if_enet.c revision 1.6 1 /* $NetBSD: if_enet.c,v 1.6 2016/05/17 06:44:45 ryo Exp $ */
2
3 /*
4 * Copyright (c) 2014 Ryo Shimizu <ryo (at) nerv.org>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
20 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
24 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
25 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /*
30 * i.MX6,7 10/100/1000-Mbps ethernet MAC (ENET)
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: if_enet.c,v 1.6 2016/05/17 06:44:45 ryo Exp $");
35
36 #include "vlan.h"
37
38 #include <sys/param.h>
39 #include <sys/bus.h>
40 #include <sys/mbuf.h>
41 #include <sys/device.h>
42 #include <sys/sockio.h>
43 #include <sys/kernel.h>
44 #include <sys/rndsource.h>
45
46 #include <lib/libkern/libkern.h>
47
48 #include <net/if.h>
49 #include <net/if_dl.h>
50 #include <net/if_media.h>
51 #include <net/if_ether.h>
52 #include <net/bpf.h>
53 #include <net/if_vlanvar.h>
54
55 #include <netinet/in.h>
56 #include <netinet/in_systm.h>
57 #include <netinet/ip.h>
58
59 #include <dev/mii/mii.h>
60 #include <dev/mii/miivar.h>
61
62 #include <arm/imx/if_enetreg.h>
63 #include <arm/imx/if_enetvar.h>
64
65 #undef DEBUG_ENET
66 #undef ENET_EVENT_COUNTER
67
68 #define ENET_TICK hz
69
70 #ifdef DEBUG_ENET
71 int enet_debug = 0;
72 # define DEVICE_DPRINTF(args...) \
73 do { if (enet_debug) device_printf(sc->sc_dev, args); } while (0)
74 #else
75 # define DEVICE_DPRINTF(args...)
76 #endif
77
78
79 #define RXDESC_MAXBUFSIZE 0x07f0
80 /* ENET does not work greather than 0x0800... */
81
82 #undef ENET_SUPPORT_JUMBO /* JUMBO FRAME SUPPORT is unstable */
83 #ifdef ENET_SUPPORT_JUMBO
84 # define ENET_MAX_PKT_LEN 4034 /* MAX FIFO LEN */
85 #else
86 # define ENET_MAX_PKT_LEN 1522
87 #endif
88 #define ENET_DEFAULT_PKT_LEN 1522 /* including VLAN tag */
89 #define MTU2FRAMESIZE(n) \
90 ((n) + ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN)
91
92
93 #define ENET_MAX_PKT_NSEGS 64
94
95 #define ENET_TX_NEXTIDX(idx) (((idx) >= (ENET_TX_RING_CNT - 1)) ? 0 : ((idx) + 1))
96 #define ENET_RX_NEXTIDX(idx) (((idx) >= (ENET_RX_RING_CNT - 1)) ? 0 : ((idx) + 1))
97
98 #define TXDESC_WRITEOUT(idx) \
99 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
100 sizeof(struct enet_txdesc) * (idx), \
101 sizeof(struct enet_txdesc), \
102 BUS_DMASYNC_PREWRITE)
103
104 #define TXDESC_READIN(idx) \
105 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, \
106 sizeof(struct enet_txdesc) * (idx), \
107 sizeof(struct enet_txdesc), \
108 BUS_DMASYNC_PREREAD)
109
110 #define RXDESC_WRITEOUT(idx) \
111 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
112 sizeof(struct enet_rxdesc) * (idx), \
113 sizeof(struct enet_rxdesc), \
114 BUS_DMASYNC_PREWRITE)
115
116 #define RXDESC_READIN(idx) \
117 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, \
118 sizeof(struct enet_rxdesc) * (idx), \
119 sizeof(struct enet_rxdesc), \
120 BUS_DMASYNC_PREREAD)
121
122 #define ENET_REG_READ(sc, reg) \
123 bus_space_read_4((sc)->sc_iot, (sc)->sc_ioh, reg)
124
125 #define ENET_REG_WRITE(sc, reg, value) \
126 bus_space_write_4((sc)->sc_iot, (sc)->sc_ioh, reg, value)
127
128 #ifdef ENET_EVENT_COUNTER
129 static void enet_attach_evcnt(struct enet_softc *);
130 static void enet_update_evcnt(struct enet_softc *);
131 #endif
132
133 static int enet_intr(void *);
134 static void enet_tick(void *);
135 static int enet_tx_intr(void *);
136 static int enet_rx_intr(void *);
137 static void enet_rx_csum(struct enet_softc *, struct ifnet *, struct mbuf *,
138 int);
139
140 static void enet_start(struct ifnet *);
141 static int enet_ifflags_cb(struct ethercom *);
142 static int enet_ioctl(struct ifnet *, u_long, void *);
143 static int enet_init(struct ifnet *);
144 static void enet_stop(struct ifnet *, int);
145 static void enet_watchdog(struct ifnet *);
146 static void enet_mediastatus(struct ifnet *, struct ifmediareq *);
147
148 static int enet_miibus_readreg(device_t, int, int);
149 static void enet_miibus_writereg(device_t, int, int, int);
150 static void enet_miibus_statchg(struct ifnet *);
151
152 static void enet_gethwaddr(struct enet_softc *, uint8_t *);
153 static void enet_sethwaddr(struct enet_softc *, uint8_t *);
154 static void enet_setmulti(struct enet_softc *);
155 static int enet_encap_mbufalign(struct mbuf **);
156 static int enet_encap_txring(struct enet_softc *, struct mbuf **);
157 static int enet_init_regs(struct enet_softc *, int);
158 static int enet_alloc_ring(struct enet_softc *);
159 static void enet_init_txring(struct enet_softc *);
160 static int enet_init_rxring(struct enet_softc *);
161 static void enet_reset_rxdesc(struct enet_softc *, int);
162 static int enet_alloc_rxbuf(struct enet_softc *, int);
163 static void enet_drain_txbuf(struct enet_softc *);
164 static void enet_drain_rxbuf(struct enet_softc *);
165 static int enet_alloc_dma(struct enet_softc *, size_t, void **,
166 bus_dmamap_t *);
167
168 CFATTACH_DECL_NEW(enet, sizeof(struct enet_softc),
169 enet_match, enet_attach, NULL, NULL);
170
171 void
172 enet_attach_common(device_t self, bus_space_tag_t iot,
173 bus_dma_tag_t dmat, bus_addr_t addr, bus_size_t size, int irq)
174 {
175 struct enet_softc *sc;
176 struct ifnet *ifp;
177
178 sc = device_private(self);
179 sc->sc_dev = self;
180 sc->sc_iot = iot;
181 sc->sc_addr = addr;
182 sc->sc_dmat = dmat;
183
184 aprint_naive("\n");
185 aprint_normal(": Gigabit Ethernet Controller\n");
186 if (bus_space_map(sc->sc_iot, sc->sc_addr, size, 0,
187 &sc->sc_ioh)) {
188 aprint_error_dev(self, "cannot map registers\n");
189 return;
190 }
191
192 /* allocate dma buffer */
193 if (enet_alloc_ring(sc))
194 return;
195
196 #define IS_ENADDR_ZERO(enaddr) \
197 ((enaddr[0] | enaddr[1] | enaddr[2] | \
198 enaddr[3] | enaddr[4] | enaddr[5]) == 0)
199
200 if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
201 /* by any chance, mac-address is already set by bootloader? */
202 enet_gethwaddr(sc, sc->sc_enaddr);
203 if (IS_ENADDR_ZERO(sc->sc_enaddr)) {
204 /* give up. set randomly */
205 uint32_t eaddr = random();
206 /* not multicast */
207 sc->sc_enaddr[0] = (eaddr >> 24) & 0xfc;
208 sc->sc_enaddr[1] = eaddr >> 16;
209 sc->sc_enaddr[2] = eaddr >> 8;
210 sc->sc_enaddr[3] = eaddr;
211 eaddr = random();
212 sc->sc_enaddr[4] = eaddr >> 8;
213 sc->sc_enaddr[5] = eaddr;
214
215 aprint_error_dev(self,
216 "cannot get mac address. set randomly\n");
217 }
218 }
219 enet_sethwaddr(sc, sc->sc_enaddr);
220
221 aprint_normal_dev(self, "Ethernet address %s\n",
222 ether_sprintf(sc->sc_enaddr));
223
224 enet_init_regs(sc, 1);
225
226 /* setup interrupt handlers */
227 if ((sc->sc_ih = intr_establish(irq, IPL_NET,
228 IST_LEVEL, enet_intr, sc)) == NULL) {
229 aprint_error_dev(self, "unable to establish interrupt\n");
230 goto failure;
231 }
232
233 if (sc->sc_imxtype == 7) {
234 /* i.MX7 use 3 interrupts */
235 if ((sc->sc_ih2 = intr_establish(irq + 1, IPL_NET,
