if_enet.c revision 1.13 1 /* $NetBSD: if_enet.c,v 1.13 2018/05/08 06:11:45 maxv Exp $ */
2
3 /*
4 * Copyright (c) 2014 Ryo Shimizu <ryo (at) nerv.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * i.MX6,7 10/100/1000-Mbps ethernet MAC (ENET)
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.13 2018/05/08 06:11:45 maxv Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/mbuf.h>
41 #include <sys/device.h>
42 #include <sys/sockio.h>
43 #include <sys/kernel.h>
44 #include <sys/rndsource.h>
45
46 #include <lib/libkern/libkern.h>
47
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_ether.h>
52 #include <net/bpf.h>
53 #include <net/if_vlanvar.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/ip.h>
58
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61
62 #include <arm/imx/if_enetreg.h>
63 #include <arm/imx/if_enetvar.h>
64
65 #undef DEBUG_ENET
66 #undef ENET_EVENT_COUNTER
67
68 #define ENET_TICK hz
69
70 #ifdef DEBUG_ENET
71 int enet_debug = 0;
72 # define DEVICE_DPRINTF(args...) \
73 do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
74 #else
75 # define DEVICE_DPRINTF(args...)
76 #endif
77
78
79 #define RXDESC_MAXBUFSIZE 0x07f0
80 /* ENET does not work greather than 0x0800... */
81
82 #undef ENET_SUPPORT_JUMBO /* JUMBO FRAME SUPPORT is unstable */
83 #ifdef ENET_SUPPORT_JUMBO
84 # define ENET_MAX_PKT_LEN 4034 /* MAX FIFO LEN */
85 #else
86 # define ENET_MAX_PKT_LEN 1522
87 #endif
88 #define ENET_DEFAULT_PKT_LEN 1522 /* including VLAN tag */
89 #define MTU2FRAMESIZE(n) \
90 ((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
91
92
93 #define ENET_MAX_PKT_NSEGS 64
94
95 #define ENET_TX_NEXTIDX(idx) \
96 (((idx) >= (ENET_TX_RING_CNT - 1)) ? 0 : ((idx) + 1))
97 #define ENET_RX_NEXTIDX(idx) \
98 (((idx) >= (ENET_RX_RING_CNT - 1)) ? 0 : ((idx) + 1))
99
100 #define TXDESC_WRITEOUT(idx) \
101 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
102 sizeof(struct enet_txdesc) * (idx), \
103 sizeof(struct enet_txdesc), \
104 BUS_DMASYNC_PREWRITE)
105
106 #define TXDESC_READIN(idx) \
107 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
108 sizeof(struct enet_txdesc) * (idx), \
109 sizeof(struct enet_txdesc), \
110 BUS_DMASYNC_PREREAD)
111
112 #define RXDESC_WRITEOUT(idx) \
113 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
114 sizeof(struct enet_rxdesc) * (idx), \
115 sizeof(struct enet_rxdesc), \
116 BUS_DMASYNC_PREWRITE)
117
118 #define RXDESC_READIN(idx) \
119 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
120 sizeof(struct enet_rxdesc) * (idx), \
121 sizeof(struct enet_rxdesc), \
122 BUS_DMASYNC_PREREAD)
123
124 #define ENET_REG_READ(sc, reg) \
125 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
126
127 #define ENET_REG_WRITE(sc, reg, value) \
128 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
129
130 #ifdef ENET_EVENT_COUNTER
131 static void enet_attach_evcnt(struct enet_softc *);
132 static void enet_update_evcnt(struct enet_softc *);
133 #endif
134
135 static int enet_intr(void *);
136 static void enet_tick(void *);
137 static int enet_tx_intr(void *);
138 static int enet_rx_intr(void *);
139 static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
140 int);
141
142 static void enet_start(struct ifnet *);
143 static int enet_ifflags_cb(struct ethercom *);
144 static int enet_ioctl(struct ifnet *, u_long, void *);
145 static int enet_init(struct ifnet *);
146 static void enet_stop(struct ifnet *, int);
147 static void enet_watchdog(struct ifnet *);
148 static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
149
150 static int enet_miibus_readreg(device_t, int, int);
151 static void enet_miibus_writereg(device_t, int, int, int);
152 static void enet_miibus_statchg(struct ifnet *);
153
154 static void enet_gethwaddr(struct enet_softc *, uint8_t *);
155 static void enet_sethwaddr(struct enet_softc *, uint8_t *);
156 static void enet_setmulti(struct enet_softc *);
157 static int enet_encap_mbufalign(struct mbuf **);
158 static int enet_encap_txring(struct enet_softc *, struct mbuf **);
159 static int enet_init_regs(struct enet_softc *, int);
160 static int enet_alloc_ring(struct enet_softc *);
161 static void enet_init_txring(struct enet_softc *);
162 static int enet_init_rxring(struct enet_softc *);
163 static void enet_reset_rxdesc(struct enet_softc *, int);
164 static int enet_alloc_rxbuf(struct enet_softc *, int);
165 static void enet_drain_txbuf(struct enet_softc *);
166 static void enet_drain_rxbuf(struct enet_softc *);
167 static int enet_alloc_dma(struct enet_softc *, size_t, void **,
168 bus_dmamap_t *);
169
170 CFATTACH_DECL_NEW(enet, sizeof(struct enet_softc),
171 enet_match, enet_attach, NULL, NULL);
172
173 void
174 enet_attach_common(device_t self, bus_space_tag_t iot,
175 bus_dma_tag_t dmat, bus_addr_t addr, bus_size_t size, int irq)
176 {
177 struct enet_softc *sc;
178 struct ifnet *ifp;
179
180 sc = device_private(self);
181 sc->sc_dev = self;
182 sc->sc_iot = iot;
183 sc->sc_addr = addr;
184 sc->sc_dmat = dmat;
185
186 aprint_naive("\n");
187 aprint_normal(": Gigabit Ethernet Controller\n");
188 if (bus_space_map(sc->sc_iot, sc->sc_addr, size, 0,
189 &sc->sc_ioh)) {
190 aprint_error_dev(self, "cannot map registers\n");
191 return;
192 }
193
194 /* allocate dma buffer */
195 if (enet_alloc_ring(sc))
196 return;
197
198 #define IS_ENADDR_ZERO(enaddr) \
199 ((enaddr[0] | enaddr[1] | enaddr[2] | \
200 enaddr[3] | enaddr[4] | enaddr[5]) == 0)
201
202 if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
203 /* by any chance, mac-address is already set by bootloader? */
204 enet_gethwaddr(sc, sc->sc_enaddr);
205 if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
206 /* give up. set randomly */
207 uint32_t eaddr = random();
208 /* not multicast */
209 sc->sc_enaddr[0] = (eaddr >> 24) & 0xfc;
210 sc->sc_enaddr[1] = eaddr >> 16;
211 sc->sc_enaddr[2] = eaddr >> 8;
212 sc->sc_enaddr[3] = eaddr;
213 eaddr = random();
214 sc->sc_enaddr[4] = eaddr >> 8;
215 sc->sc_enaddr[5] = eaddr;
216
217 aprint_error_dev(self,
218 "cannot get mac address. set randomly\n");
219 }
220 }
221 enet_sethwaddr(sc, sc->sc_enaddr);
222
223 aprint_normal_dev(self, "Ethernet address %s\n",
224 ether_sprintf(sc->sc_enaddr));
225
226 enet_init_regs(sc, 1);
227
228 /* setup interrupt handlers */
229 if ((sc->sc_ih = intr_establish(irq, IPL_NET,
230 IST_LEVEL, enet_intr, sc)) == NULL) {
231 aprint_error_dev(self, "unable to establish interrupt\n");
232 goto failure;
233 }
234
235 if (sc->sc_imxtype == 7) {
236 /* i.MX7 use 3 interrupts */
237 if ((sc->sc_ih2 = intr_establish(irq + 1, IPL_NET,
238 IST_LEVEL, enet_intr, sc)) == NULL) {
239 aprint_error_dev(self,
240 "unable to establish 2nd interrupt\n");
241 intr_disestablish(sc->sc_ih);
242 goto failure;
243 }
244 if ((sc->sc_ih3 = intr_establish(irq + 2, IPL_NET,
