if_enet.c revision 1.24 1 /* $NetBSD: if_enet.c,v 1.24 2019/07/23 06:36:36 hkenken Exp $ */
2
3 /*
4 * Copyright (c) 2014 Ryo Shimizu <ryo (at) nerv.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * i.MX6,7 10/100/1000-Mbps ethernet MAC (ENET)
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.24 2019/07/23 06:36:36 hkenken Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/mbuf.h>
41 #include <sys/device.h>
42 #include <sys/sockio.h>
43 #include <sys/kernel.h>
44 #include <sys/rndsource.h>
45
46 #include <lib/libkern/libkern.h>
47
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_ether.h>
52 #include <net/bpf.h>
53 #include <net/if_vlanvar.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/ip.h>
58
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61
62 #include <arm/imx/if_enetreg.h>
63 #include <arm/imx/if_enetvar.h>
64
65 #undef DEBUG_ENET
66 #undef ENET_EVENT_COUNTER
67
68 #define ENET_TICK hz
69
70 #ifdef DEBUG_ENET
71 int enet_debug = 0;
72 # define DEVICE_DPRINTF(args...) \
73 do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
74 #else
75 # define DEVICE_DPRINTF(args...)
76 #endif
77
78
79 #define RXDESC_MAXBUFSIZE 0x07f0
80 /* ENET does not work greather than 0x0800... */
81
82 #undef ENET_SUPPORT_JUMBO /* JUMBO FRAME SUPPORT is unstable */
83 #ifdef ENET_SUPPORT_JUMBO
84 # define ENET_MAX_PKT_LEN 4034 /* MAX FIFO LEN */
85 #else
86 # define ENET_MAX_PKT_LEN 1522
87 #endif
88 #define ENET_DEFAULT_PKT_LEN 1522 /* including VLAN tag */
89 #define MTU2FRAMESIZE(n) \
90 ((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
91
92
93 #define ENET_MAX_PKT_NSEGS 64
94
95 #define ENET_TX_NEXTIDX(idx) \
96 (((idx) >= (ENET_TX_RING_CNT - 1)) ? 0 : ((idx) + 1))
97 #define ENET_RX_NEXTIDX(idx) \
98 (((idx) >= (ENET_RX_RING_CNT - 1)) ? 0 : ((idx) + 1))
99
100 #define TXDESC_WRITEOUT(idx) \
101 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
102 sizeof(struct enet_txdesc) * (idx), \
103 sizeof(struct enet_txdesc), \
104 BUS_DMASYNC_PREWRITE)
105
106 #define TXDESC_READIN(idx) \
107 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
108 sizeof(struct enet_txdesc) * (idx), \
109 sizeof(struct enet_txdesc), \
110 BUS_DMASYNC_PREREAD)
111
112 #define RXDESC_WRITEOUT(idx) \
113 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
114 sizeof(struct enet_rxdesc) * (idx), \
115 sizeof(struct enet_rxdesc), \
116 BUS_DMASYNC_PREWRITE)
117
118 #define RXDESC_READIN(idx) \
119 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
120 sizeof(struct enet_rxdesc) * (idx), \
121 sizeof(struct enet_rxdesc), \
122 BUS_DMASYNC_PREREAD)
123
124 #define ENET_REG_READ(sc, reg) \
125 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
126
127 #define ENET_REG_WRITE(sc, reg, value) \
128 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
129
130 #ifdef ENET_EVENT_COUNTER
131 static void enet_attach_evcnt(struct enet_softc *);
132 static void enet_update_evcnt(struct enet_softc *);
133 #endif
134
135 static void enet_tick(void *);
136 static int enet_tx_intr(void *);
137 static int enet_rx_intr(void *);
138 static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
139 int);
140
141 static void enet_start(struct ifnet *);
142 static int enet_ifflags_cb(struct ethercom *);
143 static int enet_ioctl(struct ifnet *, u_long, void *);
144 static int enet_init(struct ifnet *);
145 static void enet_stop(struct ifnet *, int);
146 static void enet_watchdog(struct ifnet *);
147 static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
148
149 static int enet_miibus_readreg(device_t, int, int, uint16_t *);
150 static int enet_miibus_writereg(device_t, int, int, uint16_t);
151 static void enet_miibus_statchg(struct ifnet *);
152
153 static void enet_gethwaddr(struct enet_softc *, uint8_t *);
154 static void enet_sethwaddr(struct enet_softc *, uint8_t *);
155 static void enet_setmulti(struct enet_softc *);
156 static int enet_encap_mbufalign(struct mbuf **);
157 static int enet_encap_txring(struct enet_softc *, struct mbuf **);
158 static int enet_init_regs(struct enet_softc *, int);
159 static int enet_alloc_ring(struct enet_softc *);
160 static void enet_init_txring(struct enet_softc *);
161 static int enet_init_rxring(struct enet_softc *);
162 static void enet_reset_rxdesc(struct enet_softc *, int);
163 static int enet_alloc_rxbuf(struct enet_softc *, int);
164 static void enet_drain_txbuf(struct enet_softc *);
165 static void enet_drain_rxbuf(struct enet_softc *);
166 static int enet_alloc_dma(struct enet_softc *, size_t, void **,
167 bus_dmamap_t *);
168
169 CFATTACH_DECL_NEW(enet, sizeof(struct enet_softc),
170 enet_match, enet_attach, NULL, NULL);
171
172 int
173 enet_attach_common(device_t self)
174 {
175 struct enet_softc *sc = device_private(self);
176 struct ifnet *ifp;
177 struct mii_data * const mii = &sc->sc_mii;
178
179 /* allocate dma buffer */
180 if (enet_alloc_ring(sc))
181 return -1;
182
183 #define IS_ENADDR_ZERO(enaddr) \
184 ((enaddr[0] | enaddr[1] | enaddr[2] | \
185 enaddr[3] | enaddr[4] | enaddr[5]) == 0)
186
187 if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
188 /* by any chance, mac-address is already set by bootloader? */
189 enet_gethwaddr(sc, sc->sc_enaddr);
190 if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
191 /* give up. set randomly */
192 uint32_t eaddr = random();
193 /* not multicast */
194 sc->sc_enaddr[0] = (eaddr >> 24) & 0xfc;
195 sc->sc_enaddr[1] = eaddr >> 16;
196 sc->sc_enaddr[2] = eaddr >> 8;
197 sc->sc_enaddr[3] = eaddr;
198 eaddr = random();
199 sc->sc_enaddr[4] = eaddr >> 8;
200 sc->sc_enaddr[5] = eaddr;
201
202 aprint_error_dev(self,
203 "cannot get mac address. set randomly\n");
204 }
205 }
206 enet_sethwaddr(sc, sc->sc_enaddr);
207
208 aprint_normal_dev(self, "Ethernet address %s\n",
209 ether_sprintf(sc->sc_enaddr));
210
211 enet_init_regs(sc, 1);
212
213 /* callout will be scheduled from enet_init() */
214 callout_init(&sc->sc_tick_ch, 0);
215 callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
216
217 /* setup ifp */
218 ifp = &sc->sc_ethercom.ec_if;
219 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
220 ifp->if_softc = sc;
221 ifp->if_mtu = ETHERMTU;
222 ifp->if_baudrate = IF_Gbps(1);
223 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
224 ifp->if_ioctl = enet_ioctl;
225 ifp->if_start = enet_start;
226 ifp->if_init = enet_init;
227 ifp->if_stop = enet_stop;
228 ifp->if_watchdog = enet_watchdog;
229
230 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
231 #ifdef ENET_SUPPORT_JUMBO
232 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
233 #endif
234
235 ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
236 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
237 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
238 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
239 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
240
241 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(ENET_TX_RING_CNT, IFQ_MAXLEN));
242 IFQ_SET_READY(&ifp->if_snd);
243
244 /* setup MII */
245 sc->sc_ethercom.ec_mii = mii;
246 mii->mii_ifp = ifp;
247 mii->mii_readreg = enet_miibus_readreg;
248 mii->mii_writereg = enet_miibus_writereg;
249 mii->mii_statchg = enet_miibus_statchg;
250 ifmedia_init(&mii->mii_media, 0, ether_mediachange, enet_mediastatus);
251
252 /* try to attach PHY */
253 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
254 if (LIST_FIRST(&mii->mii_phys) == NULL) {