236 IST_LEVEL, enet_intr, sc)) == NULL) {
237 aprint_error_dev(self, "unable to establish 2nd interrupt\n");
238 intr_disestablish(sc->sc_ih);
239 goto failure;
240 }
241 if ((sc->sc_ih3 = intr_establish(irq + 2, IPL_NET,
242 IST_LEVEL, enet_intr, sc)) == NULL) {
243 aprint_error_dev(self, "unable to establish 3rd interrupt\n");
244 intr_disestablish(sc->sc_ih2);
245 intr_disestablish(sc->sc_ih);
246 goto failure;
247 }
248 }
249
250 /* callout will be scheduled from enet_init() */
251 callout_init(&sc->sc_tick_ch, 0);
252 callout_setfunc(&sc->sc_tick_ch, enet_tick, sc);
253
254 /* setup ifp */
255 ifp = &sc->sc_ethercom.ec_if;
256 strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
257 ifp->if_softc = sc;
258 ifp->if_mtu = ETHERMTU;
259 ifp->if_baudrate = IF_Gbps(1);
260 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
261 ifp->if_ioctl = enet_ioctl;
262 ifp->if_start = enet_start;
263 ifp->if_init = enet_init;
264 ifp->if_stop = enet_stop;
265 ifp->if_watchdog = enet_watchdog;
266
267 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
268 #ifdef ENET_SUPPORT_JUMBO
269 sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
270 #endif
271
272 ifp->if_capabilities = IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
273 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
274 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
275 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx |
276 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx;
277
278 IFQ_SET_MAXLEN(&ifp->if_snd, max(ENET_TX_RING_CNT, IFQ_MAXLEN));
279 IFQ_SET_READY(&ifp->if_snd);
280
281 /* setup MII */
282 sc->sc_ethercom.ec_mii = &sc->sc_mii;
283 sc->sc_mii.mii_ifp = ifp;
284 sc->sc_mii.mii_readreg = enet_miibus_readreg;
285 sc->sc_mii.mii_writereg = enet_miibus_writereg;
286 sc->sc_mii.mii_statchg = enet_miibus_statchg;
287 ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
288 enet_mediastatus);
289
290 /* try to attach PHY */
291 mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
292 MII_OFFSET_ANY, 0);
293 if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
294 ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
295 0, NULL);
296 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
297 } else {
298 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
299 }
300
301 if_attach(ifp);
302 ether_ifattach(ifp, sc->sc_enaddr);
303 ether_set_ifflags_cb(&sc->sc_ethercom, enet_ifflags_cb);
304
305 rnd_attach_source(&sc->sc_rnd_source, device_xname(sc->sc_dev),
306 RND_TYPE_NET, RND_FLAG_DEFAULT);
307
308 #ifdef ENET_EVENT_COUNTER
309 enet_attach_evcnt(sc);
310 #endif
311
312 sc->sc_stopping = false;
313
314 return;
315
316 failure:
317 bus_space_unmap(sc->sc_iot, sc->sc_ioh, size);
318 return;
319 }
320
321 #ifdef ENET_EVENT_COUNTER
322 static void
323 enet_attach_evcnt(struct enet_softc *sc)
324 {
325 const char *xname;
326
327 xname = device_xname(sc->sc_dev);
328
329 #define ENET_EVCNT_ATTACH(name) \
330 evcnt_attach_dynamic(&sc->sc_ev_ ## name, EVCNT_TYPE_MISC, \
331 NULL, xname, #name);
332
333 ENET_EVCNT_ATTACH(t_drop);
334 ENET_EVCNT_ATTACH(t_packets);
335 ENET_EVCNT_ATTACH(t_bc_pkt);
336 ENET_EVCNT_ATTACH(t_mc_pkt);
337 ENET_EVCNT_ATTACH(t_crc_align);
338 ENET_EVCNT_ATTACH(t_undersize);
339 ENET_EVCNT_ATTACH(t_oversize);
340 ENET_EVCNT_ATTACH(t_frag);
341 ENET_EVCNT_ATTACH(t_jab);
342 ENET_EVCNT_ATTACH(t_col);
343 ENET_EVCNT_ATTACH(t_p64);
344 ENET_EVCNT_ATTACH(t_p65to127n);
345 ENET_EVCNT_ATTACH(t_p128to255n);
346 ENET_EVCNT_ATTACH(t_p256to511);
347 ENET_EVCNT_ATTACH(t_p512to1023);
348 ENET_EVCNT_ATTACH(t_p1024to2047);
349 ENET_EVCNT_ATTACH(t_p_gte2048);
350 ENET_EVCNT_ATTACH(t_octets);
351 ENET_EVCNT_ATTACH(r_packets);
352 ENET_EVCNT_ATTACH(r_bc_pkt);
353 ENET_EVCNT_ATTACH(r_mc_pkt);
354 ENET_EVCNT_ATTACH(r_crc_align);
355 ENET_EVCNT_ATTACH(r_undersize);
356 ENET_EVCNT_ATTACH(r_oversize);
357 ENET_EVCNT_ATTACH(r_frag);
358 ENET_EVCNT_ATTACH(r_jab);
359 ENET_EVCNT_ATTACH(r_p64);
360 ENET_EVCNT_ATTACH(r_p65to127);
361 ENET_EVCNT_ATTACH(r_p128to255);
362 ENET_EVCNT_ATTACH(r_p256to511);
363 ENET_EVCNT_ATTACH(r_p512to1023);
364 ENET_EVCNT_ATTACH(r_p1024to2047);
365 ENET_EVCNT_ATTACH(r_p_gte2048);
366 ENET_EVCNT_ATTACH(r_octets);
367 }
368
369 static void
370 enet_update_evcnt(struct enet_softc *sc)
371 {
372 sc->sc_ev_t_drop.ev_count += ENET_REG_READ(sc, ENET_RMON_T_DROP);
373 sc->sc_ev_t_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_PACKETS);
374 sc->sc_ev_t_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_BC_PKT);
375 sc->sc_ev_t_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_T_MC_PKT);
376 sc->sc_ev_t_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_T_CRC_ALIGN);
377 sc->sc_ev_t_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_UNDERSIZE);
378 sc->sc_ev_t_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OVERSIZE);
379 sc->sc_ev_t_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_T_FRAG);
380 sc->sc_ev_t_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_T_JAB);
381 sc->sc_ev_t_col.ev_count += ENET_REG_READ(sc, ENET_RMON_T_COL);
382 sc->sc_ev_t_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P64);
383 sc->sc_ev_t_p65to127n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P65TO127N);
384 sc->sc_ev_t_p128to255n.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P128TO255N);
385 sc->sc_ev_t_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P256TO511);
386 sc->sc_ev_t_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P512TO1023);
387 sc->sc_ev_t_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P1024TO2047);
388 sc->sc_ev_t_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_T_P_GTE2048);
389 sc->sc_ev_t_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_T_OCTETS);
390 sc->sc_ev_r_packets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_PACKETS);
391 sc->sc_ev_r_bc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_BC_PKT);
392 sc->sc_ev_r_mc_pkt.ev_count += ENET_REG_READ(sc, ENET_RMON_R_MC_PKT);
393 sc->sc_ev_r_crc_align.ev_count += ENET_REG_READ(sc, ENET_RMON_R_CRC_ALIGN);
394 sc->sc_ev_r_undersize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
395 sc->sc_ev_r_oversize.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OVERSIZE);
396 sc->sc_ev_r_frag.ev_count += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
397 sc->sc_ev_r_jab.ev_count += ENET_REG_READ(sc, ENET_RMON_R_JAB);
398 sc->sc_ev_r_p64.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P64);
399 sc->sc_ev_r_p65to127.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P65TO127);
400 sc->sc_ev_r_p128to255.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P128TO255);
401 sc->sc_ev_r_p256to511.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P256TO511);
402 sc->sc_ev_r_p512to1023.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P512TO1023);
403 sc->sc_ev_r_p1024to2047.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P1024TO2047);