245 IST_LEVEL, enet_intr, sc)) == NULL) {
246 aprint_error_dev(self,
247 "unable to establish 3rd interrupt\n");
248 intr_disestablish(sc->sc_ih2);
249 intr_disestablish(sc->sc_ih);
250 goto failure;
251 }
252 }
253
254 /* callout will be scheduled from enet_init() */
255 callout_init(&sc->sc_tick_ch, 0);
256 callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
257
258 /* setup ifp */
259 ifp = &sc->sc_ethercom.ec_if;
260 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
261 ifp->if_softc = sc;
262 ifp->if_mtu = ETHERMTU;
263 ifp->if_baudrate = IF_Gbps(1);
264 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
265 ifp->if_ioctl = enet_ioctl;
266 ifp->if_start = enet_start;
267 ifp->if_init = enet_init;
268 ifp->if_stop = enet_stop;
269 ifp->if_watchdog = enet_watchdog;
270
271 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
272 #ifdef ENET_SUPPORT_JUMBO
273 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
274 #endif
275
276 ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
277 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
278 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
279 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
280 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
281
282 IFQ_SET_MAXLEN(&ifp->if_snd, max(ENET_TX_RING_CNT, IFQ_MAXLEN));
283 IFQ_SET_READY(&ifp->if_snd);
284
285 /* setup MII */
286 sc->sc_ethercom.ec_mii = &sc->sc_mii;
287 sc->sc_mii.mii_ifp = ifp;
288 sc->sc_mii.mii_readreg = enet_miibus_readreg;
289 sc->sc_mii.mii_writereg = enet_miibus_writereg;
290 sc->sc_mii.mii_statchg = enet_miibus_statchg;
291 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
292 enet_mediastatus);
293
294 /* try to attach PHY */
295 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
296 MII_OFFSET_ANY, 0);
297 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
298 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
299 0, NULL);
300 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
301 } else {
302 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
303 }
304
305 if_attach(ifp);
306 ether_ifattach(ifp, sc->sc_enaddr);
307 ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
308
309 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
310 RND_TYPE_NET, RND_FLAG_DEFAULT);
311
312 #ifdef ENET_EVENT_COUNTER
313 enet_attach_evcnt(sc);
314 #endif
315
316 sc->sc_stopping = false;
317
318 return;
319
320 failure:
321 bus_space_unmap(sc->sc_iot, sc->sc_ioh, size);
322 return;
323 }
324
325 #ifdef ENET_EVENT_COUNTER
326 static void
327 enet_attach_evcnt(struct enet_softc *sc)
328 {
329 const char *xname;
330
331 xname = device_xname(sc->sc_dev);
332
333 #define ENET_EVCNT_ATTACH(name) \
334 evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC, \
335 NULL, xname, #name);
336
337 ENET_EVCNT_ATTACH(t_drop);
338 ENET_EVCNT_ATTACH(t_packets);
339 ENET_EVCNT_ATTACH(t_bc_pkt);
340 ENET_EVCNT_ATTACH(t_mc_pkt);
341 ENET_EVCNT_ATTACH(t_crc_align);
342 ENET_EVCNT_ATTACH(t_undersize);
343 ENET_EVCNT_ATTACH(t_oversize);
344 ENET_EVCNT_ATTACH(t_frag);
345 ENET_EVCNT_ATTACH(t_jab);
346 ENET_EVCNT_ATTACH(t_col);
347 ENET_EVCNT_ATTACH(t_p64);
348 ENET_EVCNT_ATTACH(t_p65to127n);
349 ENET_EVCNT_ATTACH(t_p128to255n);
350 ENET_EVCNT_ATTACH(t_p256to511);
351 ENET_EVCNT_ATTACH(t_p512to1023);
352 ENET_EVCNT_ATTACH(t_p1024to2047);
353 ENET_EVCNT_ATTACH(t_p_gte2048);
354 ENET_EVCNT_ATTACH(t_octets);
355 ENET_EVCNT_ATTACH(r_packets);
356 ENET_EVCNT_ATTACH(r_bc_pkt);
357 ENET_EVCNT_ATTACH(r_mc_pkt);
358 ENET_EVCNT_ATTACH(r_crc_align);
359 ENET_EVCNT_ATTACH(r_undersize);
360 ENET_EVCNT_ATTACH(r_oversize);
361 ENET_EVCNT_ATTACH(r_frag);
362 ENET_EVCNT_ATTACH(r_jab);
363 ENET_EVCNT_ATTACH(r_p64);
364 ENET_EVCNT_ATTACH(r_p65to127);
365 ENET_EVCNT_ATTACH(r_p128to255);
366 ENET_EVCNT_ATTACH(r_p256to511);
367 ENET_EVCNT_ATTACH(r_p512to1023);
368 ENET_EVCNT_ATTACH(r_p1024to2047);
369 ENET_EVCNT_ATTACH(r_p_gte2048);
370 ENET_EVCNT_ATTACH(r_octets);
371 }
372
373 static void
374 enet_update_evcnt(struct enet_softc *sc)
375 {
376 sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
377 sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
378 sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
379 sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
380 sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
381 sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
382 sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
383 sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
384 sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
385 sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
386 sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
387 sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
388 sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
389 sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
390 sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
391 sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
392 sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
393 sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
394 sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
395 sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
396 sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
397 sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
398 sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
399 sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
400 sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
401 sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
402 sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
403 sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
404 sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
405 sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
406 sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
407 sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
408 sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
409 sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
410 }
411 #endif /* ENET_EVENT_COUNTER */
412
413 static void
414 enet_tick(void *arg)
415 {
416 struct enet_softc *sc;
417 struct mii_data *mii;
418 struct ifnet *ifp;
419 int s;
420
421 sc = arg;
422 mii = &sc->sc_mii;
423 ifp = &sc->sc_ethercom.ec_if;
424
425 s = splnet();
426
427 if (sc->sc_stopping)
428 goto out;
429
430 #ifdef ENET_EVENT_COUNTER
431 enet_update_evcnt(sc);
432 #endif
433
434 /* update counters */
435 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
436 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
437 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_JAB);
438
439 /* clear counters */
440 ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
441 ENET_REG_WRITE(sc, ENET_MIBC, 0);
442
443 mii_tick(mii);
444 out:
445
446 if (!sc->sc_stopping)
