imxuart.c revision 1.13 1 /* $NetBSD: imxuart.c,v 1.13 2014/07/25 08:10:32 dholland Exp $ */
2
3 /*
4 * Copyright (c) 2009, 2010 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 *
28 */
29
30 /*
31 * derived from sys/dev/ic/com.c
32 */
33
34 /*-
35 * Copyright (c) 1998, 1999, 2004, 2008 The NetBSD Foundation, Inc.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to The NetBSD Foundation
39 * by Charles M. Hannum.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
51 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
52 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
60 * POSSIBILITY OF SUCH DAMAGE.
61 */
62
63 /*
64 * Copyright (c) 1991 The Regents of the University of California.
65 * All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. Neither the name of the University nor the names of its contributors
76 * may be used to endorse or promote products derived from this software
77 * without specific prior written permission.
78 *
79 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
80 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
81 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
82 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
83 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
84 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
85 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
86 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
87 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
88 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
89 * SUCH DAMAGE.
90 *
91 * @(#)com.c 7.5 (Berkeley) 5/16/91
92 */
93
94 /*
95 * driver for UART in i.MX SoC.
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: imxuart.c,v 1.13 2014/07/25 08:10:32 dholland Exp $");
100
101 #include "opt_imxuart.h"
102 #include "opt_ddb.h"
103 #include "opt_kgdb.h"
104 #include "opt_lockdebug.h"
105 #include "opt_multiprocessor.h"
106 #include "opt_ntp.h"
107 #include "opt_imxuart.h"
108 #include "opt_imx.h"
109
110 #include "rnd.h"
111 #ifdef RND_COM
112 #include <sys/rnd.h>
113 #endif
114
115 #ifndef IMXUART_TOLERANCE
116 #define IMXUART_TOLERANCE 30 /* baud rate tolerance, in 0.1% units */
117 #endif
118
119 #ifndef IMXUART_FREQDIV
120 #define IMXUART_FREQDIV 2 /* XXX */
121 #endif
122
123 #ifndef IMXUART_FREQ
124 #define IMXUART_FREQ (56900000)
125 #endif
126
127 /*
128 * Override cnmagic(9) macro before including <sys/systm.h>.
129 * We need to know if cn_check_magic triggered debugger, so set a flag.
130 * Callers of cn_check_magic must declare int cn_trapped = 0;
131 * XXX: this is *ugly*!
132 */
133 #define cn_trap() \
134 do { \
135 console_debugger(); \
136 cn_trapped = 1; \
137 } while (/* CONSTCOND */ 0)
138
139 #include <sys/param.h>
140 #include <sys/systm.h>
141 #include <sys/ioctl.h>
142 #include <sys/select.h>
143 #include <sys/poll.h>
144 #include <sys/tty.h>
145 #include <sys/proc.h>
146 #include <sys/conf.h>
147 #include <sys/file.h>
148 #include <sys/uio.h>
149 #include <sys/kernel.h>
150 #include <sys/syslog.h>
151 #include <sys/device.h>
152 #include <sys/malloc.h>
153 #include <sys/timepps.h>
154 #include <sys/vnode.h>
155 #include <sys/kauth.h>
156 #include <sys/intr.h>
157
158 #include <sys/bus.h>
159
160 #include <arm/imx/imxuartreg.h>
161 #include <arm/imx/imxuartvar.h>
162 #include <dev/cons.h>
163
164 #ifndef IMXUART_RING_SIZE
165 #define IMXUART_RING_SIZE 2048
166 #endif
167
168 typedef struct imxuart_softc {
169 device_t sc_dev;
170
171 struct imxuart_regs {
172 bus_space_tag_t ur_iot;
173 bus_space_handle_t ur_ioh;
174 bus_addr_t ur_iobase;
175 #if 0
176 bus_size_t ur_nports;
177 bus_size_t ur_map[16];
178 #endif
179 } sc_regs;
180
181 #define sc_bt sc_regs.ur_iot
182 #define sc_bh sc_regs.ur_ioh
183
184 uint32_t sc_intrspec_enb;
185 uint32_t sc_ucr2_d; /* target value for UCR2 */
186 uint32_t sc_ucr[4]; /* cached value of UCRn */
187 #define sc_ucr1 sc_ucr[0]
188 #define sc_ucr2 sc_ucr[1]
189 #define sc_ucr3 sc_ucr[2]
190 #define sc_ucr4 sc_ucr[3]
191
192 uint sc_init_cnt;
193
194 bus_addr_t sc_addr;
195 bus_size_t sc_size;
196 int sc_intr;
197
198 u_char sc_hwflags;
199 /* Hardware flag masks */
200 #define IMXUART_HW_FLOW __BIT(0)
201 #define IMXUART_HW_DEV_OK __BIT(1)
202 #define IMXUART_HW_CONSOLE __BIT(2)
203 #define IMXUART_HW_KGDB __BIT(3)
204
205
206 bool enabled;
207
208 u_char sc_swflags;
209
210 u_char sc_rx_flags;
211 #define IMXUART_RX_TTY_BLOCKED __BIT(0)
212 #define IMXUART_RX_TTY_OVERFLOWED __BIT(1)
213 #define IMXUART_RX_IBUF_BLOCKED __BIT(2)
214 #define IMXUART_RX_IBUF_OVERFLOWED __BIT(3)
215 #define IMXUART_RX_ANY_BLOCK \
216 (IMXUART_RX_TTY_BLOCKED|IMXUART_RX_TTY_OVERFLOWED| \
217 IMXUART_RX_IBUF_BLOCKED|IMXUART_RX_IBUF_OVERFLOWED)
218
219 bool sc_tx_busy, sc_tx_done, sc_tx_stopped;
220 bool sc_rx_ready,sc_st_check;
221 u_short sc_txfifo_len, sc_txfifo_thresh;
222
223 uint16_t *sc_rbuf;
224 u_int sc_rbuf_size;
225 u_int sc_rbuf_in;
226 u_int sc_rbuf_out;
227 #define IMXUART_RBUF_AVAIL(sc) \
228 ((sc->sc_rbuf_out <= sc->sc_rbuf_in) ? \
229 (sc->sc_rbuf_in - sc->sc_rbuf_out) : \
230 (sc->sc_rbuf_size - (sc->sc_rbuf_out - sc->sc_rbuf_in)))
231
232 #define IMXUART_RBUF_SPACE(sc) \
233 ((sc->sc_rbuf_in <= sc->sc_rbuf_out ? \
234 sc->sc_rbuf_size - (sc->sc_rbuf_out - sc->sc_rbuf_in) : \
235 sc->sc_rbuf_in - sc->sc_rbuf_out) - 1)
236 /* increment ringbuffer pointer */
237 #define IMXUART_RBUF_INC(sc,v,i) (((v) + (i))&((sc->sc_rbuf_size)-1))
238 u_int sc_r_lowat;
239 u_int sc_r_hiwat;
240
241 /* output chunk */
242 u_char *sc_tba;
