if_enet.c revision 1.5 1 /* $NetBSD: if_enet.c,v 1.5 2016/02/09 08:32:08 ozaki-r Exp $ */
2
3 /*
4 * Copyright (c) 2014 Ryo Shimizu <ryo (at) nerv.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * i.MX6 10/100/1000-Mbps ethernet MAC (ENET)
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.5 2016/02/09 08:32:08 ozaki-r Exp $");
35
36 #include "imxocotp.h"
37 #include "imxccm.h"
38 #include "vlan.h"
39
40 #include <sys/param.h>
41 #include <sys/bus.h>
42 #include <sys/mbuf.h>
43 #include <sys/device.h>
44 #include <sys/sockio.h>
45 #include <sys/kernel.h>
46 #include <sys/rndsource.h>
47
48 #include <lib/libkern/libkern.h>
49
50 #include <net/if.h>
51 #include <net/if_dl.h>
52 #include <net/if_media.h>
53 #include <net/if_ether.h>
54 #include <net/bpf.h>
55 #include <net/if_vlanvar.h>
56
57 #include <netinet/in.h>
58 #include <netinet/in_systm.h>
59 #include <netinet/ip.h>
60
61 #include <dev/mii/mii.h>
62 #include <dev/mii/miivar.h>
63
64 #include <arm/imx/imx6var.h>
65 #include <arm/imx/imx6_reg.h>
66 #include <arm/imx/imx6_ocotpreg.h>
67 #include <arm/imx/imx6_ocotpvar.h>
68 #include <arm/imx/imx6_ccmreg.h>
69 #include <arm/imx/imx6_ccmvar.h>
70 #include <arm/imx/if_enetreg.h>
71 #include "locators.h"
72
73 #undef DEBUG_ENET
74 #undef ENET_EVENT_COUNTER
75
76 #ifdef DEBUG_ENET
77 int enet_debug = 0;
78 # define DEVICE_DPRINTF(args...) \
79 do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
80 #else
81 # define DEVICE_DPRINTF(args...)
82 #endif
83
84
85 #define RXDESC_MAXBUFSIZE 0x07f0
86 /* iMX6 ENET not work greather than 0x0800... */
87
88 #undef ENET_SUPPORT_JUMBO /* JUMBO FRAME SUPPORT is unstable */
89 #ifdef ENET_SUPPORT_JUMBO
90 # define ENET_MAX_PKT_LEN 4034 /* MAX FIFO LEN */
91 #else
92 # define ENET_MAX_PKT_LEN 1522
93 #endif
94 #define ENET_DEFAULT_PKT_LEN 1522 /* including VLAN tag */
95 #define MTU2FRAMESIZE(n) \
96 ((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
97
98
99 #define ENET_MAX_PKT_NSEGS 64
100 #define ENET_TX_RING_CNT 256 /* must be 2^n */
101 #define ENET_RX_RING_CNT 256 /* must be 2^n */
102
103 #define ENET_TX_NEXTIDX(idx) (((idx) + 1) & (ENET_TX_RING_CNT - 1))
104 #define ENET_RX_NEXTIDX(idx) (((idx) + 1) & (ENET_RX_RING_CNT - 1))
105
106 struct enet_txsoft {
107 struct mbuf *txs_mbuf; /* head of our mbuf chain */
108 bus_dmamap_t txs_dmamap; /* our DMA map */
109 };
110
111 struct enet_rxsoft {
112 struct mbuf *rxs_mbuf; /* head of our mbuf chain */
113 bus_dmamap_t rxs_dmamap; /* our DMA map */
114 };
115
116 struct enet_softc {
117 device_t sc_dev;
118
119 bus_addr_t sc_addr;
120 bus_space_tag_t sc_iot;
121 bus_space_handle_t sc_ioh;
122 bus_dma_tag_t sc_dmat;
123
124 /* interrupts */
125 void *sc_ih;
126 callout_t sc_tick_ch;
127 bool sc_stopping;
128
129 /* TX */
130 struct enet_txdesc *sc_txdesc_ring; /* [ENET_TX_RING_CNT] */
131 bus_dmamap_t sc_txdesc_dmamap;
132 struct enet_rxdesc *sc_rxdesc_ring; /* [ENET_RX_RING_CNT] */
133 bus_dmamap_t sc_rxdesc_dmamap;
134 struct enet_txsoft sc_txsoft[ENET_TX_RING_CNT];
135 int sc_tx_considx;
136 int sc_tx_prodidx;
137 int sc_tx_free;
138
139 /* RX */
140 struct enet_rxsoft sc_rxsoft[ENET_RX_RING_CNT];
141 int sc_rx_readidx;
142
143 /* misc */
144 int sc_if_flags; /* local copy of if_flags */
145 int sc_flowflags; /* 802.3x flow control flags */
146 struct ethercom sc_ethercom; /* interface info */
147 struct mii_data sc_mii;
148 uint8_t sc_enaddr[ETHER_ADDR_LEN];
149 krndsource_t sc_rnd_source;
150
151 #ifdef ENET_EVENT_COUNTER
152 struct evcnt sc_ev_t_drop;
153 struct evcnt sc_ev_t_packets;
154 struct evcnt sc_ev_t_bc_pkt;
155 struct evcnt sc_ev_t_mc_pkt;
156 struct evcnt sc_ev_t_crc_align;
157 struct evcnt sc_ev_t_undersize;
158 struct evcnt sc_ev_t_oversize;
159 struct evcnt sc_ev_t_frag;
160 struct evcnt sc_ev_t_jab;
161 struct evcnt sc_ev_t_col;
162 struct evcnt sc_ev_t_p64;
163 struct evcnt sc_ev_t_p65to127n;
164 struct evcnt sc_ev_t_p128to255n;
165 struct evcnt sc_ev_t_p256to511;
166 struct evcnt sc_ev_t_p512to1023;
167 struct evcnt sc_ev_t_p1024to2047;
168 struct evcnt sc_ev_t_p_gte2048;
169 struct evcnt sc_ev_t_octets;
170 struct evcnt sc_ev_r_packets;
171 struct evcnt sc_ev_r_bc_pkt;
172 struct evcnt sc_ev_r_mc_pkt;
173 struct evcnt sc_ev_r_crc_align;
174 struct evcnt sc_ev_r_undersize;
175 struct evcnt sc_ev_r_oversize;
176 struct evcnt sc_ev_r_frag;
177 struct evcnt sc_ev_r_jab;
178 struct evcnt sc_ev_r_p64;
179 struct evcnt sc_ev_r_p65to127;
180 struct evcnt sc_ev_r_p128to255;
181 struct evcnt sc_ev_r_p256to511;
182 struct evcnt sc_ev_r_p512to1023;
183 struct evcnt sc_ev_r_p1024to2047;
184 struct evcnt sc_ev_r_p_gte2048;
185 struct evcnt sc_ev_r_octets;
186 #endif /* ENET_EVENT_COUNTER */
187 };
188
189 #define TXDESC_WRITEOUT(idx) \
190 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
191 sizeof(struct enet_txdesc) * (idx), \
192 sizeof(struct enet_txdesc), \
193 BUS_DMASYNC_PREWRITE)
194
195 #define TXDESC_READIN(idx) \
196 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
197 sizeof(struct enet_txdesc) * (idx), \
198 sizeof(struct enet_txdesc), \
199 BUS_DMASYNC_PREREAD)
200
201 #define RXDESC_WRITEOUT(idx) \
202 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
203 sizeof(struct enet_rxdesc) * (idx), \
204 sizeof(struct enet_rxdesc), \
205 BUS_DMASYNC_PREWRITE)
206
207 #define RXDESC_READIN(idx) \
208 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
209 sizeof(struct enet_rxdesc) * (idx), \
210 sizeof(struct enet_rxdesc), \
211 BUS_DMASYNC_PREREAD)
212
213 #define ENET_REG_READ(sc, reg) \
214 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
215
216 #define ENET_REG_WRITE(sc, reg, value) \
217 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
218
219 static int enet_match(device_t, struct cfdata *, void *);
220 static void enet_attach(device_t, device_t, void *);
221 #ifdef ENET_EVENT_COUNTER
222 static void enet_attach_evcnt(struct enet_softc *);
223 static void enet_update_evcnt(struct enet_softc *);
224 #endif
225
226 static int enet_intr(void *);
227 static void enet_tick(void *);
228 static int enet_tx_intr(void *);
229 static int enet_rx_intr(void *);
230 static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
231 int);
232
233 static void enet_start(struct ifnet *);
234 static int enet_ifflags_cb(struct ethercom *);
235 static int enet_ioctl(struct ifnet *, u_long, void *);
236 static int enet_init(struct ifnet *);