447 callout_schedule(&sc->sc_tick_ch, ENET_TICK);
448
449 splx(s);
450 }
451
452 static int
453 enet_intr(void *arg)
454 {
455 struct enet_softc *sc;
456 struct ifnet *ifp;
457 uint32_t status;
458
459 sc = arg;
460 status = ENET_REG_READ(sc, ENET_EIR);
461
462 if (sc->sc_imxtype == 7) {
463 if (status & (ENET_EIR_TXF|ENET_EIR_TXF1|ENET_EIR_TXF2))
464 enet_tx_intr(arg);
465 if (status & (ENET_EIR_RXF|ENET_EIR_RXF1|ENET_EIR_RXF2))
466 enet_rx_intr(arg);
467 } else {
468 if (status & ENET_EIR_TXF)
469 enet_tx_intr(arg);
470 if (status & ENET_EIR_RXF)
471 enet_rx_intr(arg);
472 }
473
474 if (status & ENET_EIR_EBERR) {
475 device_printf(sc->sc_dev, "Ethernet Bus Error\n");
476 ifp = &sc->sc_ethercom.ec_if;
477 enet_stop(ifp, 1);
478 enet_init(ifp);
479 } else {
480 ENET_REG_WRITE(sc, ENET_EIR, status);
481 }
482
483 rnd_add_uint32(&sc->sc_rnd_source, status);
484
485 return 1;
486 }
487
488 static int
489 enet_tx_intr(void *arg)
490 {
491 struct enet_softc *sc;
492 struct ifnet *ifp;
493 struct enet_txsoft *txs;
494 int idx;
495
496 sc = (struct enet_softc *)arg;
497 ifp = &sc->sc_ethercom.ec_if;
498
499 for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
500 idx = ENET_TX_NEXTIDX(idx)) {
501
502 txs = &sc->sc_txsoft[idx];
503
504 TXDESC_READIN(idx);
505 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
506 /* This TX Descriptor has not been transmitted yet */
507 break;
508 }
509
510 /* txsoft is available on first segment (TXFLAGS1_T1) */
511 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
512 bus_dmamap_unload(sc->sc_dmat,
513 txs->txs_dmamap);
514 m_freem(txs->txs_mbuf);
515 ifp->if_opackets++;
516 }
517
518 /* checking error */
519 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
520 uint32_t flags2;
521
522 flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
523
524 if (flags2 & (TXFLAGS2_TXE |
525 TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
526 TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
527 #ifdef DEBUG_ENET
528 if (enet_debug) {
529 char flagsbuf[128];
530
531 snprintb(flagsbuf, sizeof(flagsbuf),
532 "\20" "\20TRANSMIT" "\16UNDERFLOW"
533 "\15COLLISION" "\14FRAME"
534 "\13LATECOLLISION" "\12OVERFLOW",
535 flags2);
536
537 device_printf(sc->sc_dev,
538 "txdesc[%d]: transmit error: "
539 "flags2=%s\n", idx, flagsbuf);
540 }
541 #endif /* DEBUG_ENET */
542 ifp->if_oerrors++;
543 }
544 }
545
546 sc->sc_tx_free++;
547 }
548 sc->sc_tx_considx = idx;
549
550 if (sc->sc_tx_free > 0)
551 ifp->if_flags &= ~IFF_OACTIVE;
552
553 /*
554 * No more pending TX descriptor,
555 * cancel the watchdog timer.
556 */
557 if (sc->sc_tx_free == ENET_TX_RING_CNT)
558 ifp->if_timer = 0;
559
560 return 1;
561 }
562
563 static int
564 enet_rx_intr(void *arg)
565 {
566 struct enet_softc *sc;
567 struct ifnet *ifp;
568 struct enet_rxsoft *rxs;
569 int idx, len, amount;
570 uint32_t flags1, flags2;
571 struct mbuf *m, *m0, *mprev;
572
573 sc = arg;
574 ifp = &sc->sc_ethercom.ec_if;
575
576 m0 = mprev = NULL;
577 amount = 0;
578 for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
579
580 rxs = &sc->sc_rxsoft[idx];
581
582 RXDESC_READIN(idx);
583 if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
584 /* This RX Descriptor has not been received yet */
585 break;
586 }
587
588 /*
589 * build mbuf from RX Descriptor if needed
590 */
591 m = rxs->rxs_mbuf;
592 rxs->rxs_mbuf = NULL;
593
594 flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
595 len = RXFLAGS1_LEN(flags1);
596
597 #define RACC_SHIFT16 2
598 if (m0 == NULL) {
599 m0 = m;
600 m_adj(m0, RACC_SHIFT16);
601 len -= RACC_SHIFT16;
602 m->m_len = len;
603 amount = len;
604 } else {
605 if (flags1 & RXFLAGS1_L)
606 len = len - amount - RACC_SHIFT16;
607
608 m->m_len = len;
609 amount += len;
610 if (m->m_flags & M_PKTHDR)
611 m_remove_pkthdr(m);
612 mprev->m_next = m;
613 }
614 mprev = m;
615
616 flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
617
618 if (flags1 & RXFLAGS1_L) {
619 /* last buffer */
620 if ((amount < ETHER_HDR_LEN) ||
621 ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
622 RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
623 (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
624 RXFLAGS2_CE)))) {
625
626 #ifdef DEBUG_ENET
627 if (enet_debug) {
628 char flags1buf[128], flags2buf[128];
629 snprintb(flags1buf, sizeof(flags1buf),
630 "\20" "\31MISS" "\26LENGTHVIOLATION"
631 "\25NONOCTET" "\23CRC" "\22OVERRUN"
632 "\21TRUNCATED", flags1);
633 snprintb(flags2buf, sizeof(flags2buf),
634 "\20" "\40MAC" "\33PHY"
635 "\32COLLISION", flags2);
636
637 DEVICE_DPRINTF(
638 "rxdesc[%d]: receive error: "
639 "flags1=%s,flags2=%s,len=%d\n",
640 idx, flags1buf, flags2buf, amount);
641 }
642 #endif /* DEBUG_ENET */
643 ifp->if_ierrors++;
644 m_freem(m0);
645
646 } else {
647 /* packet receive ok */
648 m_set_rcvif(m0, ifp);
649 m0->m_pkthdr.len = amount;
650
651 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
652 rxs->rxs_dmamap->dm_mapsize,
653 BUS_DMASYNC_PREREAD);
654
655 if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
656 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
657 M_CSUM_TCPv6 | M_CSUM_UDPv6))
658 enet_rx_csum(sc, ifp, m0, idx);
659
660 if_percpuq_enqueue(ifp->if_percpuq, m0);
661 }
662
663 m0 = NULL;
664 mprev = NULL;
665 amount = 0;
666
667 } else {
668 /* continued from previous buffer */
669 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
670 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
671 }
672
673 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
674 if (enet_alloc_rxbuf(sc, idx) != 0) {
675 panic("enet_alloc_rxbuf NULL\n");
676 }
677 }
678 sc->sc_rx_readidx = idx;
679
680 /* re-enable RX DMA to make sure */
681 ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
682
683 return 1;
684 }
685
686 static void
687 enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
688 {
689 uint32_t flags2;
690 uint8_t proto;
691
692 flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
693
694 if (flags2 & RXFLAGS2_IPV6) {
695 proto = sc->sc_rxdesc_ring[idx].rx_proto;
696
697 /* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
698 if ((proto == IPPROTO_TCP) &&
699 (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
700 m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
701 else if ((proto == IPPROTO_UDP) &&
702 (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
703 m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
704 else
705 return;
706
707 /* IPv6 protocol checksum error */
708 if (flags2 & RXFLAGS2_PCR)
709 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
710
711 } else {
712 struct ether_header *eh;
713 uint8_t *ip;
714
715 eh = mtod(m, struct ether_header *);
716
717 /* XXX: is an IPv4? */
718 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
719 return;
720 ip = (uint8_t *)(eh + 1);