243 u_int sc_tbc;
244 u_int sc_heldtbc;
245 /* pending parameter changes */
246 u_char sc_pending;
247 #define IMXUART_PEND_PARAM __BIT(0)
248 #define IMXUART_PEND_SPEED __BIT(1)
249
250
251 struct callout sc_diag_callout;
252 kmutex_t sc_lock;
253 void *sc_ih; /* interrupt handler */
254 void *sc_si; /* soft interrupt */
255 struct tty *sc_tty;
256
257 /* power management hooks */
258 int (*enable)(struct imxuart_softc *);
259 void (*disable)(struct imxuart_softc *);
260
261 struct {
262 ulong err;
263 ulong brk;
264 ulong prerr;
265 ulong frmerr;
266 ulong ovrrun;
267 } sc_errors;
268
269 struct imxuart_baudrate_ratio {
270 uint16_t numerator; /* UBIR */
271 uint16_t modulator; /* UBMR */
272 } sc_ratio;
273
274 } imxuart_softc_t;
275
276
277 int imxuspeed(long, struct imxuart_baudrate_ratio *);
278 int imxuparam(struct tty *, struct termios *);
279 void imxustart(struct tty *);
280 int imxuhwiflow(struct tty *, int);
281
282 void imxuart_shutdown(struct imxuart_softc *);
283 void imxuart_loadchannelregs(struct imxuart_softc *);
284 void imxuart_hwiflow(struct imxuart_softc *);
285 void imxuart_break(struct imxuart_softc *, bool);
286 void imxuart_modem(struct imxuart_softc *, int);
287 void tiocm_to_imxu(struct imxuart_softc *, u_long, int);
288 int imxuart_to_tiocm(struct imxuart_softc *);
289 void imxuart_iflush(struct imxuart_softc *);
290 int imxuintr(void *);
291
292 int imxuart_common_getc(dev_t, struct imxuart_regs *);
293 void imxuart_common_putc(dev_t, struct imxuart_regs *, int);
294
295
296 int imxuart_init(struct imxuart_regs *, int, tcflag_t);
297
298 int imxucngetc(dev_t);
299 void imxucnputc(dev_t, int);
300 void imxucnpollc(dev_t, int);
301
302 static void imxuintr_read(struct imxuart_softc *);
303 static void imxuintr_send(struct imxuart_softc *);
304
305 static void imxuart_enable_debugport(struct imxuart_softc *);
306 static void imxuart_disable_all_interrupts(struct imxuart_softc *);
307 static void imxuart_control_rxint(struct imxuart_softc *, bool);
308 static void imxuart_control_txint(struct imxuart_softc *, bool);
309 static u_int imxuart_txfifo_space(struct imxuart_softc *sc);
310
311 static uint32_t cflag_to_ucr2(tcflag_t, uint32_t);
312
313 CFATTACH_DECL_NEW(imxuart, sizeof(struct imxuart_softc),
314 imxuart_match, imxuart_attach, NULL, NULL);
315
316
317 #define integrate static inline
318 void imxusoft(void *);
319 integrate void imxuart_rxsoft(struct imxuart_softc *, struct tty *);
320 integrate void imxuart_txsoft(struct imxuart_softc *, struct tty *);
321 integrate void imxuart_stsoft(struct imxuart_softc *, struct tty *);
322 integrate void imxuart_schedrx(struct imxuart_softc *);
323 void imxudiag(void *);
324 static void imxuart_load_speed(struct imxuart_softc *);
325 static void imxuart_load_params(struct imxuart_softc *);
326 integrate void imxuart_load_pendings(struct imxuart_softc *);
327
328
329 extern struct cfdriver imxuart_cd;
330
331 dev_type_open(imxuopen);
332 dev_type_close(imxuclose);
333 dev_type_read(imxuread);
334 dev_type_write(imxuwrite);
335 dev_type_ioctl(imxuioctl);
336 dev_type_stop(imxustop);
337 dev_type_tty(imxutty);
338 dev_type_poll(imxupoll);
339
340 const struct cdevsw imxcom_cdevsw = {
341 .d_open = imxuopen,
342 .d_close = imxuclose,
343 .d_read = imxuread,
344 .d_write = imxuwrite,
345 .d_ioctl = imxuioctl,
346 .d_stop = imxustop,
347 .d_tty = imxutty,
348 .d_poll = imxupoll,
349 .d_mmap = nommap,
350 .d_kqfilter = ttykqfilter,
351 .d_discard = nodiscard,
352 .d_flag = D_TTY
353 };
354
355 /*
356 * Make this an option variable one can patch.
357 * But be warned: this must be a power of 2!
358 */
359 u_int imxuart_rbuf_size = IMXUART_RING_SIZE;
360
361 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
362 u_int imxuart_rbuf_hiwat = (IMXUART_RING_SIZE * 1) / 4;
363 u_int imxuart_rbuf_lowat = (IMXUART_RING_SIZE * 3) / 4;
364
365 static struct imxuart_regs imxuconsregs;
366 static int imxuconsattached;
367 static int imxuconsrate;
368 static tcflag_t imxuconscflag;
369 static struct cnm_state imxuart_cnm_state;
370
371 u_int imxuart_freq = IMXUART_FREQ;
372 u_int imxuart_freqdiv = IMXUART_FREQDIV;
373
374 #ifdef KGDB
375 #include <sys/kgdb.h>
376
377 static struct imxuart_regs imxu_kgdb_regs;
378 static int imxu_kgdb_attached;
379
380 int imxuart_kgdb_getc(void *);
381 void imxuart_kgdb_putc(void *, int);
382 #endif /* KGDB */
383
384 #define IMXUART_UNIT_MASK 0x7ffff
385 #define IMXUART_DIALOUT_MASK 0x80000
386
387 #define IMXUART_UNIT(x) (minor(x) & IMXUART_UNIT_MASK)
388 #define IMXUART_DIALOUT(x) (minor(x) & IMXUART_DIALOUT_MASK)
389
390 #define IMXUART_ISALIVE(sc) ((sc)->enabled != 0 && \
391 device_is_active((sc)->sc_dev))
392
393 #define BR BUS_SPACE_BARRIER_READ
394 #define BW BUS_SPACE_BARRIER_WRITE
395 #define IMXUART_BARRIER(r, f) \
396 bus_space_barrier((r)->ur_iot, (r)->ur_ioh, 0, IMX_UART_SIZE, (f))
397
398
399 void
400 imxuart_attach_common(device_t parent, device_t self,
401 bus_space_tag_t iot, paddr_t iobase, size_t size, int intr, int flags)
402 {
403 imxuart_softc_t *sc = device_private(self);
404 struct imxuart_regs *regsp = &sc->sc_regs;
405 struct tty *tp;
406 bus_space_handle_t ioh;
407
408 aprint_naive("\n");
409 aprint_normal("\n");
410
411 sc->sc_dev = self;
412
413 if (size <= 0)
414 size = IMX_UART_SIZE;
415
416 sc->sc_intr = intr;
417 regsp->ur_iot = iot;
418 regsp->ur_iobase = iobase;
419
420 if (bus_space_map(iot, regsp->ur_iobase, size, 0, &ioh)) {
421 return;
422 }
423 regsp->ur_ioh = ioh;
424
425 callout_init(&sc->sc_diag_callout, 0);