404 sc->sc_ev_r_p_gte2048.ev_count += ENET_REG_READ(sc, ENET_RMON_R_P_GTE2048);
405 sc->sc_ev_r_octets.ev_count += ENET_REG_READ(sc, ENET_RMON_R_OCTETS);
406 }
407 #endif /* ENET_EVENT_COUNTER */
408
409 static void
410 enet_tick(void *arg)
411 {
412 struct enet_softc *sc;
413 struct mii_data *mii;
414 struct ifnet *ifp;
415 int s;
416
417 sc = arg;
418 mii = &sc->sc_mii;
419 ifp = &sc->sc_ethercom.ec_if;
420
421 s = splnet();
422
423 if (sc->sc_stopping)
424 goto out;
425
426 #ifdef ENET_EVENT_COUNTER
427 enet_update_evcnt(sc);
428 #endif
429
430 /* update counters */
431 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_UNDERSIZE);
432 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_FRAG);
433 ifp->if_ierrors += ENET_REG_READ(sc, ENET_RMON_R_JAB);
434
435 /* clear counters */
436 ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
437 ENET_REG_WRITE(sc, ENET_MIBC, 0);
438
439 mii_tick(mii);
440 out:
441
442 if (!sc->sc_stopping)
443 callout_schedule(&sc->sc_tick_ch, ENET_TICK);
444
445 splx(s);
446 }
447
448 static int
449 enet_intr(void *arg)
450 {
451 struct enet_softc *sc;
452 struct ifnet *ifp;
453 uint32_t status;
454
455 sc = arg;
456 status = ENET_REG_READ(sc, ENET_EIR);
457
458 if (sc->sc_imxtype == 7) {
459 if (status & (ENET_EIR_TXF|ENET_EIR_TXF1|ENET_EIR_TXF2))
460 enet_tx_intr(arg);
461 if (status & (ENET_EIR_RXF|ENET_EIR_RXF1|ENET_EIR_RXF2))
462 enet_rx_intr(arg);
463 } else {
464 if (status & ENET_EIR_TXF)
465 enet_tx_intr(arg);
466 if (status & ENET_EIR_RXF)
467 enet_rx_intr(arg);
468 }
469
470 if (status & ENET_EIR_EBERR) {
471 device_printf(sc->sc_dev, "Ethernet Bus Error\n");
472 ifp = &sc->sc_ethercom.ec_if;
473 enet_stop(ifp, 1);
474 enet_init(ifp);
475 } else {
476 ENET_REG_WRITE(sc, ENET_EIR, status);
477 }
478
479 rnd_add_uint32(&sc->sc_rnd_source, status);
480
481 return 1;
482 }
483
484 static int
485 enet_tx_intr(void *arg)
486 {
487 struct enet_softc *sc;
488 struct ifnet *ifp;
489 struct enet_txsoft *txs;
490 int idx;
491
492 sc = (struct enet_softc *)arg;
493 ifp = &sc->sc_ethercom.ec_if;
494
495 for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
496 idx = ENET_TX_NEXTIDX(idx)) {
497
498 txs = &sc->sc_txsoft[idx];
499
500 TXDESC_READIN(idx);
501 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_R) {
502 /* This TX Descriptor has not been transmitted yet */
503 break;
504 }
505
506 /* txsoft is available on first segment (TXFLAGS1_T1) */
507 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
508 bus_dmamap_unload(sc->sc_dmat,
509 txs->txs_dmamap);
510 m_freem(txs->txs_mbuf);
511 ifp->if_opackets++;
512 }
513
514 /* checking error */
515 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_L) {
516 uint32_t flags2;
517
518 flags2 = sc->sc_txdesc_ring[idx].tx_flags2;
519
520 if (flags2 & (TXFLAGS2_TXE |
521 TXFLAGS2_UE | TXFLAGS2_EE | TXFLAGS2_FE |
522 TXFLAGS2_LCE | TXFLAGS2_OE | TXFLAGS2_TSE)) {
523 #ifdef DEBUG_ENET
524 if (enet_debug) {
525 char flagsbuf[128];
526
527 snprintb(flagsbuf, sizeof(flagsbuf),
528 "\20" "\20TRANSMIT" "\16UNDERFLOW"
529 "\15COLLISION" "\14FRAME"
530 "\13LATECOLLISION" "\12OVERFLOW",
531 flags2);
532
533 device_printf(sc->sc_dev,
534 "txdesc[%d]: transmit error: "
535 "flags2=%s\n", idx, flagsbuf);
536 }
537 #endif /* DEBUG_ENET */
538 ifp->if_oerrors++;
539 }
540 }
541
542 sc->sc_tx_free++;
543 }
544 sc->sc_tx_considx = idx;
545
546 if (sc->sc_tx_free > 0)
547 ifp->if_flags &= ~IFF_OACTIVE;
548
549 /*
550 * No more pending TX descriptor,
551 * cancel the watchdog timer.
552 */
553 if (sc->sc_tx_free == ENET_TX_RING_CNT)
554 ifp->if_timer = 0;
555
556 return 1;
557 }
558
559 static int
560 enet_rx_intr(void *arg)
561 {
562 struct enet_softc *sc;
563 struct ifnet *ifp;
564 struct enet_rxsoft *rxs;
565 int idx, len, amount;
566 uint32_t flags1, flags2;
567 struct mbuf *m, *m0, *mprev;
568
569 sc = arg;
570 ifp = &sc->sc_ethercom.ec_if;
571
572 m0 = mprev = NULL;
573 amount = 0;
574 for (idx = sc->sc_rx_readidx; ; idx = ENET_RX_NEXTIDX(idx)) {
575
576 rxs = &sc->sc_rxsoft[idx];
577
578 RXDESC_READIN(idx);
579 if (sc->sc_rxdesc_ring[idx].rx_flags1_len & RXFLAGS1_E) {
580 /* This RX Descriptor has not been received yet */
581 break;
582 }
583
584 /*
585 * build mbuf from RX Descriptor if needed
586 */
587 m = rxs->rxs_mbuf;
588 rxs->rxs_mbuf = NULL;
589
590 flags1 = sc->sc_rxdesc_ring[idx].rx_flags1_len;
591 len = RXFLAGS1_LEN(flags1);
592
593 #define RACC_SHIFT16 2
594 if (m0 == NULL) {
595 m0 = m;
596 m_adj(m0, RACC_SHIFT16);
597 len -= RACC_SHIFT16;
598 m->m_len = len;
599 amount = len;
600 } else {
601 if (flags1 & RXFLAGS1_L)
602 len = len - amount - RACC_SHIFT16;
603
604 m->m_len = len;
605 amount += len;
606 m->m_flags &= ~M_PKTHDR;
607 mprev->m_next = m;
608 }
609 mprev = m;
610
611 flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
612
613 if (flags1 & RXFLAGS1_L) {
614 /* last buffer */
615 if ((amount < ETHER_HDR_LEN) ||
616 ((flags1 & (RXFLAGS1_LG | RXFLAGS1_NO |
617 RXFLAGS1_CR | RXFLAGS1_OV | RXFLAGS1_TR)) ||
618 (flags2 & (RXFLAGS2_ME | RXFLAGS2_PE |
619 RXFLAGS2_CE)))) {
620
621 #ifdef DEBUG_ENET
622 if (enet_debug) {
623 char flags1buf[128], flags2buf[128];
624 snprintb(flags1buf, sizeof(flags1buf),
625 "\20" "\31MISS" "\26LENGTHVIOLATION"
626 "\25NONOCTET" "\23CRC" "\22OVERRUN"
627 "\21TRUNCATED", flags1);
628 snprintb(flags2buf, sizeof(flags2buf),
629 "\20" "\40MAC" "\33PHY"
630 "\32COLLISION", flags2);
631
632 DEVICE_DPRINTF(
633 "rxdesc[%d]: receive error: "
634 "flags1=%s,flags2=%s,len=%d\n",
635 idx, flags1buf, flags2buf, amount);
636 }
637 #endif /* DEBUG_ENET */
638 ifp->if_ierrors++;
639 m_freem(m0);
640
641 } else {
642 /* packet receive ok */
643 ifp->if_ipackets++;
644 m0->m_pkthdr.rcvif = ifp;
645 m0->m_pkthdr.len = amount;
646
647 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
648 rxs->rxs_dmamap->dm_mapsize,
649 BUS_DMASYNC_PREREAD);
650
651 if (ifp->if_csum_flags_rx & (M_CSUM_IPv4 |
652 M_CSUM_TCPv4 | M_CSUM_UDPv4 |
653 M_CSUM_TCPv6 | M_CSUM_UDPv6))
654 enet_rx_csum(sc, ifp, m0, idx);
655
656 /* Pass this up to any BPF listeners */
657 bpf_mtap(ifp, m0);
658
659 if_percpuq_enqueue(ifp->if_percpuq, m0);
660 }
661
662 m0 = NULL;
663 mprev = NULL;
664 amount = 0;
665
666 } else {
667 /* continued from previous buffer */
668 bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
669 rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
670 }
671
672 bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
673 if (enet_alloc_rxbuf(sc, idx) != 0) {
674 panic("enet_alloc_rxbuf NULL\n");
675 }
676 }
677 sc->sc_rx_readidx = idx;
678
679 /* re-enable RX DMA to make sure */
680 ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
681
682 return 1;
683 }
684
685 static void
686 enet_rx_csum(struct enet_softc *sc, struct ifnet *ifp, struct mbuf *m, int idx)
687 {
688 uint32_t flags2;
689 uint8_t proto;
690
691 flags2 = sc->sc_rxdesc_ring[idx].rx_flags2;
692
693 if (flags2 & RXFLAGS2_IPV6) {
