if_enet.c revision 1.26 1 /* $NetBSD: if_enet.c,v 1.26 2019/09/13 07:55:05 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2014 Ryo Shimizu <ryo (at) nerv.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * i.MX6,7 10/100/1000-Mbps ethernet MAC (ENET)
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.26 2019/09/13 07:55:05 msaitoh Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/mbuf.h>
41 #include <sys/device.h>
42 #include <sys/sockio.h>
43 #include <sys/kernel.h>
44 #include <sys/rndsource.h>
45
46 #include <lib/libkern/libkern.h>
47
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_ether.h>
52 #include <net/bpf.h>
53 #include <net/if_vlanvar.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/ip.h>
58
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61
62 #include <arm/imx/if_enetreg.h>
63 #include <arm/imx/if_enetvar.h>
64
65 #undef DEBUG_ENET
66 #undef ENET_EVENT_COUNTER
67
68 #define ENET_TICK hz
69
70 #ifdef DEBUG_ENET
71 int enet_debug = 0;
72 # define DEVICE_DPRINTF(args...) \
73 do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
74 #else
75 # define DEVICE_DPRINTF(args...)
76 #endif
77
78
79 #define RXDESC_MAXBUFSIZE 0x07f0
80 /* ENET does not work greather than 0x0800... */
81
82 #undef ENET_SUPPORT_JUMBO /* JUMBO FRAME SUPPORT is unstable */
83 #ifdef ENET_SUPPORT_JUMBO
84 # define ENET_MAX_PKT_LEN 4034 /* MAX FIFO LEN */
85 #else
86 # define ENET_MAX_PKT_LEN 1522
87 #endif
88 #define ENET_DEFAULT_PKT_LEN 1522 /* including VLAN tag */
89 #define MTU2FRAMESIZE(n) \
90 ((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
91
92
93 #define ENET_MAX_PKT_NSEGS 64
94
95 #define ENET_TX_NEXTIDX(idx) \
96 (((idx) >= (ENET_TX_RING_CNT - 1)) ? 0 : ((idx) + 1))
97 #define ENET_RX_NEXTIDX(idx) \
98 (((idx) >= (ENET_RX_RING_CNT - 1)) ? 0 : ((idx) + 1))
99
100 #define TXDESC_WRITEOUT(idx) \
101 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
102 sizeof(struct enet_txdesc) * (idx), \
103 sizeof(struct enet_txdesc), \
104 BUS_DMASYNC_PREWRITE)
105
106 #define TXDESC_READIN(idx) \
107 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
108 sizeof(struct enet_txdesc) * (idx), \
109 sizeof(struct enet_txdesc), \
110 BUS_DMASYNC_PREREAD)
111
112 #define RXDESC_WRITEOUT(idx) \
113 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
114 sizeof(struct enet_rxdesc) * (idx), \
115 sizeof(struct enet_rxdesc), \
116 BUS_DMASYNC_PREWRITE)
117
118 #define RXDESC_READIN(idx) \
119 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
120 sizeof(struct enet_rxdesc) * (idx), \
121 sizeof(struct enet_rxdesc), \
122 BUS_DMASYNC_PREREAD)
123
124 #define ENET_REG_READ(sc, reg) \
125 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
126
127 #define ENET_REG_WRITE(sc, reg, value) \
128 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
129
130 #ifdef ENET_EVENT_COUNTER
131 static void enet_attach_evcnt(struct enet_softc *);
132 static void enet_update_evcnt(struct enet_softc *);
133 #endif
134
135 static void enet_tick(void *);
136 static int enet_tx_intr(void *);
137 static int enet_rx_intr(void *);
138 static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
139 int);
140
141 static void enet_start(struct ifnet *);
142 static int enet_ifflags_cb(struct ethercom *);
143 static int enet_ioctl(struct ifnet *, u_long, void *);
144 static int enet_init(struct ifnet *);
145 static void enet_stop(struct ifnet *, int);
146 static void enet_watchdog(struct ifnet *);
147 static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
148
149 static int enet_miibus_readreg(device_t, int, int, uint16_t *);
150 static int enet_miibus_writereg(device_t, int, int, uint16_t);
151 static void enet_miibus_statchg(struct ifnet *);
152
153 static void enet_gethwaddr(struct enet_softc *, uint8_t *);
154 static void enet_sethwaddr(struct enet_softc *, uint8_t *);
155 static void enet_setmulti(struct enet_softc *);
156 static int enet_encap_mbufalign(struct mbuf **);
157 static int enet_encap_txring(struct enet_softc *, struct mbuf **);
158 static int enet_init_regs(struct enet_softc *, int);
159 static int enet_alloc_ring(struct enet_softc *);
160 static void enet_init_txring(struct enet_softc *);
161 static int enet_init_rxring(struct enet_softc *);
162 static void enet_reset_rxdesc(struct enet_softc *, int);
163 static int enet_alloc_rxbuf(struct enet_softc *, int);
164 static void enet_drain_txbuf(struct enet_softc *);
165 static void enet_drain_rxbuf(struct enet_softc *);
166 static int enet_alloc_dma(struct enet_softc *, size_t, void **,
167 bus_dmamap_t *);
168
169 int
170 enet_attach_common(device_t self)
171 {
172 struct enet_softc *sc = device_private(self);
173 struct ifnet *ifp;
174 struct mii_data * const mii = &sc->sc_mii;
175
176 /* allocate dma buffer */
177 if (enet_alloc_ring(sc))
178 return -1;
179
180 #define IS_ENADDR_ZERO(enaddr) \
181 ((enaddr[0] | enaddr[1] | enaddr[2] | \
182 enaddr[3] | enaddr[4] | enaddr[5]) == 0)
183
184 if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
185 /* by any chance, mac-address is already set by bootloader? */
186 enet_gethwaddr(sc, sc->sc_enaddr);
187 if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
188 /* give up. set randomly */
189 uint32_t eaddr = random();
190 /* not multicast */
191 sc->sc_enaddr[0] = (eaddr >> 24) & 0xfc;
192 sc->sc_enaddr[1] = eaddr >> 16;
193 sc->sc_enaddr[2] = eaddr >> 8;
194 sc->sc_enaddr[3] = eaddr;
195 eaddr = random();
196 sc->sc_enaddr[4] = eaddr >> 8;
197 sc->sc_enaddr[5] = eaddr;
198
199 aprint_error_dev(self,
200 "cannot get mac address. set randomly\n");
201 }
202 }
203 enet_sethwaddr(sc, sc->sc_enaddr);
204
205 aprint_normal_dev(self, "Ethernet address %s\n",
206 ether_sprintf(sc->sc_enaddr));
207
208 enet_init_regs(sc, 1);
209
210 /* callout will be scheduled from enet_init() */
211 callout_init(&sc->sc_tick_ch, 0);
212 callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
213
214 /* setup ifp */
215 ifp = &sc->sc_ethercom.ec_if;
216 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
217 ifp->if_softc = sc;
218 ifp->if_mtu = ETHERMTU;
219 ifp->if_baudrate = IF_Gbps(1);
220 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
221 ifp->if_ioctl = enet_ioctl;
222 ifp->if_start = enet_start;
223 ifp->if_init = enet_init;
224 ifp->if_stop = enet_stop;
225 ifp->if_watchdog = enet_watchdog;
226
227 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
228 #ifdef ENET_SUPPORT_JUMBO
229 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
230 #endif
231
232 ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
233 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
234 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
235 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
236 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
237
238 IFQ_SET_MAXLEN(&ifp->if_snd, uimax(ENET_TX_RING_CNT, IFQ_MAXLEN));
239 IFQ_SET_READY(&ifp->if_snd);
240
241 /* setup MII */
242 sc->sc_ethercom.ec_mii = mii;
243 mii->mii_ifp = ifp;
244 mii->mii_readreg = enet_miibus_readreg;
245 mii->mii_writereg = enet_miibus_writereg;
246 mii->mii_statchg = enet_miibus_statchg;
247 ifmedia_init(&mii->mii_media, 0, ether_mediachange, enet_mediastatus);
248
249 /* try to attach PHY */
250 mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
251 if (LIST_FIRST(&mii->mii_phys) == NULL) {
252 ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