426 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
427
428 bus_space_read_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4);
429 sc->sc_ucr2_d = sc->sc_ucr2;
430
431 /* Disable interrupts before configuring the device. */
432 imxuart_disable_all_interrupts(sc);
433
434 if (regsp->ur_iobase == imxuconsregs.ur_iobase) {
435 imxuconsattached = 1;
436
437 /* Make sure the console is always "hardwired". */
438 #if 0
439 delay(10000); /* wait for output to finish */
440 #endif
441 SET(sc->sc_hwflags, IMXUART_HW_CONSOLE);
442 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
443 }
444
445
446 tp = tty_alloc();
447 tp->t_oproc = imxustart;
448 tp->t_param = imxuparam;
449 tp->t_hwiflow = imxuhwiflow;
450
451 sc->sc_tty = tp;
452 sc->sc_rbuf = malloc(sizeof (*sc->sc_rbuf) * imxuart_rbuf_size,
453 M_DEVBUF, M_NOWAIT);
454 sc->sc_rbuf_size = imxuart_rbuf_size;
455 sc->sc_rbuf_in = sc->sc_rbuf_out = 0;
456 if (sc->sc_rbuf == NULL) {
457 aprint_error_dev(sc->sc_dev,
458 "unable to allocate ring buffer\n");
459 return;
460 }
461
462 sc->sc_txfifo_len = 32;
463 sc->sc_txfifo_thresh = 16; /* when USR1.TRDY, fifo has space
464 * for this many characters */
465
466 tty_attach(tp);
467
468 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
469 int maj;
470
471 /* locate the major number */
472 maj = cdevsw_lookup_major(&imxcom_cdevsw);
473
474 if (maj != NODEVMAJOR) {
475 tp->t_dev = cn_tab->cn_dev = makedev(maj,
476 device_unit(sc->sc_dev));
477
478 aprint_normal_dev(sc->sc_dev, "console\n");
479 }
480 }
481
482 sc->sc_ih = intr_establish(sc->sc_intr, IPL_SERIAL, IST_LEVEL,
483 imxuintr, sc);
484 if (sc->sc_ih == NULL)
485 aprint_error_dev(sc->sc_dev, "intr_establish failed\n");
486
487 #ifdef KGDB
488 /*
489 * Allow kgdb to "take over" this port. If this is
490 * not the console and is the kgdb device, it has
491 * exclusive use. If it's the console _and_ the
492 * kgdb device, it doesn't.
493 */
494 if (regsp->ur_iobase == imxu_kgdb_regs.ur_iobase) {
495 if (!ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
496 imxu_kgdb_attached = 1;
497
498 SET(sc->sc_hwflags, IMXUART_HW_KGDB);
499 }
500 aprint_normal_dev(sc->sc_dev, "kgdb\n");
501 }
502 #endif
503
504 sc->sc_si = softint_establish(SOFTINT_SERIAL, imxusoft, sc);
505
506 #ifdef RND_COM
507 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
508 RND_TYPE_TTY, 0);
509 #endif
510
511 /* if there are no enable/disable functions, assume the device
512 is always enabled */
513 if (!sc->enable)
514 sc->enabled = 1;
515
516 imxuart_enable_debugport(sc);
517
518 SET(sc->sc_hwflags, IMXUART_HW_DEV_OK);
519
520 //shutdownhook_establish(imxuart_shutdownhook, sc);
521
522
523 #if 0
524 {
525 uint32_t reg;
526 reg = bus_space_read_4(iot, ioh, IMX_UCR1);
527 reg |= IMX_UCR1_TXDMAEN | IMX_UCR1_RXDMAEN;
528 bus_space_write_4(iot, ioh, IMX_UCR1, reg);
529 }
530 #endif
531 }
532
533 /*
534 * baudrate = RefFreq / (16 * (UMBR + 1)/(UBIR + 1))
535 *
536 * (UBIR + 1) / (UBMR + 1) = (16 * BaurdRate) / RefFreq
537 */
538
539 static long
540 gcd(long m, long n)
541 {
542
543 if (m < n)
544 return gcd(n, m);
545
546 if (n <= 0)
547 return m;
548 return gcd(n, m % n);
549 }
550
551
552 int
553 imxuspeed(long speed, struct imxuart_baudrate_ratio *ratio)
554 {
555 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
556 long b = 16 * speed;
557 long f = imxuart_freq / imxuart_freqdiv;
558 long d;
559 int err = 0;
560
561 /* reduce b/f */
562 while ((f > (1<<16) || b > (1<<16)) && (d = gcd(f, b)) > 1) {
563 f /= d;
564 b /= d;
565 }
566
567
568 while (f > (1<<16) || b > (1<<16)) {
569 f /= 2;
570 b /= 2;
571 }
572 if (f <= 0 || b <= 0)
573 return -1;
574
575 #ifdef DIAGNOSTIC
576 err = divrnd(((uint64_t)imxuart_freq) * 1000 / imxuart_freqdiv,
577 (uint64_t)speed * 16 * f / b) - 1000;
578 if (err < 0)
579 err = -err;
580 #endif
581
582 ratio->numerator = b-1;
583 ratio->modulator = f-1;
584
585 if (err > IMXUART_TOLERANCE)
586 return -1;
587
588 return 0;
589 #undef divrnd
590 }
591
592 #ifdef IMXUART_DEBUG
593 int imxuart_debug = 0;
594
595 void imxustatus(struct imxuart_softc *, const char *);
596 void
597 imxustatus(struct imxuart_softc *sc, const char *str)
598 {
599 struct tty *tp = sc->sc_tty;
600
601 aprint_normal_dev(sc->sc_dev,
602 "%s %cclocal %cdcd %cts_carr_on %cdtr %ctx_stopped\n",
603 str,
604 ISSET(tp->t_cflag, CLOCAL) ? '+' : '-',
605 ISSET(sc->sc_msr, MSR_DCD) ? '+' : '-',
606 ISSET(tp->t_state, TS_CARR_ON) ? '+' : '-',
607 ISSET(sc->sc_mcr, MCR_DTR) ? '+' : '-',
608 sc->sc_tx_stopped ? '+' : '-');
609
610 aprint_normal_dev(sc->sc_dev,
611 "%s %ccrtscts %ccts %cts_ttstop %crts rx_flags=0x%x\n",
612 str,
613 ISSET(tp->t_cflag, CRTSCTS) ? '+' : '-',
614 ISSET(sc->sc_msr, MSR_CTS) ? '+' : '-',
615 ISSET(tp->t_state, TS_TTSTOP) ? '+' : '-',
616 ISSET(sc->sc_mcr, MCR_RTS) ? '+' : '-',
617 sc->sc_rx_flags);
618 }
619 #endif
620
621 #if 0
622 int
623 imxuart_detach(device_t self, int flags)
624 {
625 struct imxuart_softc *sc = device_private(self);
626 int maj, mn;
627
628 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE))
629 return EBUSY;
630
631 /* locate the major number */
632 maj = cdevsw_lookup_major(&imxcom_cdevsw);
633
634 /* Nuke the vnodes for any open instances. */
635 mn = device_unit(self);
636 vdevgone(maj, mn, mn, VCHR);
637
638 mn |= IMXUART_DIALOUT_MASK;
639 vdevgone(maj, mn, mn, VCHR);
640
641 if (sc->sc_rbuf == NULL) {
642 /*
643 * Ring buffer allocation failed in the imxuart_attach_subr,
644 * only the tty is allocated, and nothing else.