694 proto = sc->sc_rxdesc_ring[idx].rx_proto;
695
696 /* RXFLAGS2_PCR is valid when IPv6 and TCP/UDP */
697 if ((proto == IPPROTO_TCP) &&
698 (ifp->if_csum_flags_rx & M_CSUM_TCPv6))
699 m->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
700 else if ((proto == IPPROTO_UDP) &&
701 (ifp->if_csum_flags_rx & M_CSUM_UDPv6))
702 m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
703 else
704 return;
705
706 /* IPv6 protocol checksum error */
707 if (flags2 & RXFLAGS2_PCR)
708 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
709
710 } else {
711 struct ether_header *eh;
712 uint8_t *ip;
713
714 eh = mtod(m, struct ether_header *);
715
716 /* XXX: is an IPv4? */
717 if (ntohs(eh->ether_type) != ETHERTYPE_IP)
718 return;
719 ip = (uint8_t *)(eh + 1);
720 if ((ip[0] & 0xf0) == 0x40)
721 return;
722
723 proto = sc->sc_rxdesc_ring[idx].rx_proto;
724 if (flags2 & RXFLAGS2_ICE) {
725 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
726 m->m_pkthdr.csum_flags |=
727 M_CSUM_IPv4 | M_CSUM_IPv4_BAD;
728 }
729 } else {
730 if (ifp->if_csum_flags_rx & M_CSUM_IPv4) {
731 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
732 }
733
734 /*
735 * PCR is valid when
736 * ICE == 0 and FRAG == 0
737 */
738 if (flags2 & RXFLAGS2_FRAG)
739 return;
740
741 /*
742 * PCR is valid when proto is TCP or UDP
743 */
744 if ((proto == IPPROTO_TCP) &&
745 (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
746 m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
747 else if ((proto == IPPROTO_UDP) &&
748 (ifp->if_csum_flags_rx & M_CSUM_UDPv4))
749 m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
750 else
751 return;
752
753 /* IPv4 protocol cksum error */
754 if (flags2 & RXFLAGS2_PCR)
755 m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
756 }
757 }
758 }
759
760 static void
761 enet_setmulti(struct enet_softc *sc)
762 {
763 struct ifnet *ifp;
764 struct ether_multi *enm;
765 struct ether_multistep step;
766 int promisc;
767 uint32_t crc;
768 uint32_t gaddr[2];
769
770 ifp = &sc->sc_ethercom.ec_if;
771
772 promisc = 0;
773 if ((ifp->if_flags & IFF_PROMISC) || sc->sc_ethercom.ec_multicnt > 0) {
774 ifp->if_flags |= IFF_ALLMULTI;
775 if (ifp->if_flags & IFF_PROMISC)
776 promisc = 1;
777 gaddr[0] = gaddr[1] = 0xffffffff;
778 } else {
779 gaddr[0] = gaddr[1] = 0;
780
781 ETHER_FIRST_MULTI(step, &sc->sc_ethercom, enm);
782 while (enm != NULL) {
783 crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
784 gaddr[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
785 ETHER_NEXT_MULTI(step, enm);
786 }
787 }
788
789 ENET_REG_WRITE(sc, ENET_GAUR, gaddr[0]);
790 ENET_REG_WRITE(sc, ENET_GALR, gaddr[1]);
791
792 if (promisc) {
793 /* match all packet */
794 ENET_REG_WRITE(sc, ENET_IAUR, 0xffffffff);
795 ENET_REG_WRITE(sc, ENET_IALR, 0xffffffff);
796 } else {
797 /* don't match any packet */
798 ENET_REG_WRITE(sc, ENET_IAUR, 0);
799 ENET_REG_WRITE(sc, ENET_IALR, 0);
800 }
801 }
802
803 static void
804 enet_gethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
805 {
806 uint32_t paddr;
807
808 paddr = ENET_REG_READ(sc, ENET_PALR);
809 hwaddr[0] = paddr >> 24;
810 hwaddr[1] = paddr >> 16;
811 hwaddr[2] = paddr >> 8;
812 hwaddr[3] = paddr;
813
814 paddr = ENET_REG_READ(sc, ENET_PAUR);
815 hwaddr[4] = paddr >> 24;
816 hwaddr[5] = paddr >> 16;
817 }
818
819 static void
820 enet_sethwaddr(struct enet_softc *sc, uint8_t *hwaddr)
821 {
822 uint32_t paddr;
823
824 paddr = (hwaddr[0] << 24) | (hwaddr[1] << 16) | (hwaddr[2] << 8) |
825 hwaddr[3];
826 ENET_REG_WRITE(sc, ENET_PALR, paddr);
827 paddr = (hwaddr[4] << 24) | (hwaddr[5] << 16);
828 ENET_REG_WRITE(sc, ENET_PAUR, paddr);
829 }
830
831 /*
832 * ifnet interfaces
833 */
834 static int
835 enet_init(struct ifnet *ifp)
836 {
837 struct enet_softc *sc;
838 int s, error;
839
840 sc = ifp->if_softc;
841
842 s = splnet();
843
844 enet_init_regs(sc, 0);
845 enet_init_txring(sc);
846 error = enet_init_rxring(sc);
847 if (error != 0) {
848 enet_drain_rxbuf(sc);
849 device_printf(sc->sc_dev, "Cannot allocate mbuf cluster\n");
850 goto init_failure;
851 }
852
853 /* reload mac address */
854 memcpy(sc->sc_enaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
855 enet_sethwaddr(sc, sc->sc_enaddr);
856
857 /* program multicast address */
858 enet_setmulti(sc);
859
860 /* update if_flags */
861 ifp->if_flags |= IFF_RUNNING;
862 ifp->if_flags &= ~IFF_OACTIVE;
863
864 /* update local copy of if_flags */
865 sc->sc_if_flags = ifp->if_flags;
866
867 /* mii */
868 mii_mediachg(&sc->sc_mii);
869
870 /* enable RX DMA */
871 ENET_REG_WRITE(sc, ENET_RDAR, ENET_RDAR_ACTIVE);
872
873 sc->sc_stopping = false;
874 callout_schedule(&sc->sc_tick_ch, ENET_TICK);
875
876 init_failure:
877 splx(s);
878
879 return error;
880 }
881
882 static void
883 enet_start(struct ifnet *ifp)
884 {
885 struct enet_softc *sc;
886 struct mbuf *m;
887 int npkt;
888
889 if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
890 return;
891
892 sc = ifp->if_softc;
893 for (npkt = 0; ; npkt++) {
894 IFQ_POLL(&ifp->if_snd, m);
895 if (m == NULL)
896 break;
897
898 if (sc->sc_tx_free <= 0) {
899 /* no tx descriptor now... */
900 ifp->if_flags |= IFF_OACTIVE;
901 DEVICE_DPRINTF("TX descriptor is full\n");
902 break;
903 }
904
905 IFQ_DEQUEUE(&ifp->if_snd, m);
906
907 if (enet_encap_txring(sc, &m) != 0) {
908 /* too many mbuf chains? */
909 ifp->if_flags |= IFF_OACTIVE;
910 DEVICE_DPRINTF(
911 "TX descriptor is full. dropping packet\n");
912 m_freem(m);
913 ifp->if_oerrors++;
914 break;
915 }
916
917 /* Pass the packet to any BPF listeners */
918 bpf_mtap(ifp, m);
919 }
920
921 if (npkt) {
922 /* enable TX DMA */
923 ENET_REG_WRITE(sc, ENET_TDAR, ENET_TDAR_ACTIVE);
924
925 ifp->if_timer = 5;
926 }
927 }
928
929 static void
930 enet_stop(struct ifnet *ifp, int disable)
931 {
932 struct enet_softc *sc;
933 int s;
934 uint32_t v;
935
936 sc = ifp->if_softc;
937
938 s = splnet();
939
940 sc->sc_stopping = true;
941 callout_stop(&sc->sc_tick_ch);
942
943 /* clear ENET_ECR[ETHEREN] to abort receive and transmit */
944 v = ENET_REG_READ(sc, ENET_ECR);
945 ENET_REG_WRITE(sc, ENET_ECR, v & ~ENET_ECR_ETHEREN);
946
947 /* Mark the interface as down and cancel the watchdog timer. */
948 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
949 ifp->if_timer = 0;
950
951 if (disable) {
952 enet_drain_txbuf(sc);
953 enet_drain_rxbuf(sc);
954 }
955
956 splx(s);
957 }
958
959 static void
960 enet_watchdog(struct ifnet *ifp)
961 {
962 struct enet_softc *sc;
963 int s;
964
965 sc = ifp->if_softc;
966 s = splnet();
967
968 device_printf(sc->sc_dev, "watchdog timeout\n");
969 ifp->if_oerrors++;
970
971 /* salvage packets left in descriptors */
972 enet_tx_intr(sc);
973 enet_rx_intr(sc);
974
975 /* reset */
976 enet_stop(ifp, 1);
977 enet_init(ifp);
978
979 splx(s);
980 }
981
982 static void
983 enet_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
984 {
985 struct enet_softc *sc = ifp->if_softc;
986