253 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
254 } else {
255 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
256 }
257
258 if_attach(ifp);
259 ether_ifattach(ifp, sc->sc_enaddr);
260 ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
261
262 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
263 RND_TYPE_NET, RND_FLAG_DEFAULT);
264
265 #ifdef ENET_EVENT_COUNTER
266 enet_attach_evcnt(sc);
267 #endif
268
269 sc->sc_stopping = false;
270
271 return 0;
272 }
273
274 #ifdef ENET_EVENT_COUNTER
275 static void
276 enet_attach_evcnt(struct enet_softc *sc)
277 {
278 const char *xname;
279
280 xname = device_xname(sc->sc_dev);
281
282 #define ENET_EVCNT_ATTACH(name) \
283 evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC, \
284 NULL, xname, #name);
285
286 ENET_EVCNT_ATTACH(t_drop);
287 ENET_EVCNT_ATTACH(t_packets);
288 ENET_EVCNT_ATTACH(t_bc_pkt);
289 ENET_EVCNT_ATTACH(t_mc_pkt);
290 ENET_EVCNT_ATTACH(t_crc_align);
291 ENET_EVCNT_ATTACH(t_undersize);
292 ENET_EVCNT_ATTACH(t_oversize);
293 ENET_EVCNT_ATTACH(t_frag);
294 ENET_EVCNT_ATTACH(t_jab);
295 ENET_EVCNT_ATTACH(t_col);
296 ENET_EVCNT_ATTACH(t_p64);
297 ENET_EVCNT_ATTACH(t_p65to127n);
298 ENET_EVCNT_ATTACH(t_p128to255n);
299 ENET_EVCNT_ATTACH(t_p256to511);
300 ENET_EVCNT_ATTACH(t_p512to1023);
301 ENET_EVCNT_ATTACH(t_p1024to2047);
302 ENET_EVCNT_ATTACH(t_p_gte2048);
303 ENET_EVCNT_ATTACH(t_octets);
304 ENET_EVCNT_ATTACH(r_packets);
305 ENET_EVCNT_ATTACH(r_bc_pkt);
306 ENET_EVCNT_ATTACH(r_mc_pkt);
307 ENET_EVCNT_ATTACH(r_crc_align);
308 ENET_EVCNT_ATTACH(r_undersize);
309 ENET_EVCNT_ATTACH(r_oversize);
310 ENET_EVCNT_ATTACH(r_frag);
311 ENET_EVCNT_ATTACH(r_jab);
312 ENET_EVCNT_ATTACH(r_p64);
313 ENET_EVCNT_ATTACH(r_p65to127);
314 ENET_EVCNT_ATTACH(r_p128to255);
315 ENET_EVCNT_ATTACH(r_p256to511);
316 ENET_EVCNT_ATTACH(r_p512to1023);
317 ENET_EVCNT_ATTACH(r_p1024to2047);
318 ENET_EVCNT_ATTACH(r_p_gte2048);
319 ENET_EVCNT_ATTACH(r_octets);
320 }
321
322 static void
323 enet_update_evcnt(struct enet_softc *sc)
324 {
325 sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
326 sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
327 sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
328 sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
329 sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
330 sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
331 sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
332 sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
333 sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
334 sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
335 sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
336 sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
337 sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
338 sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
339 sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
340 sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
341 sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
342 sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
343 sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
344 sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
345 sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
346 sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
347 sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
348 sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
349 sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
350 sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
351 sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
352 sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
353 sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
354 sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
355 sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
356 sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
357 sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
358 sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
359 }
360 #endif /* ENET_EVENT_COUNTER */
361
362 static void
363 enet_tick(void *arg)
364 {
365 struct enet_softc *sc;
366 struct mii_data *mii;
367 struct ifnet *ifp;
368 int s;
369
370 sc = arg;
371 mii = &sc->sc_mii;
372 ifp = &sc->sc_ethercom.ec_if;
373
374 s = splnet();
375
376 if (sc->sc_stopping)
377 goto out;
378
379 #ifdef ENET_EVENT_COUNTER
380 enet_update_evcnt(sc);
381 #endif
382
383 /* update counters */
384 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
385 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
386 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_JAB);
387
388 /* clear counters */
389 ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
390 ENET_REG_WRITE(sc, ENET_MIBC, 0);
391
392 mii_tick(mii);
393 out:
394
395 if (!sc->sc_stopping)
396 callout_schedule(&sc->sc_tick_ch, ENET_TICK);
397
398 splx(s);
399 }
400
401 int
402 enet_intr(void *arg)
403 {
404 struct enet_softc *sc;
405 struct ifnet *ifp;
406 uint32_t status;
407
408 sc = arg;
409 status = ENET_REG_READ(sc, ENET_EIR);
410
411 if (sc->sc_imxtype == 7) {
412 if (status & (ENET_EIR_TXF | ENET_EIR_TXF1 | ENET_EIR_TXF2))
413 enet_tx_intr(arg);
414 if (status & (ENET_EIR_RXF | ENET_EIR_RXF1 | ENET_EIR_RXF2))
415 enet_rx_intr(arg);
416 } else {
417 if (status & ENET_EIR_TXF)
418 enet_tx_intr(arg);
419 if (status & ENET_EIR_RXF)
420 enet_rx_intr(arg);
421 }
422
423 if (status & ENET_EIR_EBERR) {
424 device_printf(sc->sc_dev, "Ethernet Bus Error\n");
425 ifp = &sc->sc_ethercom.ec_if;
426 enet_stop(ifp, 1);
427 enet_init(ifp);
428 } else {
429 ENET_REG_WRITE(sc, ENET_EIR, status);
430 }
431
432 rnd_add_uint32(&sc->sc_rnd_source, status);
433
434 return 1;
435 }
436
437 static int
438 enet_tx_intr(void *arg)
439 {
440 struct enet_softc *sc;
441 struct ifnet *ifp;
442 struct enet_txsoft *txs;
443 int idx;
444
445 sc = (struct enet_softc *)arg;
446 ifp = &sc->sc_ethercom.ec_if;
447
448 for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
449 idx = ENET_TX_NEXTIDX(idx)) {
450
451 txs = &sc->sc_txsoft[idx];
452
453 TXDESC_READIN(idx);
454 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
455 /* This TX Descriptor has not been transmitted yet */
456 break;
457 }
458
459 /* txsoft is available on first segment (TXFLAGS1_T1) */
460 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
461 bus_dmamap_unload(sc->sc_dmat,
462 txs->txs_dmamap);
463 m_freem(txs->txs_mbuf);
464 ifp->if_opackets++;
465 }
466
467 /* checking error */
468 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
469 uint32_t flags2;
470
471 flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
472
473 if (flags2 & (TXFLAGS2_TXE |
474 TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
475 TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
476 #ifdef DEBUG_ENET
477 if (enet_debug) {
478 char flagsbuf[128];
479
480 snprintb(flagsbuf, sizeof(flagsbuf),
481 "\20" "\20TRANSMIT" "\16UNDERFLOW"
482 "\15COLLISION" "\14FRAME"
483 "\13LATECOLLISION" "\12OVERFLOW",
484 flags2);
485
486 device_printf(sc->sc_dev,
487 "txdesc[%d]: transmit error: "
488 "flags2=%s\n", idx, flagsbuf);
489 }
490 #endif /* DEBUG_ENET */
491 ifp->if_oerrors++;
492 }
493 }
494
495 sc->sc_tx_free++;
496 }
497 sc->sc_tx_considx = idx;
498
499 if (sc->sc_tx_free > 0)
500 ifp->if_flags &= ~IFF_OACTIVE;
501
502 /*
503 * No more pending TX descriptor,
504 * cancel the watchdog timer.