645 */
646 tty_free(sc->sc_tty);
647 return 0;
648 }
649
650 /* Free the receive buffer. */
651 free(sc->sc_rbuf, M_DEVBUF);
652
653 /* Detach and free the tty. */
654 tty_detach(sc->sc_tty);
655 tty_free(sc->sc_tty);
656
657 /* Unhook the soft interrupt handler. */
658 softint_disestablish(sc->sc_si);
659
660 #ifdef RND_COM
661 /* Unhook the entropy source. */
662 rnd_detach_source(&sc->rnd_source);
663 #endif
664 callout_destroy(&sc->sc_diag_callout);
665
666 /* Destroy the lock. */
667 mutex_destroy(&sc->sc_lock);
668
669 return (0);
670 }
671 #endif
672
673 #ifdef notyet
674 int
675 imxuart_activate(device_t self, enum devact act)
676 {
677 struct imxuart_softc *sc = device_private(self);
678 int rv = 0;
679
680 switch (act) {
681 case DVACT_ACTIVATE:
682 rv = EOPNOTSUPP;
683 break;
684
685 case DVACT_DEACTIVATE:
686 if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) {
687 rv = EBUSY;
688 break;
689 }
690
691 if (sc->disable != NULL && sc->enabled != 0) {
692 (*sc->disable)(sc);
693 sc->enabled = 0;
694 }
695 break;
696 }
697
698 return (rv);
699 }
700 #endif
701
702 void
703 imxuart_shutdown(struct imxuart_softc *sc)
704 {
705 struct tty *tp = sc->sc_tty;
706
707 mutex_spin_enter(&sc->sc_lock);
708
709 /* If we were asserting flow control, then deassert it. */
710 SET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED);
711 imxuart_hwiflow(sc);
712
713 /* Clear any break condition set with TIOCSBRK. */
714 imxuart_break(sc, false);
715
716 /*
717 * Hang up if necessary. Wait a bit, so the other side has time to
718 * notice even if we immediately open the port again.
719 * Avoid tsleeping above splhigh().
720 */
721 if (ISSET(tp->t_cflag, HUPCL)) {
722 imxuart_modem(sc, 0);
723 mutex_spin_exit(&sc->sc_lock);
724 /* XXX will only timeout */
725 (void) kpause(ttclos, false, hz, NULL);
726 mutex_spin_enter(&sc->sc_lock);
727 }
728
729 /* Turn off interrupts. */
730 imxuart_disable_all_interrupts(sc);
731 /* re-enable recv interrupt for console or kgdb port */
732 imxuart_enable_debugport(sc);
733
734 mutex_spin_exit(&sc->sc_lock);
735
736 #ifdef notyet
737 if (sc->disable) {
738 #ifdef DIAGNOSTIC
739 if (!sc->enabled)
740 panic("imxuart_shutdown: not enabled?");
741 #endif
742 (*sc->disable)(sc);
743 sc->enabled = 0;
744 }
745 #endif
746 }
747
748 int
749 imxuopen(dev_t dev, int flag, int mode, struct lwp *l)
750 {
751 struct imxuart_softc *sc;
752 struct tty *tp;
753 int s;
754 int error;
755
756 sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
757 if (sc == NULL || !ISSET(sc->sc_hwflags, IMXUART_HW_DEV_OK) ||
758 sc->sc_rbuf == NULL)
759 return (ENXIO);
760
761 if (!device_is_active(sc->sc_dev))
762 return (ENXIO);
763
764 #ifdef KGDB
765 /*
766 * If this is the kgdb port, no other use is permitted.
767 */
768 if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB))
769 return (EBUSY);
770 #endif
771
772 tp = sc->sc_tty;
773
774 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
775 return (EBUSY);
776
777 s = spltty();
778
779 /*
780 * Do the following iff this is a first open.
781 */
782 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
783 struct termios t;
784
785 tp->t_dev = dev;
786
787
788 #ifdef notyet
789 if (sc->enable) {
790 if ((*sc->enable)(sc)) {
791 splx(s);
792 aprint_error_dev(sc->sc_dev,
793 "device enable failed\n");
794 return (EIO);
795 }
796 sc->enabled = 1;
797 }
798 #endif
799
800 mutex_spin_enter(&sc->sc_lock);
801
802 imxuart_disable_all_interrupts(sc);
803
804 /* Fetch the current modem control status, needed later. */
805
806 #ifdef IMXUART_PPS
807 /* Clear PPS capture state on first open. */
808 mutex_spin_enter(&timecounter_lock);
809 memset(&sc->sc_pps_state, 0, sizeof(sc->sc_pps_state));
810 sc->sc_pps_state.ppscap = PPS_CAPTUREASSERT | PPS_CAPTURECLEAR;
811 pps_init(&sc->sc_pps_state);
812 mutex_spin_exit(&timecounter_lock);
813 #endif
814
815 mutex_spin_exit(&sc->sc_lock);
816
817 /*
818 * Initialize the termios status to the defaults. Add in the
819 * sticky bits from TIOCSFLAGS.
820 */
821 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
822 t.c_ospeed = imxuconsrate;
823 t.c_cflag = imxuconscflag;
824 } else {
825 t.c_ospeed = TTYDEF_SPEED;
826 t.c_cflag = TTYDEF_CFLAG;
827 }
828 t.c_ispeed = t.c_ospeed;
829 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
830 SET(t.c_cflag, CLOCAL);
831 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
832 SET(t.c_cflag, CRTSCTS);
833 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
834 SET(t.c_cflag, MDMBUF);
835 /* Make sure imxuparam() will do something. */
836 tp->t_ospeed = 0;
837 (void) imxuparam(tp, &t);
838 tp->t_iflag = TTYDEF_IFLAG;
839 tp->t_oflag = TTYDEF_OFLAG;
840 tp->t_lflag = TTYDEF_LFLAG;
841 ttychars(tp);
842 ttsetwater(tp);
843
844 mutex_spin_enter(&sc->sc_lock);
845
846 /*
847 * Turn on DTR. We must always do this, even if carrier is not
848 * present, because otherwise we'd have to use TIOCSDTR
849 * immediately after setting CLOCAL, which applications do not
850 * expect. We always assert DTR while the device is open
851 * unless explicitly requested to deassert it.