237 static void enet_stop(struct ifnet *, int);
238 static void enet_watchdog(struct ifnet *);
239 static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
240
241 static int enet_miibus_readreg(device_t, int, int);
242 static void enet_miibus_writereg(device_t, int, int, int);
243 static void enet_miibus_statchg(struct ifnet *);
244
245 static void enet_ocotp_getmacaddr(uint8_t *);
246 static void enet_gethwaddr(struct enet_softc *, uint8_t *);
247 static void enet_sethwaddr(struct enet_softc *, uint8_t *);
248 static void enet_setmulti(struct enet_softc *);
249 static int enet_encap_mbufalign(struct mbuf **);
250 static int enet_encap_txring(struct enet_softc *, struct mbuf **);
251 static int enet_init_plls(struct enet_softc *);
252 static int enet_init_regs(struct enet_softc *, int);
253 static int enet_alloc_ring(struct enet_softc *);
254 static void enet_init_txring(struct enet_softc *);
255 static int enet_init_rxring(struct enet_softc *);
256 static void enet_reset_rxdesc(struct enet_softc *, int);
257 static int enet_alloc_rxbuf(struct enet_softc *, int);
258 static void enet_drain_txbuf(struct enet_softc *);
259 static void enet_drain_rxbuf(struct enet_softc *);
260 static int enet_alloc_dma(struct enet_softc *, size_t, void **,
261 bus_dmamap_t *);
262
263 CFATTACH_DECL_NEW(enet, sizeof(struct enet_softc),
264 enet_match, enet_attach, NULL, NULL);
265
266 /* ARGSUSED */
267 static int
268 enet_match(device_t parent __unused, struct cfdata *match __unused, void *aux)
269 {
270 struct axi_attach_args *aa;
271
272 aa = aux;
273
274 switch (aa->aa_addr) {
275 case (IMX6_AIPS2_BASE + AIPS2_ENET_BASE):
276 return 1;
277 }
278
279 return 0;
280 }
281
282 /* ARGSUSED */
283 static void
284 enet_attach(device_t parent __unused, device_t self, void *aux)
285 {
286 struct enet_softc *sc;
287 struct axi_attach_args *aa;
288 struct ifnet *ifp;
289
290 aa = aux;
291 sc = device_private(self);
292 sc->sc_dev = self;
293 sc->sc_iot = aa->aa_iot;
294 sc->sc_addr = aa->aa_addr;
295 sc->sc_dmat = aa->aa_dmat;
296
297 if (aa->aa_size == AXICF_SIZE_DEFAULT)
298 aa->aa_size = AIPS2_ENET_SIZE;
299
300 aprint_naive("\n");
301 aprint_normal(": Gigabit Ethernet Controller\n");
302 if (bus_space_map(sc->sc_iot, sc->sc_addr, aa->aa_size, 0,
303 &sc->sc_ioh)) {
304 aprint_error_dev(self, "cannot map registers\n");
305 return;
306 }
307
308 /* allocate dma buffer */
309 if (enet_alloc_ring(sc))
310 return;
311
312 #define IS_ENADDR_ZERO(enaddr) \
313 ((enaddr[0] | enaddr[1] | enaddr[2] | \
314 enaddr[3] | enaddr[4] | enaddr[5]) == 0)
315
316 /* get mac-address from SoC eFuse */
317 enet_ocotp_getmacaddr(sc->sc_enaddr);
318 if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
319 /* by any chance, mac-address is already set by bootloader? */
320 enet_gethwaddr(sc, sc->sc_enaddr);
321 if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
322 /* give up. set randomly */
323 uint32_t addr = random();
324 /* not multicast */
325 sc->sc_enaddr[0] = (addr >> 24) & 0xfc;
326 sc->sc_enaddr[1] = addr >> 16;
327 sc->sc_enaddr[2] = addr >> 8;
328 sc->sc_enaddr[3] = addr;
329 addr = random();
330 sc->sc_enaddr[4] = addr >> 8;
331 sc->sc_enaddr[5] = addr;
332
333 aprint_error_dev(self,
334 "cannot get mac address. set randomly\n");
335 }
336 }
337 enet_sethwaddr(sc, sc->sc_enaddr);
338
339 aprint_normal_dev(self, "Ethernet address %s\n",
340 ether_sprintf(sc->sc_enaddr));
341
342 /* power up and init */
343 if (enet_init_plls(sc) != 0)
344 goto failure;
345 enet_init_regs(sc, 1);
346
347 /* setup interrupt handlers */
348 if ((sc->sc_ih = intr_establish(aa->aa_irq, IPL_NET,
349 IST_LEVEL, enet_intr, sc)) == NULL) {
350 aprint_error_dev(self, "unable to establish interrupt\n");
351 goto failure;
352 }
353
354 /* callout will be scheduled from enet_init() */
355 callout_init(&sc->sc_tick_ch, 0);
356 callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
357
358 /* setup ifp */
359 ifp = &sc->sc_ethercom.ec_if;
360 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
361 ifp->if_softc = sc;
362 ifp->if_mtu = ETHERMTU;
363 ifp->if_baudrate = IF_Gbps(1);
364 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
365 ifp->if_ioctl = enet_ioctl;
366 ifp->if_start = enet_start;
367 ifp->if_init = enet_init;
368 ifp->if_stop = enet_stop;
369 ifp->if_watchdog = enet_watchdog;
370
371 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
372 #ifdef ENET_SUPPORT_JUMBO
373 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
374 #endif
375
376 ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
377 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
378 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
379 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
380 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
381
382 IFQ_SET_MAXLEN(&ifp->if_snd, max(ENET_TX_RING_CNT, IFQ_MAXLEN));
383 IFQ_SET_READY(&ifp->if_snd);
384
385 /* setup MII */
386 sc->sc_ethercom.ec_mii = &sc->sc_mii;
387 sc->sc_mii.mii_ifp = ifp;
388 sc->sc_mii.mii_readreg = enet_miibus_readreg;
389 sc->sc_mii.mii_writereg = enet_miibus_writereg;
390 sc->sc_mii.mii_statchg = enet_miibus_statchg;
391 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
392 enet_mediastatus);
393
394 /* try to attach PHY */
395 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
396 MII_OFFSET_ANY, 0);
397 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
398 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
399 0, NULL);
400 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
401 } else {
402 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
403 }
404
405 if_attach(ifp);
406 ether_ifattach(ifp, sc->sc_enaddr);
407 ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
408
409 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
410 RND_TYPE_NET, RND_FLAG_DEFAULT);
411
412 #ifdef ENET_EVENT_COUNTER
413 enet_attach_evcnt(sc);
414 #endif
415
416 sc->sc_stopping = false;
417
418 return;
419
420 failure:
421 bus_space_unmap(sc->sc_iot, sc->sc_ioh, aa->aa_size);
422 return;
423 }
424
425 #ifdef ENET_EVENT_COUNTER
426 static void
427 enet_attach_evcnt(struct enet_softc *sc)
428 {
429 const char *xname;
430
431 xname = device_xname(sc->sc_dev);
432
433 #define ENET_EVCNT_ATTACH(name) \
434 evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC, \
435 NULL, xname, #name);
436
437 ENET_EVCNT_ATTACH(t_drop);
