec)
1109 1.1 ryo {
1110 1.1 ryo struct ifnet *ifp = &ec->ec_if;
1111 1.1 ryo struct enet_softc *sc = ifp->if_softc;
1112 1.1 ryo int change = ifp->if_flags ^ sc->sc_if_flags;
1113 1.1 ryo
1114 1.1 ryo if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
1115 1.1 ryo return ENETRESET;
1116 1.1 ryo else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
1117 1.1 ryo return 0;
1118 1.1 ryo
1119 1.1 ryo enet_setmulti(sc);
1120 1.1 ryo
1121 1.1 ryo sc->sc_if_flags = ifp->if_flags;
1122 1.1 ryo return 0;
1123 1.1 ryo }
1124 1.1 ryo
1125 1.1 ryo static int
1126 1.1 ryo enet_ioctl(struct ifnet *ifp, u_long command, void *data)
1127 1.1 ryo {
1128 1.1 ryo struct enet_softc *sc;
1129 1.1 ryo struct ifreq *ifr;
1130 1.1 ryo int s, error;
1131 1.1 ryo uint32_t v;
1132 1.1 ryo
1133 1.1 ryo sc = ifp->if_softc;
1134 1.1 ryo ifr = data;
1135 1.1 ryo
1136 1.1 ryo error = 0;
1137 1.1 ryo
1138 1.1 ryo s = splnet();
1139 1.1 ryo
1140 1.1 ryo switch (command) {
1141 1.1 ryo case SIOCSIFMTU:
1142 1.1 ryo if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
1143 1.1 ryo error = EINVAL;
1144 1.1 ryo } else {
1145 1.1 ryo ifp->if_mtu = ifr->ifr_mtu;
1146 1.1 ryo
1147 1.1 ryo /* set maximum frame length */
1148 1.1 ryo v = MTU2FRAMESIZE(ifr->ifr_mtu);
1149 1.1 ryo ENET_REG_WRITE(sc, ENET_FTRL, v);
1150 1.1 ryo v = ENET_REG_READ(sc, ENET_RCR);
1151 1.1 ryo v &= ~ENET_RCR_MAX_FL(0x3fff);
1152 1.1 ryo v |= ENET_RCR_MAX_FL(ifp->if_mtu +
1153 1.1 ryo ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
1154 1.1 ryo ENET_REG_WRITE(sc, ENET_RCR, v);
1155 1.1 ryo }
1156 1.1 ryo break;
1157 1.1 ryo case SIOCSIFMEDIA:
1158 1.1 ryo case SIOCGIFMEDIA:
1159 1.1 ryo /* Flow control requires full-duplex mode. */
1160 1.1 ryo if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1161 1.1 ryo (ifr->ifr_media & IFM_FDX) == 0)
1162 1.1 ryo ifr->ifr_media &= ~IFM_ETH_FMASK;
1163 1.1 ryo if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1164 1.1 ryo if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1165 1.1 ryo /* We can do both TXPAUSE and RXPAUSE. */
1166 1.1 ryo ifr->ifr_media |=
1167 1.1 ryo IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1168 1.1 ryo }
1169 1.1 ryo sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1170 1.1 ryo }
1171 1.1 ryo error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1172 1.1 ryo break;
1173 1.1 ryo default:
1174 1.1 ryo error = ether_ioctl(ifp, command, data);
1175 1.1 ryo if (error != ENETRESET)
1176 1.1 ryo break;
1177 1.1 ryo
1178 1.1 ryo /* post-process */
1179 1.1 ryo error = 0;
1180 1.1 ryo switch (command) {
1181 1.1 ryo case SIOCSIFCAP:
1182 1.1 ryo error = (*ifp->if_init)(ifp);
1183 1.1 ryo break;
1184 1.1 ryo case SIOCADDMULTI:
1185 1.1 ryo case SIOCDELMULTI:
1186 1.1 ryo if (ifp->if_flags & IFF_RUNNING)
1187 1.1 ryo enet_setmulti(sc);
1188 1.1 ryo break;
1189 1.1 ryo }
1190 1.1 ryo break;
1191 1.1 ryo }
1192 1.1 ryo
1193 1.1 ryo splx(s);
1194 1.1 ryo
1195 1.1 ryo return error;
1196 1.1 ryo }
1197 1.1 ryo
1198 1.1 ryo /*
1199 1.1 ryo * for MII
1200 1.1 ryo */
1201 1.1 ryo static int
1202 1.1 ryo enet_miibus_readreg(device_t dev, int phy, int reg)
1203 1.1 ryo {
1204 1.1 ryo struct enet_softc *sc;
1205 1.1 ryo int timeout;
1206 1.1 ryo uint32_t val, status;
1207 1.1 ryo
1208 1.1 ryo sc = device_private(dev);
1209 1.1 ryo
1210 1.1 ryo /* clear MII update */
1211 1.1 ryo ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1212 1.1 ryo
1213 1.1 ryo /* read command */
1214 1.1 ryo ENET_REG_WRITE(sc, ENET_MMFR,
1215 1.1 ryo ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1216 1.1 ryo ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1217 1.1 ryo
1218 1.1 ryo /* check MII update */
1219 1.1 ryo for (timeout = 5000; timeout > 0; --timeout) {
1220 1.1 ryo status = ENET_REG_READ(sc, ENET_EIR);
1221 1.1 ryo if (status & ENET_EIR_MII)
1222 1.1 ryo break;
1223 1.1 ryo }
1224 1.1 ryo if (timeout <= 0) {
1225 1.1 ryo DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1226 1.1 ryo reg);
1227 1.1 ryo val = -1;
1228 1.1 ryo } else {
1229 1.1 ryo val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1230 1.1 ryo }
1231 1.1 ryo
1232 1.1 ryo return val;
1233 1.1 ryo }
1234 1.1 ryo
1235 1.1 ryo static void
1236 1.1 ryo enet_miibus_writereg(device_t dev, int phy, int reg, int val)
1237 1.1 ryo {
1238 1.1 ryo struct enet_softc *sc;
1239 1.1 ryo int timeout;
1240 1.1 ryo
1241 1.1 ryo sc = device_private(dev);
1242 1.1 ryo
1243 1.1 ryo /* clear MII update */
1244 1.1 ryo ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1245 1.1 ryo