852 */
853 imxuart_modem(sc, 1);
854
855 /* Clear the input ring, and unblock. */
856 sc->sc_rbuf_in = sc->sc_rbuf_out = 0;
857 imxuart_iflush(sc);
858 CLR(sc->sc_rx_flags, IMXUART_RX_ANY_BLOCK);
859 imxuart_hwiflow(sc);
860
861 /* Turn on interrupts. */
862 imxuart_control_rxint(sc, true);
863
864 #ifdef IMXUART_DEBUG
865 if (imxuart_debug)
866 imxustatus(sc, "imxuopen ");
867 #endif
868
869 mutex_spin_exit(&sc->sc_lock);
870 }
871
872 splx(s);
873
874 #if 0
875 error = ttyopen(tp, IMXUART_DIALOUT(dev), ISSET(flag, O_NONBLOCK));
876 #else
877 error = ttyopen(tp, 1, ISSET(flag, O_NONBLOCK));
878 #endif
879 if (error)
880 goto bad;
881
882 error = (*tp->t_linesw->l_open)(dev, tp);
883 if (error)
884 goto bad;
885
886 return (0);
887
888 bad:
889 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
890 /*
891 * We failed to open the device, and nobody else had it opened.
892 * Clean up the state as appropriate.
893 */
894 imxuart_shutdown(sc);
895 }
896
897 return (error);
898 }
899
900 int
901 imxuclose(dev_t dev, int flag, int mode, struct lwp *l)
902 {
903 struct imxuart_softc *sc =
904 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
905 struct tty *tp = sc->sc_tty;
906
907 /* XXX This is for cons.c. */
908 if (!ISSET(tp->t_state, TS_ISOPEN))
909 return (0);
910
911 (*tp->t_linesw->l_close)(tp, flag);
912 ttyclose(tp);
913
914 if (IMXUART_ISALIVE(sc) == 0)
915 return (0);
916
917 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
918 /*
919 * Although we got a last close, the device may still be in
920 * use; e.g. if this was the dialout node, and there are still
921 * processes waiting for carrier on the non-dialout node.
922 */
923 imxuart_shutdown(sc);
924 }
925
926 return (0);
927 }
928
929 int
930 imxuread(dev_t dev, struct uio *uio, int flag)
931 {
932 struct imxuart_softc *sc =
933 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
934 struct tty *tp = sc->sc_tty;
935
936 if (IMXUART_ISALIVE(sc) == 0)
937 return (EIO);
938
939 return ((*tp->t_linesw->l_read)(tp, uio, flag));
940 }
941
942 int
943 imxuwrite(dev_t dev, struct uio *uio, int flag)
944 {
945 struct imxuart_softc *sc =
946 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
947 struct tty *tp = sc->sc_tty;
948
949 if (IMXUART_ISALIVE(sc) == 0)
950 return (EIO);
951
952 return ((*tp->t_linesw->l_write)(tp, uio, flag));
953 }
954
955 int
956 imxupoll(dev_t dev, int events, struct lwp *l)
957 {
958 struct imxuart_softc *sc =
959 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
960 struct tty *tp = sc->sc_tty;
961
962 if (IMXUART_ISALIVE(sc) == 0)
963 return (POLLHUP);
964
965 return ((*tp->t_linesw->l_poll)(tp, events, l));
966 }
967
968 struct tty *
969 imxutty(dev_t dev)
970 {
971 struct imxuart_softc *sc =
972 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
973 struct tty *tp = sc->sc_tty;
974
975 return (tp);
976 }
977
978 int
979 imxuioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
980 {
981 struct imxuart_softc *sc;
982 struct tty *tp;
983 int error;
984
985 sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
986 if (sc == NULL)
987 return ENXIO;
988 if (IMXUART_ISALIVE(sc) == 0)
989 return (EIO);
990
991 tp = sc->sc_tty;
992
993 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
994 if (error != EPASSTHROUGH)
995 return (error);
996
997 error = ttioctl(tp, cmd, data, flag, l);
998 if (error != EPASSTHROUGH)
999 return (error);
1000
1001 error = 0;
1002 switch (cmd) {
1003 case TIOCSFLAGS:
1004 error = kauth_authorize_device_tty(l->l_cred,
1005 KAUTH_DEVICE_TTY_PRIVSET, tp);
1006 break;
1007 default:
1008 /* nothing */
1009 break;
1010 }
1011 if (error) {
1012 return error;
1013 }
1014
1015 mutex_spin_enter(&sc->sc_lock);
1016
1017 switch (cmd) {
1018 case TIOCSBRK:
1019 imxuart_break(sc, true);
1020 break;
1021
1022 case TIOCCBRK:
1023 imxuart_break(sc, false);
1024 break;
1025
1026 case TIOCSDTR:
1027 imxuart_modem(sc, 1);
1028 break;
1029
1030 case TIOCCDTR:
1031 imxuart_modem(sc, 0);
1032 break;
1033
1034 case TIOCGFLAGS:
1035 *(int *)data = sc->sc_swflags;
1036 break;
1037
1038 case TIOCSFLAGS:
1039 sc->sc_swflags = *(int *)data;
1040 break;
1041
1042 case TIOCMSET:
1043 case TIOCMBIS:
1044 case TIOCMBIC:
1045 tiocm_to_imxu(sc, cmd, *(int *)data);
1046 break;
1047
1048 case TIOCMGET:
1049 *(int *)data = imxuart_to_tiocm(sc);
1050 break;
1051
1052 #ifdef notyet
1053 case PPS_IOC_CREATE:
1054 case PPS_IOC_DESTROY:
1055 case PPS_IOC_GETPARAMS:
1056 case PPS_IOC_SETPARAMS:
1057 case PPS_IOC_GETCAP:
1058 case PPS_IOC_FETCH:
1059 #ifdef PPS_SYNC
1060 case PPS_IOC_KCBIND:
1061 #endif
1062 mutex_spin_enter(&timecounter_lock);
1063 error = pps_ioctl(cmd, data, &sc->sc_pps_state);
1064 mutex_spin_exit(&timecounter_lock);
1065 break;
1066
1067 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
1068 mutex_spin_enter(&timecounter_lock);
1069 #ifndef PPS_TRAILING_EDGE
1070 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1071 &sc->sc_pps_state.ppsinfo.assert_timestamp);
1072 #else
1073 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1074 &sc->sc_pps_state.ppsinfo.clear_timestamp);
1075 #endif
1076 mutex_spin_exit(&timecounter_lock);
1077 break;
1078 #endif
1079
1080 default:
1081 error = EPASSTHROUGH;
1082 break;
1083 }
1084
1085 mutex_spin_exit(&sc->sc_lock);
1086
1087 #ifdef IMXUART_DEBUG
1088 if (imxuart_debug)
1089 imxustatus(sc, "imxuioctl ");
1090 #endif
1091
1092 return (error);
1093 }
1094
1095 integrate void
1096 imxuart_schedrx(struct imxuart_softc *sc)
1097 {
1098 sc->sc_rx_ready = 1;
1099
1100 /* Wake up the poller. */
1101 softint_schedule(sc->sc_si);
1102 }
1103
1104 void
1105 imxuart_break(struct imxuart_softc *sc, bool onoff)
1106 {
1107 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1108 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1109
1110 if (onoff)
1111 SET(sc->sc_ucr1, IMX_UCR1_SNDBRK);
1112 else
1113 CLR(sc->sc_ucr1, IMX_UCR1_SNDBRK);
1114
1115 bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1);
1116 }
1117
1118 void
1119 imxuart_modem(struct imxuart_softc *sc, int onoff)
1120 {
1121 #ifdef notyet
1122 if (sc->sc_mcr_dtr == 0)
1123 return;
1124
1125 if (onoff)
1126 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1127 else
1128 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1129
1130 if (!sc->sc_heldchange) {
1131 if (sc->sc_tx_busy) {
1132 sc->sc_heldtbc = sc->sc_tbc;
1133 sc->sc_tbc = 0;
1134 sc->sc_heldchange = 1;
1135 } else
1136 imxuart_loadchannelregs(sc);
1137 }
1138 #endif
1139 }
1140
1141 /*
1142 * RTS output is controlled by UCR2.CTS bit.