721 if ((ip[0] & 0xf0) == 0x40)
722 return;
723
724 proto = sc->sc_rxdesc_ring[idx].rx_proto;
725 if (flags2 & RXFLAGS2_ICE) {
726 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
727 m->m_pkthdr.csum_flags |=
728 M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
729 }
730 } else {
731 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
732 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
733 }
734
735 /*
736 * PCR is valid when
737 * ICE == 0 and FRAG == 0
738 */
739 if (flags2 & RXFLAGS2_FRAG)
740 return;
741
742 /*
743 * PCR is valid when proto is TCP or UDP
744 */
745 if ((proto == IPPROTO_TCP) &&
746 (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
747 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
748 else if ((proto == IPPROTO_UDP) &&
749 (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
750 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
751 else
752 return;
753
754 /* IPv4 protocol cksum error */
755 if (flags2 & RXFLAGS2_PCR)
756 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
757 }
758 }
759 }
760
761 static void
762 enet_setmulti(struct enet_softc *sc)
763 {
764 struct ifnet *ifp;
765 struct ether_multi *enm;
766 struct ether_multistep step;
767 int promisc;
768 uint32_t crc;
769 uint32_t gaddr[2];
770
771 ifp = &sc->sc_ethercom.ec_if;
772
773 promisc = 0;
774 if ((ifp->if_flags & IFF_PROMISC) || sc->sc_ethercom.ec_multicnt > 0) {
775 ifp->if_flags |= IFF_ALLMULTI;
776 if (ifp->if_flags & IFF_PROMISC)
777 promisc = 1;
778 gaddr[0] = gaddr[1] = 0xffffffff;
779 } else {
780 gaddr[0] = gaddr[1] = 0;
781
782 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
783 while (enm != NULL) {
784 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
785 gaddr[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
786 ETHER_NEXT_MULTI(step, enm);
787 }
788 }
789
790 ENET_REG_WRITE(sc, ENET_GAUR, gaddr[0]);
791 ENET_REG_WRITE(sc, ENET_GALR, gaddr[1]);
792
793 if (promisc) {
794 /* match all packet */
795 ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
796 ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
797 } else {
798 /* don't match any packet */
799 ENET_REG_WRITE(sc, ENET_IAUR, 0);
800 ENET_REG_WRITE(sc, ENET_IALR, 0);
801 }
802 }
803
804 static void
805 enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
806 {
807 uint32_t paddr;
808
809 paddr = ENET_REG_READ(sc, ENET_PALR);
810 hwaddr[0] = paddr >> 24;
811 hwaddr[1] = paddr >> 16;
812 hwaddr[2] = paddr >> 8;
813 hwaddr[3] = paddr;
814
815 paddr = ENET_REG_READ(sc, ENET_PAUR);
816 hwaddr[4] = paddr >> 24;
817 hwaddr[5] = paddr >> 16;
818 }
819
820 static void
821 enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
822 {
823 uint32_t paddr;
824
825 paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
826 hwaddr[3];
827 ENET_REG_WRITE(sc, ENET_PALR, paddr);
828 paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
829 ENET_REG_WRITE(sc, ENET_PAUR, paddr);
830 }
831
832 /*
833 * ifnet interfaces
834 */
835 static int
836 enet_init(struct ifnet *ifp)
837 {
838 struct enet_softc *sc;
839 int s, error;
840
841 sc = ifp->if_softc;
842
843 s = splnet();
844
845 enet_init_regs(sc, 0);
846 enet_init_txring(sc);
847 error = enet_init_rxring(sc);
848 if (error != 0) {
849 enet_drain_rxbuf(sc);
850 device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
851 goto init_failure;
852 }
853
854 /* reload mac address */
855 memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
856 enet_sethwaddr(sc, sc->sc_enaddr);
857
858 /* program multicast address */
859 enet_setmulti(sc);
860
861 /* update if_flags */
862 ifp->if_flags |= IFF_RUNNING;
863 ifp->if_flags &= ~IFF_OACTIVE;
864
865 /* update local copy of if_flags */
866 sc->sc_if_flags = ifp->if_flags;
867
868 /* mii */
869 mii_mediachg(&sc->sc_mii);
870
871 /* enable RX DMA */
872 ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
873
874 sc->sc_stopping = false;
875 callout_schedule(&sc->sc_tick_ch, ENET_TICK);
876
877 init_failure:
878 splx(s);
879
880 return error;
881 }
882
883 static void
884 enet_start(struct ifnet *ifp)
885 {
886 struct enet_softc *sc;
887 struct mbuf *m;
888 int npkt;
889
890 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
891 return;
892
893 sc = ifp->if_softc;
894 for (npkt = 0; ; npkt++) {
895 IFQ_POLL(&ifp->if_snd, m);
896 if (m == NULL)
897 break;
898
899 if (sc->sc_tx_free <= 0) {
900 /* no tx descriptor now... */
901 ifp->if_flags |= IFF_OACTIVE;
902 DEVICE_DPRINTF("TX descriptor is full\n");
903 break;
904 }
905
906 IFQ_DEQUEUE(&ifp->if_snd, m);
907
908 if (enet_encap_txring(sc, &m) != 0) {
909 /* too many mbuf chains? */
910 ifp->if_flags |= IFF_OACTIVE;
911 DEVICE_DPRINTF(
912 "TX descriptor is full. dropping packet\n");
913 m_freem(m);
914 ifp->if_oerrors++;
915 break;
916 }
917
918 /* Pass the packet to any BPF listeners */
919 bpf_mtap(ifp, m);
920 }
921
922 if (npkt) {
923 /* enable TX DMA */
924 ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
925
926 ifp->if_timer = 5;
927 }
928 }
929
930 static void
931 enet_stop(struct ifnet *ifp, int disable)
932 {
933 struct enet_softc *sc;
934 int s;
935 uint32_t v;
936
937 sc = ifp->if_softc;
938
939 s = splnet();
940
941 sc->sc_stopping = true;
942 callout_stop(&sc->sc_tick_ch);
943
944 /* clear ENET_ECR[ETHEREN] to abort receive and transmit */
945 v = ENET_REG_READ(sc, ENET_ECR);
946 ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
947
948 /* Mark the interface as down and cancel the watchdog timer. */
949 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
950 ifp->if_timer = 0;
951
952 if (disable) {
953 enet_drain_txbuf(sc);
954 enet_drain_rxbuf(sc);
955 }
956
957 splx(s);
958 }
959
960 static void
961 enet_watchdog(struct ifnet *ifp)
962 {
963 struct enet_softc *sc;
964 int s;
965
966 sc = ifp->if_softc;
967 s = splnet();
968
969 device_printf(sc->sc_dev, "watchdog timeout\n");
970 ifp->if_oerrors++;
971
972 /* salvage packets left in descriptors */
973 enet_tx_intr(sc);
974 enet_rx_intr(sc);
975
976 /* reset */
977 enet_stop(ifp, 1);
978 enet_init(ifp);
979
980 splx(s);
981 }
982
983 static void
984 enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
985 {
986 struct enet_softc *sc = ifp->if_softc;
987
988 ether_mediastatus(ifp, ifmr);
989 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
990 | sc->sc_flowflags;
991 }
992
993 static int
994 enet_ifflags_cb(struct ethercom *ec)
995 {
996 struct ifnet *ifp = &ec->ec_if;
997 struct enet_softc *sc = ifp->if_softc;
998 int change = ifp->if_flags ^ sc->sc_if_flags;
999
1000 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
1001 return ENETRESET;
1002 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
1003 return 0;
1004
1005 enet_setmulti(sc);
1006
1007 sc->sc_if_flags = ifp->if_flags;
1008 return 0;
1009 }
1010
1011 static int