438 ENET_EVCNT_ATTACH(t_packets);
439 ENET_EVCNT_ATTACH(t_bc_pkt);
440 ENET_EVCNT_ATTACH(t_mc_pkt);
441 ENET_EVCNT_ATTACH(t_crc_align);
442 ENET_EVCNT_ATTACH(t_undersize);
443 ENET_EVCNT_ATTACH(t_oversize);
444 ENET_EVCNT_ATTACH(t_frag);
445 ENET_EVCNT_ATTACH(t_jab);
446 ENET_EVCNT_ATTACH(t_col);
447 ENET_EVCNT_ATTACH(t_p64);
448 ENET_EVCNT_ATTACH(t_p65to127n);
449 ENET_EVCNT_ATTACH(t_p128to255n);
450 ENET_EVCNT_ATTACH(t_p256to511);
451 ENET_EVCNT_ATTACH(t_p512to1023);
452 ENET_EVCNT_ATTACH(t_p1024to2047);
453 ENET_EVCNT_ATTACH(t_p_gte2048);
454 ENET_EVCNT_ATTACH(t_octets);
455 ENET_EVCNT_ATTACH(r_packets);
456 ENET_EVCNT_ATTACH(r_bc_pkt);
457 ENET_EVCNT_ATTACH(r_mc_pkt);
458 ENET_EVCNT_ATTACH(r_crc_align);
459 ENET_EVCNT_ATTACH(r_undersize);
460 ENET_EVCNT_ATTACH(r_oversize);
461 ENET_EVCNT_ATTACH(r_frag);
462 ENET_EVCNT_ATTACH(r_jab);
463 ENET_EVCNT_ATTACH(r_p64);
464 ENET_EVCNT_ATTACH(r_p65to127);
465 ENET_EVCNT_ATTACH(r_p128to255);
466 ENET_EVCNT_ATTACH(r_p256to511);
467 ENET_EVCNT_ATTACH(r_p512to1023);
468 ENET_EVCNT_ATTACH(r_p1024to2047);
469 ENET_EVCNT_ATTACH(r_p_gte2048);
470 ENET_EVCNT_ATTACH(r_octets);
471 }
472
473 static void
474 enet_update_evcnt(struct enet_softc *sc)
475 {
476 sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
477 sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
478 sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
479 sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
480 sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
481 sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
482 sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
483 sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
484 sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
485 sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
486 sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
487 sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
488 sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
489 sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
490 sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
491 sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
492 sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
493 sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
494 sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
495 sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
496 sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
497 sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
498 sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
499 sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
500 sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
501 sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
502 sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
503 sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
504 sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
505 sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
506 sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
507 sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
508 sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
509 sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
510 }
511 #endif /* ENET_EVENT_COUNTER */
512
513 static void
514 enet_tick(void *arg)
515 {
516 struct enet_softc *sc;
517 struct mii_data *mii;
518 struct ifnet *ifp;
519 int s;
520
521 sc = arg;
522 mii = &sc->sc_mii;
523 ifp = &sc->sc_ethercom.ec_if;
524
525 s = splnet();
526
527 if (sc->sc_stopping)
528 goto out;
529
530
531 #ifdef ENET_EVENT_COUNTER
532 enet_update_evcnt(sc);
533 #endif
534
535 /* update counters */
536 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
537 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
538 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_JAB);
539
540 /* clear counters */
541 ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
542 ENET_REG_WRITE(sc, ENET_MIBC, 0);
543
544 mii_tick(mii);
545 out:
546
547 if (!sc->sc_stopping)
548 callout_schedule(&sc->sc_tick_ch, hz);
549
550 splx(s);
551 }
552
553 static int
554 enet_intr(void *arg)
555 {
556 struct enet_softc *sc;
557 struct ifnet *ifp;
558 uint32_t status;
559
560 sc = arg;
561 status = ENET_REG_READ(sc, ENET_EIR);
562
563 if (status & ENET_EIR_TXF)
564 enet_tx_intr(arg);
565
566 if (status & ENET_EIR_RXF)
567 enet_rx_intr(arg);
568
569 if (status & ENET_EIR_EBERR) {
570 device_printf(sc->sc_dev, "Ethernet Bus Error\n");
571 ifp = &sc->sc_ethercom.ec_if;
572 enet_stop(ifp, 1);
573 enet_init(ifp);
574 } else {
575 ENET_REG_WRITE(sc, ENET_EIR, status);
576 }
577
578 rnd_add_uint32(&sc->sc_rnd_source, status);
579
580 return 1;
581 }
582
583 static int
584 enet_tx_intr(void *arg)
585 {
586 struct enet_softc *sc;
587 struct ifnet *ifp;
588 struct enet_txsoft *txs;
589 int idx;
590
591 sc = (struct enet_softc *)arg;
592 ifp = &sc->sc_ethercom.ec_if;
593
594 for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
595 idx = ENET_TX_NEXTIDX(idx)) {
596
597 txs = &sc->sc_txsoft[idx];
598
599 TXDESC_READIN(idx);
600 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
601 /* This TX Descriptor has not been transmitted yet */
602 break;
603 }
604
605 /* txsoft is available on first segment (TXFLAGS1_T1) */
606 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
607 bus_dmamap_unload(sc->sc_dmat,
608 txs->txs_dmamap);
609 m_freem(txs->txs_mbuf);
610 ifp->if_opackets++;
611 }
612
613 /* checking error */
614 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
615 uint32_t flags2;
616
617 flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
618
619 if (flags2 & (TXFLAGS2_TXE |
620 TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
621 TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
622 #ifdef DEBUG_ENET
623 if (enet_debug) {
624 char flagsbuf[128];
625
626 snprintb(flagsbuf, sizeof(flagsbuf),
627 "\20" "\20TRANSMIT" "\16UNDERFLOW"
628 "\15COLLISION" "\14FRAME"
629 "\13LATECOLLISION" "\12OVERFLOW",
630 flags2);
631
632 device_printf(sc->sc_dev,
633 "txdesc[%d]: transmit error: "
634 "flags2=%s\n", idx, flagsbuf);
635 }
636 #endif /* DEBUG_ENET */
637 ifp->if_oerrors++;
638 }
639 }
640
641 sc->sc_tx_free++;
642 }
643 sc->sc_tx_considx = idx;
644
645 if (sc->sc_tx_free > 0)
646 ifp->if_flags &= ~IFF_OACTIVE;
647
648 /*
649 * No more pending TX descriptor,
650 * cancel the watchdog timer.