1246 1.1 ryo /* write command */
1247 1.1 ryo ENET_REG_WRITE(sc, ENET_MMFR,
1248 1.1 ryo ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1249 1.1 ryo ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1250 1.1 ryo (ENET_MMFR_DATAMASK & val));
1251 1.1 ryo
1252 1.1 ryo /* check MII update */
1253 1.1 ryo for (timeout = 5000; timeout > 0; --timeout) {
1254 1.1 ryo if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1255 1.1 ryo break;
1256 1.1 ryo }
1257 1.1 ryo if (timeout <= 0) {
1258 1.1 ryo DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n",
1259 1.1 ryo reg);
1260 1.1 ryo }
1261 1.1 ryo }
1262 1.1 ryo
1263 1.1 ryo static void
1264 1.1 ryo enet_miibus_statchg(struct ifnet *ifp)
1265 1.1 ryo {
1266 1.1 ryo struct enet_softc *sc;
1267 1.1 ryo struct mii_data *mii;
1268 1.1 ryo struct ifmedia_entry *ife;
1269 1.1 ryo uint32_t ecr, ecr0;
1270 1.1 ryo uint32_t rcr, rcr0;
1271 1.1 ryo uint32_t tcr, tcr0;
1272 1.1 ryo
1273 1.1 ryo sc = ifp->if_softc;
1274 1.1 ryo mii = &sc->sc_mii;
1275 1.1 ryo ife = mii->mii_media.ifm_cur;
1276 1.1 ryo
1277 1.1 ryo /* get current status */
1278 1.1 ryo ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1279 1.1 ryo rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1280 1.1 ryo tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1281 1.1 ryo
1282 1.1 ryo if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1283 1.1 ryo (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1284 1.1 ryo sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1285 1.1 ryo mii->mii_media_active &= ~IFM_ETH_FMASK;
1286 1.1 ryo }
1287 1.1 ryo
1288 1.1 ryo if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1289 1.1 ryo tcr |= ENET_TCR_FDEN; /* full duplex */
1290 1.1 ryo rcr &= ~ENET_RCR_DRT;; /* enable receive on transmit */
1291 1.1 ryo } else {
1292 1.1 ryo tcr &= ~ENET_TCR_FDEN; /* half duplex */
1293 1.1 ryo rcr |= ENET_RCR_DRT; /* disable receive on transmit */
1294 1.1 ryo }
1295 1.1 ryo
1296 1.1 ryo if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1297 1.1 ryo /*
1298 1.1 ryo * need to reset because
1299 1.1 ryo * FDEN can change when ECR[ETHEREN] is 0
1300 1.1 ryo */
1301 1.1 ryo enet_init_regs(sc, 0);
1302 1.1 ryo return;
1303 1.1 ryo }
1304 1.1 ryo
1305 1.1 ryo switch (IFM_SUBTYPE(ife->ifm_media)) {
1306 1.1 ryo case IFM_AUTO:
1307 1.1 ryo case IFM_1000_T:
1308 1.1 ryo ecr |= ENET_ECR_SPEED; /* 1000Mbps mode */
1309 1.1 ryo break;
1310 1.1 ryo case IFM_100_TX:
1311 1.1 ryo ecr &= ~ENET_ECR_SPEED; /* 100Mbps mode */
1312 1.1 ryo rcr &= ~ENET_RCR_RMII_10T; /* 100Mbps mode */
1313 1.1 ryo break;
1314 1.1 ryo case IFM_10_T:
1315 1.1 ryo ecr &= ~ENET_ECR_SPEED; /* 10Mbps mode */
1316 1.1 ryo rcr |= ENET_RCR_RMII_10T; /* 10Mbps mode */
1317 1.1 ryo break;
1318 1.1 ryo default:
1319 1.1 ryo ecr = ecr0;
1320 1.1 ryo rcr = rcr0;
1321 1.1 ryo tcr = tcr0;
1322 1.1 ryo break;
1323 1.1 ryo }
1324 1.1 ryo
1325 1.1 ryo if (sc->sc_flowflags & IFM_FLOW)
1326 1.1 ryo rcr |= ENET_RCR_FCE;
1327 1.1 ryo else
1328 1.1 ryo rcr &= ~ENET_RCR_FCE;
1329 1.1 ryo
1330 1.1 ryo /* update registers if need change */
1331 1.1 ryo if (ecr != ecr0)
1332 1.1 ryo ENET_REG_WRITE(sc, ENET_ECR, ecr);
1333 1.1 ryo if (rcr != rcr0)
1334 1.1 ryo ENET_REG_WRITE(sc, ENET_RCR, rcr);
1335 1.1 ryo if (tcr != tcr0)
1336 1.1 ryo ENET_REG_WRITE(sc, ENET_TCR, tcr);
1337 1.1 ryo }
1338 1.1 ryo
1339 1.1 ryo /*
1340 1.1 ryo * handling descriptors
1341 1.1 ryo */
1342 1.1 ryo static void
1343 1.1 ryo enet_init_txring(struct enet_softc *sc)
1344 1.1 ryo {
1345 1.1 ryo int i;
1346 1.1 ryo
1347 1.1 ryo /* build TX ring */
1348 1.1 ryo for (i = 0; i < ENET_TX_RING_CNT; i++) {
1349 1.1 ryo sc->sc_txdesc_ring[i].tx_flags1_len =
1350 1.1 ryo ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1351 1.1 ryo sc->sc_txdesc_ring[i].tx_databuf = 0;
1352 1.1 ryo sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1353 1.1 ryo sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1354 1.1 ryo sc->sc_txdesc_ring[i].tx_flags3 = 0;
1355 1.1 ryo sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1356 1.1 ryo sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1357 1.1 ryo sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1358 1.1 ryo
1359 1.1 ryo TXDESC_WRITEOUT(i);
1360 1.1 ryo }
1361 1.1 ryo
1362 1.1 ryo sc->sc_tx_free = ENET_TX_RING_CNT;
1363 1.1 ryo sc->sc_tx_considx = 0;
1364 1.1 ryo sc->sc_tx_prodidx = 0;
1365 1.1 ryo }
1366 1.1 ryo
1367 1.1 ryo static int
1368 1.1 ryo enet_init_rxring(struct enet_softc *sc)
1369 1.1 ryo {
1370 1.1 ryo int i, error;
1371 1.1 ryo