255 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
256 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
257 } else {
258 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
259 }
260
261 if_attach(ifp);
262 ether_ifattach(ifp, sc->sc_enaddr);
263 ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
264
265 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
266 RND_TYPE_NET, RND_FLAG_DEFAULT);
267
268 #ifdef ENET_EVENT_COUNTER
269 enet_attach_evcnt(sc);
270 #endif
271
272 sc->sc_stopping = false;
273
274 return 0;
275 }
276
277 #ifdef ENET_EVENT_COUNTER
278 static void
279 enet_attach_evcnt(struct enet_softc *sc)
280 {
281 const char *xname;
282
283 xname = device_xname(sc->sc_dev);
284
285 #define ENET_EVCNT_ATTACH(name) \
286 evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC, \
287 NULL, xname, #name);
288
289 ENET_EVCNT_ATTACH(t_drop);
290 ENET_EVCNT_ATTACH(t_packets);
291 ENET_EVCNT_ATTACH(t_bc_pkt);
292 ENET_EVCNT_ATTACH(t_mc_pkt);
293 ENET_EVCNT_ATTACH(t_crc_align);
294 ENET_EVCNT_ATTACH(t_undersize);
295 ENET_EVCNT_ATTACH(t_oversize);
296 ENET_EVCNT_ATTACH(t_frag);
297 ENET_EVCNT_ATTACH(t_jab);
298 ENET_EVCNT_ATTACH(t_col);
299 ENET_EVCNT_ATTACH(t_p64);
300 ENET_EVCNT_ATTACH(t_p65to127n);
301 ENET_EVCNT_ATTACH(t_p128to255n);
302 ENET_EVCNT_ATTACH(t_p256to511);
303 ENET_EVCNT_ATTACH(t_p512to1023);
304 ENET_EVCNT_ATTACH(t_p1024to2047);
305 ENET_EVCNT_ATTACH(t_p_gte2048);
306 ENET_EVCNT_ATTACH(t_octets);
307 ENET_EVCNT_ATTACH(r_packets);
308 ENET_EVCNT_ATTACH(r_bc_pkt);
309 ENET_EVCNT_ATTACH(r_mc_pkt);
310 ENET_EVCNT_ATTACH(r_crc_align);
311 ENET_EVCNT_ATTACH(r_undersize);
312 ENET_EVCNT_ATTACH(r_oversize);
313 ENET_EVCNT_ATTACH(r_frag);
314 ENET_EVCNT_ATTACH(r_jab);
315 ENET_EVCNT_ATTACH(r_p64);
316 ENET_EVCNT_ATTACH(r_p65to127);
317 ENET_EVCNT_ATTACH(r_p128to255);
318 ENET_EVCNT_ATTACH(r_p256to511);
319 ENET_EVCNT_ATTACH(r_p512to1023);
320 ENET_EVCNT_ATTACH(r_p1024to2047);
321 ENET_EVCNT_ATTACH(r_p_gte2048);
322 ENET_EVCNT_ATTACH(r_octets);
323 }
324
325 static void
326 enet_update_evcnt(struct enet_softc *sc)
327 {
328 sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
329 sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
330 sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
331 sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
332 sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
333 sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
334 sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
335 sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
336 sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
337 sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
338 sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
339 sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
340 sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
341 sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
342 sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
343 sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
344 sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
345 sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
346 sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
347 sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
348 sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
349 sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
350 sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
351 sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
352 sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
353 sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
354 sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
355 sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
356 sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
357 sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
358 sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
359 sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
360 sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
361 sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
362 }
363 #endif /* ENET_EVENT_COUNTER */
364
365 static void
366 enet_tick(void *arg)
367 {
368 struct enet_softc *sc;
369 struct mii_data *mii;
370 struct ifnet *ifp;
371 int s;
372
373 sc = arg;
374 mii = &sc->sc_mii;
375 ifp = &sc->sc_ethercom.ec_if;
376
377 s = splnet();
378
379 if (sc->sc_stopping)
380 goto out;
381
382 #ifdef ENET_EVENT_COUNTER
383 enet_update_evcnt(sc);
384 #endif
385
386 /* update counters */
387 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
388 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
389 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_JAB);
390
391 /* clear counters */
392 ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
393 ENET_REG_WRITE(sc, ENET_MIBC, 0);
394
395 mii_tick(mii);
396 out:
397
398 if (!sc->sc_stopping)
399 callout_schedule(&sc->sc_tick_ch, ENET_TICK);
400
401 splx(s);
402 }
403
404 int
405 enet_intr(void *arg)
406 {
407 struct enet_softc *sc;
408 struct ifnet *ifp;
409 uint32_t status;
410
411 sc = arg;
412 status = ENET_REG_READ(sc, ENET_EIR);
413
414 if (sc->sc_imxtype == 7) {
415 if (status & (ENET_EIR_TXF | ENET_EIR_TXF1 | ENET_EIR_TXF2))
416 enet_tx_intr(arg);
417 if (status & (ENET_EIR_RXF | ENET_EIR_RXF1 | ENET_EIR_RXF2))
418 enet_rx_intr(arg);
419 } else {
420 if (status & ENET_EIR_TXF)
421 enet_tx_intr(arg);
422 if (status & ENET_EIR_RXF)
423 enet_rx_intr(arg);
424 }
425
426 if (status & ENET_EIR_EBERR) {
427 device_printf(sc->sc_dev, "Ethernet Bus Error\n");
428 ifp = &sc->sc_ethercom.ec_if;
429 enet_stop(ifp, 1);
430 enet_init(ifp);
431 } else {
432 ENET_REG_WRITE(sc, ENET_EIR, status);
433 }
434
435 rnd_add_uint32(&sc->sc_rnd_source, status);
436
437 return 1;
438 }
439
440 static int
441 enet_tx_intr(void *arg)
442 {
443 struct enet_softc *sc;
444 struct ifnet *ifp;
445 struct enet_txsoft *txs;
446 int idx;
447
448 sc = (struct enet_softc *)arg;
449 ifp = &sc->sc_ethercom.ec_if;
450
451 for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
452 idx = ENET_TX_NEXTIDX(idx)) {
453
454 txs = &sc->sc_txsoft[idx];
455
456 TXDESC_READIN(idx);
457 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
458 /* This TX Descriptor has not been transmitted yet */
459 break;
460 }
461
462 /* txsoft is available on first segment (TXFLAGS1_T1) */
463 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
464 bus_dmamap_unload(sc->sc_dmat,
465 txs->txs_dmamap);
466 m_freem(txs->txs_mbuf);
467 ifp->if_opackets++;
468 }
469
470 /* checking error */
471 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
472 uint32_t flags2;
473
474 flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
475
476 if (flags2 & (TXFLAGS2_TXE |
477 TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
478 TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
479 #ifdef DEBUG_ENET
480 if (enet_debug) {
481 char flagsbuf[128];
482
483 snprintb(flagsbuf, sizeof(flagsbuf),
484 "\20" "\20TRANSMIT" "\16UNDERFLOW"
485 "\15COLLISION" "\14FRAME"
486 "\13LATECOLLISION" "\12OVERFLOW",
487 flags2);
488
489 device_printf(sc->sc_dev,
490 "txdesc[%d]: transmit error: "
491 "flags2=%s\n", idx, flagsbuf);
492 }
493 #endif /* DEBUG_ENET */
494 ifp->if_oerrors++;
495 }
496 }
497
498 sc->sc_tx_free++;
499 }
500 sc->sc_tx_considx = idx;
501
502 if (sc->sc_tx_free > 0)
503 ifp->if_flags &= ~IFF_OACTIVE;
504
505 /*
506 * No more pending TX descriptor,
507 * cancel the watchdog timer.