651 */
652 if (sc->sc_tx_free == ENET_TX_RING_CNT)
653 ifp->if_timer = 0;
654
655 return 1;
656 }
657
658 static int
659 enet_rx_intr(void *arg)
660 {
661 struct enet_softc *sc;
662 struct ifnet *ifp;
663 struct enet_rxsoft *rxs;
664 int idx, len, amount;
665 uint32_t flags1, flags2;
666 struct mbuf *m, *m0, *mprev;
667
668 sc = arg;
669 ifp = &sc->sc_ethercom.ec_if;
670
671 m0 = mprev = NULL;
672 amount = 0;
673 for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
674
675 rxs = &sc->sc_rxsoft[idx];
676
677 RXDESC_READIN(idx);
678 if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
679 /* This RX Descriptor has not been received yet */
680 break;
681 }
682
683 /*
684 * build mbuf from RX Descriptor if needed
685 */
686 m = rxs->rxs_mbuf;
687 rxs->rxs_mbuf = NULL;
688
689 flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
690 len = RXFLAGS1_LEN(flags1);
691
692 #define RACC_SHIFT16 2
693 if (m0 == NULL) {
694 m0 = m;
695 m_adj(m0, RACC_SHIFT16);
696 len -= RACC_SHIFT16;
697 m->m_len = len;
698 amount = len;
699 } else {
700 if (flags1 & RXFLAGS1_L)
701 len = len - amount - RACC_SHIFT16;
702
703 m->m_len = len;
704 amount += len;
705 m->m_flags &= ~M_PKTHDR;
706 mprev->m_next = m;
707 }
708 mprev = m;
709
710 flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
711
712 if (flags1 & RXFLAGS1_L) {
713 /* last buffer */
714 if ((amount < ETHER_HDR_LEN) ||
715 ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
716 RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
717 (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
718 RXFLAGS2_CE)))) {
719
720 #ifdef DEBUG_ENET
721 if (enet_debug) {
722 char flags1buf[128], flags2buf[128];
723 snprintb(flags1buf, sizeof(flags1buf),
724 "\20" "\31MISS" "\26LENGTHVIOLATION"
725 "\25NONOCTET" "\23CRC" "\22OVERRUN"
726 "\21TRUNCATED", flags1);
727 snprintb(flags2buf, sizeof(flags2buf),
728 "\20" "\40MAC" "\33PHY"
729 "\32COLLISION", flags2);
730
731 DEVICE_DPRINTF(
732 "rxdesc[%d]: receive error: "
733 "flags1=%s,flags2=%s,len=%d\n",
734 idx, flags1buf, flags2buf, amount);
735 }
736 #endif /* DEBUG_ENET */
737 ifp->if_ierrors++;
738 m_freem(m0);
739
740 } else {
741 /* packet receive ok */
742 ifp->if_ipackets++;
743 m0->m_pkthdr.rcvif = ifp;
744 m0->m_pkthdr.len = amount;
745
746 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
747 rxs->rxs_dmamap->dm_mapsize,
748 BUS_DMASYNC_PREREAD);
749
750 if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
751 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
752 M_CSUM_TCPv6 | M_CSUM_UDPv6))
753 enet_rx_csum(sc, ifp, m0, idx);
754
755 /* Pass this up to any BPF listeners */
756 bpf_mtap(ifp, m0);
757
758 if_percpuq_enqueue(ifp->if_percpuq, m0);
759 }
760
761 m0 = NULL;
762 mprev = NULL;
763 amount = 0;
764
765 } else {
766 /* continued from previous buffer */
767 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
768 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
769 }
770
771 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
772 if (enet_alloc_rxbuf(sc, idx) != 0) {
773 panic("enet_alloc_rxbuf NULL\n");
774 }
775 }
776 sc->sc_rx_readidx = idx;
777
778 /* re-enable RX DMA to make sure */
779 ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
780
781 return 1;
782 }
783
784 static void
785 enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
786 {
787 uint32_t flags2;
788 uint8_t proto;
789
790 flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
791
792 if (flags2 & RXFLAGS2_IPV6) {
793 proto = sc->sc_rxdesc_ring[idx].rx_proto;
794
795 /* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
796 if ((proto == IPPROTO_TCP) &&
797 (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
798 m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
799 else if ((proto == IPPROTO_UDP) &&
800 (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
801 m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
802 else
803 return;
804
805 /* IPv6 protocol checksum error */
806 if (flags2 & RXFLAGS2_PCR)
807 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
808
809 } else {
810 struct ether_header *eh;
811 uint8_t *ip;
812
813 eh = mtod(m, struct ether_header *);
814
815 /* XXX: is an IPv4? */
816 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
817 return;
818 ip = (uint8_t *)(eh + 1);
819 if ((ip[0] & 0xf0) == 0x40)
820 return;
821
822 proto = sc->sc_rxdesc_ring[idx].rx_proto;
823 if (flags2 & RXFLAGS2_ICE) {
824 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
825 m->m_pkthdr.csum_flags |=
826 M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
827 }
828 } else {
829 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
830 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
831 }
832
833 /*
834 * PCR is valid when
835 * ICE == 0 and FRAG == 0
836 */
837 if (flags2 & RXFLAGS2_FRAG)
838 return;
839
840 /*
841 * PCR is valid when proto is TCP or UDP
842 */
843 if ((proto == IPPROTO_TCP) &&
844 (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
845 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
846 else if ((proto == IPPROTO_UDP) &&
847 (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
848 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
849 else
850 return;
851
852 /* IPv4 protocol cksum error */
853 if (flags2 & RXFLAGS2_PCR)
854 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
855 }
856 }
857 }
858
859 static void
860 enet_setmulti(struct enet_softc *sc)
861 {
862 struct ifnet *ifp;
863 struct ether_multi *enm;
864 struct ether_multistep step;
865 int promisc;
866 uint32_t crc;
867 uint32_t gaddr[2];
868
869 ifp = &sc->sc_ethercom.ec_if;
870
871 promisc = 0;
872 if ((ifp->if_flags & IFF_PROMISC) || sc->sc_ethercom.ec_multicnt > 0) {
873 ifp->if_flags |= IFF_ALLMULTI;
874 if (ifp->if_flags & IFF_PROMISC)
875 promisc = 1;
876 gaddr[0] = gaddr[1] = 0xffffffff;
877 } else {
878 gaddr[0] = gaddr[1] = 0;
879
880 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
881 while (enm != NULL) {
882 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
883 gaddr[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
884 ETHER_NEXT_MULTI(step, enm);
885 }
886 }
887
888 ENET_REG_WRITE(sc, ENET_GAUR, gaddr[0]);
889 ENET_REG_WRITE(sc, ENET_GALR, gaddr[1]);
890
891 if (promisc) {
892 /* match all packet */
893 ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
894 ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
895 } else {
896 /* don't match any packet */
897 ENET_REG_WRITE(sc, ENET_IAUR, 0);
898 ENET_REG_WRITE(sc, ENET_IALR, 0);
899 }
900 }
901
902 static void
903 enet_ocotp_getmacaddr(uint8_t *macaddr)
904 {
905 #if NIMXOCOTP > 0
906 uint32_t addr;
907
908 addr = imxocotp_read(OCOTP_MAC1);
909 macaddr[0] = addr >> 8;
910 macaddr[1] = addr;
911
912 addr = imxocotp_read(OCOTP_MAC0);
913 macaddr[2] = addr >> 24;
914 macaddr[3] = addr >> 16;
915 macaddr[4] = addr >> 8;
916 macaddr[5] = addr;
917 #endif
918 }
919
920 static void
921 enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
922 {
923 uint32_t paddr;
924
925 paddr = ENET_REG_READ(sc, ENET_PALR);
926 hwaddr[0] = paddr >> 24;
927 hwaddr[1] = paddr >> 16;
928 hwaddr[2] = paddr >> 8;
929 hwaddr[3] = paddr;
930
931 paddr = ENET_REG_READ(sc, ENET_PAUR);
932 hwaddr[4] = paddr >> 24;
933 hwaddr[5] = paddr >> 16;
934 }
935
936 static void
937 enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
938 {
939 uint32_t paddr;
940
941 paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
942 hwaddr[3];
943 ENET_REG_WRITE(sc, ENET_PALR, paddr);
944 paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
945 ENET_REG_WRITE(sc, ENET_PAUR, paddr);
946 }
947
948 /*
949 * ifnet interfaces
950 */
951 static int
952 enet_init(struct ifnet *ifp)
953 {
954 struct enet_softc *sc;
955 int s, error;
956
957 sc = ifp->if_softc;
958
959 s = splnet();
960
961 enet_init_regs(sc, 0);
962 enet_init_txring(sc);
963 error = enet_init_rxring(sc);
964 if (error != 0) {
965 enet_drain_rxbuf(sc);
966 device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
967 goto init_failure;
968 }
969
970 /* reload mac address */
971 memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
972 enet_sethwaddr(sc, sc->sc_enaddr);
973
974 /* program multicast address */
975 enet_setmulti(sc);
976
977 /* update if_flags */
978 ifp->if_flags |= IFF_RUNNING;
979 ifp->if_flags &= ~IFF_OACTIVE;
980