987 ether_mediastatus(ifp, ifmr);
988 ifmr->ifm_active = (ifmr->ifm_active & ~IFM_ETH_FMASK)
989 | sc->sc_flowflags;
990 }
991
992 static int
993 enet_ifflags_cb(struct ethercom *ec)
994 {
995 struct ifnet *ifp = &ec->ec_if;
996 struct enet_softc *sc = ifp->if_softc;
997 int change = ifp->if_flags ^ sc->sc_if_flags;
998
999 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
1000 return ENETRESET;
1001 else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
1002 return 0;
1003
1004 enet_setmulti(sc);
1005
1006 sc->sc_if_flags = ifp->if_flags;
1007 return 0;
1008 }
1009
1010 static int
1011 enet_ioctl(struct ifnet *ifp, u_long command, void *data)
1012 {
1013 struct enet_softc *sc;
1014 struct ifreq *ifr;
1015 int s, error;
1016 uint32_t v;
1017
1018 sc = ifp->if_softc;
1019 ifr = data;
1020
1021 error = 0;
1022
1023 s = splnet();
1024
1025 switch (command) {
1026 case SIOCSIFMTU:
1027 if (MTU2FRAMESIZE(ifr->ifr_mtu) > ENET_MAX_PKT_LEN) {
1028 error = EINVAL;
1029 } else {
1030 ifp->if_mtu = ifr->ifr_mtu;
1031
1032 /* set maximum frame length */
1033 v = MTU2FRAMESIZE(ifr->ifr_mtu);
1034 ENET_REG_WRITE(sc, ENET_FTRL, v);
1035 v = ENET_REG_READ(sc, ENET_RCR);
1036 v &= ~ENET_RCR_MAX_FL(0x3fff);
1037 v |= ENET_RCR_MAX_FL(ifp->if_mtu +
1038 ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
1039 ENET_REG_WRITE(sc, ENET_RCR, v);
1040 }
1041 break;
1042 case SIOCSIFMEDIA:
1043 case SIOCGIFMEDIA:
1044 /* Flow control requires full-duplex mode. */
1045 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
1046 (ifr->ifr_media & IFM_FDX) == 0)
1047 ifr->ifr_media &= ~IFM_ETH_FMASK;
1048 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
1049 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
1050 /* We can do both TXPAUSE and RXPAUSE. */
1051 ifr->ifr_media |=
1052 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
1053 }
1054 sc->sc_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
1055 }
1056 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, command);
1057 break;
1058 default:
1059 error = ether_ioctl(ifp, command, data);
1060 if (error != ENETRESET)
1061 break;
1062
1063 /* post-process */
1064 error = 0;
1065 switch (command) {
1066 case SIOCSIFCAP:
1067 error = (*ifp->if_init)(ifp);
1068 break;
1069 case SIOCADDMULTI:
1070 case SIOCDELMULTI:
1071 if (ifp->if_flags & IFF_RUNNING)
1072 enet_setmulti(sc);
1073 break;
1074 }
1075 break;
1076 }
1077
1078 splx(s);
1079
1080 return error;
1081 }
1082
1083 /*
1084 * for MII
1085 */
1086 static int
1087 enet_miibus_readreg(device_t dev, int phy, int reg)
1088 {
1089 struct enet_softc *sc;
1090 int timeout;
1091 uint32_t val, status;
1092
1093 sc = device_private(dev);
1094
1095 /* clear MII update */
1096 ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1097
1098 /* read command */
1099 ENET_REG_WRITE(sc, ENET_MMFR,
1100 ENET_MMFR_ST | ENET_MMFR_OP_READ | ENET_MMFR_TA |
1101 ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy));
1102
1103 /* check MII update */
1104 for (timeout = 5000; timeout > 0; --timeout) {
1105 status = ENET_REG_READ(sc, ENET_EIR);
1106 if (status & ENET_EIR_MII)
1107 break;
1108 }
1109 if (timeout <= 0) {
1110 DEVICE_DPRINTF("MII read timeout: reg=0x%02x\n",
1111 reg);
1112 val = -1;
1113 } else {
1114 val = ENET_REG_READ(sc, ENET_MMFR) & ENET_MMFR_DATAMASK;
1115 }
1116
1117 return val;
1118 }
1119
1120 static void
1121 enet_miibus_writereg(device_t dev, int phy, int reg, int val)
1122 {
1123 struct enet_softc *sc;
1124 int timeout;
1125
1126 sc = device_private(dev);
1127
1128 /* clear MII update */
1129 ENET_REG_WRITE(sc, ENET_EIR, ENET_EIR_MII);
1130
1131 /* write command */
1132 ENET_REG_WRITE(sc, ENET_MMFR,
1133 ENET_MMFR_ST | ENET_MMFR_OP_WRITE | ENET_MMFR_TA |
1134 ENET_MMFR_PHY_REG(reg) | ENET_MMFR_PHY_ADDR(phy) |
1135 (ENET_MMFR_DATAMASK & val));
1136
1137 /* check MII update */
1138 for (timeout = 5000; timeout > 0; --timeout) {
1139 if (ENET_REG_READ(sc, ENET_EIR) & ENET_EIR_MII)
1140 break;
1141 }
1142 if (timeout <= 0) {
1143 DEVICE_DPRINTF("MII write timeout: reg=0x%02x\n",
1144 reg);
1145 }
1146 }
1147
1148 static void
1149 enet_miibus_statchg(struct ifnet *ifp)
1150 {
1151 struct enet_softc *sc;
1152 struct mii_data *mii;
1153 struct ifmedia_entry *ife;
1154 uint32_t ecr, ecr0;
1155 uint32_t rcr, rcr0;
1156 uint32_t tcr, tcr0;
1157
1158 sc = ifp->if_softc;
1159 mii = &sc->sc_mii;
1160 ife = mii->mii_media.ifm_cur;
1161
1162 /* get current status */
1163 ecr0 = ecr = ENET_REG_READ(sc, ENET_ECR) & ~ENET_ECR_RESET;
1164 rcr0 = rcr = ENET_REG_READ(sc, ENET_RCR);
1165 tcr0 = tcr = ENET_REG_READ(sc, ENET_TCR);
1166
1167 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1168 (mii->mii_media_active & IFM_ETH_FMASK) != sc->sc_flowflags) {
1169 sc->sc_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1170 mii->mii_media_active &= ~IFM_ETH_FMASK;
1171 }
1172
1173 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX) {
1174 tcr |= ENET_TCR_FDEN; /* full duplex */
1175 rcr &= ~ENET_RCR_DRT;; /* enable receive on transmit */
1176 } else {
1177 tcr &= ~ENET_TCR_FDEN; /* half duplex */
1178 rcr |= ENET_RCR_DRT; /* disable receive on transmit */
1179 }
1180
1181 if ((tcr ^ tcr0) & ENET_TCR_FDEN) {
1182 /*
1183 * need to reset because
1184 * FDEN can change when ECR[ETHEREN] is 0
1185 */
1186 enet_init_regs(sc, 0);
1187 return;
1188 }
1189
1190 switch (IFM_SUBTYPE(ife->ifm_media)) {
1191 case IFM_AUTO:
1192 case IFM_1000_T:
1193 ecr |= ENET_ECR_SPEED; /* 1000Mbps mode */
1194 break;
1195 case IFM_100_TX:
1196 ecr &= ~ENET_ECR_SPEED; /* 100Mbps mode */
1197 rcr &= ~ENET_RCR_RMII_10T; /* 100Mbps mode */
1198 break;
1199 case IFM_10_T:
1200 ecr &= ~ENET_ECR_SPEED; /* 10Mbps mode */
1201 rcr |= ENET_RCR_RMII_10T; /* 10Mbps mode */
1202 break;
1203 default:
1204 ecr = ecr0;
1205 rcr = rcr0;
1206 tcr = tcr0;
1207 break;
1208 }
1209
1210 if (sc->sc_flowflags & IFM_FLOW)
1211 rcr |= ENET_RCR_FCE;
1212 else
1213 rcr &= ~ENET_RCR_FCE;
1214
1215 /* update registers if need change */
1216 if (ecr != ecr0)
1217 ENET_REG_WRITE(sc, ENET_ECR, ecr);
1218 if (rcr != rcr0)
1219 ENET_REG_WRITE(sc, ENET_RCR, rcr);
1220 if (tcr != tcr0)
1221 ENET_REG_WRITE(sc, ENET_TCR, tcr);
1222 }
1223
1224 /*
1225 * handling descriptors
1226 */
1227 static void
1228 enet_init_txring(struct enet_softc *sc)
1229 {
1230 int i;
1231
1232 /* build TX ring */
1233 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1234 sc->sc_txdesc_ring[i].tx_flags1_len =
1235 ((i == (ENET_TX_RING_CNT - 1)) ? TXFLAGS1_W : 0);
1236 sc->sc_txdesc_ring[i].tx_databuf = 0;
1237 sc->sc_txdesc_ring[i].tx_flags2 = TXFLAGS2_INT;
1238 sc->sc_txdesc_ring[i].tx__reserved1 = 0;
1239 sc->sc_txdesc_ring[i].tx_flags3 = 0;
1240 sc->sc_txdesc_ring[i].tx_1588timestamp = 0;
1241 sc->sc_txdesc_ring[i].tx__reserved2 = 0;
1242 sc->sc_txdesc_ring[i].tx__reserved3 = 0;
1243
1244 TXDESC_WRITEOUT(i);
1245 }
1246
1247 sc->sc_tx_free = ENET_TX_RING_CNT;
1248 sc->sc_tx_considx = 0;