1372 1.1 ryo /* build RX ring */
1373 1.1 ryo for (i = 0; i < ENET_RX_RING_CNT; i++) {
1374 1.1 ryo error = enet_alloc_rxbuf(sc, i);
1375 1.1 ryo if (error != 0)
1376 1.1 ryo return error;
1377 1.1 ryo }
1378 1.1 ryo
1379 1.1 ryo sc->sc_rx_readidx = 0;
1380 1.1 ryo
1381 1.1 ryo return 0;
1382 1.1 ryo }
1383 1.1 ryo
1384 1.1 ryo static int
1385 1.1 ryo enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1386 1.1 ryo {
1387 1.1 ryo struct mbuf *m;
1388 1.1 ryo int error;
1389 1.1 ryo
1390 1.1 ryo KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1391 1.1 ryo
1392 1.1 ryo /* free mbuf if already allocated */
1393 1.1 ryo if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1394 1.1 ryo bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1395 1.1 ryo m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1396 1.1 ryo sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1397 1.1 ryo }
1398 1.1 ryo
1399 1.1 ryo /* allocate new mbuf cluster */
1400 1.1 ryo MGETHDR(m, M_DONTWAIT, MT_DATA);
1401 1.1 ryo if (m == NULL)
1402 1.1 ryo return ENOBUFS;
1403 1.1 ryo MCLGET(m, M_DONTWAIT);
1404 1.1 ryo if (!(m->m_flags & M_EXT)) {
1405 1.1 ryo m_freem(m);
1406 1.1 ryo return ENOBUFS;
1407 1.1 ryo }
1408 1.1 ryo m->m_len = MCLBYTES;
1409 1.1 ryo m->m_next = NULL;
1410 1.1 ryo
1411 1.1 ryo error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1412 1.1 ryo m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1413 1.1 ryo BUS_DMA_READ | BUS_DMA_NOWAIT);
1414 1.1 ryo if (error)
1415 1.1 ryo return error;
1416 1.1 ryo
1417 1.1 ryo bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1418 1.1 ryo sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1419 1.1 ryo BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1420 1.1 ryo
1421 1.1 ryo sc->sc_rxsoft[idx].rxs_mbuf = m;
1422 1.1 ryo enet_reset_rxdesc(sc, idx);
1423 1.1 ryo return 0;
1424 1.1 ryo }
1425 1.1 ryo
1426 1.1 ryo static void
1427 1.1 ryo enet_reset_rxdesc(struct enet_softc *sc, int idx)
1428 1.1 ryo {
1429 1.1 ryo uint32_t paddr;
1430 1.1 ryo
1431 1.1 ryo paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1432 1.1 ryo
1433 1.1 ryo sc->sc_rxdesc_ring[idx].rx_flags1_len =
1434 1.1 ryo RXFLAGS1_E |
1435 1.1 ryo ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1436 1.1 ryo sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1437 1.1 ryo sc->sc_rxdesc_ring[idx].rx_flags2 =
1438 1.1 ryo RXFLAGS2_INT;
1439 1.1 ryo sc->sc_rxdesc_ring[idx].rx_hl = 0;
1440 1.1 ryo sc->sc_rxdesc_ring[idx].rx_proto = 0;
1441 1.1 ryo sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1442 1.1 ryo sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1443 1.1 ryo sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1444 1.1 ryo sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1445 1.1 ryo sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1446 1.1 ryo
1447 1.1 ryo RXDESC_WRITEOUT(idx);
1448 1.1 ryo }
1449 1.1 ryo
1450 1.1 ryo static void
1451 1.1 ryo enet_drain_txbuf(struct enet_softc *sc)
1452 1.1 ryo {
1453 1.1 ryo int idx;
1454 1.1 ryo struct enet_txsoft *txs;
1455 1.1 ryo struct ifnet *ifp;
1456 1.1 ryo
1457 1.1 ryo ifp = &sc->sc_ethercom.ec_if;
1458 1.1 ryo
1459 1.1 ryo for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1460 1.1 ryo idx = ENET_TX_NEXTIDX(idx)) {
1461 1.1 ryo
1462 1.1 ryo /* txsoft[] is used only first segment */
1463 1.1 ryo txs = &sc->sc_txsoft[idx];
1464 1.1 ryo TXDESC_READIN(idx);
1465 1.1 ryo if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1466 1.1 ryo sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1467 1.1 ryo bus_dmamap_unload(sc->sc_dmat,
1468 1.1 ryo txs->txs_dmamap);
1469 1.1 ryo m_freem(txs->txs_mbuf);
1470 1.1 ryo
1471 1.1 ryo ifp->if_oerrors++;
1472 1.1 ryo }
1473 1.1 ryo sc->sc_tx_free++;
1474 1.1 ryo }
1475 1.1 ryo }
1476 1.1 ryo
1477 1.1 ryo static void
1478 1.1 ryo enet_drain_rxbuf(struct enet_softc *sc)
1479 1.1 ryo {
1480 1.1 ryo int i;
1481 1.1 ryo
1482 1.1 ryo for (i = 0; i < ENET_RX_RING_CNT; i++) {
1483 1.1 ryo if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1484 1.1 ryo sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1485 1.1 ryo bus_dmamap_unload(sc->sc_dmat,
1486 1.1 ryo sc->sc_rxsoft[i].rxs_dmamap);
1487 1.1 ryo m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1488 1.1 ryo sc->sc_rxsoft[i].rxs_mbuf = NULL;
1489 1.1 ryo }
1490 1.1 ryo }
1491 1.1 ryo }
1492 1.1 ryo
1493 1.1 ryo static int
1494 1.1 ryo enet_alloc_ring(struct enet_softc *sc)
1495 1.1 ryo {
1496 1.1 ryo int i, error;
1497 1.1 ryo
1498 1.1 ryo /*
1499 1.1 ryo * build DMA maps for TX.