1143 * DTR output is controlled by UCR3.DSR bit.
1144 * (i.MX reference manual uses names in DCE mode)
1145 *
1146 * note: if UCR2.CTSC == 1 for automatic HW flow control, UCR2.CTS is ignored.
1147 */
1148 void
1149 tiocm_to_imxu(struct imxuart_softc *sc, u_long how, int ttybits)
1150 {
1151 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1152 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1153
1154 uint32_t ucr2 = sc->sc_ucr2_d;
1155 uint32_t ucr3 = sc->sc_ucr3;
1156
1157 uint32_t ucr2_mask = 0;
1158 uint32_t ucr3_mask = 0;
1159
1160
1161 if (ISSET(ttybits, TIOCM_DTR))
1162 ucr3_mask = IMX_UCR3_DSR;
1163 if (ISSET(ttybits, TIOCM_RTS))
1164 ucr2_mask = IMX_UCR2_CTS;
1165
1166 switch (how) {
1167 case TIOCMBIC:
1168 CLR(ucr2, ucr2_mask);
1169 CLR(ucr3, ucr3_mask);
1170 break;
1171
1172 case TIOCMBIS:
1173 SET(ucr2, ucr2_mask);
1174 SET(ucr3, ucr3_mask);
1175 break;
1176
1177 case TIOCMSET:
1178 CLR(ucr2, ucr2_mask);
1179 CLR(ucr3, ucr3_mask);
1180 SET(ucr2, ucr2_mask);
1181 SET(ucr3, ucr3_mask);
1182 break;
1183 }
1184
1185 if (ucr3 != sc->sc_ucr3) {
1186 bus_space_write_4(iot, ioh, IMX_UCR3, ucr3);
1187 sc->sc_ucr3 = ucr3;
1188 }
1189
1190 if (ucr2 == sc->sc_ucr2_d)
1191 return;
1192
1193 sc->sc_ucr2_d = ucr2;
1194 /* update CTS bit only */
1195 ucr2 = (sc->sc_ucr2 & ~IMX_UCR2_CTS) |
1196 (ucr2 & IMX_UCR2_CTS);
1197
1198 bus_space_write_4(iot, ioh, IMX_UCR2, ucr2);
1199 sc->sc_ucr2 = ucr2;
1200 }
1201
1202 int
1203 imxuart_to_tiocm(struct imxuart_softc *sc)
1204 {
1205 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1206 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1207 int ttybits = 0;
1208 uint32_t usr[2];
1209
1210 if (ISSET(sc->sc_ucr3, IMX_UCR3_DSR))
1211 SET(ttybits, TIOCM_DTR);
1212 if (ISSET(sc->sc_ucr2, IMX_UCR2_CTS))
1213 SET(ttybits, TIOCM_RTS);
1214
1215 bus_space_read_region_4(iot, ioh, IMX_USR1, usr, 2);
1216
1217 if (ISSET(usr[0], IMX_USR1_RTSS))
1218 SET(ttybits, TIOCM_CTS);
1219
1220 if (ISSET(usr[1], IMX_USR2_DCDIN))
1221 SET(ttybits, TIOCM_CD);
1222
1223 #if 0
1224 /* XXXbsh: I couldn't find the way to read ipp_uart_dsr_dte_i signal,
1225 although there are bits in UART registers to detect delta of DSR.
1226 */
1227 if (ISSET(imxubits, MSR_DSR))
1228 SET(ttybits, TIOCM_DSR);
1229 #endif
1230
1231 if (ISSET(usr[1], IMX_USR2_RIIN))
1232 SET(ttybits, TIOCM_RI);
1233
1234
1235 #ifdef notyet
1236 if (ISSET(sc->sc_ier, IER_ERXRDY | IER_ETXRDY | IER_ERLS | IER_EMSC))
1237 SET(ttybits, TIOCM_LE);
1238 #endif
1239
1240 return (ttybits);
1241 }
1242
1243 static uint32_t
1244 cflag_to_ucr2(tcflag_t cflag, uint32_t oldval)
1245 {
1246 uint32_t val = oldval;
1247
1248 CLR(val,IMX_UCR2_WS|IMX_UCR2_PREN|IMX_UCR2_PROE|IMX_UCR2_STPB);
1249
1250 switch (cflag & CSIZE) {
1251 case CS5:
1252 case CS6:
1253 /* not suppreted. use 7-bits */
1254 case CS7:
1255 break;
1256 case CS8:
1257 SET(val, IMX_UCR2_WS);
1258 break;
1259 }
1260
1261
1262 if (ISSET(cflag, PARENB)) {
1263 SET(val, IMX_UCR2_PREN);
1264
1265 /* odd parity */
1266 if (!ISSET(cflag, PARODD))
1267 SET(val, IMX_UCR2_PROE);
1268 }
1269
1270 if (ISSET(cflag, CSTOPB))
1271 SET(val, IMX_UCR2_STPB);
1272
1273 val |= IMX_UCR2_TXEN| IMX_UCR2_RXEN|IMX_UCR2_SRST;
1274
1275 return val;
1276 }
1277
1278 int
1279 imxuparam(struct tty *tp, struct termios *t)
1280 {
1281 struct imxuart_softc *sc =
1282 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1283 struct imxuart_baudrate_ratio ratio;
1284 uint32_t ucr2;
1285 bool change_speed = tp->t_ospeed != t->c_ospeed;
1286
1287 if (IMXUART_ISALIVE(sc) == 0)
1288 return (EIO);
1289
1290 /* Check requested parameters. */
1291 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1292 return (EINVAL);
1293
1294 /*
1295 * For the console, always force CLOCAL and !HUPCL, so that the port
1296 * is always active.
1297 */
1298 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1299 ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
1300 SET(t->c_cflag, CLOCAL);
1301 CLR(t->c_cflag, HUPCL);
1302 }
1303
1304 /*
1305 * If there were no changes, don't do anything. This avoids dropping
1306 * input and improves performance when all we did was frob things like
1307 * VMIN and VTIME.
1308 */
1309 if ( !change_speed && tp->t_cflag == t->c_cflag)
1310 return (0);
1311
1312 if (change_speed) {
1313 /* calculate baudrate modulator value */
1314 if (imxuspeed(t->c_ospeed, &ratio) < 0)
1315 return (EINVAL);
1316 sc->sc_ratio = ratio;
1317 }
1318
1319 ucr2 = cflag_to_ucr2(t->c_cflag, sc->sc_ucr2_d);
1320
1321 mutex_spin_enter(&sc->sc_lock);
1322
1323 #if 0 /* flow control stuff. not yet */
1324 /*
1325 * If we're not in a mode that assumes a connection is present, then
1326 * ignore carrier changes.