1012 enet_ioctl(struct ifnet *ifp, u_long command, void *data)
1013 {
1014 struct enet_softc *sc;
1015 struct ifreq *ifr;
1016 int s, error;
1017 uint32_t v;
1018
1019 sc = ifp->if_softc;
1020 ifr = data;
1021
1022 error = 0;
1023
1024 s = splnet();
1025
1026 switch (command) {
1027 case SIOCSIFMTU:
1028 if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
1029 error = EINVAL;
1030 } else {
1031 ifp->if_mtu = ifr->ifr_mtu;
1032
1033 /* set maximum frame length */
1034 v = MTU2FRAMESIZE(ifr->ifr_mtu);
1035 ENET_REG_WRITE(sc, ENET_FTRL, v);
1036 v = ENET_REG_READ(sc, ENET_RCR);
1037 v &= ~ENET_RCR_MAX_FL(0x3fff);
1038 v |= ENET_RCR_MAX_FL(ifp->if_mtu + ETHER_HDR_LEN +
1039 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
1040 ENET_REG_WRITE(sc, ENET_RCR, v);
1041 }
1042 break;
1043 case SIOCSIFMEDIA:
1044 case SIOCGIFMEDIA:
1045 /* Flow control requires full-duplex mode. */
1046 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1047 (ifr->ifr_media & IFM_FDX) == 0)
1048 ifr->ifr_media &= ~IFM_ETH_FMASK;
1049 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1050 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1051 /* We can do both TXPAUSE and RXPAUSE. */
1052 ifr->ifr_media |=
1053 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1054 }
1055 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1056 }
1057 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1058 break;
1059 default:
1060 error = ether_ioctl(ifp, command, data);
1061 if (error != ENETRESET)
1062 break;
1063
1064 /* post-process */
1065 error = 0;
1066 switch (command) {
1067 case SIOCSIFCAP:
1068 error = (*ifp->if_init)(ifp);
1069 break;
1070 case SIOCADDMULTI:
1071 case SIOCDELMULTI:
1072 if (ifp->if_flags & IFF_RUNNING)
1073 enet_setmulti(sc);
1074 break;
1075 }
1076 break;
1077 }
1078
1079 splx(s);
1080
1081 return error;
1082 }
1083
1084 /*
1085 * for MII
1086 */
1087 static int
1088 enet_miibus_readreg(device_t dev, int phy, int reg)
1089 {
1090 struct enet_softc *sc;
1091 int timeout;
1092 uint32_t val, status;
1093
1094 sc = device_private(dev);
1095
1096 /* clear MII update */
1097 ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1098
1099 /* read command */
1100 ENET_REG_WRITE(sc, ENET_MMFR,
1101 ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1102 ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1103
1104 /* check MII update */
1105 for (timeout = 5000; timeout > 0; --timeout) {
1106 status = ENET_REG_READ(sc, ENET_EIR);
1107 if (status & ENET_EIR_MII)
1108 break;
1109 }
1110 if (timeout <= 0) {
1111 DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1112 reg);
1113 val = -1;
1114 } else {
1115 val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1116 }
1117
1118 return val;
1119 }
1120
1121 static void
1122 enet_miibus_writereg(device_t dev, int phy, int reg, int val)
1123 {
1124 struct enet_softc *sc;
1125 int timeout;
1126
1127 sc = device_private(dev);
1128
1129 /* clear MII update */
1130 ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1131
1132 /* write command */
1133 ENET_REG_WRITE(sc, ENET_MMFR,
1134 ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1135 ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1136 (ENET_MMFR_DATAMASK & val));
1137
1138 /* check MII update */
1139 for (timeout = 5000; timeout > 0; --timeout) {
1140 if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1141 break;
1142 }
1143 if (timeout <= 0) {
1144 DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n",
1145 reg);
1146 }
1147 }
1148
1149 static void
1150 enet_miibus_statchg(struct ifnet *ifp)
1151 {
1152 struct enet_softc *sc;
1153 struct mii_data *mii;
1154 struct ifmedia_entry *ife;
1155 uint32_t ecr, ecr0;
1156 uint32_t rcr, rcr0;
1157 uint32_t tcr, tcr0;
1158
1159 sc = ifp->if_softc;
1160 mii = &sc->sc_mii;
1161 ife = mii->mii_media.ifm_cur;
1162
1163 /* get current status */
1164 ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1165 rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1166 tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1167
1168 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1169 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1170 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1171 mii->mii_media_active &= ~IFM_ETH_FMASK;
1172 }
1173
1174 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1175 tcr |= ENET_TCR_FDEN; /* full duplex */
1176 rcr &= ~ENET_RCR_DRT;; /* enable receive on transmit */
1177 } else {
1178 tcr &= ~ENET_TCR_FDEN; /* half duplex */
1179 rcr |= ENET_RCR_DRT; /* disable receive on transmit */
1180 }
1181
1182 if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1183 /*
1184 * need to reset because
1185 * FDEN can change when ECR[ETHEREN] is 0
1186 */
1187 enet_init_regs(sc, 0);
1188 return;
1189 }
1190
1191 switch (IFM_SUBTYPE(ife->ifm_media)) {
1192 case IFM_AUTO:
1193 case IFM_1000_T:
1194 ecr |= ENET_ECR_SPEED; /* 1000Mbps mode */
1195 rcr &= ~ENET_RCR_RMII_10T;
1196 break;
1197 case IFM_100_TX:
1198 ecr &= ~ENET_ECR_SPEED; /* 100Mbps mode */
1199 rcr &= ~ENET_RCR_RMII_10T; /* 100Mbps mode */
1200 break;
1201 case IFM_10_T:
1202 ecr &= ~ENET_ECR_SPEED; /* 10Mbps mode */
1203 rcr |= ENET_RCR_RMII_10T; /* 10Mbps mode */
1204 break;
1205 default:
1206 ecr = ecr0;
1207 rcr = rcr0;
1208 tcr = tcr0;
1209 break;
1210 }
1211
1212 if (sc->sc_rgmii == 0)
1213 ecr &= ~ENET_ECR_SPEED;
1214
1215 if (sc->sc_flowflags & IFM_FLOW)
1216 rcr |= ENET_RCR_FCE;
1217 else
1218 rcr &= ~ENET_RCR_FCE;
1219
1220 /* update registers if need change */
1221 if (ecr != ecr0)
1222 ENET_REG_WRITE(sc, ENET_ECR, ecr);
1223 if (rcr != rcr0)
1224 ENET_REG_WRITE(sc, ENET_RCR, rcr);
1225 if (tcr != tcr0)
1226 ENET_REG_WRITE(sc, ENET_TCR, tcr);
1227 }
1228
1229 /*
1230 * handling descriptors
1231 */
1232 static void
1233 enet_init_txring(struct enet_softc *sc)
1234 {
1235 int i;
1236
1237 /* build TX ring */
1238 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1239 sc->sc_txdesc_ring[i].tx_flags1_len =
1240 ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1241 sc->sc_txdesc_ring[i].tx_databuf = 0;
1242 sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1243 sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1244 sc->sc_txdesc_ring[i].tx_flags3 = 0;
1245 sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1246 sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1247 sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1248
1249 TXDESC_WRITEOUT(i);
1250 }
1251
1252 sc->sc_tx_free = ENET_TX_RING_CNT;
1253 sc->sc_tx_considx = 0;
1254 sc->sc_tx_prodidx = 0;
1255 }
1256
1257 static int
1258 enet_init_rxring(struct enet_softc *sc)
1259 {
1260 int i, error;
1261
1262 /* build RX ring */
1263 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1264 error = enet_alloc_rxbuf(sc, i);
1265 if (error != 0)
1266 return error;