508 */
509 if (sc->sc_tx_free == ENET_TX_RING_CNT)
510 ifp->if_timer = 0;
511
512 return 1;
513 }
514
515 static int
516 enet_rx_intr(void *arg)
517 {
518 struct enet_softc *sc;
519 struct ifnet *ifp;
520 struct enet_rxsoft *rxs;
521 int idx, len, amount;
522 uint32_t flags1, flags2;
523 struct mbuf *m, *m0, *mprev;
524
525 sc = arg;
526 ifp = &sc->sc_ethercom.ec_if;
527
528 m0 = mprev = NULL;
529 amount = 0;
530 for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
531
532 rxs = &sc->sc_rxsoft[idx];
533
534 RXDESC_READIN(idx);
535 if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
536 /* This RX Descriptor has not been received yet */
537 break;
538 }
539
540 /*
541 * build mbuf from RX Descriptor if needed
542 */
543 m = rxs->rxs_mbuf;
544 rxs->rxs_mbuf = NULL;
545
546 flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
547 len = RXFLAGS1_LEN(flags1);
548
549 #define RACC_SHIFT16 2
550 if (m0 == NULL) {
551 m0 = m;
552 m_adj(m0, RACC_SHIFT16);
553 len -= RACC_SHIFT16;
554 m->m_len = len;
555 amount = len;
556 } else {
557 if (flags1 & RXFLAGS1_L)
558 len = len - amount - RACC_SHIFT16;
559
560 m->m_len = len;
561 amount += len;
562 if (m->m_flags & M_PKTHDR)
563 m_remove_pkthdr(m);
564 mprev->m_next = m;
565 }
566 mprev = m;
567
568 flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
569
570 if (flags1 & RXFLAGS1_L) {
571 /* last buffer */
572 if ((amount < ETHER_HDR_LEN) ||
573 ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
574 RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
575 (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
576 RXFLAGS2_CE)))) {
577
578 #ifdef DEBUG_ENET
579 if (enet_debug) {
580 char flags1buf[128], flags2buf[128];
581 snprintb(flags1buf, sizeof(flags1buf),
582 "\20" "\31MISS" "\26LENGTHVIOLATION"
583 "\25NONOCTET" "\23CRC" "\22OVERRUN"
584 "\21TRUNCATED", flags1);
585 snprintb(flags2buf, sizeof(flags2buf),
586 "\20" "\40MAC" "\33PHY"
587 "\32COLLISION", flags2);
588
589 DEVICE_DPRINTF(
590 "rxdesc[%d]: receive error: "
591 "flags1=%s,flags2=%s,len=%d\n",
592 idx, flags1buf, flags2buf, amount);
593 }
594 #endif /* DEBUG_ENET */
595 ifp->if_ierrors++;
596 m_freem(m0);
597
598 } else {
599 /* packet receive ok */
600 m_set_rcvif(m0, ifp);
601 m0->m_pkthdr.len = amount;
602
603 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
604 rxs->rxs_dmamap->dm_mapsize,
605 BUS_DMASYNC_PREREAD);
606
607 if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
608 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
609 M_CSUM_TCPv6 | M_CSUM_UDPv6))
610 enet_rx_csum(sc, ifp, m0, idx);
611
612 if_percpuq_enqueue(ifp->if_percpuq, m0);
613 }
614
615 m0 = NULL;
616 mprev = NULL;
617 amount = 0;
618
619 } else {
620 /* continued from previous buffer */
621 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
622 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
623 }
624
625 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
626 if (enet_alloc_rxbuf(sc, idx) != 0) {
627 panic("enet_alloc_rxbuf NULL\n");
628 }
629 }
630 sc->sc_rx_readidx = idx;
631
632 /* re-enable RX DMA to make sure */
633 ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
634
635 return 1;
636 }
637
638 static void
639 enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
640 {
641 uint32_t flags2;
642 uint8_t proto;
643
644 flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
645
646 if (flags2 & RXFLAGS2_IPV6) {
647 proto = sc->sc_rxdesc_ring[idx].rx_proto;
648
649 /* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
650 if ((proto == IPPROTO_TCP) &&
651 (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
652 m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
653 else if ((proto == IPPROTO_UDP) &&
654 (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
655 m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
656 else
657 return;
658
659 /* IPv6 protocol checksum error */
660 if (flags2 & RXFLAGS2_PCR)
661 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
662
663 } else {
664 struct ether_header *eh;
665 uint8_t *ip;
666
667 eh = mtod(m, struct ether_header *);
668
669 /* XXX: is an IPv4? */
670 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
671 return;
672 ip = (uint8_t *)(eh + 1);
673 if ((ip[0] & 0xf0) == 0x40)
674 return;
675
676 proto = sc->sc_rxdesc_ring[idx].rx_proto;
677 if (flags2 & RXFLAGS2_ICE) {
678 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
679 m->m_pkthdr.csum_flags |=
680 M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
681 }
682 } else {
683 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
684 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
685 }
686
687 /*
688 * PCR is valid when
689 * ICE == 0 and FRAG == 0
690 */
691 if (flags2 & RXFLAGS2_FRAG)
692 return;
693
694 /*
695 * PCR is valid when proto is TCP or UDP
696 */
697 if ((proto == IPPROTO_TCP) &&
698 (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
699 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
700 else if ((proto == IPPROTO_UDP) &&
701 (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
702 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
703 else
704 return;
705
706 /* IPv4 protocol cksum error */
707 if (flags2 & RXFLAGS2_PCR)
708 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
709 }
710 }
711 }
712
713 static void
714 enet_setmulti(struct enet_softc *sc)
715 {
716 struct ethercom *ec = &sc->sc_ethercom;
717 struct ifnet *ifp = &ec->ec_if;
718 struct ether_multi *enm;
719 struct ether_multistep step;
720 int promisc;
721 uint32_t crc;
722 uint32_t gaddr[2];
723
724 promisc = 0;
725 if ((ifp->if_flags & IFF_PROMISC) || ec->ec_multicnt > 0) {
726 ifp->if_flags |= IFF_ALLMULTI;
727 if (ifp->if_flags & IFF_PROMISC)
728 promisc = 1;
729 gaddr[0] = gaddr[1] = 0xffffffff;
730 } else {
731 gaddr[0] = gaddr[1] = 0;
732
733 ETHER_LOCK(ec);
734 ETHER_FIRST_MULTI(step, ec, enm);
735 while (enm != NULL) {
736 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
737 gaddr[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
738 ETHER_NEXT_MULTI(step, enm);
739 }
740 ETHER_UNLOCK(ec);
741 }
742
743 ENET_REG_WRITE(sc, ENET_GAUR, gaddr[0]);