1249 sc->sc_tx_prodidx = 0;
1250 }
1251
1252 static int
1253 enet_init_rxring(struct enet_softc *sc)
1254 {
1255 int i, error;
1256
1257 /* build RX ring */
1258 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1259 error = enet_alloc_rxbuf(sc, i);
1260 if (error != 0)
1261 return error;
1262 }
1263
1264 sc->sc_rx_readidx = 0;
1265
1266 return 0;
1267 }
1268
1269 static int
1270 enet_alloc_rxbuf(struct enet_softc *sc, int idx)
1271 {
1272 struct mbuf *m;
1273 int error;
1274
1275 KASSERT((idx >= 0) && (idx < ENET_RX_RING_CNT));
1276
1277 /* free mbuf if already allocated */
1278 if (sc->sc_rxsoft[idx].rxs_mbuf != NULL) {
1279 bus_dmamap_unload(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap);
1280 m_freem(sc->sc_rxsoft[idx].rxs_mbuf);
1281 sc->sc_rxsoft[idx].rxs_mbuf = NULL;
1282 }
1283
1284 /* allocate new mbuf cluster */
1285 MGETHDR(m, M_DONTWAIT, MT_DATA);
1286 if (m == NULL)
1287 return ENOBUFS;
1288 MCLGET(m, M_DONTWAIT);
1289 if (!(m->m_flags & M_EXT)) {
1290 m_freem(m);
1291 return ENOBUFS;
1292 }
1293 m->m_len = MCLBYTES;
1294 m->m_next = NULL;
1295
1296 error = bus_dmamap_load(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap,
1297 m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
1298 BUS_DMA_READ | BUS_DMA_NOWAIT);
1299 if (error) {
1300 m_freem(m);
1301 return error;
1302 }
1303
1304 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxsoft[idx].rxs_dmamap, 0,
1305 sc->sc_rxsoft[idx].rxs_dmamap->dm_mapsize,
1306 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1307
1308 sc->sc_rxsoft[idx].rxs_mbuf = m;
1309 enet_reset_rxdesc(sc, idx);
1310 return 0;
1311 }
1312
1313 static void
1314 enet_reset_rxdesc(struct enet_softc *sc, int idx)
1315 {
1316 uint32_t paddr;
1317
1318 paddr = sc->sc_rxsoft[idx].rxs_dmamap->dm_segs[0].ds_addr;
1319
1320 sc->sc_rxdesc_ring[idx].rx_flags1_len =
1321 RXFLAGS1_E |
1322 ((idx == (ENET_RX_RING_CNT - 1)) ? RXFLAGS1_W : 0);
1323 sc->sc_rxdesc_ring[idx].rx_databuf = paddr;
1324 sc->sc_rxdesc_ring[idx].rx_flags2 =
1325 RXFLAGS2_INT;
1326 sc->sc_rxdesc_ring[idx].rx_hl = 0;
1327 sc->sc_rxdesc_ring[idx].rx_proto = 0;
1328 sc->sc_rxdesc_ring[idx].rx_cksum = 0;
1329 sc->sc_rxdesc_ring[idx].rx_flags3 = 0;
1330 sc->sc_rxdesc_ring[idx].rx_1588timestamp = 0;
1331 sc->sc_rxdesc_ring[idx].rx__reserved2 = 0;
1332 sc->sc_rxdesc_ring[idx].rx__reserved3 = 0;
1333
1334 RXDESC_WRITEOUT(idx);
1335 }
1336
1337 static void
1338 enet_drain_txbuf(struct enet_softc *sc)
1339 {
1340 int idx;
1341 struct enet_txsoft *txs;
1342 struct ifnet *ifp;
1343
1344 ifp = &sc->sc_ethercom.ec_if;
1345
1346 for (idx = sc->sc_tx_considx; idx != sc->sc_tx_prodidx;
1347 idx = ENET_TX_NEXTIDX(idx)) {
1348
1349 /* txsoft[] is used only first segment */
1350 txs = &sc->sc_txsoft[idx];
1351 TXDESC_READIN(idx);
1352 if (sc->sc_txdesc_ring[idx].tx_flags1_len & TXFLAGS1_T1) {
1353 sc->sc_txdesc_ring[idx].tx_flags1_len = 0;
1354 bus_dmamap_unload(sc->sc_dmat,
1355 txs->txs_dmamap);
1356 m_freem(txs->txs_mbuf);
1357
1358 ifp->if_oerrors++;
1359 }
1360 sc->sc_tx_free++;
1361 }
1362 }
1363
1364 static void
1365 enet_drain_rxbuf(struct enet_softc *sc)
1366 {
1367 int i;
1368
1369 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1370 if (sc->sc_rxsoft[i].rxs_mbuf != NULL) {
1371 sc->sc_rxdesc_ring[i].rx_flags1_len = 0;
1372 bus_dmamap_unload(sc->sc_dmat,
1373 sc->sc_rxsoft[i].rxs_dmamap);
1374 m_freem(sc->sc_rxsoft[i].rxs_mbuf);
1375 sc->sc_rxsoft[i].rxs_mbuf = NULL;
1376 }
1377 }
1378 }
1379
1380 static int
1381 enet_alloc_ring(struct enet_softc *sc)
1382 {
1383 int i, error;
1384
1385 /*
1386 * build DMA maps for TX.
1387 * TX descriptor must be able to contain mbuf chains,
1388 * so, make up ENET_MAX_PKT_NSEGS dmamap.
1389 */
1390 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1391 error = bus_dmamap_create(sc->sc_dmat, ENET_MAX_PKT_LEN,
1392 ENET_MAX_PKT_NSEGS, ENET_MAX_PKT_LEN, 0, BUS_DMA_NOWAIT,
1393 &sc->sc_txsoft[i].txs_dmamap);
1394
1395 if (error) {
1396 aprint_error_dev(sc->sc_dev,
1397 "can't create DMA map for TX descs\n");
1398 goto fail_1;
1399 }
1400 }
1401
1402 /*
1403 * build DMA maps for RX.
1404 * RX descripter contains An mbuf cluster,
1405 * and make up a dmamap.
1406 */
1407 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1408 error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1409 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1410 &sc->sc_rxsoft[i].rxs_dmamap);
1411 if (error) {
1412 aprint_error_dev(sc->sc_dev,
1413 "can't create DMA map for RX descs\n");
1414 goto fail_2;
1415 }
1416 }
1417
1418 if (enet_alloc_dma(sc, sizeof(struct enet_txdesc) * ENET_TX_RING_CNT,
1419 (void **)&(sc->sc_txdesc_ring), &(sc->sc_txdesc_dmamap)) != 0)
1420 return -1;
1421 memset(sc->sc_txdesc_ring, 0,
1422 sizeof(struct enet_txdesc) * ENET_TX_RING_CNT);
1423
1424 if (enet_alloc_dma(sc, sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT,
1425 (void **)&(sc->sc_rxdesc_ring), &(sc->sc_rxdesc_dmamap)) != 0)
1426 return -1;
1427 memset(sc->sc_rxdesc_ring, 0,
1428 sizeof(struct enet_rxdesc) * ENET_RX_RING_CNT);
1429
1430 return 0;
1431
1432 fail_2:
1433 for (i = 0; i < ENET_RX_RING_CNT; i++) {
1434 if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
1435 bus_dmamap_destroy(sc->sc_dmat,
1436 sc->sc_rxsoft[i].rxs_dmamap);
1437 }
1438 fail_1:
1439 for (i = 0; i < ENET_TX_RING_CNT; i++) {
1440 if (sc->sc_txsoft[i].txs_dmamap != NULL)
1441 bus_dmamap_destroy(sc->sc_dmat,
1442 sc->sc_txsoft[i].txs_dmamap);
1443 }
1444 return error;
1445 }
1446
1447 static int
1448 enet_encap_mbufalign(struct mbuf **mp)
1449 {
1450 struct mbuf *m, *m0, *mt, *p, *x;
1451 void *ap;
1452 uint32_t alignoff, chiplen;
1453
1454 /*
1455 * iMX6 SoC ethernet controller requires
1456 * address of buffer must aligned 8, and
1457 * length of buffer must be greater than 10 (first fragment only?)
1458 */
1459 #define ALIGNBYTE 8
1460 #define MINBUFSIZE 10
1461 #define ALIGN_PTR(p, align) \
1462 (void *)(((uintptr_t)(p) + ((align) - 1)) & -(align))
1463
1464 m0 = *mp;
1465 mt = p = NULL;
1466 for (m = m0; m != NULL; m = m->m_next) {
1467 alignoff = (uintptr_t)m->m_data & (ALIGNBYTE - 1);
1468 if (m->m_len < (ALIGNBYTE * 2)) {
1469 /*
1470 * rearrange mbuf data aligned
1471 *
1472 * align 8 * * * * *
1473 * +0123456789abcdef0123456789abcdef0
1474 * FROM m->m_data[___________abcdefghijklmn_______]
1475 *
1476 * +0123456789abcdef0123456789abcdef0
1477 * TO m->m_data[________abcdefghijklm___________] or
1478 * m->m_data[________________abcdefghijklmn__]
1479 */
1480 if ((alignoff != 0) && (m->m_len != 0)) {
1481 chiplen = ALIGNBYTE - alignoff;
1482 if (M_LEADINGSPACE(m) >= alignoff) {
1483 ap = m->m_data - alignoff;
1484 memmove(ap, m->m_data, m->m_len);
1485 m->m_data = ap;
1486 } else if (M_TRAILINGSPACE(m) >= chiplen) {
1487 ap = m->m_data + chiplen;
1488 memmove(ap, m->m_data, m->m_len);
1489 m->m_data = ap;
1490 } else {
1491 /*
1492 * no space to align data. (M_READONLY?)