505 */
506 if (sc->sc_tx_free == ENET_TX_RING_CNT)
507 ifp->if_timer = 0;
508
509 return 1;
510 }
511
512 static int
513 enet_rx_intr(void *arg)
514 {
515 struct enet_softc *sc;
516 struct ifnet *ifp;
517 struct enet_rxsoft *rxs;
518 int idx, len, amount;
519 uint32_t flags1, flags2;
520 struct mbuf *m, *m0, *mprev;
521
522 sc = arg;
523 ifp = &sc->sc_ethercom.ec_if;
524
525 m0 = mprev = NULL;
526 amount = 0;
527 for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
528
529 rxs = &sc->sc_rxsoft[idx];
530
531 RXDESC_READIN(idx);
532 if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
533 /* This RX Descriptor has not been received yet */
534 break;
535 }
536
537 /*
538 * build mbuf from RX Descriptor if needed
539 */
540 m = rxs->rxs_mbuf;
541 rxs->rxs_mbuf = NULL;
542
543 flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
544 len = RXFLAGS1_LEN(flags1);
545
546 #define RACC_SHIFT16 2
547 if (m0 == NULL) {
548 m0 = m;
549 m_adj(m0, RACC_SHIFT16);
550 len -= RACC_SHIFT16;
551 m->m_len = len;
552 amount = len;
553 } else {
554 if (flags1 & RXFLAGS1_L)
555 len = len - amount - RACC_SHIFT16;
556
557 m->m_len = len;
558 amount += len;
559 if (m->m_flags & M_PKTHDR)
560 m_remove_pkthdr(m);
561 mprev->m_next = m;
562 }
563 mprev = m;
564
565 flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
566
567 if (flags1 & RXFLAGS1_L) {
568 /* last buffer */
569 if ((amount < ETHER_HDR_LEN) ||
570 ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
571 RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
572 (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
573 RXFLAGS2_CE)))) {
574
575 #ifdef DEBUG_ENET
576 if (enet_debug) {
577 char flags1buf[128], flags2buf[128];
578 snprintb(flags1buf, sizeof(flags1buf),
579 "\20" "\31MISS" "\26LENGTHVIOLATION"
580 "\25NONOCTET" "\23CRC" "\22OVERRUN"
581 "\21TRUNCATED", flags1);
582 snprintb(flags2buf, sizeof(flags2buf),
583 "\20" "\40MAC" "\33PHY"
584 "\32COLLISION", flags2);
585
586 DEVICE_DPRINTF(
587 "rxdesc[%d]: receive error: "
588 "flags1=%s,flags2=%s,len=%d\n",
589 idx, flags1buf, flags2buf, amount);
590 }
591 #endif /* DEBUG_ENET */
592 ifp->if_ierrors++;
593 m_freem(m0);
594
595 } else {
596 /* packet receive ok */
597 m_set_rcvif(m0, ifp);
598 m0->m_pkthdr.len = amount;
599
600 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
601 rxs->rxs_dmamap->dm_mapsize,
602 BUS_DMASYNC_PREREAD);
603
604 if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
605 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
606 M_CSUM_TCPv6 | M_CSUM_UDPv6))
607 enet_rx_csum(sc, ifp, m0, idx);
608
609 if_percpuq_enqueue(ifp->if_percpuq, m0);
610 }
611
612 m0 = NULL;
613 mprev = NULL;
614 amount = 0;
615
616 } else {
617 /* continued from previous buffer */
618 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
619 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
620 }
621
622 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
623 if (enet_alloc_rxbuf(sc, idx) != 0) {
624 panic("enet_alloc_rxbuf NULL\n");
625 }
626 }
627 sc->sc_rx_readidx = idx;
628
629 /* re-enable RX DMA to make sure */
630 ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
631
632 return 1;
633 }
634
635 static void
636 enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
637 {
638 uint32_t flags2;
639 uint8_t proto;
640
641 flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
642
643 if (flags2 & RXFLAGS2_IPV6) {
644 proto = sc->sc_rxdesc_ring[idx].rx_proto;
645
646 /* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
647 if ((proto == IPPROTO_TCP) &&
648 (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
649 m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
650 else if ((proto == IPPROTO_UDP) &&
651 (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
652 m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
653 else
654 return;
655
656 /* IPv6 protocol checksum error */
657 if (flags2 & RXFLAGS2_PCR)
658 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
659
660 } else {
661 struct ether_header *eh;
662 uint8_t *ip;
663
664 eh = mtod(m, struct ether_header *);
665
666 /* XXX: is an IPv4? */
667 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
668 return;
669 ip = (uint8_t *)(eh + 1);
670 if ((ip[0] & 0xf0) == 0x40)
671 return;
672
673 proto = sc->sc_rxdesc_ring[idx].rx_proto;
674 if (flags2 & RXFLAGS2_ICE) {
675 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
676 m->m_pkthdr.csum_flags |=
677 M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
678 }
679 } else {
680 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
681 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
682 }
683
684 /*
685 * PCR is valid when
686 * ICE == 0 and FRAG == 0
687 */
688 if (flags2 & RXFLAGS2_FRAG)
689 return;
690
691 /*
692 * PCR is valid when proto is TCP or UDP
693 */
694 if ((proto == IPPROTO_TCP) &&
695 (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
696 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
697 else if ((proto == IPPROTO_UDP) &&
698 (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
699 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
700 else
701 return;
702
703 /* IPv4 protocol cksum error */
704 if (flags2 & RXFLAGS2_PCR)
705 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
706 }
707 }
708 }
709
710 static void
711 enet_setmulti(struct enet_softc *sc)
712 {
713 struct ethercom *ec = &sc->sc_ethercom;
714 struct ifnet *ifp = &ec->ec_if;
715 struct ether_multi *enm;
716 struct ether_multistep step;
717 int promisc;
718 uint32_t crc;
719 uint32_t gaddr[2];
720
721 promisc = 0;
722 if ((ifp->if_flags & IFF_PROMISC) || ec->ec_multicnt > 0) {
723 ifp->if_flags |= IFF_ALLMULTI;
724 if (ifp->if_flags & IFF_PROMISC)
725 promisc = 1;
726 gaddr[0] = gaddr[1] = 0xffffffff;
727 } else {
728 gaddr[0] = gaddr[1] = 0;
729
730 ETHER_LOCK(ec);
731 ETHER_FIRST_MULTI(step, ec, enm);
732 while (enm != NULL) {
733 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
734 gaddr[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
735 ETHER_NEXT_MULTI(step, enm);
736 }
737 ETHER_UNLOCK(ec);
738 }
739
740 ENET_REG_WRITE(sc, ENET_GAUR, gaddr[0]);
741 ENET_REG_WRITE(sc, ENET_GALR, gaddr[1]);