1327 */
1328 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1329 sc->sc_msr_dcd = 0;
1330 else
1331 sc->sc_msr_dcd = MSR_DCD;
1332 /*
1333 * Set the flow control pins depending on the current flow control
1334 * mode.
1335 */
1336 if (ISSET(t->c_cflag, CRTSCTS)) {
1337 sc->sc_mcr_dtr = MCR_DTR;
1338 sc->sc_mcr_rts = MCR_RTS;
1339 sc->sc_msr_cts = MSR_CTS;
1340 sc->sc_efr = EFR_AUTORTS | EFR_AUTOCTS;
1341 } else if (ISSET(t->c_cflag, MDMBUF)) {
1342 /*
1343 * For DTR/DCD flow control, make sure we don't toggle DTR for
1344 * carrier detection.
1345 */
1346 sc->sc_mcr_dtr = 0;
1347 sc->sc_mcr_rts = MCR_DTR;
1348 sc->sc_msr_cts = MSR_DCD;
1349 sc->sc_efr = 0;
1350 } else {
1351 /*
1352 * If no flow control, then always set RTS. This will make
1353 * the other side happy if it mistakenly thinks we're doing
1354 * RTS/CTS flow control.
1355 */
1356 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
1357 sc->sc_mcr_rts = 0;
1358 sc->sc_msr_cts = 0;
1359 sc->sc_efr = 0;
1360 if (ISSET(sc->sc_mcr, MCR_DTR))
1361 SET(sc->sc_mcr, MCR_RTS);
1362 else
1363 CLR(sc->sc_mcr, MCR_RTS);
1364 }
1365 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1366 #endif
1367
1368 /* And copy to tty. */
1369 tp->t_ispeed = t->c_ospeed;
1370 tp->t_ospeed = t->c_ospeed;
1371 tp->t_cflag = t->c_cflag;
1372
1373 if (!change_speed && ucr2 == sc->sc_ucr2_d) {
1374 /* noop */
1375 }
1376 else if (!sc->sc_pending && !sc->sc_tx_busy) {
1377 if (ucr2 != sc->sc_ucr2_d) {
1378 sc->sc_ucr2_d = ucr2;
1379 imxuart_load_params(sc);
1380 }
1381 if (change_speed)
1382 imxuart_load_speed(sc);
1383 }
1384 else {
1385 if (!sc->sc_pending) {
1386 sc->sc_heldtbc = sc->sc_tbc;
1387 sc->sc_tbc = 0;
1388 }
1389 sc->sc_pending |=
1390 (ucr2 == sc->sc_ucr2_d ? 0 : IMXUART_PEND_PARAM) |
1391 (change_speed ? 0 : IMXUART_PEND_SPEED);
1392 sc->sc_ucr2_d = ucr2;
1393 }
1394
1395 if (!ISSET(t->c_cflag, CHWFLOW)) {
1396 /* Disable the high water mark. */
1397 sc->sc_r_hiwat = 0;
1398 sc->sc_r_lowat = 0;
1399 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) {
1400 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
1401 imxuart_schedrx(sc);
1402 }
1403 if (ISSET(sc->sc_rx_flags,
1404 IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED)) {
1405 CLR(sc->sc_rx_flags,
1406 IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED);
1407 imxuart_hwiflow(sc);
1408 }
1409 } else {
1410 sc->sc_r_hiwat = imxuart_rbuf_hiwat;
1411 sc->sc_r_lowat = imxuart_rbuf_lowat;
1412 }
1413
1414 mutex_spin_exit(&sc->sc_lock);
1415
1416 #if 0
1417 /*
1418 * Update the tty layer's idea of the carrier bit, in case we changed
1419 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1420 * explicit request.
1421 */
1422 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
1423 #else
1424 /* XXX: always report that we have DCD */
1425 (void) (*tp->t_linesw->l_modem)(tp, 1);
1426 #endif
1427
1428 #ifdef IMXUART_DEBUG
1429 if (imxuart_debug)
1430 imxustatus(sc, "imxuparam ");
1431 #endif
1432
1433 if (!ISSET(t->c_cflag, CHWFLOW)) {
1434 if (sc->sc_tx_stopped) {
1435 sc->sc_tx_stopped = 0;
1436 imxustart(tp);
1437 }
1438 }
1439
1440 return (0);
1441 }
1442
1443 void
1444 imxuart_iflush(struct imxuart_softc *sc)
1445 {
1446 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1447 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1448 #ifdef DIAGNOSTIC
1449 uint32_t reg = 0xffff;
1450 #endif
1451 int timo;
1452
1453 timo = 50000;
1454 /* flush any pending I/O */
1455 while (ISSET(bus_space_read_4(iot, ioh, IMX_USR2), IMX_USR2_RDR)
1456 && --timo)
1457 #ifdef DIAGNOSTIC
1458 reg =
1459 #else
1460 (void)
1461 #endif
1462 bus_space_read_4(iot, ioh, IMX_URXD);
1463 #ifdef DIAGNOSTIC
1464 if (!timo)
1465 aprint_error_dev(sc->sc_dev, "imxuart_iflush timeout %02x\n", reg);
1466 #endif
1467 }
1468
1469 int
1470 imxuhwiflow(struct tty *tp, int block)
1471 {
1472 struct imxuart_softc *sc =
1473 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1474
1475 if (IMXUART_ISALIVE(sc) == 0)
1476 return (0);
1477
1478 #ifdef notyet
1479 if (sc->sc_mcr_rts == 0)
1480 return (0);
1481 #endif
1482
1483 mutex_spin_enter(&sc->sc_lock);
1484
1485 if (block) {
1486 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
1487 SET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED);
1488 imxuart_hwiflow(sc);
1489 }
1490 } else {
1491 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) {
1492 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
1493 imxuart_schedrx(sc);
1494 }
1495 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
1496 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED);
1497 imxuart_hwiflow(sc);
1498 }
1499 }
1500
1501 mutex_spin_exit(&sc->sc_lock);
1502 return (1);
1503 }
1504
1505 /*
1506 * (un)block input via hw flowcontrol
1507 */
1508 void
1509 imxuart_hwiflow(struct imxuart_softc *sc)
1510 {
1511 #ifdef notyet
1512 struct imxuart_regs *regsp= &sc->sc_regs;
1513
1514 if (sc->sc_mcr_rts == 0)
1515 return;
1516
1517 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1518 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1519 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1520 } else {
1521 SET(sc->sc_mcr, sc->sc_mcr_rts);
1522 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1523 }
1524 UR_WRITE_1(regsp, IMXUART_REG_MCR, sc->sc_mcr_active);
1525 #endif
1526 }
1527
1528
1529 void
1530 imxustart(struct tty *tp)
1531 {
1532 struct imxuart_softc *sc =
1533 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1534 int s;
1535 u_char *tba;
1536 int tbc;
1537 u_int n;
1538 u_int space;
1539 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1540 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1541
1542 if (IMXUART_ISALIVE(sc) == 0)
1543 return;
1544
1545 s = spltty();
1546 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1547 goto out;
1548 if (sc->sc_tx_stopped)
1549 goto out;
1550 if (!ttypull(tp))
1551 goto out;
1552
1553 /* Grab the first contiguous region of buffer space. */
1554 tba = tp->t_outq.c_cf;
1555 tbc = ndqb(&tp->t_outq, 0);
1556
1557 mutex_spin_enter(&sc->sc_lock);
1558
1559 sc->sc_tba = tba;
1560 sc->sc_tbc = tbc;
1561
1562 SET(tp->t_state, TS_BUSY);
1563 sc->sc_tx_busy = 1;
1564
1565 space = imxuart_txfifo_space(sc);
1566 n = MIN(sc->sc_tbc, space);
1567
1568 bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, n);
1569 sc->sc_tbc -= n;
1570 sc->sc_tba += n;
1571
1572 /* Enable transmit completion interrupts */
1573 imxuart_control_txint(sc, true);
1574
1575 mutex_spin_exit(&sc->sc_lock);
1576 out:
1577 splx(s);
1578 return;
1579 }
1580
1581 /*
1582 * Stop output on a line.