981 /* update local copy of if_flags */
982 sc->sc_if_flags = ifp->if_flags;
983
984 /* mii */
985 mii_mediachg(&sc->sc_mii);
986
987 /* enable RX DMA */
988 ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
989
990 sc->sc_stopping = false;
991 callout_schedule(&sc->sc_tick_ch, hz);
992
993 init_failure:
994 splx(s);
995
996 return error;
997 }
998
999 static void
1000 enet_start(struct ifnet *ifp)
1001 {
1002 struct enet_softc *sc;
1003 struct mbuf *m;
1004 int npkt;
1005
1006 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1007 return;
1008
1009 sc = ifp->if_softc;
1010 for (npkt = 0; ; npkt++) {
1011 IFQ_POLL(&ifp->if_snd, m);
1012 if (m == NULL)
1013 break;
1014
1015 if (sc->sc_tx_free <= 0) {
1016 /* no tx descriptor now... */
1017 ifp->if_flags |= IFF_OACTIVE;
1018 DEVICE_DPRINTF("TX descriptor is full\n");
1019 break;
1020 }
1021
1022 IFQ_DEQUEUE(&ifp->if_snd, m);
1023
1024 if (enet_encap_txring(sc, &m) != 0) {
1025 /* too many mbuf chains? */
1026 ifp->if_flags |= IFF_OACTIVE;
1027 DEVICE_DPRINTF(
1028 "TX descriptor is full. dropping packet\n");
1029 m_freem(m);
1030 ifp->if_oerrors++;
1031 break;
1032 }
1033
1034 /* Pass the packet to any BPF listeners */
1035 bpf_mtap(ifp, m);
1036 }
1037
1038 if (npkt) {
1039 /* enable TX DMA */
1040 ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
1041
1042 ifp->if_timer = 5;
1043 }
1044 }
1045
1046 static void
1047 enet_stop(struct ifnet *ifp, int disable)
1048 {
1049 struct enet_softc *sc;
1050 int s;
1051 uint32_t v;
1052
1053 sc = ifp->if_softc;
1054
1055 s = splnet();
1056
1057 sc->sc_stopping = true;
1058 callout_stop(&sc->sc_tick_ch);
1059
1060 /* clear ENET_ECR[ETHEREN] to abort receive and transmit */
1061 v = ENET_REG_READ(sc, ENET_ECR);
1062 ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
1063
1064 /* Mark the interface as down and cancel the watchdog timer. */
1065 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
1066 ifp->if_timer = 0;
1067
1068 if (disable) {
1069 enet_drain_txbuf(sc);
1070 enet_drain_rxbuf(sc);
1071 }
1072
1073 splx(s);
1074 }
1075
1076 static void
1077 enet_watchdog(struct ifnet *ifp)
1078 {
1079 struct enet_softc *sc;
1080 int s;
1081
1082 sc = ifp->if_softc;
1083 s = splnet();
1084
1085 device_printf(sc->sc_dev, "watchdog timeout\n");
1086 ifp->if_oerrors++;
1087
1088 /* salvage packets left in descriptors */
1089 enet_tx_intr(sc);
1090 enet_rx_intr(sc);
1091
1092 /* reset */
1093 enet_stop(ifp, 1);
1094 enet_init(ifp);
1095
1096 splx(s);
1097 }
1098
1099 static void
1100 enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
1101 {
1102 struct enet_softc *sc = ifp->if_softc;
1103
1104 ether_mediastatus(ifp, ifmr);
1105 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
1106 | sc->sc_flowflags;
1107 }
1108
1109 static int
1110 enet_ifflags_cb(struct ethercom *ec)
1111 {
1112 struct ifnet *ifp = &ec->ec_if;
1113 struct enet_softc *sc = ifp->if_softc;
1114 int change = ifp->if_flags ^ sc->sc_if_flags;
1115
1116 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
1117 return ENETRESET;
1118 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
1119 return 0;
1120
1121 enet_setmulti(sc);
1122
1123 sc->sc_if_flags = ifp->if_flags;
1124 return 0;
1125 }
1126
1127 static int
1128 enet_ioctl(struct ifnet *ifp, u_long command, void *data)
1129 {
1130 struct enet_softc *sc;
1131 struct ifreq *ifr;
1132 int s, error;
1133 uint32_t v;
1134
1135 sc = ifp->if_softc;
1136 ifr = data;
1137
1138 error = 0;
1139
1140 s = splnet();
1141
1142 switch (command) {
1143 case SIOCSIFMTU:
1144 if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
1145 error = EINVAL;
1146 } else {
1147 ifp->if_mtu = ifr->ifr_mtu;
1148
1149 /* set maximum frame length */
1150 v = MTU2FRAMESIZE(ifr->ifr_mtu);
1151 ENET_REG_WRITE(sc, ENET_FTRL, v);
1152 v = ENET_REG_READ(sc, ENET_RCR);
1153 v &= ~ENET_RCR_MAX_FL(0x3fff);
1154 v |= ENET_RCR_MAX_FL(ifp->if_mtu +
1155 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
1156 ENET_REG_WRITE(sc, ENET_RCR, v);
1157 }
1158 break;
1159 case SIOCSIFMEDIA:
1160 case SIOCGIFMEDIA:
1161 /* Flow control requires full-duplex mode. */
1162 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1163 (ifr->ifr_media & IFM_FDX) == 0)
1164 ifr->ifr_media &= ~IFM_ETH_FMASK;
1165 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1166 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1167 /* We can do both TXPAUSE and RXPAUSE. */
1168 ifr->ifr_media |=
1169 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1170 }
1171 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1172 }
1173 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1174 break;
1175 default:
1176 error = ether_ioctl(ifp, command, data);
1177 if (error != ENETRESET)
1178 break;
1179
1180 /* post-process */
1181 error = 0;
1182 switch (command) {
1183 case SIOCSIFCAP:
1184 error = (*ifp->if_init)(ifp);
1185 break;
1186 case SIOCADDMULTI:
1187 case SIOCDELMULTI:
1188 if (ifp->if_flags & IFF_RUNNING)
1189 enet_setmulti(sc);
1190 break;
1191 }
1192 break;
1193 }
1194
1195 splx(s);
1196
1197 return error;
1198 }
1199
1200 /*
1201 * for MII
1202 */
1203 static int
1204 enet_miibus_readreg(device_t dev, int phy, int reg)
1205 {
1206 struct enet_softc *sc;
1207 int timeout;
1208 uint32_t val, status;
1209
1210 sc = device_private(dev);
1211
1212 /* clear MII update */
1213 ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1214
1215 /* read command */
1216 ENET_REG_WRITE(sc, ENET_MMFR,
1217 ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1218 ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1219
1220 /* check MII update */
1221 for (timeout = 5000; timeout > 0; --timeout) {
1222 status = ENET_REG_READ(sc, ENET_EIR);
1223 if (status & ENET_EIR_MII)
1224 break;
1225 }
1226 if (timeout <= 0) {
1227 DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1228 reg);
1229 val = -1;
1230 } else {
1231 val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1232 }
1233
1234 return val;
1235 }
1236
1237 static void
1238 enet_miibus_writereg(device_t dev, int phy, int reg, int val)
1239 {
1240 struct enet_softc *sc;
1241 int timeout;
1242
1243 sc = device_private(dev);
1244
1245 /* clear MII update */
1246 ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1247
1248 /* write command */
1249 ENET_REG_WRITE(sc, ENET_MMFR,
1250 ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1251 ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1252 (ENET_MMFR_DATAMASK & val));
1253
1254 /* check MII update */
1255 for (timeout = 5000; timeout > 0; --timeout) {
1256 if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1257 break;
1258 }
1259 if (timeout <= 0) {
1260 DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n",
1261 reg);
1262 }
1263 }
1264
1265 static void
1266 enet_miibus_statchg(struct ifnet *ifp)
1267 {
1268 struct enet_softc *sc;
1269 struct mii_data *mii;
1270 struct ifmedia_entry *ife;
1271 uint32_t ecr, ecr0;
1272 uint32_t rcr, rcr0;
1273 uint32_t tcr, tcr0;
1274
1275 sc = ifp->if_softc;
1276 mii = &sc->sc_mii;
1277 ife = mii->mii_media.ifm_cur;
1278
1279 /* get current status */
1280 ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1281 rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1282 tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1283
1284 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1285 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1286 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1287 mii->mii_media_active &= ~IFM_ETH_FMASK;
1288 }
1289
1290 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1291 tcr |= ENET_TCR_FDEN; /* full duplex */
1292 rcr &= ~ENET_RCR_DRT;; /* enable receive on transmit */
1293 } else {
1294 tcr &= ~ENET_TCR_FDEN; /* half duplex */
1295 rcr |= ENET_RCR_DRT; /* disable receive on transmit */
1296 }
1297
1298 if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1299 /*
1300 * need to reset because
1301 * FDEN can change when ECR[ETHEREN] is 0
1302 */
1303 enet_init_regs(sc, 0);
1304 return;
1305 }
1306
1307 switch (IFM_SUBTYPE(ife->ifm_media)) {
1308 case IFM_AUTO:
1309 case IFM_1000_T:
1310 ecr |= ENET_ECR_SPEED; /* 1000Mbps mode */
1311 break;
1312 case IFM_100_TX:
1313 ecr &= ~ENET_ECR_SPEED; /* 100Mbps mode */
1314 rcr &= ~ENET_RCR_RMII_10T; /* 100Mbps mode */
1315 break;
1316 case IFM_10_T:
1317 ecr &= ~ENET_ECR_SPEED; /* 10Mbps mode */