1500 1.1 ryo * TX descriptor must be able to contain mbuf chains,
1501 1.1 ryo * so, make up ENET_MAX_PKT_NSEGS dmamap.
1502 1.1 ryo */
1503 1.1 ryo for (i = 0; i < ENET_TX_RING_CNT; i++) {
1504 1.1 ryo error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1505 1.1 ryo ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1506 1.1 ryo &sc->sc_txsoft[i].txs_dmamap);
1507 1.1 ryo
1508 1.1 ryo if (error) {
1509 1.1 ryo aprint_error_dev(sc->sc_dev,
1510 1.1 ryo "can't create DMA map for TX descs\n");
1511 1.1 ryo goto fail_1;
1512 1.1 ryo }
1513 1.1 ryo }
1514 1.1 ryo
1515 1.1 ryo /*
1516 1.1 ryo * build DMA maps for RX.
1517 1.1 ryo * RX descripter contains An mbuf cluster,
1518 1.1 ryo * and make up a dmamap.
1519 1.1 ryo */
1520 1.1 ryo for (i = 0; i < ENET_RX_RING_CNT; i++) {
1521 1.1 ryo error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1522 1.1 ryo 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1523 1.1 ryo &sc->sc_rxsoft[i].rxs_dmamap);
1524 1.1 ryo if (error) {
1525 1.1 ryo aprint_error_dev(sc->sc_dev,
1526 1.1 ryo "can't create DMA map for RX descs\n");
1527 1.1 ryo goto fail_2;
1528 1.1 ryo }
1529 1.1 ryo }
1530 1.1 ryo
1531 1.1 ryo if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1532 1.1 ryo (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1533 1.1 ryo return -1;
1534 1.1 ryo memset(sc->sc_txdesc_ring, 0,
1535 1.1 ryo sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1536 1.1 ryo
1537 1.1 ryo if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1538 1.1 ryo (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1539 1.1 ryo return -1;
1540 1.1 ryo memset(sc->sc_rxdesc_ring, 0,
1541 1.1 ryo sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1542 1.1 ryo
1543 1.1 ryo return 0;
1544 1.1 ryo
1545 1.1 ryo fail_2:
1546 1.1 ryo for (i = 0; i < ENET_RX_RING_CNT; i++) {
1547 1.1 ryo if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1548 1.1 ryo bus_dmamap_destroy(sc->sc_dmat,
1549 1.1 ryo sc->sc_rxsoft[i].rxs_dmamap);
1550 1.1 ryo }
1551 1.1 ryo fail_1:
1552 1.1 ryo for (i = 0; i < ENET_TX_RING_CNT; i++) {
1553 1.1 ryo if (sc->sc_txsoft[i].txs_dmamap != NULL)
1554 1.1 ryo bus_dmamap_destroy(sc->sc_dmat,
1555 1.1 ryo sc->sc_txsoft[i].txs_dmamap);
1556 1.1 ryo }
1557 1.1 ryo return error;
1558 1.1 ryo }
1559 1.1 ryo
1560 1.1 ryo static int
1561 1.1 ryo enet_encap_mbufalign(struct mbuf **mp)
1562 1.1 ryo {
1563 1.1 ryo struct mbuf *m, *m0, *mt, *p, *x;
1564 1.1 ryo void *ap;
1565 1.1 ryo uint32_t alignoff, chiplen;
1566 1.1 ryo
1567 1.1 ryo /*
1568 1.1 ryo * iMX6 SoC ethernet controller requires
1569 1.1 ryo * address of buffer must aligned 8, and
1570 1.1 ryo * length of buffer must be greater than 10 (first fragment only?)
1571 1.1 ryo */
1572 1.1 ryo #define ALIGNBYTE 8
1573 1.1 ryo #define MINBUFSIZE 10
1574 1.1 ryo #define ALIGN_PTR(p, align) \
1575 1.1 ryo (void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1576 1.1 ryo
1577 1.1 ryo m0 = *mp;
1578 1.1 ryo mt = p = NULL;
1579 1.1 ryo for (m = m0; m != NULL; m = m->m_next) {
1580 1.1 ryo alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1581 1.1 ryo if (m->m_len < (ALIGNBYTE * 2)) {
1582 1.1 ryo /*
1583 1.1 ryo * rearrange mbuf data aligned
1584 1.1 ryo *
1585 1.1 ryo * align 8 * * * * *
1586 1.1 ryo * +0123456789abcdef0123456789abcdef0
1587 1.1 ryo * FROM m->m_data[___________abcdefghijklmn_______]
1588 1.1 ryo *
1589 1.1 ryo * +0123456789abcdef0123456789abcdef0
1590 1.1 ryo * TO m->m_data[________abcdefghijklm___________] or
1591 1.1 ryo * m->m_data[________________abcdefghijklmn__]
1592 1.1 ryo */
1593 1.1 ryo if ((alignoff != 0) && (m->m_len != 0)) {
1594 1.1 ryo chiplen = ALIGNBYTE - alignoff;
1595 1.1 ryo if (M_LEADINGSPACE(m) >= alignoff) {
1596 1.1 ryo ap = m->m_data - alignoff;
1597 1.1 ryo memmove(ap, m->m_data, m->m_len);
1598 1.1 ryo m->m_data = ap;
1599 1.1 ryo } else if (M_TRAILINGSPACE(m) >= chiplen) {
1600 1.1 ryo ap = m->m_data + chiplen;
1601 1.1 ryo memmove(ap, m->m_data, m->m_len);
1602 1.1 ryo m->m_data = ap;
1603 1.1 ryo } else {
1604 1.1 ryo /*
1605 1.1 ryo * no space to align data. (M_READONLY?)