742
743 if (promisc) {
744 /* match all packet */
745 ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
746 ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
747 } else {
748 /* don't match any packet */
749 ENET_REG_WRITE(sc, ENET_IAUR, 0);
750 ENET_REG_WRITE(sc, ENET_IALR, 0);
751 }
752 }
753
754 static void
755 enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
756 {
757 uint32_t paddr;
758
759 paddr = ENET_REG_READ(sc, ENET_PALR);
760 hwaddr[0] = paddr >> 24;
761 hwaddr[1] = paddr >> 16;
762 hwaddr[2] = paddr >> 8;
763 hwaddr[3] = paddr;
764
765 paddr = ENET_REG_READ(sc, ENET_PAUR);
766 hwaddr[4] = paddr >> 24;
767 hwaddr[5] = paddr >> 16;
768 }
769
770 static void
771 enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
772 {
773 uint32_t paddr;
774
775 paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
776 hwaddr[3];
777 ENET_REG_WRITE(sc, ENET_PALR, paddr);
778 paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
779 ENET_REG_WRITE(sc, ENET_PAUR, paddr);
780 }
781
782 /*
783 * ifnet interfaces
784 */
785 static int
786 enet_init(struct ifnet *ifp)
787 {
788 struct enet_softc *sc;
789 int s, error;
790
791 sc = ifp->if_softc;
792
793 s = splnet();
794
795 enet_init_regs(sc, 0);
796 enet_init_txring(sc);
797 error = enet_init_rxring(sc);
798 if (error != 0) {
799 enet_drain_rxbuf(sc);
800 device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
801 goto init_failure;
802 }
803
804 /* reload mac address */
805 memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
806 enet_sethwaddr(sc, sc->sc_enaddr);
807
808 /* program multicast address */
809 enet_setmulti(sc);
810
811 /* update if_flags */
812 ifp->if_flags |= IFF_RUNNING;
813 ifp->if_flags &= ~IFF_OACTIVE;
814
815 /* update local copy of if_flags */
816 sc->sc_if_flags = ifp->if_flags;
817
818 /* mii */
819 mii_mediachg(&sc->sc_mii);
820
821 /* enable RX DMA */
822 ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
823
824 sc->sc_stopping = false;
825 callout_schedule(&sc->sc_tick_ch, ENET_TICK);
826
827 init_failure:
828 splx(s);
829
830 return error;
831 }
832
833 static void
834 enet_start(struct ifnet *ifp)
835 {
836 struct enet_softc *sc;
837 struct mbuf *m;
838 int npkt;
839
840 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
841 return;
842
843 sc = ifp->if_softc;
844 for (npkt = 0; ; npkt++) {
845 IFQ_POLL(&ifp->if_snd, m);
846 if (m == NULL)
847 break;
848
849 if (sc->sc_tx_free <= 0) {
850 /* no tx descriptor now... */
851 ifp->if_flags |= IFF_OACTIVE;
852 DEVICE_DPRINTF("TX descriptor is full\n");
853 break;
854 }
855
856 IFQ_DEQUEUE(&ifp->if_snd, m);
857
858 if (enet_encap_txring(sc, &m) != 0) {
859 /* too many mbuf chains? */
860 ifp->if_flags |= IFF_OACTIVE;
861 DEVICE_DPRINTF(
862 "TX descriptor is full. dropping packet\n");
863 m_freem(m);
864 ifp->if_oerrors++;
865 break;
866 }
867
868 /* Pass the packet to any BPF listeners */
869 bpf_mtap(ifp, m, BPF_D_OUT);
870 }
871
872 if (npkt) {
873 /* enable TX DMA */
874 ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
875
876 ifp->if_timer = 5;
877 }
878 }
879
880 static void
881 enet_stop(struct ifnet *ifp, int disable)
882 {
883 struct enet_softc *sc;
884 int s;
885 uint32_t v;
886
887 sc = ifp->if_softc;
888
889 s = splnet();
890
891 sc->sc_stopping = true;
892 callout_stop(&sc->sc_tick_ch);
893
894 /* clear ENET_ECR[ETHEREN] to abort receive and transmit */
895 v = ENET_REG_READ(sc, ENET_ECR);
896 ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
897
898 /* Mark the interface as down and cancel the watchdog timer. */
899 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
900 ifp->if_timer = 0;
901
902 if (disable) {
903 enet_drain_txbuf(sc);
904 enet_drain_rxbuf(sc);
905 }
906
907 splx(s);
908 }
909
910 static void
911 enet_watchdog(struct ifnet *ifp)
912 {
913 struct enet_softc *sc;
914 int s;
915
916 sc = ifp->if_softc;
917 s = splnet();
918
919 device_printf(sc->sc_dev, "watchdog timeout\n");
920 ifp->if_oerrors++;
921
922 /* salvage packets left in descriptors */
923 enet_tx_intr(sc);
924 enet_rx_intr(sc);
925
926 /* reset */
927 enet_stop(ifp, 1);
928 enet_init(ifp);
929
930 splx(s);
931 }
932
933 static void
934 enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
935 {
936 struct enet_softc *sc = ifp->if_softc;
937
938 ether_mediastatus(ifp, ifmr);
939 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
940 | sc->sc_flowflags;
941 }
942
943 static int
944 enet_ifflags_cb(struct ethercom *ec)
945 {
946 struct ifnet *ifp = &ec->ec_if;
947 struct enet_softc *sc = ifp->if_softc;
948 u_short change = ifp->if_flags ^ sc->sc_if_flags;
949
950 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
951 return ENETRESET;
952 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
953 return 0;
954
955 enet_setmulti(sc);
956
957 sc->sc_if_flags = ifp->if_flags;
958 return 0;
959 }
960
961 static int
962 enet_ioctl(struct ifnet *ifp, u_long command, void *data)
963 {
964 struct enet_softc *sc;
965 struct ifreq *ifr;
966 int s, error;
967 uint32_t v;
968
969 sc = ifp->if_softc;
970 ifr = data;
971
972 error = 0;
973
974 s = splnet();
975
976 switch (command) {
977 case SIOCSIFMTU:
978 if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
979 error = EINVAL;
980 } else {
981 ifp->if_mtu = ifr->ifr_mtu;
982
983 /* set maximum frame length */
984 v = MTU2FRAMESIZE(ifr->ifr_mtu);
985 ENET_REG_WRITE(sc, ENET_FTRL, v);
986 v = ENET_REG_READ(sc, ENET_RCR);
987 v &= ~ENET_RCR_MAX_FL(0x3fff);
988 v |= ENET_RCR_MAX_FL(ifp->if_mtu + ETHER_HDR_LEN +
989 ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
990 ENET_REG_WRITE(sc, ENET_RCR, v);
991 }
992 break;
993 case SIOCSIFMEDIA:
994 /* Flow control requires full-duplex mode. */
995 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
996 (ifr->ifr_media & IFM_FDX) == 0)
997 ifr->ifr_media &= ~IFM_ETH_FMASK;
998 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
999 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1000 /* We can do both TXPAUSE and RXPAUSE. */
1001 ifr->ifr_media |=
1002 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1003 }
1004 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1005 }