744 ENET_REG_WRITE(sc, ENET_GALR, gaddr[1]);
745
746 if (promisc) {
747 /* match all packet */
748 ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
749 ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
750 } else {
751 /* don't match any packet */
752 ENET_REG_WRITE(sc, ENET_IAUR, 0);
753 ENET_REG_WRITE(sc, ENET_IALR, 0);
754 }
755 }
756
757 static void
758 enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
759 {
760 uint32_t paddr;
761
762 paddr = ENET_REG_READ(sc, ENET_PALR);
763 hwaddr[0] = paddr >> 24;
764 hwaddr[1] = paddr >> 16;
765 hwaddr[2] = paddr >> 8;
766 hwaddr[3] = paddr;
767
768 paddr = ENET_REG_READ(sc, ENET_PAUR);
769 hwaddr[4] = paddr >> 24;
770 hwaddr[5] = paddr >> 16;
771 }
772
773 static void
774 enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
775 {
776 uint32_t paddr;
777
778 paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
779 hwaddr[3];
780 ENET_REG_WRITE(sc, ENET_PALR, paddr);
781 paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
782 ENET_REG_WRITE(sc, ENET_PAUR, paddr);
783 }
784
785 /*
786 * ifnet interfaces
787 */
788 static int
789 enet_init(struct ifnet *ifp)
790 {
791 struct enet_softc *sc;
792 int s, error;
793
794 sc = ifp->if_softc;
795
796 s = splnet();
797
798 enet_init_regs(sc, 0);
799 enet_init_txring(sc);
800 error = enet_init_rxring(sc);
801 if (error != 0) {
802 enet_drain_rxbuf(sc);
803 device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
804 goto init_failure;
805 }
806
807 /* reload mac address */
808 memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
809 enet_sethwaddr(sc, sc->sc_enaddr);
810
811 /* program multicast address */
812 enet_setmulti(sc);
813
814 /* update if_flags */
815 ifp->if_flags |= IFF_RUNNING;
816 ifp->if_flags &= ~IFF_OACTIVE;
817
818 /* update local copy of if_flags */
819 sc->sc_if_flags = ifp->if_flags;
820
821 /* mii */
822 mii_mediachg(&sc->sc_mii);
823
824 /* enable RX DMA */
825 ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
826
827 sc->sc_stopping = false;
828 callout_schedule(&sc->sc_tick_ch, ENET_TICK);
829
830 init_failure:
831 splx(s);
832
833 return error;
834 }
835
836 static void
837 enet_start(struct ifnet *ifp)
838 {
839 struct enet_softc *sc;
840 struct mbuf *m;
841 int npkt;
842
843 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
844 return;
845
846 sc = ifp->if_softc;
847 for (npkt = 0; ; npkt++) {
848 IFQ_POLL(&ifp->if_snd, m);
849 if (m == NULL)
850 break;
851
852 if (sc->sc_tx_free <= 0) {
853 /* no tx descriptor now... */
854 ifp->if_flags |= IFF_OACTIVE;
855 DEVICE_DPRINTF("TX descriptor is full\n");
856 break;
857 }
858
859 IFQ_DEQUEUE(&ifp->if_snd, m);
860
861 if (enet_encap_txring(sc, &m) != 0) {
862 /* too many mbuf chains? */
863 ifp->if_flags |= IFF_OACTIVE;
864 DEVICE_DPRINTF(
865 "TX descriptor is full. dropping packet\n");
866 m_freem(m);
867 ifp->if_oerrors++;
868 break;
869 }
870
871 /* Pass the packet to any BPF listeners */
872 bpf_mtap(ifp, m, BPF_D_OUT);
873 }
874
875 if (npkt) {
876 /* enable TX DMA */
877 ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
878
879 ifp->if_timer = 5;
880 }
881 }
882
883 static void
884 enet_stop(struct ifnet *ifp, int disable)
885 {
886 struct enet_softc *sc;
887 int s;
888 uint32_t v;
889
890 sc = ifp->if_softc;
891
892 s = splnet();
893
894 sc->sc_stopping = true;
895 callout_stop(&sc->sc_tick_ch);
896
897 /* clear ENET_ECR[ETHEREN] to abort receive and transmit */
898 v = ENET_REG_READ(sc, ENET_ECR);
899 ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
900
901 /* Mark the interface as down and cancel the watchdog timer. */
902 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
903 ifp->if_timer = 0;
904
905 if (disable) {
906 enet_drain_txbuf(sc);
907 enet_drain_rxbuf(sc);
908 }
909
910 splx(s);
911 }
912
913 static void
914 enet_watchdog(struct ifnet *ifp)
915 {
916 struct enet_softc *sc;
917 int s;
918
919 sc = ifp->if_softc;
920 s = splnet();
921
922 device_printf(sc->sc_dev, "watchdog timeout\n");
923 ifp->if_oerrors++;
924
925 /* salvage packets left in descriptors */
926 enet_tx_intr(sc);
927 enet_rx_intr(sc);
928
929 /* reset */
930 enet_stop(ifp, 1);
931 enet_init(ifp);
932
933 splx(s);
934 }
935
936 static void
937 enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
938 {
939 struct enet_softc *sc = ifp->if_softc;
940
941 ether_mediastatus(ifp, ifmr);
942 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
943 | sc->sc_flowflags;
944 }
945
946 static int
947 enet_ifflags_cb(struct ethercom *ec)
948 {
949 struct ifnet *ifp = &ec->ec_if;
950 struct enet_softc *sc = ifp->if_softc;
951 int change = ifp->if_flags ^ sc->sc_if_flags;
952
953 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
954 return ENETRESET;
955 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
956 return 0;
957
958 enet_setmulti(sc);
959
960 sc->sc_if_flags = ifp->if_flags;
961 return 0;
962 }
963
964 static int
965 enet_ioctl(struct ifnet *ifp, u_long command, void *data)
966 {
967 struct enet_softc *sc;
968 struct ifreq *ifr;
969 int s, error;
970 uint32_t v;
971
972 sc = ifp->if_softc;
973 ifr = data;
974
975 error = 0;
976
977 s = splnet();
978
979 switch (command) {
980 case SIOCSIFMTU:
981 if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
982 error = EINVAL;
983 } else {
984 ifp->if_mtu = ifr->ifr_mtu;
985
986 /* set maximum frame length */
987 v = MTU2FRAMESIZE(ifr->ifr_mtu);
988 ENET_REG_WRITE(sc, ENET_FTRL, v);
989 v = ENET_REG_READ(sc, ENET_RCR);
990 v &= ~ENET_RCR_MAX_FL(0x3fff);
991 v |= ENET_RCR_MAX_FL(ifp->if_mtu + ETHER_HDR_LEN +
992 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
993 ENET_REG_WRITE(sc, ENET_RCR, v);
994 }
995 break;
996 case SIOCSIFMEDIA:
997 /* Flow control requires full-duplex mode. */
998 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
999 (ifr->ifr_media & IFM_FDX) == 0)
1000 ifr->ifr_media &= ~IFM_ETH_FMASK;
1001 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1002 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1003 /* We can do both TXPAUSE and RXPAUSE. */
1004 ifr->ifr_media |=
1005 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1006 }
1007 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1008 }