1606 1.1 ryo * allocate new mbuf aligned,
1607 1.1 ryo * and copy to it.
1608 1.1 ryo */
1609 1.1 ryo MGET(x, M_DONTWAIT, m->m_type);
1610 1.1 ryo if (x == NULL) {
1611 1.1 ryo m_freem(m);
1612 1.1 ryo return ENOBUFS;
1613 1.1 ryo }
1614 1.1 ryo MCLAIM(x, m->m_owner);
1615 1.1 ryo if (m->m_flags & M_PKTHDR)
1616 1.1 ryo M_MOVE_PKTHDR(x, m);
1617 1.1 ryo x->m_len = m->m_len;
1618 1.1 ryo x->m_data = ALIGN_PTR(x->m_data,
1619 1.1 ryo ALIGNBYTE);
1620 1.1 ryo memcpy(mtod(x, void *), mtod(m, void *),
1621 1.1 ryo m->m_len);
1622 1.1 ryo p->m_next = x;
1623 1.1 ryo MFREE(m, x->m_next);
1624 1.1 ryo m = x;
1625 1.1 ryo }
1626 1.1 ryo }
1627 1.1 ryo
1628 1.1 ryo /*
1629 1.1 ryo * fill 1st mbuf at least 10byte
1630 1.1 ryo *
1631 1.1 ryo * align 8 * * * * *
1632 1.1 ryo * +0123456789abcdef0123456789abcdef0
1633 1.1 ryo * FROM m->m_data[________abcde___________________]
1634 1.1 ryo * m->m_data[__fg____________________________]
1635 1.1 ryo * m->m_data[_________________hi_____________]
1636 1.1 ryo * m->m_data[__________jk____________________]
1637 1.1 ryo * m->m_data[____l___________________________]
1638 1.1 ryo *
1639 1.1 ryo * +0123456789abcdef0123456789abcdef0
1640 1.1 ryo * TO m->m_data[________abcdefghij______________]
1641 1.1 ryo * m->m_data[________________________________]
1642 1.1 ryo * m->m_data[________________________________]
1643 1.1 ryo * m->m_data[___________k____________________]
1644 1.1 ryo * m->m_data[____l___________________________]
1645 1.1 ryo */
1646 1.1 ryo if (mt == NULL) {
1647 1.1 ryo mt = m;
1648 1.1 ryo while (mt->m_len == 0) {
1649 1.1 ryo mt = mt->m_next;
1650 1.1 ryo if (mt == NULL) {
1651 1.1 ryo m_freem(m);
1652 1.1 ryo return ENOBUFS;
1653 1.1 ryo }
1654 1.1 ryo }
1655 1.1 ryo
1656 1.1 ryo /* mt = 1st mbuf, x = 2nd mbuf */
1657 1.1 ryo x = mt->m_next;
1658 1.1 ryo while (mt->m_len < MINBUFSIZE) {
1659 1.1 ryo if (x == NULL) {
1660 1.1 ryo m_freem(m);
1661 1.1 ryo return ENOBUFS;
1662 1.1 ryo }
1663 1.1 ryo
1664 1.1 ryo alignoff = (uintptr_t)x->m_data &
1665 1.1 ryo (ALIGNBYTE - 1);
1666 1.1 ryo chiplen = ALIGNBYTE - alignoff;
1667 1.1 ryo if (chiplen > x->m_len) {
1668 1.1 ryo chiplen = x->m_len;
1669 1.1 ryo } else if ((mt->m_len + chiplen) <
1670 1.1 ryo MINBUFSIZE) {
1671 1.1 ryo /*
1672 1.1 ryo * next mbuf should be greater
1673 1.1 ryo * than ALIGNBYTE?
1674 1.1 ryo */
1675 1.1 ryo if (x->m_len >= (chiplen +
1676 1.1 ryo ALIGNBYTE * 2))
1677 1.1 ryo chiplen += ALIGNBYTE;
1678 1.1 ryo else
1679 1.1 ryo chiplen = x->m_len;
1680 1.1 ryo }
1681 1.1 ryo
1682 1.1 ryo if (chiplen &&
1683 1.1 ryo (M_TRAILINGSPACE(mt) < chiplen)) {
1684 1.1 ryo /*
1685 1.1 ryo * move data to the begining of
1686 1.1 ryo * m_dat[] (aligned) to en-
1687 1.1 ryo * large trailingspace
1688 1.1 ryo */
1689 1.1 ryo if (mt->m_flags & M_EXT) {
1690 1.1 ryo ap = mt->m_ext.ext_buf;
1691 1.1 ryo } else if (mt->m_flags &
1692 1.1 ryo M_PKTHDR) {
1693 1.1 ryo ap = mt->m_pktdat;
1694 1.1 ryo } else {
1695 1.1 ryo ap = mt->m_dat;
1696 1.1 ryo }
1697 1.1 ryo ap = ALIGN_PTR(ap, ALIGNBYTE);
1698 1.1 ryo memcpy(ap, mt->m_data, mt->m_len);
1699 1.1 ryo mt->m_data = ap;
1700 1.1 ryo }
1701 1.1 ryo
1702 1.1 ryo if (chiplen &&
1703 1.1 ryo (M_TRAILINGSPACE(mt) >= chiplen)) {
1704 1.1 ryo memcpy(mt->m_data + mt->m_len,
1705 1.1 ryo x->m_data, chiplen);
1706 1.1 ryo mt->m_len += chiplen;
1707 1.1 ryo m_adj(x, chiplen);
1708 1.1 ryo }
1709 1.1 ryo
1710 1.1 ryo x = x->m_next;
1711 1.1 ryo }
1712 1.1 ryo }
1713 1.1 ryo
1714 1.1 ryo } else {
1715 1.1 ryo mt = m;
1716 1.1 ryo
1717 1.1 ryo /*
1718 1.1 ryo * allocate new mbuf x, and rearrange as below;
1719 1.1 ryo *
1720 1.1 ryo * align 8 * * * * *
1721 1.1 ryo * +0123456789abcdef0123456789abcdef0
1722 1.1 ryo * FROM m->m_data[____________abcdefghijklmnopq___]
1723 1.1 ryo *
1724 1.1 ryo * +0123456789abcdef0123456789abcdef0
1725 1.1 ryo * TO x->m_data[________abcdefghijkl____________]
1726 1.1 ryo * m->m_data[________________________mnopq___]
1727 1.1 ryo *
1728 1.1 ryo */
1729 1.1 ryo if (alignoff != 0) {
1730 1.1 ryo /* at least ALIGNBYTE */