1006 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1007 break;
1008 default:
1009 error = ether_ioctl(ifp, command, data);
1010 if (error != ENETRESET)
1011 break;
1012
1013 /* post-process */
1014 error = 0;
1015 switch (command) {
1016 case SIOCSIFCAP:
1017 error = (*ifp->if_init)(ifp);
1018 break;
1019 case SIOCADDMULTI:
1020 case SIOCDELMULTI:
1021 if (ifp->if_flags & IFF_RUNNING)
1022 enet_setmulti(sc);
1023 break;
1024 }
1025 break;
1026 }
1027
1028 splx(s);
1029
1030 return error;
1031 }
1032
1033 /*
1034 * for MII
1035 */
1036 static int
1037 enet_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
1038 {
1039 struct enet_softc *sc;
1040 int timeout;
1041 uint32_t status;
1042
1043 sc = device_private(dev);
1044
1045 /* clear MII update */
1046 ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1047
1048 /* read command */
1049 ENET_REG_WRITE(sc, ENET_MMFR,
1050 ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1051 ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1052
1053 /* check MII update */
1054 for (timeout = 5000; timeout > 0; --timeout) {
1055 status = ENET_REG_READ(sc, ENET_EIR);
1056 if (status & ENET_EIR_MII)
1057 break;
1058 }
1059 if (timeout <= 0) {
1060 DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1061 reg);
1062 return ETIMEDOUT;
1063 } else
1064 *val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1065
1066 return 0;
1067 }
1068
1069 static int
1070 enet_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
1071 {
1072 struct enet_softc *sc;
1073 int timeout;
1074
1075 sc = device_private(dev);
1076
1077 /* clear MII update */
1078 ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1079
1080 /* write command */
1081 ENET_REG_WRITE(sc, ENET_MMFR,
1082 ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1083 ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1084 (ENET_MMFR_DATAMASK & val));
1085
1086 /* check MII update */
1087 for (timeout = 5000; timeout > 0; --timeout) {
1088 if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1089 break;
1090 }
1091 if (timeout <= 0) {
1092 DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n", reg);
1093 return ETIMEDOUT;
1094 }
1095
1096 return 0;
1097 }
1098
1099 static void
1100 enet_miibus_statchg(struct ifnet *ifp)
1101 {
1102 struct enet_softc *sc;
1103 struct mii_data *mii;
1104 struct ifmedia_entry *ife;
1105 uint32_t ecr, ecr0;
1106 uint32_t rcr, rcr0;
1107 uint32_t tcr, tcr0;
1108
1109 sc = ifp->if_softc;
1110 mii = &sc->sc_mii;
1111 ife = mii->mii_media.ifm_cur;
1112
1113 /* get current status */
1114 ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1115 rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1116 tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1117
1118 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1119 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1120 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1121 mii->mii_media_active &= ~IFM_ETH_FMASK;
1122 }
1123
1124 if ((ife->ifm_media & IFM_FDX) != 0) {
1125 tcr |= ENET_TCR_FDEN; /* full duplex */
1126 rcr &= ~ENET_RCR_DRT;; /* enable receive on transmit */
1127 } else {
1128 tcr &= ~ENET_TCR_FDEN; /* half duplex */
1129 rcr |= ENET_RCR_DRT; /* disable receive on transmit */
1130 }
1131
1132 if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1133 /*
1134 * need to reset because
1135 * FDEN can change when ECR[ETHEREN] is 0
1136 */
1137 enet_init_regs(sc, 0);
1138 return;
1139 }
1140
1141 switch (IFM_SUBTYPE(ife->ifm_media)) {
1142 case IFM_AUTO:
1143 case IFM_1000_T:
1144 ecr |= ENET_ECR_SPEED; /* 1000Mbps mode */
1145 rcr &= ~ENET_RCR_RMII_10T;
1146 break;
1147 case IFM_100_TX:
1148 ecr &= ~ENET_ECR_SPEED; /* 100Mbps mode */
1149 rcr &= ~ENET_RCR_RMII_10T; /* 100Mbps mode */
1150 break;
1151 case IFM_10_T:
1152 ecr &= ~ENET_ECR_SPEED; /* 10Mbps mode */
1153 rcr |= ENET_RCR_RMII_10T; /* 10Mbps mode */
1154 break;
1155 default:
1156 ecr = ecr0;
1157 rcr = rcr0;
1158 tcr = tcr0;
1159 break;
1160 }
1161
1162 if (sc->sc_rgmii == 0)
1163 ecr &= ~ENET_ECR_SPEED;
1164
1165 if (sc->sc_flowflags & IFM_FLOW)
1166 rcr |= ENET_RCR_FCE;
1167 else
1168 rcr &= ~ENET_RCR_FCE;
1169
1170 /* update registers if need change */
1171 if (ecr != ecr0)
1172 ENET_REG_WRITE(sc, ENET_ECR, ecr);
1173 if (rcr != rcr0)
1174 ENET_REG_WRITE(sc, ENET_RCR, rcr);
1175 if (tcr != tcr0)
1176 ENET_REG_WRITE(sc, ENET_TCR, tcr);
1177 }
1178
1179 /*
1180 * handling descriptors
1181 */
1182 static void
1183 enet_init_txring(struct enet_softc *sc)
1184 {
1185 int i;
1186
1187 /* build TX ring */
1188 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1189 sc->sc_txdesc_ring[i].tx_flags1_len =
1190 ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1191 sc->sc_txdesc_ring[i].tx_databuf = 0;
1192 sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1193 sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1194 sc->sc_txdesc_ring[i].tx_flags3 = 0;
1195 sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1196 sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1197 sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1198
1199 TXDESC_WRITEOUT(i);
1200 }
1201
1202 sc->sc_tx_free = ENET_TX_RING_CNT;
1203 sc->sc_tx_considx = 0;
1204 sc->sc_tx_prodidx = 0;
1205 }
1206
1207 static int
1208 enet_init_rxring(struct enet_softc *sc)
1209 {
1210 int i, error;
1211
1212 /* build RX ring */
1213 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1214 error = enet_alloc_rxbuf(sc, i);
1215 if (error != 0)
1216 return error;
1217 }
1218
1219 sc->sc_rx_readidx = 0;
1220
1221 return 0;
1222 }
1223
1224 static int
1225 enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1226 {
1227 struct mbuf *m;
1228 int error;
1229
1230 KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1231
1232 /* free mbuf if already allocated */
1233 if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1234 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1235 m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1236 sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1237 }
1238
1239 /* allocate new mbuf cluster */
1240 MGETHDR(m, M_DONTWAIT, MT_DATA);
1241 if (m == NULL)