1267 }
1268
1269 sc->sc_rx_readidx = 0;
1270
1271 return 0;
1272 }
1273
1274 static int
1275 enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1276 {
1277 struct mbuf *m;
1278 int error;
1279
1280 KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1281
1282 /* free mbuf if already allocated */
1283 if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1284 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1285 m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1286 sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1287 }
1288
1289 /* allocate new mbuf cluster */
1290 MGETHDR(m, M_DONTWAIT, MT_DATA);
1291 if (m == NULL)
1292 return ENOBUFS;
1293 MCLGET(m, M_DONTWAIT);
1294 if (!(m->m_flags & M_EXT)) {
1295 m_freem(m);
1296 return ENOBUFS;
1297 }
1298 m->m_len = MCLBYTES;
1299 m->m_next = NULL;
1300
1301 error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1302 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1303 BUS_DMA_READ | BUS_DMA_NOWAIT);
1304 if (error) {
1305 m_freem(m);
1306 return error;
1307 }
1308
1309 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1310 sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1311 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1312
1313 sc->sc_rxsoft[idx].rxs_mbuf = m;
1314 enet_reset_rxdesc(sc, idx);
1315 return 0;
1316 }
1317
1318 static void
1319 enet_reset_rxdesc(struct enet_softc *sc, int idx)
1320 {
1321 uint32_t paddr;
1322
1323 paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1324
1325 sc->sc_rxdesc_ring[idx].rx_flags1_len =
1326 RXFLAGS1_E |
1327 ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1328 sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1329 sc->sc_rxdesc_ring[idx].rx_flags2 =
1330 RXFLAGS2_INT;
1331 sc->sc_rxdesc_ring[idx].rx_hl = 0;
1332 sc->sc_rxdesc_ring[idx].rx_proto = 0;
1333 sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1334 sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1335 sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1336 sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1337 sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1338
1339 RXDESC_WRITEOUT(idx);
1340 }
1341
1342 static void
1343 enet_drain_txbuf(struct enet_softc *sc)
1344 {
1345 int idx;
1346 struct enet_txsoft *txs;
1347 struct ifnet *ifp;
1348
1349 ifp = &sc->sc_ethercom.ec_if;
1350
1351 for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1352 idx = ENET_TX_NEXTIDX(idx)) {
1353
1354 /* txsoft[] is used only first segment */
1355 txs = &sc->sc_txsoft[idx];
1356 TXDESC_READIN(idx);
1357 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1358 sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1359 bus_dmamap_unload(sc->sc_dmat,
1360 txs->txs_dmamap);
1361 m_freem(txs->txs_mbuf);
1362
1363 ifp->if_oerrors++;
1364 }
1365 sc->sc_tx_free++;
1366 }
1367 }
1368
1369 static void
1370 enet_drain_rxbuf(struct enet_softc *sc)
1371 {
1372 int i;
1373
1374 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1375 if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1376 sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1377 bus_dmamap_unload(sc->sc_dmat,
1378 sc->sc_rxsoft[i].rxs_dmamap);
1379 m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1380 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1381 }
1382 }
1383 }
1384
1385 static int
1386 enet_alloc_ring(struct enet_softc *sc)
1387 {
1388 int i, error;
1389
1390 /*
1391 * build DMA maps for TX.
1392 * TX descriptor must be able to contain mbuf chains,
1393 * so, make up ENET_MAX_PKT_NSEGS dmamap.
1394 */
1395 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1396 error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1397 ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1398 &sc->sc_txsoft[i].txs_dmamap);
1399
1400 if (error) {
1401 aprint_error_dev(sc->sc_dev,
1402 "can't create DMA map for TX descs\n");
1403 goto fail_1;
1404 }
1405 }
1406
1407 /*
1408 * build DMA maps for RX.
1409 * RX descripter contains An mbuf cluster,
1410 * and make up a dmamap.
1411 */
1412 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1413 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1414 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1415 &sc->sc_rxsoft[i].rxs_dmamap);
1416 if (error) {
1417 aprint_error_dev(sc->sc_dev,
1418 "can't create DMA map for RX descs\n");
1419 goto fail_2;
1420 }
1421 }
1422
1423 if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1424 (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1425 return -1;
1426 memset(sc->sc_txdesc_ring, 0,
1427 sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1428
1429 if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1430 (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1431 return -1;
1432 memset(sc->sc_rxdesc_ring, 0,
1433 sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1434
1435 return 0;
1436
1437 fail_2:
1438 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1439 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1440 bus_dmamap_destroy(sc->sc_dmat,
1441 sc->sc_rxsoft[i].rxs_dmamap);
1442 }
1443 fail_1:
1444 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1445 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1446 bus_dmamap_destroy(sc->sc_dmat,
1447 sc->sc_txsoft[i].txs_dmamap);
1448 }
1449 return error;
1450 }
1451
1452 static int
1453 enet_encap_mbufalign(struct mbuf **mp)
1454 {
1455 struct mbuf *m, *m0, *mt, *p, *x;
1456 void *ap;
1457 uint32_t alignoff, chiplen;
1458
1459 /*
1460 * iMX6 SoC ethernet controller requires
1461 * address of buffer must aligned 8, and
1462 * length of buffer must be greater than 10 (first fragment only?)
1463 */
1464 #define ALIGNBYTE 8
1465 #define MINBUFSIZE 10
1466 #define ALIGN_PTR(p, align) \
1467 (void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1468
1469 m0 = *mp;
1470 mt = p = NULL;
1471 for (m = m0; m != NULL; m = m->m_next) {
1472 alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1473 if (m->m_len < (ALIGNBYTE * 2)) {
1474 /*
1475 * rearrange mbuf data aligned
1476 *
1477 * align 8 * * * * *
1478 * +0123456789abcdef0123456789abcdef0
1479 * FROM m->m_data[___________abcdefghijklmn_______]
1480 *
1481 * +0123456789abcdef0123456789abcdef0
1482 * TO m->m_data[________abcdefghijklm___________] or
1483 * m->m_data[________________abcdefghijklmn__]
1484 */
1485 if ((alignoff != 0) && (m->m_len != 0)) {
1486 chiplen = ALIGNBYTE - alignoff;
1487 if (M_LEADINGSPACE(m) >= alignoff) {
1488 ap = m->m_data - alignoff;
1489 memmove(ap, m->m_data, m->m_len);
1490 m->m_data = ap;
1491 } else if (M_TRAILINGSPACE(m) >= chiplen) {
1492 ap = m->m_data + chiplen;
1493 memmove(ap, m->m_data, m->m_len);
1494 m->m_data = ap;
1495 } else {
1496 /*
1497 * no space to align data. (M_READONLY?)
1498 * allocate new mbuf aligned,
1499 * and copy to it.