1318 rcr |= ENET_RCR_RMII_10T; /* 10Mbps mode */
1319 break;
1320 default:
1321 ecr = ecr0;
1322 rcr = rcr0;
1323 tcr = tcr0;
1324 break;
1325 }
1326
1327 if (sc->sc_flowflags & IFM_FLOW)
1328 rcr |= ENET_RCR_FCE;
1329 else
1330 rcr &= ~ENET_RCR_FCE;
1331
1332 /* update registers if need change */
1333 if (ecr != ecr0)
1334 ENET_REG_WRITE(sc, ENET_ECR, ecr);
1335 if (rcr != rcr0)
1336 ENET_REG_WRITE(sc, ENET_RCR, rcr);
1337 if (tcr != tcr0)
1338 ENET_REG_WRITE(sc, ENET_TCR, tcr);
1339 }
1340
1341 /*
1342 * handling descriptors
1343 */
1344 static void
1345 enet_init_txring(struct enet_softc *sc)
1346 {
1347 int i;
1348
1349 /* build TX ring */
1350 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1351 sc->sc_txdesc_ring[i].tx_flags1_len =
1352 ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1353 sc->sc_txdesc_ring[i].tx_databuf = 0;
1354 sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1355 sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1356 sc->sc_txdesc_ring[i].tx_flags3 = 0;
1357 sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1358 sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1359 sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1360
1361 TXDESC_WRITEOUT(i);
1362 }
1363
1364 sc->sc_tx_free = ENET_TX_RING_CNT;
1365 sc->sc_tx_considx = 0;
1366 sc->sc_tx_prodidx = 0;
1367 }
1368
1369 static int
1370 enet_init_rxring(struct enet_softc *sc)
1371 {
1372 int i, error;
1373
1374 /* build RX ring */
1375 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1376 error = enet_alloc_rxbuf(sc, i);
1377 if (error != 0)
1378 return error;
1379 }
1380
1381 sc->sc_rx_readidx = 0;
1382
1383 return 0;
1384 }
1385
1386 static int
1387 enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1388 {
1389 struct mbuf *m;
1390 int error;
1391
1392 KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1393
1394 /* free mbuf if already allocated */
1395 if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1396 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1397 m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1398 sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1399 }
1400
1401 /* allocate new mbuf cluster */
1402 MGETHDR(m, M_DONTWAIT, MT_DATA);
1403 if (m == NULL)
1404 return ENOBUFS;
1405 MCLGET(m, M_DONTWAIT);
1406 if (!(m->m_flags & M_EXT)) {
1407 m_freem(m);
1408 return ENOBUFS;
1409 }
1410 m->m_len = MCLBYTES;
1411 m->m_next = NULL;
1412
1413 error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1414 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1415 BUS_DMA_READ | BUS_DMA_NOWAIT);
1416 if (error) {
1417 m_freem(m);
1418 return error;
1419 }
1420
1421 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1422 sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1423 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1424
1425 sc->sc_rxsoft[idx].rxs_mbuf = m;
1426 enet_reset_rxdesc(sc, idx);
1427 return 0;
1428 }
1429
1430 static void
1431 enet_reset_rxdesc(struct enet_softc *sc, int idx)
1432 {
1433 uint32_t paddr;
1434
1435 paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1436
1437 sc->sc_rxdesc_ring[idx].rx_flags1_len =
1438 RXFLAGS1_E |
1439 ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1440 sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1441 sc->sc_rxdesc_ring[idx].rx_flags2 =
1442 RXFLAGS2_INT;
1443 sc->sc_rxdesc_ring[idx].rx_hl = 0;
1444 sc->sc_rxdesc_ring[idx].rx_proto = 0;
1445 sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1446 sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1447 sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1448 sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1449 sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1450
1451 RXDESC_WRITEOUT(idx);
1452 }
1453
1454 static void
1455 enet_drain_txbuf(struct enet_softc *sc)
1456 {
1457 int idx;
1458 struct enet_txsoft *txs;
1459 struct ifnet *ifp;
1460
1461 ifp = &sc->sc_ethercom.ec_if;
1462
1463 for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1464 idx = ENET_TX_NEXTIDX(idx)) {
1465
1466 /* txsoft[] is used only first segment */
1467 txs = &sc->sc_txsoft[idx];
1468 TXDESC_READIN(idx);
1469 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1470 sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1471 bus_dmamap_unload(sc->sc_dmat,
1472 txs->txs_dmamap);
1473 m_freem(txs->txs_mbuf);
1474
1475 ifp->if_oerrors++;
1476 }
1477 sc->sc_tx_free++;
1478 }
1479 }
1480
1481 static void
1482 enet_drain_rxbuf(struct enet_softc *sc)
1483 {
1484 int i;
1485
1486 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1487 if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1488 sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1489 bus_dmamap_unload(sc->sc_dmat,
1490 sc->sc_rxsoft[i].rxs_dmamap);
1491 m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1492 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1493 }
1494 }
1495 }
1496
1497 static int
1498 enet_alloc_ring(struct enet_softc *sc)
1499 {
1500 int i, error;
1501
1502 /*
1503 * build DMA maps for TX.
1504 * TX descriptor must be able to contain mbuf chains,
1505 * so, make up ENET_MAX_PKT_NSEGS dmamap.
1506 */
1507 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1508 error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1509 ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1510 &sc->sc_txsoft[i].txs_dmamap);
1511
1512 if (error) {
1513 aprint_error_dev(sc->sc_dev,
1514 "can't create DMA map for TX descs\n");
1515 goto fail_1;
1516 }
1517 }
1518
1519 /*
1520 * build DMA maps for RX.
1521 * RX descripter contains An mbuf cluster,
1522 * and make up a dmamap.
1523 */
1524 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1525 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1526 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1527 &sc->sc_rxsoft[i].rxs_dmamap);
1528 if (error) {
1529 aprint_error_dev(sc->sc_dev,
1530 "can't create DMA map for RX descs\n");
1531 goto fail_2;
1532 }
1533 }
1534
1535 if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1536 (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1537 return -1;
1538 memset(sc->sc_txdesc_ring, 0,
1539 sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1540
1541 if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1542 (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1543 return -1;
1544 memset(sc->sc_rxdesc_ring, 0,
1545 sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1546
1547 return 0;
1548
1549 fail_2:
1550 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1551 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1552 bus_dmamap_destroy(sc->sc_dmat,
1553 sc->sc_rxsoft[i].rxs_dmamap);
1554 }
1555 fail_1:
1556 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1557 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1558 bus_dmamap_destroy(sc->sc_dmat,
1559 sc->sc_txsoft[i].txs_dmamap);
1560 }
1561 return error;
1562 }
1563
1564 static int
1565 enet_encap_mbufalign(struct mbuf **mp)
1566 {
1567 struct mbuf *m, *m0, *mt, *p, *x;
1568 void *ap;
1569 uint32_t alignoff, chiplen;
1570
1571 /*
1572 * iMX6 SoC ethernet controller requires
1573 * address of buffer must aligned 8, and
1574 * length of buffer must be greater than 10 (first fragment only?)
1575 */
1576 #define ALIGNBYTE 8
1577 #define MINBUFSIZE 10
1578 #define ALIGN_PTR(p, align) \
1579 (void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1580
1581 m0 = *mp;
1582 mt = p = NULL;
1583 for (m = m0; m != NULL; m = m->m_next) {
1584 alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1585 if (m->m_len < (ALIGNBYTE * 2)) {
1586 /*
1587 * rearrange mbuf data aligned
1588 *
1589 * align 8 * * * * *
1590 * +0123456789abcdef0123456789abcdef0
1591 * FROM m->m_data[___________abcdefghijklmn_______]
1592 *
1593 * +0123456789abcdef0123456789abcdef0
1594 * TO m->m_data[________abcdefghijklm___________] or
1595 * m->m_data[________________abcdefghijklmn__]
1596 */
1597 if ((alignoff != 0) && (m->m_len != 0)) {
1598 chiplen = ALIGNBYTE - alignoff;
1599 if (M_LEADINGSPACE(m) >= alignoff) {
1600 ap = m->m_data - alignoff;
1601 memmove(ap, m->m_data, m->m_len);
1602 m->m_data = ap;
1603 } else if (M_TRAILINGSPACE(m) >= chiplen) {
1604 ap = m->m_data + chiplen;
1605 memmove(ap, m->m_data, m->m_len);
1606 m->m_data = ap;
1607 } else {
1608 /*
1609 * no space to align data. (M_READONLY?)