1493 * allocate new mbuf aligned,
1494 * and copy to it.
1495 */
1496 MGET(x, M_DONTWAIT, m->m_type);
1497 if (x == NULL) {
1498 m_freem(m);
1499 return ENOBUFS;
1500 }
1501 MCLAIM(x, m->m_owner);
1502 if (m->m_flags & M_PKTHDR)
1503 M_MOVE_PKTHDR(x, m);
1504 x->m_len = m->m_len;
1505 x->m_data = ALIGN_PTR(x->m_data,
1506 ALIGNBYTE);
1507 memcpy(mtod(x, void *), mtod(m, void *),
1508 m->m_len);
1509 p->m_next = x;
1510 MFREE(m, x->m_next);
1511 m = x;
1512 }
1513 }
1514
1515 /*
1516 * fill 1st mbuf at least 10byte
1517 *
1518 * align 8 * * * * *
1519 * +0123456789abcdef0123456789abcdef0
1520 * FROM m->m_data[________abcde___________________]
1521 * m->m_data[__fg____________________________]
1522 * m->m_data[_________________hi_____________]
1523 * m->m_data[__________jk____________________]
1524 * m->m_data[____l___________________________]
1525 *
1526 * +0123456789abcdef0123456789abcdef0
1527 * TO m->m_data[________abcdefghij______________]
1528 * m->m_data[________________________________]
1529 * m->m_data[________________________________]
1530 * m->m_data[___________k____________________]
1531 * m->m_data[____l___________________________]
1532 */
1533 if (mt == NULL) {
1534 mt = m;
1535 while (mt->m_len == 0) {
1536 mt = mt->m_next;
1537 if (mt == NULL) {
1538 m_freem(m);
1539 return ENOBUFS;
1540 }
1541 }
1542
1543 /* mt = 1st mbuf, x = 2nd mbuf */
1544 x = mt->m_next;
1545 while (mt->m_len < MINBUFSIZE) {
1546 if (x == NULL) {
1547 m_freem(m);
1548 return ENOBUFS;
1549 }
1550
1551 alignoff = (uintptr_t)x->m_data &
1552 (ALIGNBYTE - 1);
1553 chiplen = ALIGNBYTE - alignoff;
1554 if (chiplen > x->m_len) {
1555 chiplen = x->m_len;
1556 } else if ((mt->m_len + chiplen) <
1557 MINBUFSIZE) {
1558 /*
1559 * next mbuf should be greater
1560 * than ALIGNBYTE?
1561 */
1562 if (x->m_len >= (chiplen +
1563 ALIGNBYTE * 2))
1564 chiplen += ALIGNBYTE;
1565 else
1566 chiplen = x->m_len;
1567 }
1568
1569 if (chiplen &&
1570 (M_TRAILINGSPACE(mt) < chiplen)) {
1571 /*
1572 * move data to the begining of
1573 * m_dat[] (aligned) to en-
1574 * large trailingspace
1575 */
1576 if (mt->m_flags & M_EXT) {
1577 ap = mt->m_ext.ext_buf;
1578 } else if (mt->m_flags &
1579 M_PKTHDR) {
1580 ap = mt->m_pktdat;
1581 } else {
1582 ap = mt->m_dat;
1583 }
1584 ap = ALIGN_PTR(ap, ALIGNBYTE);
1585 memcpy(ap, mt->m_data, mt->m_len);
1586 mt->m_data = ap;
1587 }
1588
1589 if (chiplen &&
1590 (M_TRAILINGSPACE(mt) >= chiplen)) {
1591 memcpy(mt->m_data + mt->m_len,
1592 x->m_data, chiplen);
1593 mt->m_len += chiplen;
1594 m_adj(x, chiplen);
1595 }
1596
1597 x = x->m_next;
1598 }
1599 }
1600
1601 } else {
1602 mt = m;
1603
1604 /*
1605 * allocate new mbuf x, and rearrange as below;
1606 *
1607 * align 8 * * * * *
1608 * +0123456789abcdef0123456789abcdef0
1609 * FROM m->m_data[____________abcdefghijklmnopq___]
1610 *
1611 * +0123456789abcdef0123456789abcdef0
1612 * TO x->m_data[________abcdefghijkl____________]
1613 * m->m_data[________________________mnopq___]
1614 *
1615 */
1616 if (alignoff != 0) {
1617 /* at least ALIGNBYTE */
1618 chiplen = ALIGNBYTE - alignoff + ALIGNBYTE;
1619
1620 MGET(x, M_DONTWAIT, m->m_type);
1621 if (x == NULL) {
1622 m_freem(m);
1623 return ENOBUFS;
1624 }
1625 MCLAIM(x, m->m_owner);
1626 if (m->m_flags & M_PKTHDR)
1627 M_MOVE_PKTHDR(x, m);
1628 x->m_data = ALIGN_PTR(x->m_data, ALIGNBYTE);
1629 memcpy(mtod(x, void *), mtod(m, void *),
1630 chiplen);
1631 x->m_len = chiplen;
1632 x->m_next = m;
1633 m_adj(m, chiplen);
1634
1635 if (p == NULL)
1636 m0 = x;
1637 else
1638 p->m_next = x;
1639 }
1640 }
1641 p = m;
1642 }
1643 *mp = m0;
1644
1645 return 0;
1646 }
1647
1648 static int
1649 enet_encap_txring(struct enet_softc *sc, struct mbuf **mp)
1650 {
1651 bus_dmamap_t map;
1652 struct mbuf *m;
1653 int csumflags, idx, i, error;
1654 uint32_t flags1, flags2;
1655
1656 idx = sc->sc_tx_prodidx;
1657 map = sc->sc_txsoft[idx].txs_dmamap;
1658
1659 /* align mbuf data for claim of ENET */
1660 error = enet_encap_mbufalign(mp);
1661 if (error != 0)
1662 return error;
1663
1664 m = *mp;
1665 csumflags = m->m_pkthdr.csum_flags;
1666
1667 error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m,
1668 BUS_DMA_NOWAIT);
1669 if (error != 0) {
1670 device_printf(sc->sc_dev,
1671 "Error mapping mbuf into TX chain: error=%d\n", error);
1672 m_freem(m);
1673 return error;
1674 }
1675
1676 if (map->dm_nsegs > sc->sc_tx_free) {
1677 bus_dmamap_unload(sc->sc_dmat, map);
1678 device_printf(sc->sc_dev,
1679 "too many mbuf chain %d\n", map->dm_nsegs);
1680 m_freem(m);
1681 return ENOBUFS;
1682 }
1683
1684 /* fill protocol cksum zero beforehand */
1685 if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1686 M_CSUM_UDPv6 | M_CSUM_TCPv6)) {
1687 struct mbuf *m1;
1688 int ehlen, moff;
1689 uint16_t etype;
1690
1691 m_copydata(m, ETHER_ADDR_LEN * 2, sizeof(etype), &etype);
1692 switch (ntohs(etype)) {
1693 case ETHERTYPE_IP:
1694 case ETHERTYPE_IPV6:
1695 ehlen = ETHER_HDR_LEN;
1696 break;
1697 case ETHERTYPE_VLAN:
1698 ehlen = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
1699 break;
1700 default:
1701 ehlen = 0;
1702 break;
1703 }
1704
1705 if (ehlen) {
1706 m1 = m_getptr(m, ehlen +
1707 M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) +
1708 M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data),
1709 &moff);
1710 if (m1 != NULL)
1711 *(uint16_t *)(mtod(m1, char *) + moff) = 0;
1712 }
1713 }
1714
1715 bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
1716 BUS_DMASYNC_PREWRITE);
1717
1718 for (i = 0; i < map->dm_nsegs; i++) {
1719 flags1 = TXFLAGS1_R;
1720 flags2 = 0;
1721
1722 if (i == 0) {
1723 flags1 |= TXFLAGS1_T1; /* mark as first segment */
1724 sc->sc_txsoft[idx].txs_mbuf = m;
1725 }
1726
1727 /* checksum offloading */
1728 if (csumflags & (M_CSUM_UDPv4 | M_CSUM_TCPv4 |
1729 M_CSUM_UDPv6 | M_CSUM_TCPv6))
1730 flags2 |= TXFLAGS2_PINS;
1731 if (csumflags & (M_CSUM_IPv4))
1732 flags2 |= TXFLAGS2_IINS;
1733
1734 if (i == map->dm_nsegs - 1) {
1735 /* mark last segment */
1736 flags1 |= TXFLAGS1_L | TXFLAGS1_TC;
1737 flags2 |= TXFLAGS2_INT;
1738 }
1739 if (idx == ENET_TX_RING_CNT - 1) {