1009 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1010 break;
1011 default:
1012 error = ether_ioctl(ifp, command, data);
1013 if (error != ENETRESET)
1014 break;
1015
1016 /* post-process */
1017 error = 0;
1018 switch (command) {
1019 case SIOCSIFCAP:
1020 error = (*ifp->if_init)(ifp);
1021 break;
1022 case SIOCADDMULTI:
1023 case SIOCDELMULTI:
1024 if (ifp->if_flags & IFF_RUNNING)
1025 enet_setmulti(sc);
1026 break;
1027 }
1028 break;
1029 }
1030
1031 splx(s);
1032
1033 return error;
1034 }
1035
1036 /*
1037 * for MII
1038 */
1039 static int
1040 enet_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1041 {
1042 struct enet_softc *sc;
1043 int timeout;
1044 uint32_t status;
1045
1046 sc = device_private(dev);
1047
1048 /* clear MII update */
1049 ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1050
1051 /* read command */
1052 ENET_REG_WRITE(sc, ENET_MMFR,
1053 ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1054 ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1055
1056 /* check MII update */
1057 for (timeout = 5000; timeout > 0; --timeout) {
1058 status = ENET_REG_READ(sc, ENET_EIR);
1059 if (status & ENET_EIR_MII)
1060 break;
1061 }
1062 if (timeout <= 0) {
1063 DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1064 reg);
1065 return ETIMEDOUT;
1066 } else
1067 *val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1068
1069 return 0;
1070 }
1071
1072 static int
1073 enet_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1074 {
1075 struct enet_softc *sc;
1076 int timeout;
1077
1078 sc = device_private(dev);
1079
1080 /* clear MII update */
1081 ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1082
1083 /* write command */
1084 ENET_REG_WRITE(sc, ENET_MMFR,
1085 ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1086 ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1087 (ENET_MMFR_DATAMASK & val));
1088
1089 /* check MII update */
1090 for (timeout = 5000; timeout > 0; --timeout) {
1091 if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1092 break;
1093 }
1094 if (timeout <= 0) {
1095 DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n", reg);
1096 return ETIMEDOUT;
1097 }
1098
1099 return 0;
1100 }
1101
1102 static void
1103 enet_miibus_statchg(struct ifnet *ifp)
1104 {
1105 struct enet_softc *sc;
1106 struct mii_data *mii;
1107 struct ifmedia_entry *ife;
1108 uint32_t ecr, ecr0;
1109 uint32_t rcr, rcr0;
1110 uint32_t tcr, tcr0;
1111
1112 sc = ifp->if_softc;
1113 mii = &sc->sc_mii;
1114 ife = mii->mii_media.ifm_cur;
1115
1116 /* get current status */
1117 ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1118 rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1119 tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1120
1121 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1122 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1123 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1124 mii->mii_media_active &= ~IFM_ETH_FMASK;
1125 }
1126
1127 if ((ife->ifm_media & IFM_FDX) != 0) {
1128 tcr |= ENET_TCR_FDEN; /* full duplex */
1129 rcr &= ~ENET_RCR_DRT;; /* enable receive on transmit */
1130 } else {
1131 tcr &= ~ENET_TCR_FDEN; /* half duplex */
1132 rcr |= ENET_RCR_DRT; /* disable receive on transmit */
1133 }
1134
1135 if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1136 /*
1137 * need to reset because
1138 * FDEN can change when ECR[ETHEREN] is 0
1139 */
1140 enet_init_regs(sc, 0);
1141 return;
1142 }
1143
1144 switch (IFM_SUBTYPE(ife->ifm_media)) {
1145 case IFM_AUTO:
1146 case IFM_1000_T:
1147 ecr |= ENET_ECR_SPEED; /* 1000Mbps mode */
1148 rcr &= ~ENET_RCR_RMII_10T;
1149 break;
1150 case IFM_100_TX:
1151 ecr &= ~ENET_ECR_SPEED; /* 100Mbps mode */
1152 rcr &= ~ENET_RCR_RMII_10T; /* 100Mbps mode */
1153 break;
1154 case IFM_10_T:
1155 ecr &= ~ENET_ECR_SPEED; /* 10Mbps mode */
1156 rcr |= ENET_RCR_RMII_10T; /* 10Mbps mode */
1157 break;
1158 default:
1159 ecr = ecr0;
1160 rcr = rcr0;
1161 tcr = tcr0;
1162 break;
1163 }
1164
1165 if (sc->sc_rgmii == 0)
1166 ecr &= ~ENET_ECR_SPEED;
1167
1168 if (sc->sc_flowflags & IFM_FLOW)
1169 rcr |= ENET_RCR_FCE;
1170 else
1171 rcr &= ~ENET_RCR_FCE;
1172
1173 /* update registers if need change */
1174 if (ecr != ecr0)
1175 ENET_REG_WRITE(sc, ENET_ECR, ecr);
1176 if (rcr != rcr0)
1177 ENET_REG_WRITE(sc, ENET_RCR, rcr);
1178 if (tcr != tcr0)
1179 ENET_REG_WRITE(sc, ENET_TCR, tcr);
1180 }
1181
1182 /*
1183 * handling descriptors
1184 */
1185 static void
1186 enet_init_txring(struct enet_softc *sc)
1187 {
1188 int i;
1189
1190 /* build TX ring */
1191 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1192 sc->sc_txdesc_ring[i].tx_flags1_len =
1193 ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1194 sc->sc_txdesc_ring[i].tx_databuf = 0;
1195 sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1196 sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1197 sc->sc_txdesc_ring[i].tx_flags3 = 0;
1198 sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1199 sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1200 sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1201
1202 TXDESC_WRITEOUT(i);
1203 }
1204
1205 sc->sc_tx_free = ENET_TX_RING_CNT;
1206 sc->sc_tx_considx = 0;
1207 sc->sc_tx_prodidx = 0;
1208 }
1209
1210 static int
1211 enet_init_rxring(struct enet_softc *sc)
1212 {
1213 int i, error;
1214
1215 /* build RX ring */
1216 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1217 error = enet_alloc_rxbuf(sc, i);
1218 if (error != 0)
1219 return error;
1220 }
1221
1222 sc->sc_rx_readidx = 0;
1223
1224 return 0;
1225 }
1226
1227 static int
1228 enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1229 {
1230 struct mbuf *m;
1231 int error;
1232
1233 KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1234
1235 /* free mbuf if already allocated */
1236 if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1237 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1238 m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1239 sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1240 }
1241
1242 /* allocate new mbuf cluster */
1243 MGETHDR(m, M_DONTWAIT, MT_DATA);
1244 if (m == NULL)