1242 return ENOBUFS;
1243 MCLGET(m, M_DONTWAIT);
1244 if (!(m->m_flags & M_EXT)) {
1245 m_freem(m);
1246 return ENOBUFS;
1247 }
1248 m->m_len = MCLBYTES;
1249 m->m_next = NULL;
1250
1251 error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1252 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1253 BUS_DMA_READ | BUS_DMA_NOWAIT);
1254 if (error) {
1255 m_freem(m);
1256 return error;
1257 }
1258
1259 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1260 sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1261 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1262
1263 sc->sc_rxsoft[idx].rxs_mbuf = m;
1264 enet_reset_rxdesc(sc, idx);
1265 return 0;
1266 }
1267
1268 static void
1269 enet_reset_rxdesc(struct enet_softc *sc, int idx)
1270 {
1271 uint32_t paddr;
1272
1273 paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1274
1275 sc->sc_rxdesc_ring[idx].rx_flags1_len =
1276 RXFLAGS1_E |
1277 ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1278 sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1279 sc->sc_rxdesc_ring[idx].rx_flags2 =
1280 RXFLAGS2_INT;
1281 sc->sc_rxdesc_ring[idx].rx_hl = 0;
1282 sc->sc_rxdesc_ring[idx].rx_proto = 0;
1283 sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1284 sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1285 sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1286 sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1287 sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1288
1289 RXDESC_WRITEOUT(idx);
1290 }
1291
1292 static void
1293 enet_drain_txbuf(struct enet_softc *sc)
1294 {
1295 int idx;
1296 struct enet_txsoft *txs;
1297 struct ifnet *ifp;
1298
1299 ifp = &sc->sc_ethercom.ec_if;
1300
1301 for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1302 idx = ENET_TX_NEXTIDX(idx)) {
1303
1304 /* txsoft[] is used only first segment */
1305 txs = &sc->sc_txsoft[idx];
1306 TXDESC_READIN(idx);
1307 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1308 sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1309 bus_dmamap_unload(sc->sc_dmat,
1310 txs->txs_dmamap);
1311 m_freem(txs->txs_mbuf);
1312
1313 ifp->if_oerrors++;
1314 }
1315 sc->sc_tx_free++;
1316 }
1317 }
1318
1319 static void
1320 enet_drain_rxbuf(struct enet_softc *sc)
1321 {
1322 int i;
1323
1324 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1325 if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1326 sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1327 bus_dmamap_unload(sc->sc_dmat,
1328 sc->sc_rxsoft[i].rxs_dmamap);
1329 m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1330 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1331 }
1332 }
1333 }
1334
1335 static int
1336 enet_alloc_ring(struct enet_softc *sc)
1337 {
1338 int i, error;
1339
1340 /*
1341 * build DMA maps for TX.
1342 * TX descriptor must be able to contain mbuf chains,
1343 * so, make up ENET_MAX_PKT_NSEGS dmamap.
1344 */
1345 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1346 error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1347 ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1348 &sc->sc_txsoft[i].txs_dmamap);
1349
1350 if (error) {
1351 aprint_error_dev(sc->sc_dev,
1352 "can't create DMA map for TX descs\n");
1353 goto fail_1;
1354 }
1355 }
1356
1357 /*
1358 * build DMA maps for RX.
1359 * RX descripter contains An mbuf cluster,
1360 * and make up a dmamap.
1361 */
1362 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1363 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1364 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1365 &sc->sc_rxsoft[i].rxs_dmamap);
1366 if (error) {
1367 aprint_error_dev(sc->sc_dev,
1368 "can't create DMA map for RX descs\n");
1369 goto fail_2;
1370 }
1371 }
1372
1373 if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1374 (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1375 return -1;
1376 memset(sc->sc_txdesc_ring, 0,
1377 sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1378
1379 if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1380 (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1381 return -1;
1382 memset(sc->sc_rxdesc_ring, 0,
1383 sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1384
1385 return 0;
1386
1387 fail_2:
1388 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1389 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1390 bus_dmamap_destroy(sc->sc_dmat,
1391 sc->sc_rxsoft[i].rxs_dmamap);
1392 }
1393 fail_1:
1394 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1395 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1396 bus_dmamap_destroy(sc->sc_dmat,
1397 sc->sc_txsoft[i].txs_dmamap);
1398 }
1399 return error;
1400 }
1401
1402 static int
1403 enet_encap_mbufalign(struct mbuf **mp)
1404 {
1405 struct mbuf *m, *m0, *mt, *p, *x;
1406 void *ap;
1407 uint32_t alignoff, chiplen;
1408
1409 /*
1410 * iMX6 SoC ethernet controller requires
1411 * address of buffer must aligned 8, and
1412 * length of buffer must be greater than 10 (first fragment only?)
1413 */
1414 #define ALIGNBYTE 8
1415 #define MINBUFSIZE 10
1416 #define ALIGN_PTR(p, align) \
1417 (void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1418
1419 m0 = *mp;
1420 mt = p = NULL;
1421 for (m = m0; m != NULL; m = m->m_next) {
1422 alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1423 if (m->m_len < (ALIGNBYTE * 2)) {
1424 /*
1425 * rearrange mbuf data aligned
1426 *
1427 * align 8 * * * * *
1428 * +0123456789abcdef0123456789abcdef0
1429 * FROM m->m_data[___________abcdefghijklmn_______]
1430 *
1431 * +0123456789abcdef0123456789abcdef0
1432 * TO m->m_data[________abcdefghijklm___________] or
1433 * m->m_data[________________abcdefghijklmn__]
1434 */
1435 if ((alignoff != 0) && (m->m_len != 0)) {
1436 chiplen = ALIGNBYTE - alignoff;
1437 if (M_LEADINGSPACE(m) >= alignoff) {
1438 ap = m->m_data - alignoff;
1439 memmove(ap, m->m_data, m->m_len);
1440 m->m_data = ap;
1441 } else if (M_TRAILINGSPACE(m) >= chiplen) {
1442 ap = m->m_data + chiplen;
1443 memmove(ap, m->m_data, m->m_len);
1444 m->m_data = ap;
1445 } else {
1446 /*
1447 * no space to align data. (M_READONLY?)
1448 * allocate new mbuf aligned,
1449 * and copy to it.