1740 /* mark end of ring */
1741 flags1 |= TXFLAGS1_W;
1742 }
1743
1744 sc->sc_txdesc_ring[idx].tx_databuf = map->dm_segs[i].ds_addr;
1745 sc->sc_txdesc_ring[idx].tx_flags2 = flags2;
1746 sc->sc_txdesc_ring[idx].tx_flags3 = 0;
1747 sc->sc_txdesc_ring[idx].tx_flags1_len =
1748 flags1 | TXFLAGS1_LEN(map->dm_segs[i].ds_len);
1749
1750 TXDESC_WRITEOUT(idx);
1751
1752 idx = ENET_TX_NEXTIDX(idx);
1753 sc->sc_tx_free--;
1754 }
1755
1756 sc->sc_tx_prodidx = idx;
1757
1758 return 0;
1759 }
1760
1761 /*
1762 * device initialize
1763 */
1764 static int
1765 enet_init_regs(struct enet_softc *sc, int init)
1766 {
1767 struct mii_data *mii;
1768 struct ifmedia_entry *ife;
1769 paddr_t paddr;
1770 uint32_t val;
1771 int fulldup, ecr_speed, rcr_speed, flowctrl;
1772
1773 if (init) {
1774 fulldup = 1;
1775 ecr_speed = ENET_ECR_SPEED;
1776 rcr_speed = 0;
1777 flowctrl = 0;
1778 } else {
1779 mii = &sc->sc_mii;
1780 ife = mii->mii_media.ifm_cur;
1781
1782 if ((ife->ifm_media & IFM_GMASK) == IFM_FDX)
1783 fulldup = 1;
1784 else
1785 fulldup = 0;
1786
1787 switch (IFM_SUBTYPE(ife->ifm_media)) {
1788 case IFM_10_T:
1789 ecr_speed = 0;
1790 rcr_speed = ENET_RCR_RMII_10T;
1791 break;
1792 case IFM_100_TX:
1793 ecr_speed = 0;
1794 rcr_speed = 0;
1795 break;
1796 default:
1797 ecr_speed = ENET_ECR_SPEED;
1798 rcr_speed = 0;
1799 break;
1800 }
1801
1802 flowctrl = sc->sc_flowflags & IFM_FLOW;
1803 }
1804
1805 /* reset */
1806 ENET_REG_WRITE(sc, ENET_ECR, ecr_speed | ENET_ECR_RESET);
1807
1808 /* mask and clear all interrupt */
1809 ENET_REG_WRITE(sc, ENET_EIMR, 0);
1810 ENET_REG_WRITE(sc, ENET_EIR, 0xffffffff);
1811
1812 /* full duplex */
1813 ENET_REG_WRITE(sc, ENET_TCR, fulldup ? ENET_TCR_FDEN : 0);
1814
1815 /* clear and enable MIB register */
1816 ENET_REG_WRITE(sc, ENET_MIBC, ENET_MIBC_MIB_CLEAR);
1817 ENET_REG_WRITE(sc, ENET_MIBC, 0);
1818
1819 /* MII speed setup. MDCclk(=2.5MHz) = ENET_PLL/((val+1)*2) */
1820 val = ((sc->sc_pllclock) / 500000 - 1) / 10;
1821 ENET_REG_WRITE(sc, ENET_MSCR, val << 1);
1822
1823 /* Opcode/Pause Duration */
1824 ENET_REG_WRITE(sc, ENET_OPD, 0x00010020);
1825
1826 /* Receive FIFO */
1827 ENET_REG_WRITE(sc, ENET_RSFL, 16); /* RxFIFO Section Full */
1828 ENET_REG_WRITE(sc, ENET_RSEM, 0x84); /* RxFIFO Section Empty */
1829 ENET_REG_WRITE(sc, ENET_RAEM, 8); /* RxFIFO Almost Empty */
1830 ENET_REG_WRITE(sc, ENET_RAFL, 8); /* RxFIFO Almost Full */
1831
1832 /* Transmit FIFO */
1833 ENET_REG_WRITE(sc, ENET_TFWR, ENET_TFWR_STRFWD |
1834 ENET_TFWR_FIFO(128)); /* TxFIFO Watermark */
1835 ENET_REG_WRITE(sc, ENET_TSEM, 0); /* TxFIFO Section Empty */
1836 ENET_REG_WRITE(sc, ENET_TAEM, 256); /* TxFIFO Almost Empty */
1837 ENET_REG_WRITE(sc, ENET_TAFL, 8); /* TxFIFO Almost Full */
1838 ENET_REG_WRITE(sc, ENET_TIPG, 12); /* Tx Inter-Packet Gap */
1839
1840 /* hardware checksum is default off (override in TX descripter) */
1841 ENET_REG_WRITE(sc, ENET_TACC, 0);
1842
1843 /*
1844 * align ethernet payload on 32bit, discard frames with MAC layer error,
1845 * and don't discard checksum error
1846 */
1847 ENET_REG_WRITE(sc, ENET_RACC, ENET_RACC_SHIFT16 | ENET_RACC_LINEDIS);
1848
1849 /* maximum frame size */
1850 val = ENET_DEFAULT_PKT_LEN;
1851 ENET_REG_WRITE(sc, ENET_FTRL, val); /* Frame Truncation Length */
1852 ENET_REG_WRITE(sc, ENET_RCR,
1853 ENET_RCR_PADEN | /* RX frame padding remove */
1854 ENET_RCR_RGMII_EN | /* use RGMII */
1855 (flowctrl ? ENET_RCR_FCE : 0) | /* flow control enable */
1856 rcr_speed |
1857 (fulldup ? 0 : ENET_RCR_DRT) |
1858 ENET_RCR_MAX_FL(val));
1859
1860 /* Maximum Receive BufSize per one descriptor */
1861 ENET_REG_WRITE(sc, ENET_MRBR, RXDESC_MAXBUFSIZE);
1862
1863
1864 /* TX/RX Descriptor Physical Address */
1865 paddr = sc->sc_txdesc_dmamap->dm_segs[0].ds_addr;
1866 ENET_REG_WRITE(sc, ENET_TDSR, paddr);
1867 paddr = sc->sc_rxdesc_dmamap->dm_segs[0].ds_addr;
1868 ENET_REG_WRITE(sc, ENET_RDSR, paddr);
1869 /* sync cache */
1870 bus_dmamap_sync(sc->sc_dmat, sc->sc_txdesc_dmamap, 0,
1871 sc->sc_txdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1872 bus_dmamap_sync(sc->sc_dmat, sc->sc_rxdesc_dmamap, 0,
1873 sc->sc_rxdesc_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
1874
1875 /* enable interrupts */
1876 val = ENET_EIMR|ENET_EIR_TXF|ENET_EIR_RXF|ENET_EIR_EBERR;
1877 if (sc->sc_imxtype == 7)
1878 val |= ENET_EIR_TXF2|ENET_EIR_RXF2|ENET_EIR_TXF1|ENET_EIR_RXF1;
1879 ENET_REG_WRITE(sc, ENET_EIMR, val);
1880
1881 /* enable ether */
1882 ENET_REG_WRITE(sc, ENET_ECR,
1883 #if _BYTE_ORDER == _LITTLE_ENDIAN
1884 ENET_ECR_DBSWP |
1885 #endif
1886 ENET_ECR_SPEED | /* default 1000Mbps mode */
1887 ENET_ECR_EN1588 | /* use enhanced TX/RX descriptor */
1888 ENET_ECR_ETHEREN); /* Ethernet Enable */
1889
1890 return 0;
1891 }
1892
1893 static int
1894 enet_alloc_dma(struct enet_softc *sc, size_t size, void **addrp,
1895 bus_dmamap_t *mapp)
1896 {
1897 bus_dma_segment_t seglist[1];
1898 int nsegs, error;
1899
1900 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, seglist,
1901 1, &nsegs, M_NOWAIT)) != 0) {
1902 device_printf(sc->sc_dev,
1903 "unable to allocate DMA buffer, error=%d\n", error);
1904 goto fail_alloc;
1905 }
1906
1907 if ((error = bus_dmamem_map(sc->sc_dmat, seglist, 1, size, addrp,
1908 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
1909 device_printf(sc->sc_dev,
1910 "unable to map DMA buffer, error=%d\n",
1911 error);
1912 goto fail_map;
1913 }
1914
1915 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
1916 BUS_DMA_NOWAIT, mapp)) != 0) {
1917 device_printf(sc->sc_dev,
1918 "unable to create DMA map, error=%d\n", error);
1919 goto fail_create;
1920 }
1921
1922 if ((error = bus_dmamap_load(sc->sc_dmat, *mapp, *addrp, size, NULL,
1923 BUS_DMA_NOWAIT)) != 0) {
1924 aprint_error_dev(sc->sc_dev,
1925 "unable to load DMA map, error=%d\n", error);
1926 goto fail_load;
1927 }
1928
1929 return 0;
1930
1931 fail_load:
1932 bus_dmamap_destroy(sc->sc_dmat, *mapp);
1933 fail_create:
1934 bus_dmamem_unmap(sc->sc_dmat, *addrp, size);
1935 fail_map:
1936 bus_dmamem_free(sc->sc_dmat, seglist, 1);
1937 fail_alloc:
1938 return error;
1939 }
1940