1245 return ENOBUFS;
1246 MCLGET(m, M_DONTWAIT);
1247 if (!(m->m_flags & M_EXT)) {
1248 m_freem(m);
1249 return ENOBUFS;
1250 }
1251 m->m_len = MCLBYTES;
1252 m->m_next = NULL;
1253
1254 error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1255 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1256 BUS_DMA_READ | BUS_DMA_NOWAIT);
1257 if (error) {
1258 m_freem(m);
1259 return error;
1260 }
1261
1262 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1263 sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1264 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1265
1266 sc->sc_rxsoft[idx].rxs_mbuf = m;
1267 enet_reset_rxdesc(sc, idx);
1268 return 0;
1269 }
1270
1271 static void
1272 enet_reset_rxdesc(struct enet_softc *sc, int idx)
1273 {
1274 uint32_t paddr;
1275
1276 paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1277
1278 sc->sc_rxdesc_ring[idx].rx_flags1_len =
1279 RXFLAGS1_E |
1280 ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1281 sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1282 sc->sc_rxdesc_ring[idx].rx_flags2 =
1283 RXFLAGS2_INT;
1284 sc->sc_rxdesc_ring[idx].rx_hl = 0;
1285 sc->sc_rxdesc_ring[idx].rx_proto = 0;
1286 sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1287 sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1288 sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1289 sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1290 sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1291
1292 RXDESC_WRITEOUT(idx);
1293 }
1294
1295 static void
1296 enet_drain_txbuf(struct enet_softc *sc)
1297 {
1298 int idx;
1299 struct enet_txsoft *txs;
1300 struct ifnet *ifp;
1301
1302 ifp = &sc->sc_ethercom.ec_if;
1303
1304 for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1305 idx = ENET_TX_NEXTIDX(idx)) {
1306
1307 /* txsoft[] is used only first segment */
1308 txs = &sc->sc_txsoft[idx];
1309 TXDESC_READIN(idx);
1310 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1311 sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1312 bus_dmamap_unload(sc->sc_dmat,
1313 txs->txs_dmamap);
1314 m_freem(txs->txs_mbuf);
1315
1316 ifp->if_oerrors++;
1317 }
1318 sc->sc_tx_free++;
1319 }
1320 }
1321
1322 static void
1323 enet_drain_rxbuf(struct enet_softc *sc)
1324 {
1325 int i;
1326
1327 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1328 if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1329 sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1330 bus_dmamap_unload(sc->sc_dmat,
1331 sc->sc_rxsoft[i].rxs_dmamap);
1332 m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1333 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1334 }
1335 }
1336 }
1337
1338 static int
1339 enet_alloc_ring(struct enet_softc *sc)
1340 {
1341 int i, error;
1342
1343 /*
1344 * build DMA maps for TX.
1345 * TX descriptor must be able to contain mbuf chains,
1346 * so, make up ENET_MAX_PKT_NSEGS dmamap.
1347 */
1348 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1349 error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1350 ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1351 &sc->sc_txsoft[i].txs_dmamap);
1352
1353 if (error) {
1354 aprint_error_dev(sc->sc_dev,
1355 "can't create DMA map for TX descs\n");
1356 goto fail_1;
1357 }
1358 }
1359
1360 /*
1361 * build DMA maps for RX.
1362 * RX descripter contains An mbuf cluster,
1363 * and make up a dmamap.
1364 */
1365 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1366 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1367 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1368 &sc->sc_rxsoft[i].rxs_dmamap);
1369 if (error) {
1370 aprint_error_dev(sc->sc_dev,
1371 "can't create DMA map for RX descs\n");
1372 goto fail_2;
1373 }
1374 }
1375
1376 if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1377 (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1378 return -1;
1379 memset(sc->sc_txdesc_ring, 0,
1380 sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1381
1382 if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1383 (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1384 return -1;
1385 memset(sc->sc_rxdesc_ring, 0,
1386 sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1387
1388 return 0;
1389
1390 fail_2:
1391 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1392 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1393 bus_dmamap_destroy(sc->sc_dmat,
1394 sc->sc_rxsoft[i].rxs_dmamap);
1395 }
1396 fail_1:
1397 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1398 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1399 bus_dmamap_destroy(sc->sc_dmat,
1400 sc->sc_txsoft[i].txs_dmamap);
1401 }
1402 return error;
1403 }
1404
1405 static int
1406 enet_encap_mbufalign(struct mbuf **mp)
1407 {
1408 struct mbuf *m, *m0, *mt, *p, *x;
1409 void *ap;
1410 uint32_t alignoff, chiplen;
1411
1412 /*
1413 * iMX6 SoC ethernet controller requires
1414 * address of buffer must aligned 8, and
1415 * length of buffer must be greater than 10 (first fragment only?)
1416 */
1417 #define ALIGNBYTE 8
1418 #define MINBUFSIZE 10
1419 #define ALIGN_PTR(p, align) \
1420 (void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1421
1422 m0 = *mp;
1423 mt = p = NULL;
1424 for (m = m0; m != NULL; m = m->m_next) {
1425 alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1426 if (m->m_len < (ALIGNBYTE * 2)) {
1427 /*
1428 * rearrange mbuf data aligned
1429 *
1430 * align 8 * * * * *
1431 * +0123456789abcdef0123456789abcdef0
1432 * FROM m->m_data[___________abcdefghijklmn_______]
1433 *
1434 * +0123456789abcdef0123456789abcdef0
1435 * TO m->m_data[________abcdefghijklm___________] or
1436 * m->m_data[________________abcdefghijklmn__]
1437 */
1438 if ((alignoff != 0) && (m->m_len != 0)) {
1439 chiplen = ALIGNBYTE - alignoff;
1440 if (M_LEADINGSPACE(m) >= alignoff) {
1441 ap = m->m_data - alignoff;
1442 memmove(ap, m->m_data, m->m_len);
1443 m->m_data = ap;
1444 } else if (M_TRAILINGSPACE(m) >= chiplen) {
1445 ap = m->m_data + chiplen;
1446 memmove(ap, m->m_data, m->m_len);
1447 m->m_data = ap;
1448 } else {
1449 /*
1450 * no space to align data. (M_READONLY?)
1451 * allocate new mbuf aligned,
1452 * and copy to it.