1610 * allocate new mbuf aligned,
1611 * and copy to it.
1612 */
1613 MGET(x, M_DONTWAIT, m->m_type);
1614 if (x == NULL) {
1615 m_freem(m);
1616 return ENOBUFS;
1617 }
1618 MCLAIM(x, m->m_owner);
1619 if (m->m_flags & M_PKTHDR)
1620 M_MOVE_PKTHDR(x, m);
1621 x->m_len = m->m_len;
1622 x->m_data = ALIGN_PTR(x->m_data,
1623 ALIGNBYTE);
1624 memcpy(mtod(x, void *), mtod(m, void *),
1625 m->m_len);
1626 p->m_next = x;
1627 MFREE(m, x->m_next);
1628 m = x;
1629 }
1630 }
1631
1632 /*
1633 * fill 1st mbuf at least 10byte
1634 *
1635 * align 8 * * * * *
1636 * +0123456789abcdef0123456789abcdef0
1637 * FROM m->m_data[________abcde___________________]
1638 * m->m_data[__fg____________________________]
1639 * m->m_data[_________________hi_____________]
1640 * m->m_data[__________jk____________________]
1641 * m->m_data[____l___________________________]
1642 *
1643 * +0123456789abcdef0123456789abcdef0
1644 * TO m->m_data[________abcdefghij______________]
1645 * m->m_data[________________________________]
1646 * m->m_data[________________________________]
1647 * m->m_data[___________k____________________]
1648 * m->m_data[____l___________________________]
1649 */
1650 if (mt == NULL) {
1651 mt = m;
1652 while (mt->m_len == 0) {
1653 mt = mt->m_next;
1654 if (mt == NULL) {
1655 m_freem(m);
1656 return ENOBUFS;
1657 }
1658 }
1659
1660 /* mt = 1st mbuf, x = 2nd mbuf */
1661 x = mt->m_next;
1662 while (mt->m_len < MINBUFSIZE) {
1663 if (x == NULL) {
1664 m_freem(m);
1665 return ENOBUFS;
1666 }
1667
1668 alignoff = (uintptr_t)x->m_data &
1669 (ALIGNBYTE - 1);
1670 chiplen = ALIGNBYTE - alignoff;
1671 if (chiplen > x->m_len) {
1672 chiplen = x->m_len;
1673 } else if ((mt->m_len + chiplen) <
1674 MINBUFSIZE) {
1675 /*
1676 * next mbuf should be greater
1677 * than ALIGNBYTE?
1678 */
1679 if (x->m_len >= (chiplen +
1680 ALIGNBYTE * 2))
1681 chiplen += ALIGNBYTE;
1682 else
1683 chiplen = x->m_len;
1684 }
1685
1686 if (chiplen &&
1687 (M_TRAILINGSPACE(mt) < chiplen)) {
1688 /*
1689 * move data to the begining of
1690 * m_dat[] (aligned) to en-
1691 * large trailingspace
1692 */
1693 if (mt->m_flags & M_EXT) {
1694 ap = mt->m_ext.ext_buf;
1695 } else if (mt->m_flags &
1696 M_PKTHDR) {
1697 ap = mt->m_pktdat;
1698 } else {
1699 ap = mt->m_dat;
1700 }
1701 ap = ALIGN_PTR(ap, ALIGNBYTE);
1702 memcpy(ap, mt->m_data, mt->m_len);
1703 mt->m_data = ap;
1704 }
1705
1706 if (chiplen &&
1707 (M_TRAILINGSPACE(mt) >= chiplen)) {
1708 memcpy(mt->m_data + mt->m_len,
1709 x->m_data, chiplen);
1710 mt->m_len += chiplen;
1711 m_adj(x, chiplen);
1712 }
1713
1714 x = x->m_next;
1715 }
1716 }
1717
1718 } else {
1719 mt = m;
1720
1721 /*
1722 * allocate new mbuf x, and rearrange as below;
1723 *
1724 * align 8 * * * * *
1725 * +0123456789abcdef0123456789abcdef0
1726 * FROM m->m_data[____________abcdefghijklmnopq___]
1727 *
1728 * +0123456789abcdef0123456789abcdef0
1729 * TO x->m_data[________abcdefghijkl____________]
1730 * m->m_data[________________________mnopq___]
1731 *
1732 */
1733 if (alignoff != 0) {
1734 /* at least ALIGNBYTE */
1735 chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1736
1737 MGET(x, M_DONTWAIT, m->m_type);
1738 if (x == NULL) {
1739 m_freem(m);
1740 return ENOBUFS;
1741 }
1742 MCLAIM(x, m->m_owner);
1743 if (m->m_flags & M_PKTHDR)
1744 M_MOVE_PKTHDR(x, m);
1745 x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1746 memcpy(mtod(x, void *), mtod(m, void *),
1747 chiplen);
1748 x->m_len = chiplen;
1749 x->m_next = m;
1750 m_adj(m, chiplen);
1751
1752 if (p == NULL)
1753 m0 = x;
1754 else
1755 p->m_next = x;
1756 }
1757 }
1758 p = m;
1759 }
1760 *mp = m0;
1761
1762 return 0;
1763 }
1764
1765 static int
1766 enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1767 {
1768 bus_dmamap_t map;
1769 struct mbuf *m;
1770 int csumflags, idx, i, error;
1771 uint32_t flags1, flags2;
1772
1773 idx = sc->sc_tx_prodidx;
1774 map = sc->sc_txsoft[idx].txs_dmamap;
1775
1776 /* align mbuf data for claim of ENET */
1777 error = enet_encap_mbufalign(mp);
1778 if (error != 0)
1779 return error;
1780
1781 m = *mp;
1782 csumflags = m->m_pkthdr.csum_flags;
1783
1784 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1785 BUS_DMA_NOWAIT);
1786 if (error != 0) {
1787 device_printf(sc->sc_dev,
1788 "Error mapping mbuf into TX chain: error=%d\n", error);
1789 m_freem(m);
1790 return error;
1791 }
1792
1793 if (map->dm_nsegs > sc->sc_tx_free) {
1794 bus_dmamap_unload(sc->sc_dmat, map);
1795 device_printf(sc->sc_dev,
1796 "too many mbuf chain %d\n", map->dm_nsegs);
1797 m_freem(m);
1798 return ENOBUFS;
1799 }
1800
1801 /* fill protocol cksum zero beforehand */
1802 if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1803 M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1804 struct mbuf *m1;
1805 int ehlen, moff;
1806 uint16_t etype;
1807
1808 m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1809 switch (ntohs(etype)) {
1810 case ETHERTYPE_IP:
1811 case ETHERTYPE_IPV6:
1812 ehlen = ETHER_HDR_LEN;
1813 break;
1814 case ETHERTYPE_VLAN:
1815 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1816 break;
1817 default:
1818 ehlen = 0;
1819 break;
1820 }
1821
1822 if (ehlen) {
1823 m1 = m_getptr(m, ehlen +
1824 M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1825 M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data),
1826 &moff);
1827 if (m1 != NULL)
1828 *(uint16_t *)(mtod(m1, char *) + moff) = 0;
1829 }
1830 }
1831
1832 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1833 BUS_DMASYNC_PREWRITE);
1834
1835 for (i = 0; i < map->dm_nsegs; i++) {
1836 flags1 = TXFLAGS1_R;
1837 flags2 = 0;
1838
1839 if (i == 0) {
1840 flags1 |= TXFLAGS1_T1; /* mark as first segment */
1841 sc->sc_txsoft[idx].txs_mbuf = m;
1842 }
1843
1844 /* checksum offloading */
1845 if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1846 M_CSUM_UDPv6 | M_CSUM_TCPv6))
1847 flags2 |= TXFLAGS2_PINS;
1848 if (csumflags & (M_CSUM_IPv4))
1849 flags2 |= TXFLAGS2_IINS;
1850
1851 if (i == map->dm_nsegs - 1) {
1852 /* mark last segment */
1853 flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1854 flags2 |= TXFLAGS2_INT;
1855 }
1856 if (idx == ENET_TX_RING_CNT - 1) {
1857 /* mark end of ring */
1858 flags1 |= TXFLAGS1_W;
1859 }
1860