1731 1.1 ryo chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1732 1.1 ryo
1733 1.1 ryo MGET(x, M_DONTWAIT, m->m_type);
1734 1.1 ryo if (x == NULL) {
1735 1.1 ryo m_freem(m);
1736 1.1 ryo return ENOBUFS;
1737 1.1 ryo }
1738 1.1 ryo MCLAIM(x, m->m_owner);
1739 1.1 ryo if (m->m_flags & M_PKTHDR)
1740 1.1 ryo M_MOVE_PKTHDR(x, m);
1741 1.1 ryo x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1742 1.1 ryo memcpy(mtod(x, void *), mtod(m, void *),
1743 1.1 ryo chiplen);
1744 1.1 ryo x->m_len = chiplen;
1745 1.1 ryo x->m_next = m;
1746 1.1 ryo m_adj(m, chiplen);
1747 1.1 ryo
1748 1.1 ryo if (p == NULL)
1749 1.1 ryo m0 = x;
1750 1.1 ryo else
1751 1.1 ryo p->m_next = x;
1752 1.1 ryo }
1753 1.1 ryo }
1754 1.1 ryo p = m;
1755 1.1 ryo }
1756 1.1 ryo *mp = m0;
1757 1.1 ryo
1758 1.1 ryo return 0;
1759 1.1 ryo }
1760 1.1 ryo
1761 1.1 ryo static int
1762 1.1 ryo enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1763 1.1 ryo {
1764 1.1 ryo bus_dmamap_t map;
1765 1.1 ryo struct mbuf *m;
1766 1.1 ryo int csumflags, idx, i, error;
1767 1.1 ryo uint32_t flags1, flags2;
1768 1.1 ryo
1769 1.1 ryo idx = sc->sc_tx_prodidx;
1770 1.1 ryo map = sc->sc_txsoft[idx].txs_dmamap;
1771 1.1 ryo
1772 1.1 ryo /* align mbuf data for claim of ENET */
1773 1.1 ryo error = enet_encap_mbufalign(mp);
1774 1.1 ryo if (error != 0)
1775 1.1 ryo return error;
1776 1.1 ryo
1777 1.1 ryo m = *mp;
1778 1.1 ryo csumflags = m->m_pkthdr.csum_flags;
1779 1.1 ryo
1780 1.1 ryo error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1781 1.1 ryo BUS_DMA_NOWAIT);
1782 1.1 ryo if (error != 0) {
1783 1.1 ryo device_printf(sc->sc_dev,
1784 1.1 ryo "Error mapping mbuf into TX chain: error=%d\n", error);
1785 1.1 ryo m_freem(m);
1786 1.1 ryo return error;
1787 1.1 ryo }
1788 1.1 ryo
1789 1.1 ryo if (map->dm_nsegs > sc->sc_tx_free) {
1790 1.1 ryo bus_dmamap_unload(sc->sc_dmat, map);
1791 1.1 ryo device_printf(sc->sc_dev,
1792 1.1 ryo "too many mbuf chain %d\n", map->dm_nsegs);
1793 1.1 ryo m_freem(m);
1794 1.1 ryo return ENOBUFS;
1795 1.1 ryo }
1796 1.1 ryo
1797 1.1 ryo /* fill protocol cksum zero beforehand */
1798 1.1 ryo if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1799 1.1 ryo M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1800 1.1 ryo struct mbuf *m1;
1801 1.1 ryo int ehlen, moff;
1802 1.1 ryo uint16_t etype;
1803 1.1 ryo
1804 1.1 ryo m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1805 1.1 ryo switch (ntohs(etype)) {
1806 1.1 ryo case ETHERTYPE_IP:
1807 1.1 ryo case ETHERTYPE_IPV6:
1808 1.1 ryo ehlen = ETHER_HDR_LEN;
1809 1.1 ryo break;
1810 1.1 ryo case ETHERTYPE_VLAN:
1811 1.1 ryo ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1812 1.1 ryo break;
1813 1.1 ryo default:
1814 1.1 ryo ehlen = 0;
1815 1.1 ryo break;
1816 1.1 ryo }
1817 1.1 ryo
1818 1.1 ryo if (ehlen) {
1819 1.1 ryo m1 = m_getptr(m, ehlen +
1820 1.1 ryo M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1821 1.1 ryo M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data),
1822 1.1 ryo &moff);
1823 1.1 ryo if (m1 != NULL)
1824 1.1 ryo *(uint16_t *)(mtod(m1, char *) + moff) = 0;
1825 1.1 ryo }
1826 1.1 ryo }
1827 1.1 ryo
1828 1.1 ryo bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1829 1.1 ryo BUS_DMASYNC_PREWRITE);
1830 1.1 ryo
1831 1.1 ryo for (i = 0; i < map->dm_nsegs; i++) {
1832 1.1 ryo flags1 = TXFLAGS1_R;
1833 1.1 ryo flags2 = 0;
1834 1.1 ryo
1835 1.1 ryo if (i == 0) {
1836 1.1 ryo flags1 |= TXFLAGS1_T1; /* mark as first segment */
1837 1.1 ryo sc->sc_txsoft[idx].txs_mbuf = m;
1838 1.1 ryo }
1839 1.1 ryo
1840 1.1 ryo /* checksum offloading */
1841 1.1 ryo if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1842 1.1 ryo M_CSUM_UDPv6 | M_CSUM_TCPv6))
1843 1.1 ryo flags2 |= TXFLAGS2_PINS;
1844 1.1 ryo if (csumflags & (M_CSUM_IPv4))
1845 1.1 ryo flags2 |= TXFLAGS2_IINS;
1846 1.1 ryo
1847 1.1 ryo if (i == map->dm_nsegs - 1) {
1848 1.1 ryo /* mark last segment */
1849 1.1 ryo flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1850 1.1 ryo flags2 |= TXFLAGS2_INT;
1851 1.1 ryo }
1852 1.1 ryo if (idx == ENET_TX_RING_CNT - 1) {