1500 */
1501 MGET(x, M_DONTWAIT, m->m_type);
1502 if (x == NULL) {
1503 m_freem(m);
1504 return ENOBUFS;
1505 }
1506 MCLAIM(x, m->m_owner);
1507 if (m->m_flags & M_PKTHDR)
1508 M_MOVE_PKTHDR(x, m);
1509 x->m_len = m->m_len;
1510 x->m_data = ALIGN_PTR(x->m_data,
1511 ALIGNBYTE);
1512 memcpy(mtod(x, void *), mtod(m, void *),
1513 m->m_len);
1514 p->m_next = x;
1515 x->m_next = m_free(m);
1516 m = x;
1517 }
1518 }
1519
1520 /*
1521 * fill 1st mbuf at least 10byte
1522 *
1523 * align 8 * * * * *
1524 * +0123456789abcdef0123456789abcdef0
1525 * FROM m->m_data[________abcde___________________]
1526 * m->m_data[__fg____________________________]
1527 * m->m_data[_________________hi_____________]
1528 * m->m_data[__________jk____________________]
1529 * m->m_data[____l___________________________]
1530 *
1531 * +0123456789abcdef0123456789abcdef0
1532 * TO m->m_data[________abcdefghij______________]
1533 * m->m_data[________________________________]
1534 * m->m_data[________________________________]
1535 * m->m_data[___________k____________________]
1536 * m->m_data[____l___________________________]
1537 */
1538 if (mt == NULL) {
1539 mt = m;
1540 while (mt->m_len == 0) {
1541 mt = mt->m_next;
1542 if (mt == NULL) {
1543 m_freem(m);
1544 return ENOBUFS;
1545 }
1546 }
1547
1548 /* mt = 1st mbuf, x = 2nd mbuf */
1549 x = mt->m_next;
1550 while (mt->m_len < MINBUFSIZE) {
1551 if (x == NULL) {
1552 m_freem(m);
1553 return ENOBUFS;
1554 }
1555
1556 alignoff = (uintptr_t)x->m_data &
1557 (ALIGNBYTE - 1);
1558 chiplen = ALIGNBYTE - alignoff;
1559 if (chiplen > x->m_len) {
1560 chiplen = x->m_len;
1561 } else if ((mt->m_len + chiplen) <
1562 MINBUFSIZE) {
1563 /*
1564 * next mbuf should be greater
1565 * than ALIGNBYTE?
1566 */
1567 if (x->m_len >= (chiplen +
1568 ALIGNBYTE * 2))
1569 chiplen += ALIGNBYTE;
1570 else
1571 chiplen = x->m_len;
1572 }
1573
1574 if (chiplen &&
1575 (M_TRAILINGSPACE(mt) < chiplen)) {
1576 /*
1577 * move data to the begining of
1578 * m_dat[] (aligned) to en-
1579 * large trailingspace
1580 */
1581 if (mt->m_flags & M_EXT) {
1582 ap = mt->m_ext.ext_buf;
1583 } else if (mt->m_flags &
1584 M_PKTHDR) {
1585 ap = mt->m_pktdat;
1586 } else {
1587 ap = mt->m_dat;
1588 }
1589 ap = ALIGN_PTR(ap, ALIGNBYTE);
1590 memcpy(ap, mt->m_data,
1591 mt->m_len);
1592 mt->m_data = ap;
1593 }
1594
1595 if (chiplen &&
1596 (M_TRAILINGSPACE(mt) >= chiplen)) {
1597 memcpy(mt->m_data + mt->m_len,
1598 x->m_data, chiplen);
1599 mt->m_len += chiplen;
1600 m_adj(x, chiplen);
1601 }
1602
1603 x = x->m_next;
1604 }
1605 }
1606
1607 } else {
1608 mt = m;
1609
1610 /*
1611 * allocate new mbuf x, and rearrange as below;
1612 *
1613 * align 8 * * * * *
1614 * +0123456789abcdef0123456789abcdef0
1615 * FROM m->m_data[____________abcdefghijklmnopq___]
1616 *
1617 * +0123456789abcdef0123456789abcdef0
1618 * TO x->m_data[________abcdefghijkl____________]
1619 * m->m_data[________________________mnopq___]
1620 *
1621 */
1622 if (alignoff != 0) {
1623 /* at least ALIGNBYTE */
1624 chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1625
1626 MGET(x, M_DONTWAIT, m->m_type);
1627 if (x == NULL) {
1628 m_freem(m);
1629 return ENOBUFS;
1630 }
1631 MCLAIM(x, m->m_owner);
1632 if (m->m_flags & M_PKTHDR)
1633 M_MOVE_PKTHDR(x, m);
1634 x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1635 memcpy(mtod(x, void *), mtod(m, void *),
1636 chiplen);
1637 x->m_len = chiplen;
1638 x->m_next = m;
1639 m_adj(m, chiplen);
1640
1641 if (p == NULL)
1642 m0 = x;
1643 else
1644 p->m_next = x;
1645 }
1646 }
1647 p = m;
1648 }
1649 *mp = m0;
1650
1651 return 0;
1652 }
1653
1654 static int
1655 enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1656 {
1657 bus_dmamap_t map;
1658 struct mbuf *m;
1659 int csumflags, idx, i, error;
1660 uint32_t flags1, flags2;
1661
1662 idx = sc->sc_tx_prodidx;
1663 map = sc->sc_txsoft[idx].txs_dmamap;
1664
1665 /* align mbuf data for claim of ENET */
1666 error = enet_encap_mbufalign(mp);
1667 if (error != 0)
1668 return error;
1669
1670 m = *mp;
1671 csumflags = m->m_pkthdr.csum_flags;
1672
1673 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1674 BUS_DMA_NOWAIT);
1675 if (error != 0) {
1676 device_printf(sc->sc_dev,
1677 "Error mapping mbuf into TX chain: error=%d\n", error);
1678 m_freem(m);
1679 return error;
1680 }
1681
1682 if (map->dm_nsegs > sc->sc_tx_free) {
1683 bus_dmamap_unload(sc->sc_dmat, map);
1684 device_printf(sc->sc_dev,
1685 "too many mbuf chain %d\n", map->dm_nsegs);
1686 m_freem(m);
1687 return ENOBUFS;
1688 }
1689
1690 /* fill protocol cksum zero beforehand */
1691 if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1692 M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1693 int ehlen;
1694 uint16_t etype;
1695
1696 m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1697 switch (ntohs(etype)) {
1698 case ETHERTYPE_IP:
1699 case ETHERTYPE_IPV6:
1700 ehlen = ETHER_HDR_LEN;
1701 break;
1702 case ETHERTYPE_VLAN:
1703 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1704 break;
1705 default:
1706 ehlen = 0;
1707 break;
1708 }
1709
1710 if (ehlen) {
1711 const int off =
1712 M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1713 M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1714 if (m->m_pkthdr.len >= ehlen + off + sizeof(uint16_t)) {
1715 uint16_t zero = 0;
1716 m_copyback(m, ehlen + off, sizeof(zero), &zero);
1717 }
1718 }
1719 }
1720
1721 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1722 BUS_DMASYNC_PREWRITE);
1723
1724 for (i = 0; i < map->dm_nsegs; i++) {
1725 flags1 = TXFLAGS1_R;
1726 flags2 = 0;
1727
1728 if (i == 0) {
1729 flags1 |= TXFLAGS1_T1; /* mark as first segment */
1730 sc->sc_txsoft[idx].txs_mbuf = m;
1731 }
1732
1733 /* checksum offloading */
1734 if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1735 M_CSUM_UDPv6 | M_CSUM_TCPv6))
1736 flags2 |= TXFLAGS2_PINS;
1737 if (csumflags & (M_CSUM_IPv4))
1738 flags2 |= TXFLAGS2_IINS;
1739
1740 if (i == map->dm_nsegs - 1) {
1741 /* mark last segment */
1742 flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1743 flags2 |= TXFLAGS2_INT;
1744 }
1745 if (idx == ENET_TX_RING_CNT - 1) {
1746 /* mark end of ring */
1747 flags1 |= TXFLAGS1_W;
1748 }
1749