1453 */
1454 MGET(x, M_DONTWAIT, m->m_type);
1455 if (x == NULL) {
1456 m_freem(m);
1457 return ENOBUFS;
1458 }
1459 MCLAIM(x, m->m_owner);
1460 if (m->m_flags & M_PKTHDR)
1461 m_move_pkthdr(x, m);
1462 x->m_len = m->m_len;
1463 x->m_data = ALIGN_PTR(x->m_data,
1464 ALIGNBYTE);
1465 memcpy(mtod(x, void *), mtod(m, void *),
1466 m->m_len);
1467 p->m_next = x;
1468 x->m_next = m_free(m);
1469 m = x;
1470 }
1471 }
1472
1473 /*
1474 * fill 1st mbuf at least 10byte
1475 *
1476 * align 8 * * * * *
1477 * +0123456789abcdef0123456789abcdef0
1478 * FROM m->m_data[________abcde___________________]
1479 * m->m_data[__fg____________________________]
1480 * m->m_data[_________________hi_____________]
1481 * m->m_data[__________jk____________________]
1482 * m->m_data[____l___________________________]
1483 *
1484 * +0123456789abcdef0123456789abcdef0
1485 * TO m->m_data[________abcdefghij______________]
1486 * m->m_data[________________________________]
1487 * m->m_data[________________________________]
1488 * m->m_data[___________k____________________]
1489 * m->m_data[____l___________________________]
1490 */
1491 if (mt == NULL) {
1492 mt = m;
1493 while (mt->m_len == 0) {
1494 mt = mt->m_next;
1495 if (mt == NULL) {
1496 m_freem(m);
1497 return ENOBUFS;
1498 }
1499 }
1500
1501 /* mt = 1st mbuf, x = 2nd mbuf */
1502 x = mt->m_next;
1503 while (mt->m_len < MINBUFSIZE) {
1504 if (x == NULL) {
1505 m_freem(m);
1506 return ENOBUFS;
1507 }
1508
1509 alignoff = (uintptr_t)x->m_data &
1510 (ALIGNBYTE - 1);
1511 chiplen = ALIGNBYTE - alignoff;
1512 if (chiplen > x->m_len) {
1513 chiplen = x->m_len;
1514 } else if ((mt->m_len + chiplen) <
1515 MINBUFSIZE) {
1516 /*
1517 * next mbuf should be greater
1518 * than ALIGNBYTE?
1519 */
1520 if (x->m_len >= (chiplen +
1521 ALIGNBYTE * 2))
1522 chiplen += ALIGNBYTE;
1523 else
1524 chiplen = x->m_len;
1525 }
1526
1527 if (chiplen &&
1528 (M_TRAILINGSPACE(mt) < chiplen)) {
1529 /*
1530 * move data to the begining of
1531 * m_dat[] (aligned) to en-
1532 * large trailingspace
1533 */
1534 if (mt->m_flags & M_EXT) {
1535 ap = mt->m_ext.ext_buf;
1536 } else if (mt->m_flags &
1537 M_PKTHDR) {
1538 ap = mt->m_pktdat;
1539 } else {
1540 ap = mt->m_dat;
1541 }
1542 ap = ALIGN_PTR(ap, ALIGNBYTE);
1543 memcpy(ap, mt->m_data,
1544 mt->m_len);
1545 mt->m_data = ap;
1546 }
1547
1548 if (chiplen &&
1549 (M_TRAILINGSPACE(mt) >= chiplen)) {
1550 memcpy(mt->m_data + mt->m_len,
1551 x->m_data, chiplen);
1552 mt->m_len += chiplen;
1553 m_adj(x, chiplen);
1554 }
1555
1556 x = x->m_next;
1557 }
1558 }
1559
1560 } else {
1561 mt = m;
1562
1563 /*
1564 * allocate new mbuf x, and rearrange as below;
1565 *
1566 * align 8 * * * * *
1567 * +0123456789abcdef0123456789abcdef0
1568 * FROM m->m_data[____________abcdefghijklmnopq___]
1569 *
1570 * +0123456789abcdef0123456789abcdef0
1571 * TO x->m_data[________abcdefghijkl____________]
1572 * m->m_data[________________________mnopq___]
1573 *
1574 */
1575 if (alignoff != 0) {
1576 /* at least ALIGNBYTE */
1577 chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1578
1579 MGET(x, M_DONTWAIT, m->m_type);
1580 if (x == NULL) {
1581 m_freem(m);
1582 return ENOBUFS;
1583 }
1584 MCLAIM(x, m->m_owner);
1585 if (m->m_flags & M_PKTHDR)
1586 m_move_pkthdr(x, m);
1587 x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1588 memcpy(mtod(x, void *), mtod(m, void *),
1589 chiplen);
1590 x->m_len = chiplen;
1591 x->m_next = m;
1592 m_adj(m, chiplen);
1593
1594 if (p == NULL)
1595 m0 = x;
1596 else
1597 p->m_next = x;
1598 }
1599 }
1600 p = m;
1601 }
1602 *mp = m0;
1603
1604 return 0;
1605 }
1606
1607 static int
1608 enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1609 {
1610 bus_dmamap_t map;
1611 struct mbuf *m;
1612 int csumflags, idx, i, error;
1613 uint32_t flags1, flags2;
1614
1615 idx = sc->sc_tx_prodidx;
1616 map = sc->sc_txsoft[idx].txs_dmamap;
1617
1618 /* align mbuf data for claim of ENET */
1619 error = enet_encap_mbufalign(mp);
1620 if (error != 0)
1621 return error;
1622
1623 m = *mp;
1624 csumflags = m->m_pkthdr.csum_flags;
1625
1626 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1627 BUS_DMA_NOWAIT);
1628 if (error != 0) {
1629 device_printf(sc->sc_dev,
1630 "Error mapping mbuf into TX chain: error=%d\n", error);
1631 m_freem(m);
1632 return error;
1633 }
1634
1635 if (map->dm_nsegs > sc->sc_tx_free) {
1636 bus_dmamap_unload(sc->sc_dmat, map);
1637 device_printf(sc->sc_dev,
1638 "too many mbuf chain %d\n", map->dm_nsegs);
1639 m_freem(m);
1640 return ENOBUFS;
1641 }
1642
1643 /* fill protocol cksum zero beforehand */
1644 if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1645 M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1646 int ehlen;
1647 uint16_t etype;
1648
1649 m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1650 switch (ntohs(etype)) {
1651 case ETHERTYPE_IP:
1652 case ETHERTYPE_IPV6:
1653 ehlen = ETHER_HDR_LEN;
1654 break;
1655 case ETHERTYPE_VLAN:
1656 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1657 break;
1658 default:
1659 ehlen = 0;
1660 break;
1661 }
1662
1663 if (ehlen) {
1664 const int off =
1665 M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1666 M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1667 if (m->m_pkthdr.len >= ehlen + off + sizeof(uint16_t)) {
1668 uint16_t zero = 0;
1669 m_copyback(m, ehlen + off, sizeof(zero), &zero);
1670 }
1671 }
1672 }
1673
1674 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1675 BUS_DMASYNC_PREWRITE);
1676
1677 for (i = 0; i < map->dm_nsegs; i++) {
1678 flags1 = TXFLAGS1_R;
1679 flags2 = 0;
1680
1681 if (i == 0) {
1682 flags1 |= TXFLAGS1_T1; /* mark as first segment */
1683 sc->sc_txsoft[idx].txs_mbuf = m;
1684 }
1685
1686 /* checksum offloading */
1687 if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1688 M_CSUM_UDPv6 | M_CSUM_TCPv6))
1689 flags2 |= TXFLAGS2_PINS;
1690 if (csumflags & (M_CSUM_IPv4))
1691 flags2 |= TXFLAGS2_IINS;
1692
1693 if (i == map->dm_nsegs - 1) {
1694 /* mark last segment */
1695 flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1696 flags2 |= TXFLAGS2_INT;
1697 }
1698 if (idx == ENET_TX_RING_CNT - 1) {
1699 /* mark end of ring */
1700 flags1 |= TXFLAGS1_W;
1701 }
1702