1853 1.1 ryo /* mark end of ring */
1854 1.1 ryo flags1 |= TXFLAGS1_W;
1855 1.1 ryo }
1856 1.1 ryo
1857 1.1 ryo sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1858 1.1 ryo sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1859 1.1 ryo sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1860 1.1 ryo sc->sc_txdesc_ring[idx].tx_flags1_len =
1861 1.1 ryo flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1862 1.1 ryo
1863 1.1 ryo TXDESC_WRITEOUT(idx);
1864 1.1 ryo
1865 1.1 ryo idx = ENET_TX_NEXTIDX(idx);
1866 1.1 ryo sc->sc_tx_free--;
1867 1.1 ryo }
1868 1.1 ryo
1869 1.1 ryo sc->sc_tx_prodidx = idx;
1870 1.1 ryo
1871 1.1 ryo return 0;
1872 1.1 ryo }
1873 1.1 ryo
1874 1.1 ryo /*
1875 1.1 ryo * device initialize
1876 1.1 ryo */
1877 1.1 ryo static int
1878 1.1 ryo enet_init_plls(struct enet_softc *sc)
1879 1.1 ryo {
1880 1.1 ryo #if NIMXCCM > 0
1881 1.1 ryo /* PLL power up */
1882 1.1 ryo if (imx6_pll_power(CCM_ANALOG_PLL_ENET, 1) != 0) {
1883 1.1 ryo aprint_error_dev(sc->sc_dev,
1884 1.1 ryo "couldn't enable CCM_ANALOG_PLL_ENET\n");
1885 1.1 ryo return -1;
1886 1.1 ryo }
1887 1.1 ryo #endif
1888 1.1 ryo
1889 1.1 ryo return 0;
1890 1.1 ryo }
1891 1.1 ryo
1892 1.1 ryo static int
1893 1.1 ryo enet_init_regs(struct enet_softc *sc, int init)
1894 1.1 ryo {
1895 1.1 ryo struct mii_data *mii;
1896 1.1 ryo struct ifmedia_entry *ife;
1897 1.1 ryo paddr_t paddr;
1898 1.1 ryo uint32_t val;
1899 1.1 ryo int fulldup, ecr_speed, rcr_speed, flowctrl;
1900 1.1 ryo
1901 1.1 ryo if (init) {
1902 1.1 ryo fulldup = 1;
1903 1.1 ryo ecr_speed = ENET_ECR_SPEED;
1904 1.1 ryo rcr_speed = 0;
1905 1.1 ryo flowctrl = 0;
1906 1.1 ryo } else {
1907 1.1 ryo mii = &sc->sc_mii;
1908 1.1 ryo ife = mii->mii_media.ifm_cur;
1909 1.1 ryo
1910 1.1 ryo if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1911 1.1 ryo fulldup = 1;
1912 1.1 ryo else
1913 1.1 ryo fulldup = 0;
1914 1.1 ryo
1915 1.1 ryo switch (IFM_SUBTYPE(ife->ifm_media)) {
1916 1.1 ryo case IFM_10_T:
1917 1.1 ryo ecr_speed = 0;
1918 1.1 ryo rcr_speed = ENET_RCR_RMII_10T;
1919 1.1 ryo break;
1920 1.1 ryo case IFM_100_TX:
1921 1.1 ryo ecr_speed = 0;
1922 1.1 ryo rcr_speed = 0;
1923 1.1 ryo break;
1924 1.1 ryo default:
1925 1.1 ryo ecr_speed = ENET_ECR_SPEED;
1926 1.1 ryo rcr_speed = 0;
1927 1.1 ryo break;
1928 1.1 ryo }
1929 1.1 ryo
1930 1.1 ryo flowctrl = sc->sc_flowflags & IFM_FLOW;
1931 1.1 ryo }
1932 1.1 ryo
1933 1.1 ryo /* reset */
1934 1.1 ryo ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1935 1.1 ryo
1936 1.1 ryo /* mask and clear all interrupt */
1937 1.1 ryo ENET_REG_WRITE(sc, ENET_EIMR, 0);
1938 1.1 ryo ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1939 1.1 ryo
1940 1.1 ryo /* full duplex */
1941 1.1 ryo ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1942 1.1 ryo
1943 1.1 ryo /* clear and enable MIB register */
1944 1.1 ryo ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1945 1.1 ryo ENET_REG_WRITE(sc, ENET_MIBC, 0);
1946 1.1 ryo
1947 1.1 ryo /* MII speed setup. MDCclk(=2.5MHz) = PLL6clk/((val+1)*2) */
1948 1.1 ryo val = (imx6_get_clock(IMX6CLK_PLL6) / 500000 - 1) / 10;
1949 1.1 ryo ENET_REG_WRITE(sc, ENET_MSCR, val);
1950 1.1 ryo
1951 1.1 ryo /* Opcode/Pause Duration */
1952 1.1 ryo ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1953 1.1 ryo
1954 1.1 ryo /* Receive FIFO */
1955 1.1 ryo ENET_REG_WRITE(sc, ENET_RSFL, 16); /* RxFIFO Section Full */
1956 1.1 ryo ENET_REG_WRITE(sc, ENET_RSEM, 0x84); /* RxFIFO Section Empty */
1957 1.1 ryo ENET_REG_WRITE(sc, ENET_RAEM, 8); /* RxFIFO Almost Empty */
1958 1.1 ryo ENET_REG_WRITE(sc, ENET_RAFL, 8); /* RxFIFO Almost Full */
1959 1.1 ryo
1960 1.1 ryo /* Transmit FIFO */
1961 1.1 ryo ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1962 1.1 ryo ENET_TFWR_FIFO(128)); /* TxFIFO Watermark */
1963 1.1 ryo ENET_REG_WRITE(sc, ENET_TSEM, 0); /* TxFIFO Section Empty */
1964 1.1 ryo ENET_REG_WRITE(sc, ENET_TAEM, 256); /* TxFIFO Almost Empty */
1965 1.1 ryo ENET_REG_WRITE(sc, ENET_TAFL, 8); /* TxFIFO Almost Full */