1450 */
1451 MGET(x, M_DONTWAIT, m->m_type);
1452 if (x == NULL) {
1453 m_freem(m);
1454 return ENOBUFS;
1455 }
1456 MCLAIM(x, m->m_owner);
1457 if (m->m_flags & M_PKTHDR)
1458 m_move_pkthdr(x, m);
1459 x->m_len = m->m_len;
1460 x->m_data = ALIGN_PTR(x->m_data,
1461 ALIGNBYTE);
1462 memcpy(mtod(x, void *), mtod(m, void *),
1463 m->m_len);
1464 p->m_next = x;
1465 x->m_next = m_free(m);
1466 m = x;
1467 }
1468 }
1469
1470 /*
1471 * fill 1st mbuf at least 10byte
1472 *
1473 * align 8 * * * * *
1474 * +0123456789abcdef0123456789abcdef0
1475 * FROM m->m_data[________abcde___________________]
1476 * m->m_data[__fg____________________________]
1477 * m->m_data[_________________hi_____________]
1478 * m->m_data[__________jk____________________]
1479 * m->m_data[____l___________________________]
1480 *
1481 * +0123456789abcdef0123456789abcdef0
1482 * TO m->m_data[________abcdefghij______________]
1483 * m->m_data[________________________________]
1484 * m->m_data[________________________________]
1485 * m->m_data[___________k____________________]
1486 * m->m_data[____l___________________________]
1487 */
1488 if (mt == NULL) {
1489 mt = m;
1490 while (mt->m_len == 0) {
1491 mt = mt->m_next;
1492 if (mt == NULL) {
1493 m_freem(m);
1494 return ENOBUFS;
1495 }
1496 }
1497
1498 /* mt = 1st mbuf, x = 2nd mbuf */
1499 x = mt->m_next;
1500 while (mt->m_len < MINBUFSIZE) {
1501 if (x == NULL) {
1502 m_freem(m);
1503 return ENOBUFS;
1504 }
1505
1506 alignoff = (uintptr_t)x->m_data &
1507 (ALIGNBYTE - 1);
1508 chiplen = ALIGNBYTE - alignoff;
1509 if (chiplen > x->m_len) {
1510 chiplen = x->m_len;
1511 } else if ((mt->m_len + chiplen) <
1512 MINBUFSIZE) {
1513 /*
1514 * next mbuf should be greater
1515 * than ALIGNBYTE?
1516 */
1517 if (x->m_len >= (chiplen +
1518 ALIGNBYTE * 2))
1519 chiplen += ALIGNBYTE;
1520 else
1521 chiplen = x->m_len;
1522 }
1523
1524 if (chiplen &&
1525 (M_TRAILINGSPACE(mt) < chiplen)) {
1526 /*
1527 * move data to the begining of
1528 * m_dat[] (aligned) to en-
1529 * large trailingspace
1530 */
1531 if (mt->m_flags & M_EXT) {
1532 ap = mt->m_ext.ext_buf;
1533 } else if (mt->m_flags &
1534 M_PKTHDR) {
1535 ap = mt->m_pktdat;
1536 } else {
1537 ap = mt->m_dat;
1538 }
1539 ap = ALIGN_PTR(ap, ALIGNBYTE);
1540 memcpy(ap, mt->m_data,
1541 mt->m_len);
1542 mt->m_data = ap;
1543 }
1544
1545 if (chiplen &&
1546 (M_TRAILINGSPACE(mt) >= chiplen)) {
1547 memcpy(mt->m_data + mt->m_len,
1548 x->m_data, chiplen);
1549 mt->m_len += chiplen;
1550 m_adj(x, chiplen);
1551 }
1552
1553 x = x->m_next;
1554 }
1555 }
1556
1557 } else {
1558 mt = m;
1559
1560 /*
1561 * allocate new mbuf x, and rearrange as below;
1562 *
1563 * align 8 * * * * *
1564 * +0123456789abcdef0123456789abcdef0
1565 * FROM m->m_data[____________abcdefghijklmnopq___]
1566 *
1567 * +0123456789abcdef0123456789abcdef0
1568 * TO x->m_data[________abcdefghijkl____________]
1569 * m->m_data[________________________mnopq___]
1570 *
1571 */
1572 if (alignoff != 0) {
1573 /* at least ALIGNBYTE */
1574 chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1575
1576 MGET(x, M_DONTWAIT, m->m_type);
1577 if (x == NULL) {
1578 m_freem(m);
1579 return ENOBUFS;
1580 }
1581 MCLAIM(x, m->m_owner);
1582 if (m->m_flags & M_PKTHDR)
1583 m_move_pkthdr(x, m);
1584 x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1585 memcpy(mtod(x, void *), mtod(m, void *),
1586 chiplen);
1587 x->m_len = chiplen;
1588 x->m_next = m;
1589 m_adj(m, chiplen);
1590
1591 if (p == NULL)
1592 m0 = x;
1593 else
1594 p->m_next = x;
1595 }
1596 }
1597 p = m;
1598 }
1599 *mp = m0;
1600
1601 return 0;
1602 }
1603
1604 static int
1605 enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1606 {
1607 bus_dmamap_t map;
1608 struct mbuf *m;
1609 int csumflags, idx, i, error;
1610 uint32_t flags1, flags2;
1611
1612 idx = sc->sc_tx_prodidx;
1613 map = sc->sc_txsoft[idx].txs_dmamap;
1614
1615 /* align mbuf data for claim of ENET */
1616 error = enet_encap_mbufalign(mp);
1617 if (error != 0)
1618 return error;
1619
1620 m = *mp;
1621 csumflags = m->m_pkthdr.csum_flags;
1622
1623 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1624 BUS_DMA_NOWAIT);
1625 if (error != 0) {
1626 device_printf(sc->sc_dev,
1627 "Error mapping mbuf into TX chain: error=%d\n", error);
1628 m_freem(m);
1629 return error;
1630 }
1631
1632 if (map->dm_nsegs > sc->sc_tx_free) {
1633 bus_dmamap_unload(sc->sc_dmat, map);
1634 device_printf(sc->sc_dev,
1635 "too many mbuf chain %d\n", map->dm_nsegs);
1636 m_freem(m);
1637 return ENOBUFS;
1638 }
1639
1640 /* fill protocol cksum zero beforehand */
1641 if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1642 M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1643 int ehlen;
1644 uint16_t etype;
1645
1646 m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1647 switch (ntohs(etype)) {
1648 case ETHERTYPE_IP:
1649 case ETHERTYPE_IPV6:
1650 ehlen = ETHER_HDR_LEN;
1651 break;
1652 case ETHERTYPE_VLAN:
1653 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1654 break;
1655 default:
1656 ehlen = 0;
1657 break;
1658 }
1659
1660 if (ehlen) {
1661 const int off =
1662 M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1663 M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data);
1664 if (m->m_pkthdr.len >= ehlen + off + sizeof(uint16_t)) {
1665 uint16_t zero = 0;
1666 m_copyback(m, ehlen + off, sizeof(zero), &zero);
1667 }
1668 }
1669 }
1670
1671 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1672 BUS_DMASYNC_PREWRITE);
1673
1674 for (i = 0; i < map->dm_nsegs; i++) {
1675 flags1 = TXFLAGS1_R;
1676 flags2 = 0;
1677
1678 if (i == 0) {
1679 flags1 |= TXFLAGS1_T1; /* mark as first segment */
1680 sc->sc_txsoft[idx].txs_mbuf = m;
1681 }
1682
1683 /* checksum offloading */
1684 if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1685 M_CSUM_UDPv6 | M_CSUM_TCPv6))
1686 flags2 |= TXFLAGS2_PINS;
1687 if (csumflags & (M_CSUM_IPv4))
1688 flags2 |= TXFLAGS2_IINS;
1689
1690 if (i == map->dm_nsegs - 1) {
1691 /* mark last segment */
1692 flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1693 flags2 |= TXFLAGS2_INT;
1694 }
1695 if (idx == ENET_TX_RING_CNT - 1) {
1696 /* mark end of ring */
1697 flags1 |= TXFLAGS1_W;
1698 }
1699