1861 sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1862 sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1863 sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1864 sc->sc_txdesc_ring[idx].tx_flags1_len =
1865 flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1866
1867 TXDESC_WRITEOUT(idx);
1868
1869 idx = ENET_TX_NEXTIDX(idx);
1870 sc->sc_tx_free--;
1871 }
1872
1873 sc->sc_tx_prodidx = idx;
1874
1875 return 0;
1876 }
1877
1878 /*
1879 * device initialize
1880 */
1881 static int
1882 enet_init_plls(struct enet_softc *sc)
1883 {
1884 #if NIMXCCM > 0
1885 /* PLL power up */
1886 if (imx6_pll_power(CCM_ANALOG_PLL_ENET, 1) != 0) {
1887 aprint_error_dev(sc->sc_dev,
1888 "couldn't enable CCM_ANALOG_PLL_ENET\n");
1889 return -1;
1890 }
1891 #endif
1892
1893 return 0;
1894 }
1895
1896 static int
1897 enet_init_regs(struct enet_softc *sc, int init)
1898 {
1899 struct mii_data *mii;
1900 struct ifmedia_entry *ife;
1901 paddr_t paddr;
1902 uint32_t val;
1903 int fulldup, ecr_speed, rcr_speed, flowctrl;
1904
1905 if (init) {
1906 fulldup = 1;
1907 ecr_speed = ENET_ECR_SPEED;
1908 rcr_speed = 0;
1909 flowctrl = 0;
1910 } else {
1911 mii = &sc->sc_mii;
1912 ife = mii->mii_media.ifm_cur;
1913
1914 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1915 fulldup = 1;
1916 else
1917 fulldup = 0;
1918
1919 switch (IFM_SUBTYPE(ife->ifm_media)) {
1920 case IFM_10_T:
1921 ecr_speed = 0;
1922 rcr_speed = ENET_RCR_RMII_10T;
1923 break;
1924 case IFM_100_TX:
1925 ecr_speed = 0;
1926 rcr_speed = 0;
1927 break;
1928 default:
1929 ecr_speed = ENET_ECR_SPEED;
1930 rcr_speed = 0;
1931 break;
1932 }
1933
1934 flowctrl = sc->sc_flowflags & IFM_FLOW;
1935 }
1936
1937 /* reset */
1938 ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1939
1940 /* mask and clear all interrupt */
1941 ENET_REG_WRITE(sc, ENET_EIMR, 0);
1942 ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1943
1944 /* full duplex */
1945 ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1946
1947 /* clear and enable MIB register */
1948 ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1949 ENET_REG_WRITE(sc, ENET_MIBC, 0);
1950
1951 /* MII speed setup. MDCclk(=2.5MHz) = PLL6clk/((val+1)*2) */
1952 val = (imx6_get_clock(IMX6CLK_PLL6) / 500000 - 1) / 10;
1953 ENET_REG_WRITE(sc, ENET_MSCR, val);
1954
1955 /* Opcode/Pause Duration */
1956 ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1957
1958 /* Receive FIFO */
1959 ENET_REG_WRITE(sc, ENET_RSFL, 16); /* RxFIFO Section Full */
1960 ENET_REG_WRITE(sc, ENET_RSEM, 0x84); /* RxFIFO Section Empty */
1961 ENET_REG_WRITE(sc, ENET_RAEM, 8); /* RxFIFO Almost Empty */
1962 ENET_REG_WRITE(sc, ENET_RAFL, 8); /* RxFIFO Almost Full */
1963
1964 /* Transmit FIFO */
1965 ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1966 ENET_TFWR_FIFO(128)); /* TxFIFO Watermark */
1967 ENET_REG_WRITE(sc, ENET_TSEM, 0); /* TxFIFO Section Empty */
1968 ENET_REG_WRITE(sc, ENET_TAEM, 256); /* TxFIFO Almost Empty */
1969 ENET_REG_WRITE(sc, ENET_TAFL, 8); /* TxFIFO Almost Full */
1970 ENET_REG_WRITE(sc, ENET_TIPG, 12); /* Tx Inter-Packet Gap */
1971
1972 /* hardware checksum is default off (override in TX descripter) */
1973 ENET_REG_WRITE(sc, ENET_TACC, 0);
1974
1975 /*
1976 * align ethernet payload on 32bit, discard frames with MAC layer error,
1977 * and don't discard checksum error
1978 */
1979 ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1980
1981 /* maximum frame size */
1982 val = ENET_DEFAULT_PKT_LEN;
1983 ENET_REG_WRITE(sc, ENET_FTRL, val); /* Frame Truncation Length */
1984 ENET_REG_WRITE(sc, ENET_RCR,
1985 ENET_RCR_PADEN | /* RX frame padding remove */
1986 ENET_RCR_RGMII_EN | /* use RGMII */
1987 (flowctrl ? ENET_RCR_FCE : 0) | /* flow control enable */
1988 rcr_speed |
1989 (fulldup ? 0 : ENET_RCR_DRT) |
1990 ENET_RCR_MAX_FL(val));
1991
1992 /* Maximum Receive BufSize per one descriptor */
1993 ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1994
1995
1996 /* TX/RX Descriptor Physical Address */
1997 paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1998 ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1999 paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
2000 ENET_REG_WRITE(sc, ENET_RDSR, paddr);
2001 /* sync cache */
2002 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
2003 sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2004 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
2005 sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
2006
2007 /* enable interrupts */
2008 ENET_REG_WRITE(sc, ENET_EIMR,
2009 ENET_EIR_TXF |
2010 ENET_EIR_RXF |
2011 ENET_EIR_EBERR |
2012 0);
2013
2014 /* enable ether */
2015 ENET_REG_WRITE(sc, ENET_ECR,
2016 #if _BYTE_ORDER == _LITTLE_ENDIAN
2017 ENET_ECR_DBSWP |
2018 #endif
2019 ENET_ECR_SPEED | /* default 1000Mbps mode */
2020 ENET_ECR_EN1588 | /* use enhanced TX/RX descriptor */
2021 ENET_ECR_ETHEREN); /* Ethernet Enable */
2022
2023 return 0;
2024 }
2025
2026 static int
2027 enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
2028 bus_dmamap_t *mapp)
2029 {
2030 bus_dma_segment_t seglist[1];
2031 int nsegs, error;
2032
2033 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
2034 1, &nsegs, M_NOWAIT)) != 0) {
2035 device_printf(sc->sc_dev,
2036 "unable to allocate DMA buffer, error=%d\n", error);
2037 goto fail_alloc;
2038 }
2039
2040 if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
2041 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
2042 device_printf(sc->sc_dev,
2043 "unable to map DMA buffer, error=%d\n",
2044 error);
2045 goto fail_map;
2046 }
2047
2048 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
2049 BUS_DMA_NOWAIT, mapp)) != 0) {
2050 device_printf(sc->sc_dev,
2051 "unable to create DMA map, error=%d\n", error);
2052 goto fail_create;
2053 }
2054
2055 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
2056 BUS_DMA_NOWAIT)) != 0) {
2057 aprint_error_dev(sc->sc_dev,
2058 "unable to load DMA map, error=%d\n", error);
2059 goto fail_load;
2060 }
2061
2062 return 0;
2063
2064 fail_load:
2065 bus_dmamap_destroy(sc->sc_dmat, *mapp);
2066 fail_create:
2067 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
2068 fail_map:
2069 bus_dmamem_free(sc->sc_dmat, seglist, 1);
2070 fail_alloc:
2071 return error;
2072 }
2073