1966 1.1 ryo ENET_REG_WRITE(sc, ENET_TIPG, 12); /* Tx Inter-Packet Gap */
1967 1.1 ryo
1968 1.1 ryo /* hardware checksum is default off (override in TX descripter) */
1969 1.1 ryo ENET_REG_WRITE(sc, ENET_TACC, 0);
1970 1.1 ryo
1971 1.1 ryo /*
1972 1.1 ryo * align ethernet payload on 32bit, discard frames with MAC layer error,
1973 1.1 ryo * and don't discard checksum error
1974 1.1 ryo */
1975 1.1 ryo ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1976 1.1 ryo
1977 1.1 ryo /* maximum frame size */
1978 1.1 ryo val = ENET_DEFAULT_PKT_LEN;
1979 1.1 ryo ENET_REG_WRITE(sc, ENET_FTRL, val); /* Frame Truncation Length */
1980 1.1 ryo ENET_REG_WRITE(sc, ENET_RCR,
1981 1.1 ryo ENET_RCR_PADEN | /* RX frame padding remove */
1982 1.1 ryo ENET_RCR_RGMII_EN | /* use RGMII */
1983 1.1 ryo (flowctrl ? ENET_RCR_FCE : 0) | /* flow control enable */
1984 1.1 ryo rcr_speed |
1985 1.1 ryo (fulldup ? 0 : ENET_RCR_DRT) |
1986 1.1 ryo ENET_RCR_MAX_FL(val));
1987 1.1 ryo
1988 1.1 ryo /* Maximum Receive BufSize per one descriptor */
1989 1.1 ryo ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1990 1.1 ryo
1991 1.1 ryo
1992 1.1 ryo /* TX/RX Descriptor Physical Address */
1993 1.1 ryo paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1994 1.1 ryo ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1995 1.1 ryo paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
1996 1.1 ryo ENET_REG_WRITE(sc, ENET_RDSR, paddr);
1997 1.1 ryo /* sync cache */
1998 1.1 ryo bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
1999 1.1 ryo sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2000 1.1 ryo bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
2001 1.1 ryo sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2002 1.1 ryo
2003 1.1 ryo /* enable interrupts */
2004 1.1 ryo ENET_REG_WRITE(sc, ENET_EIMR,
2005 1.1 ryo ENET_EIR_TXF |
2006 1.1 ryo ENET_EIR_RXF |
2007 1.1 ryo ENET_EIR_MII |
2008 1.1 ryo ENET_EIR_EBERR |
2009 1.1 ryo 0);
2010 1.1 ryo
2011 1.1 ryo /* enable ether */
2012 1.1 ryo ENET_REG_WRITE(sc, ENET_ECR,
2013 1.1 ryo #if _BYTE_ORDER == _LITTLE_ENDIAN
2014 1.1 ryo ENET_ECR_DBSWP |
2015 1.1 ryo #endif
2016 1.1 ryo ENET_ECR_SPEED | /* default 1000Mbps mode */
2017 1.1 ryo ENET_ECR_EN1588 | /* use enhanced TX/RX descriptor */
2018 1.1 ryo ENET_ECR_ETHEREN); /* Ethernet Enable */
2019 1.1 ryo
2020 1.1 ryo return 0;
2021 1.1 ryo }
2022 1.1 ryo
2023 1.1 ryo static int
2024 1.1 ryo enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
2025 1.1 ryo bus_dmamap_t *mapp)
2026 1.1 ryo {
2027 1.1 ryo bus_dma_segment_t seglist[1];
2028 1.1 ryo int nsegs, error;
2029 1.1 ryo
2030 1.1 ryo if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
2031 1.1 ryo 1, &nsegs, M_WAITOK)) != 0) {
2032 1.1 ryo device_printf(sc->sc_dev,
2033 1.1 ryo "unable to allocate DMA buffer, error=%d\n", error);
2034 1.1 ryo goto fail_alloc;
2035 1.1 ryo }
2036 1.1 ryo
2037 1.1 ryo if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
2038 1.1 ryo BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
2039 1.1 ryo device_printf(sc->sc_dev,
2040 1.1 ryo "unable to map DMA buffer, error=%d\n",
2041 1.1 ryo error);
2042 1.1 ryo goto fail_map;
2043 1.1 ryo }
2044 1.1 ryo
2045 1.1 ryo if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2046 1.1 ryo BUS_DMA_NOWAIT, mapp)) != 0) {
2047 1.1 ryo device_printf(sc->sc_dev,
2048 1.1 ryo "unable to create DMA map, error=%d\n", error);
2049 1.1 ryo goto fail_create;
2050 1.1 ryo }
2051 1.1 ryo
2052 1.1 ryo if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
2053 1.1 ryo BUS_DMA_NOWAIT)) != 0) {
2054 1.1 ryo aprint_error_dev(sc->sc_dev,
2055 1.1 ryo "unable to load DMA map, error=%d\n", error);
2056 1.1 ryo goto fail_load;
2057 1.1 ryo }
2058 1.1 ryo
2059 1.1 ryo return 0;
2060 1.1 ryo
2061 1.1 ryo fail_load:
2062 1.1 ryo bus_dmamap_destroy(sc->sc_dmat, *mapp);
2063 1.1 ryo fail_create:
2064 1.1 ryo bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
2065 1.1 ryo fail_map:
2066 1.1 ryo bus_dmamem_free(sc->sc_dmat, seglist, 1);
2067 1.1 ryo fail_alloc:
2068 1.1 ryo return error;
2069 1.1 ryo }
2070