1703 sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1704 sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1705 sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1706 TXDESC_WRITEOUT(idx);
1707
1708 sc->sc_txdesc_ring[idx].tx_flags1_len =
1709 flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1710 TXDESC_WRITEOUT(idx);
1711
1712 idx = ENET_TX_NEXTIDX(idx);
1713 sc->sc_tx_free--;
1714 }
1715
1716 sc->sc_tx_prodidx = idx;
1717
1718 return 0;
1719 }
1720
1721 /*
1722 * device initialize
1723 */
1724 static int
1725 enet_init_regs(struct enet_softc *sc, int init)
1726 {
1727 struct mii_data *mii;
1728 struct ifmedia_entry *ife;
1729 paddr_t paddr;
1730 uint32_t val;
1731 int miimode, fulldup, ecr_speed, rcr_speed, flowctrl;
1732
1733 if (init) {
1734 fulldup = 1;
1735 ecr_speed = ENET_ECR_SPEED;
1736 rcr_speed = 0;
1737 flowctrl = 0;
1738 } else {
1739 mii = &sc->sc_mii;
1740 ife = mii->mii_media.ifm_cur;
1741
1742 if ((ife->ifm_media & IFM_FDX) != 0)
1743 fulldup = 1;
1744 else
1745 fulldup = 0;
1746
1747 switch (IFM_SUBTYPE(ife->ifm_media)) {
1748 case IFM_10_T:
1749 ecr_speed = 0;
1750 rcr_speed = ENET_RCR_RMII_10T;
1751 break;
1752 case IFM_100_TX:
1753 ecr_speed = 0;
1754 rcr_speed = 0;
1755 break;
1756 default:
1757 ecr_speed = ENET_ECR_SPEED;
1758 rcr_speed = 0;
1759 break;
1760 }
1761
1762 flowctrl = sc->sc_flowflags & IFM_FLOW;
1763 }
1764
1765 if (sc->sc_rgmii == 0)
1766 ecr_speed = 0;
1767
1768 /* reset */
1769 ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1770
1771 /* mask and clear all interrupt */
1772 ENET_REG_WRITE(sc, ENET_EIMR, 0);
1773 ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1774
1775 /* full duplex */
1776 ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1777
1778 /* clear and enable MIB register */
1779 ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1780 ENET_REG_WRITE(sc, ENET_MIBC, 0);
1781
1782 /* MII speed setup. MDCclk(=2.5MHz) = ENET_PLL/((val+1)*2) */
1783 val = ((sc->sc_pllclock) / 500000 - 1) / 10;
1784 ENET_REG_WRITE(sc, ENET_MSCR, val << 1);
1785
1786 /* Opcode/Pause Duration */
1787 ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1788
1789 /* Receive FIFO */
1790 ENET_REG_WRITE(sc, ENET_RSFL, 16); /* RxFIFO Section Full */
1791 ENET_REG_WRITE(sc, ENET_RSEM, 0x84); /* RxFIFO Section Empty */
1792 ENET_REG_WRITE(sc, ENET_RAEM, 8); /* RxFIFO Almost Empty */
1793 ENET_REG_WRITE(sc, ENET_RAFL, 8); /* RxFIFO Almost Full */
1794
1795 /* Transmit FIFO */
1796 ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1797 ENET_TFWR_FIFO(128)); /* TxFIFO Watermark */
1798 ENET_REG_WRITE(sc, ENET_TSEM, 0); /* TxFIFO Section Empty */
1799 ENET_REG_WRITE(sc, ENET_TAEM, 256); /* TxFIFO Almost Empty */
1800 ENET_REG_WRITE(sc, ENET_TAFL, 8); /* TxFIFO Almost Full */
1801 ENET_REG_WRITE(sc, ENET_TIPG, 12); /* Tx Inter-Packet Gap */
1802
1803 /* hardware checksum is default off (override in TX descripter) */
1804 ENET_REG_WRITE(sc, ENET_TACC, 0);
1805
1806 /*
1807 * align ethernet payload on 32bit, discard frames with MAC layer error,
1808 * and don't discard checksum error
1809 */
1810 ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1811
1812 /* maximum frame size */
1813 val = ENET_DEFAULT_PKT_LEN;
1814 ENET_REG_WRITE(sc, ENET_FTRL, val); /* Frame Truncation Length */
1815
1816 if (sc->sc_rgmii == 0)
1817 miimode = ENET_RCR_RMII_MODE | ENET_RCR_MII_MODE;
1818 else
1819 miimode = ENET_RCR_RGMII_EN;
1820 ENET_REG_WRITE(sc, ENET_RCR,
1821 ENET_RCR_PADEN | /* RX frame padding remove */
1822 miimode |
1823 (flowctrl ? ENET_RCR_FCE : 0) | /* flow control enable */
1824 rcr_speed |
1825 (fulldup ? 0 : ENET_RCR_DRT) |
1826 ENET_RCR_MAX_FL(val));
1827
1828 /* Maximum Receive BufSize per one descriptor */
1829 ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1830
1831
1832 /* TX/RX Descriptor Physical Address */
1833 paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1834 ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1835 paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
1836 ENET_REG_WRITE(sc, ENET_RDSR, paddr);
1837 /* sync cache */
1838 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
1839 sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1840 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
1841 sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1842
1843 /* enable interrupts */
1844 val = ENET_EIMR | ENET_EIR_TXF | ENET_EIR_RXF | ENET_EIR_EBERR;
1845 if (sc->sc_imxtype == 7)
1846 val |= ENET_EIR_TXF2 | ENET_EIR_RXF2 | ENET_EIR_TXF1 |
1847 ENET_EIR_RXF1;
1848 ENET_REG_WRITE(sc, ENET_EIMR, val);
1849
1850 /* enable ether */
1851 ENET_REG_WRITE(sc, ENET_ECR,
1852 #if _BYTE_ORDER == _LITTLE_ENDIAN
1853 ENET_ECR_DBSWP |
1854 #endif
1855 ecr_speed |
1856 ENET_ECR_EN1588 | /* use enhanced TX/RX descriptor */
1857 ENET_ECR_ETHEREN); /* Ethernet Enable */
1858
1859 return 0;
1860 }
1861
1862 static int
1863 enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
1864 bus_dmamap_t *mapp)
1865 {
1866 bus_dma_segment_t seglist[1];
1867 int nsegs, error;
1868
1869 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
1870 1, &nsegs, M_NOWAIT)) != 0) {
1871 device_printf(sc->sc_dev,
1872 "unable to allocate DMA buffer, error=%d\n", error);
1873 goto fail_alloc;
1874 }
1875
1876 if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
1877 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1878 device_printf(sc->sc_dev,
1879 "unable to map DMA buffer, error=%d\n",
1880 error);
1881 goto fail_map;
1882 }
1883
1884 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1885 BUS_DMA_NOWAIT, mapp)) != 0) {
1886 device_printf(sc->sc_dev,
1887 "unable to create DMA map, error=%d\n", error);
1888 goto fail_create;
1889 }
1890
1891 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
1892 BUS_DMA_NOWAIT)) != 0) {
1893 aprint_error_dev(sc->sc_dev,
1894 "unable to load DMA map, error=%d\n", error);
1895 goto fail_load;
1896 }
1897
1898 return 0;
1899
1900 fail_load:
1901 bus_dmamap_destroy(sc->sc_dmat, *mapp);
1902 fail_create:
1903 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
1904 fail_map:
1905 bus_dmamem_free(sc->sc_dmat, seglist, 1);
1906 fail_alloc:
1907 return error;
1908 }
1909