1750 sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1751 sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1752 sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1753 TXDESC_WRITEOUT(idx);
1754
1755 sc->sc_txdesc_ring[idx].tx_flags1_len =
1756 flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1757 TXDESC_WRITEOUT(idx);
1758
1759 idx = ENET_TX_NEXTIDX(idx);
1760 sc->sc_tx_free--;
1761 }
1762
1763 sc->sc_tx_prodidx = idx;
1764
1765 return 0;
1766 }
1767
1768 /*
1769 * device initialize
1770 */
1771 static int
1772 enet_init_regs(struct enet_softc *sc, int init)
1773 {
1774 struct mii_data *mii;
1775 struct ifmedia_entry *ife;
1776 paddr_t paddr;
1777 uint32_t val;
1778 int miimode, fulldup, ecr_speed, rcr_speed, flowctrl;
1779
1780 if (init) {
1781 fulldup = 1;
1782 ecr_speed = ENET_ECR_SPEED;
1783 rcr_speed = 0;
1784 flowctrl = 0;
1785 } else {
1786 mii = &sc->sc_mii;
1787 ife = mii->mii_media.ifm_cur;
1788
1789 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1790 fulldup = 1;
1791 else
1792 fulldup = 0;
1793
1794 switch (IFM_SUBTYPE(ife->ifm_media)) {
1795 case IFM_10_T:
1796 ecr_speed = 0;
1797 rcr_speed = ENET_RCR_RMII_10T;
1798 break;
1799 case IFM_100_TX:
1800 ecr_speed = 0;
1801 rcr_speed = 0;
1802 break;
1803 default:
1804 ecr_speed = ENET_ECR_SPEED;
1805 rcr_speed = 0;
1806 break;
1807 }
1808
1809 flowctrl = sc->sc_flowflags & IFM_FLOW;
1810 }
1811
1812 if (sc->sc_rgmii == 0)
1813 ecr_speed = 0;
1814
1815 /* reset */
1816 ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1817
1818 /* mask and clear all interrupt */
1819 ENET_REG_WRITE(sc, ENET_EIMR, 0);
1820 ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1821
1822 /* full duplex */
1823 ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1824
1825 /* clear and enable MIB register */
1826 ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1827 ENET_REG_WRITE(sc, ENET_MIBC, 0);
1828
1829 /* MII speed setup. MDCclk(=2.5MHz) = ENET_PLL/((val+1)*2) */
1830 val = ((sc->sc_pllclock) / 500000 - 1) / 10;
1831 ENET_REG_WRITE(sc, ENET_MSCR, val << 1);
1832
1833 /* Opcode/Pause Duration */
1834 ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1835
1836 /* Receive FIFO */
1837 ENET_REG_WRITE(sc, ENET_RSFL, 16); /* RxFIFO Section Full */
1838 ENET_REG_WRITE(sc, ENET_RSEM, 0x84); /* RxFIFO Section Empty */
1839 ENET_REG_WRITE(sc, ENET_RAEM, 8); /* RxFIFO Almost Empty */
1840 ENET_REG_WRITE(sc, ENET_RAFL, 8); /* RxFIFO Almost Full */
1841
1842 /* Transmit FIFO */
1843 ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1844 ENET_TFWR_FIFO(128)); /* TxFIFO Watermark */
1845 ENET_REG_WRITE(sc, ENET_TSEM, 0); /* TxFIFO Section Empty */
1846 ENET_REG_WRITE(sc, ENET_TAEM, 256); /* TxFIFO Almost Empty */
1847 ENET_REG_WRITE(sc, ENET_TAFL, 8); /* TxFIFO Almost Full */
1848 ENET_REG_WRITE(sc, ENET_TIPG, 12); /* Tx Inter-Packet Gap */
1849
1850 /* hardware checksum is default off (override in TX descripter) */
1851 ENET_REG_WRITE(sc, ENET_TACC, 0);
1852
1853 /*
1854 * align ethernet payload on 32bit, discard frames with MAC layer error,
1855 * and don't discard checksum error
1856 */
1857 ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1858
1859 /* maximum frame size */
1860 val = ENET_DEFAULT_PKT_LEN;
1861 ENET_REG_WRITE(sc, ENET_FTRL, val); /* Frame Truncation Length */
1862
1863 if (sc->sc_rgmii == 0)
1864 miimode = ENET_RCR_RMII_MODE | ENET_RCR_MII_MODE;
1865 else
1866 miimode = ENET_RCR_RGMII_EN;
1867 ENET_REG_WRITE(sc, ENET_RCR,
1868 ENET_RCR_PADEN | /* RX frame padding remove */
1869 miimode |
1870 (flowctrl ? ENET_RCR_FCE : 0) | /* flow control enable */
1871 rcr_speed |
1872 (fulldup ? 0 : ENET_RCR_DRT) |
1873 ENET_RCR_MAX_FL(val));
1874
1875 /* Maximum Receive BufSize per one descriptor */
1876 ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1877
1878
1879 /* TX/RX Descriptor Physical Address */
1880 paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1881 ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1882 paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
1883 ENET_REG_WRITE(sc, ENET_RDSR, paddr);
1884 /* sync cache */
1885 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
1886 sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1887 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
1888 sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1889
1890 /* enable interrupts */
1891 val = ENET_EIMR|ENET_EIR_TXF|ENET_EIR_RXF|ENET_EIR_EBERR;
1892 if (sc->sc_imxtype == 7)
1893 val |= ENET_EIR_TXF2|ENET_EIR_RXF2|ENET_EIR_TXF1|ENET_EIR_RXF1;
1894 ENET_REG_WRITE(sc, ENET_EIMR, val);
1895
1896 /* enable ether */
1897 ENET_REG_WRITE(sc, ENET_ECR,
1898 #if _BYTE_ORDER == _LITTLE_ENDIAN
1899 ENET_ECR_DBSWP |
1900 #endif
1901 ecr_speed |
1902 ENET_ECR_EN1588 | /* use enhanced TX/RX descriptor */
1903 ENET_ECR_ETHEREN); /* Ethernet Enable */
1904
1905 return 0;
1906 }
1907
1908 static int
1909 enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
1910 bus_dmamap_t *mapp)
1911 {
1912 bus_dma_segment_t seglist[1];
1913 int nsegs, error;
1914
1915 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
1916 1, &nsegs, M_NOWAIT)) != 0) {
1917 device_printf(sc->sc_dev,
1918 "unable to allocate DMA buffer, error=%d\n", error);
1919 goto fail_alloc;
1920 }
1921
1922 if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
1923 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1924 device_printf(sc->sc_dev,
1925 "unable to map DMA buffer, error=%d\n",
1926 error);
1927 goto fail_map;
1928 }
1929
1930 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1931 BUS_DMA_NOWAIT, mapp)) != 0) {
1932 device_printf(sc->sc_dev,
1933 "unable to create DMA map, error=%d\n", error);
1934 goto fail_create;
1935 }
1936
1937 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
1938 BUS_DMA_NOWAIT)) != 0) {
1939 aprint_error_dev(sc->sc_dev,
1940 "unable to load DMA map, error=%d\n", error);
1941 goto fail_load;
1942 }
1943
1944 return 0;
1945
1946 fail_load:
1947 bus_dmamap_destroy(sc->sc_dmat, *mapp);
1948 fail_create:
1949 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
1950 fail_map:
1951 bus_dmamem_free(sc->sc_dmat, seglist, 1);
1952 fail_alloc:
1953 return error;
1954 }
1955