1700 sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1701 sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1702 sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1703 TXDESC_WRITEOUT(idx);
1704
1705 sc->sc_txdesc_ring[idx].tx_flags1_len =
1706 flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1707 TXDESC_WRITEOUT(idx);
1708
1709 idx = ENET_TX_NEXTIDX(idx);
1710 sc->sc_tx_free--;
1711 }
1712
1713 sc->sc_tx_prodidx = idx;
1714
1715 return 0;
1716 }
1717
1718 /*
1719 * device initialize
1720 */
1721 static int
1722 enet_init_regs(struct enet_softc *sc, int init)
1723 {
1724 struct mii_data *mii;
1725 struct ifmedia_entry *ife;
1726 paddr_t paddr;
1727 uint32_t val;
1728 int miimode, fulldup, ecr_speed, rcr_speed, flowctrl;
1729
1730 if (init) {
1731 fulldup = 1;
1732 ecr_speed = ENET_ECR_SPEED;
1733 rcr_speed = 0;
1734 flowctrl = 0;
1735 } else {
1736 mii = &sc->sc_mii;
1737 ife = mii->mii_media.ifm_cur;
1738
1739 if ((ife->ifm_media & IFM_FDX) != 0)
1740 fulldup = 1;
1741 else
1742 fulldup = 0;
1743
1744 switch (IFM_SUBTYPE(ife->ifm_media)) {
1745 case IFM_10_T:
1746 ecr_speed = 0;
1747 rcr_speed = ENET_RCR_RMII_10T;
1748 break;
1749 case IFM_100_TX:
1750 ecr_speed = 0;
1751 rcr_speed = 0;
1752 break;
1753 default:
1754 ecr_speed = ENET_ECR_SPEED;
1755 rcr_speed = 0;
1756 break;
1757 }
1758
1759 flowctrl = sc->sc_flowflags & IFM_FLOW;
1760 }
1761
1762 if (sc->sc_rgmii == 0)
1763 ecr_speed = 0;
1764
1765 /* reset */
1766 ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1767
1768 /* mask and clear all interrupt */
1769 ENET_REG_WRITE(sc, ENET_EIMR, 0);
1770 ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1771
1772 /* full duplex */
1773 ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1774
1775 /* clear and enable MIB register */
1776 ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1777 ENET_REG_WRITE(sc, ENET_MIBC, 0);
1778
1779 /* MII speed setup. MDCclk(=2.5MHz) = ENET_PLL/((val+1)*2) */
1780 val = ((sc->sc_pllclock) / 500000 - 1) / 10;
1781 ENET_REG_WRITE(sc, ENET_MSCR, val << 1);
1782
1783 /* Opcode/Pause Duration */
1784 ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1785
1786 /* Receive FIFO */
1787 ENET_REG_WRITE(sc, ENET_RSFL, 16); /* RxFIFO Section Full */
1788 ENET_REG_WRITE(sc, ENET_RSEM, 0x84); /* RxFIFO Section Empty */
1789 ENET_REG_WRITE(sc, ENET_RAEM, 8); /* RxFIFO Almost Empty */
1790 ENET_REG_WRITE(sc, ENET_RAFL, 8); /* RxFIFO Almost Full */
1791
1792 /* Transmit FIFO */
1793 ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1794 ENET_TFWR_FIFO(128)); /* TxFIFO Watermark */
1795 ENET_REG_WRITE(sc, ENET_TSEM, 0); /* TxFIFO Section Empty */
1796 ENET_REG_WRITE(sc, ENET_TAEM, 256); /* TxFIFO Almost Empty */
1797 ENET_REG_WRITE(sc, ENET_TAFL, 8); /* TxFIFO Almost Full */
1798 ENET_REG_WRITE(sc, ENET_TIPG, 12); /* Tx Inter-Packet Gap */
1799
1800 /* hardware checksum is default off (override in TX descripter) */
1801 ENET_REG_WRITE(sc, ENET_TACC, 0);
1802
1803 /*
1804 * align ethernet payload on 32bit, discard frames with MAC layer error,
1805 * and don't discard checksum error
1806 */
1807 ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1808
1809 /* maximum frame size */
1810 val = ENET_DEFAULT_PKT_LEN;
1811 ENET_REG_WRITE(sc, ENET_FTRL, val); /* Frame Truncation Length */
1812
1813 if (sc->sc_rgmii == 0)
1814 miimode = ENET_RCR_RMII_MODE | ENET_RCR_MII_MODE;
1815 else
1816 miimode = ENET_RCR_RGMII_EN;
1817 ENET_REG_WRITE(sc, ENET_RCR,
1818 ENET_RCR_PADEN | /* RX frame padding remove */
1819 miimode |
1820 (flowctrl ? ENET_RCR_FCE : 0) | /* flow control enable */
1821 rcr_speed |
1822 (fulldup ? 0 : ENET_RCR_DRT) |
1823 ENET_RCR_MAX_FL(val));
1824
1825 /* Maximum Receive BufSize per one descriptor */
1826 ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1827
1828
1829 /* TX/RX Descriptor Physical Address */
1830 paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1831 ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1832 paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
1833 ENET_REG_WRITE(sc, ENET_RDSR, paddr);
1834 /* sync cache */
1835 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
1836 sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1837 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
1838 sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1839
1840 /* enable interrupts */
1841 val = ENET_EIMR | ENET_EIR_TXF | ENET_EIR_RXF | ENET_EIR_EBERR;
1842 if (sc->sc_imxtype == 7)
1843 val |= ENET_EIR_TXF2 | ENET_EIR_RXF2 | ENET_EIR_TXF1 |
1844 ENET_EIR_RXF1;
1845 ENET_REG_WRITE(sc, ENET_EIMR, val);
1846
1847 /* enable ether */
1848 ENET_REG_WRITE(sc, ENET_ECR,
1849 #if _BYTE_ORDER == _LITTLE_ENDIAN
1850 ENET_ECR_DBSWP |
1851 #endif
1852 ecr_speed |
1853 ENET_ECR_EN1588 | /* use enhanced TX/RX descriptor */
1854 ENET_ECR_ETHEREN); /* Ethernet Enable */
1855
1856 return 0;
1857 }
1858
1859 static int
1860 enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
1861 bus_dmamap_t *mapp)
1862 {
1863 bus_dma_segment_t seglist[1];
1864 int nsegs, error;
1865
1866 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
1867 1, &nsegs, M_NOWAIT)) != 0) {
1868 device_printf(sc->sc_dev,
1869 "unable to allocate DMA buffer, error=%d\n", error);
1870 goto fail_alloc;
1871 }
1872
1873 if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
1874 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1875 device_printf(sc->sc_dev,
1876 "unable to map DMA buffer, error=%d\n",
1877 error);
1878 goto fail_map;
1879 }
1880
1881 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1882 BUS_DMA_NOWAIT, mapp)) != 0) {
1883 device_printf(sc->sc_dev,
1884 "unable to create DMA map, error=%d\n", error);
1885 goto fail_create;
1886 }
1887
1888 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
1889 BUS_DMA_NOWAIT)) != 0) {
1890 aprint_error_dev(sc->sc_dev,
1891 "unable to load DMA map, error=%d\n", error);
1892 goto fail_load;
1893 }
1894
1895 return 0;
1896
1897 fail_load:
1898 bus_dmamap_destroy(sc->sc_dmat, *mapp);
1899 fail_create:
1900 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
1901 fail_map:
1902 bus_dmamem_free(sc->sc_dmat, seglist, 1);
1903 fail_alloc:
1904 return error;
1905 }
1906