1583 */
1584 void
1585 imxustop(struct tty *tp, int flag)
1586 {
1587 struct imxuart_softc *sc =
1588 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1589
1590 mutex_spin_enter(&sc->sc_lock);
1591 if (ISSET(tp->t_state, TS_BUSY)) {
1592 /* Stop transmitting at the next chunk. */
1593 sc->sc_tbc = 0;
1594 sc->sc_heldtbc = 0;
1595 if (!ISSET(tp->t_state, TS_TTSTOP))
1596 SET(tp->t_state, TS_FLUSH);
1597 }
1598 mutex_spin_exit(&sc->sc_lock);
1599 }
1600
1601 void
1602 imxudiag(void *arg)
1603 {
1604 #ifdef notyet
1605 struct imxuart_softc *sc = arg;
1606 int overflows, floods;
1607
1608 mutex_spin_enter(&sc->sc_lock);
1609 overflows = sc->sc_overflows;
1610 sc->sc_overflows = 0;
1611 floods = sc->sc_floods;
1612 sc->sc_floods = 0;
1613 sc->sc_errors = 0;
1614 mutex_spin_exit(&sc->sc_lock);
1615
1616 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1617 device_xname(sc->sc_dev),
1618 overflows, overflows == 1 ? "" : "s",
1619 floods, floods == 1 ? "" : "s");
1620 #endif
1621 }
1622
1623 integrate void
1624 imxuart_rxsoft(struct imxuart_softc *sc, struct tty *tp)
1625 {
1626 int (*rint)(int, struct tty *) = tp->t_linesw->l_rint;
1627 u_int cc, scc, outp;
1628 uint16_t data;
1629 u_int code;
1630
1631 scc = cc = IMXUART_RBUF_AVAIL(sc);
1632
1633 #if 0
1634 if (cc == imxuart_rbuf_size-1) {
1635 sc->sc_floods++;
1636 if (sc->sc_errors++ == 0)
1637 callout_reset(&sc->sc_diag_callout, 60 * hz,
1638 imxudiag, sc);
1639 }
1640 #endif
1641
1642 /* If not yet open, drop the entire buffer content here */
1643 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1644 sc->sc_rbuf_out = sc->sc_rbuf_in;
1645 cc = 0;
1646 }
1647
1648 outp = sc->sc_rbuf_out;
1649
1650 #define ERRBITS (IMX_URXD_PRERR|IMX_URXD_BRK|IMX_URXD_FRMERR|IMX_URXD_OVRRUN)
1651
1652 while (cc) {
1653 data = sc->sc_rbuf[outp];
1654 code = data & IMX_URXD_RX_DATA;
1655 if (ISSET(data, ERRBITS)) {
1656 if (sc->sc_errors.err == 0)
1657 callout_reset(&sc->sc_diag_callout,
1658 60 * hz, imxudiag, sc);
1659 if (ISSET(data, IMX_URXD_OVRRUN))
1660 sc->sc_errors.ovrrun++;
1661 if (ISSET(data, IMX_URXD_BRK)) {
1662 sc->sc_errors.brk++;
1663 SET(code, TTY_FE);
1664 }
1665 if (ISSET(data, IMX_URXD_FRMERR)) {
1666 sc->sc_errors.frmerr++;
1667 SET(code, TTY_FE);
1668 }
1669 if (ISSET(data, IMX_URXD_PRERR)) {
1670 sc->sc_errors.prerr++;
1671 SET(code, TTY_PE);
1672 }
1673 }
1674 if ((*rint)(code, tp) == -1) {
1675 /*
1676 * The line discipline's buffer is out of space.
1677 */
1678 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
1679 /*
1680 * We're either not using flow control, or the
1681 * line discipline didn't tell us to block for
1682 * some reason. Either way, we have no way to
1683 * know when there's more space available, so
1684 * just drop the rest of the data.
1685 */
1686 sc->sc_rbuf_out = sc->sc_rbuf_in;
1687 cc = 0;
1688 } else {
1689 /*
1690 * Don't schedule any more receive processing
1691 * until the line discipline tells us there's
1692 * space available (through imxuhwiflow()).
1693 * Leave the rest of the data in the input
1694 * buffer.
1695 */
1696 SET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
1697 }
1698 break;
1699 }
1700 outp = IMXUART_RBUF_INC(sc, outp, 1);
1701 cc--;
1702 }
1703
1704 if (cc != scc) {
1705 sc->sc_rbuf_out = outp;
1706 mutex_spin_enter(&sc->sc_lock);
1707
1708 cc = IMXUART_RBUF_SPACE(sc);
1709
1710 /* Buffers should be ok again, release possible block. */
1711 if (cc >= sc->sc_r_lowat) {
1712 if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED)) {
1713 CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED);
1714 imxuart_control_rxint(sc, true);
1715 }
1716 if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED)) {
1717 CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED);
1718 imxuart_hwiflow(sc);
1719 }
1720 }
1721 mutex_spin_exit(&sc->sc_lock);
1722 }
1723 }
1724
1725 integrate void
1726 imxuart_txsoft(struct imxuart_softc *sc, struct tty *tp)
1727 {
1728
1729 CLR(tp->t_state, TS_BUSY);
1730 if (ISSET(tp->t_state, TS_FLUSH))
1731 CLR(tp->t_state, TS_FLUSH);
1732 else
1733 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1734 (*tp->t_linesw->l_start)(tp);
1735 }
1736
1737 integrate void
1738 imxuart_stsoft(struct imxuart_softc *sc, struct tty *tp)
1739 {
1740 #ifdef notyet
1741 u_char msr, delta;
1742
1743 mutex_spin_enter(&sc->sc_lock);
1744 msr = sc->sc_msr;
1745 delta = sc->sc_msr_delta;
1746 sc->sc_msr_delta = 0;
1747 mutex_spin_exit(&sc->sc_lock);
1748
1749 if (ISSET(delta, sc->sc_msr_dcd)) {
1750 /*
1751 * Inform the tty layer that carrier detect changed.
1752 */
1753 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
1754 }
1755
1756 if (ISSET(delta, sc->sc_msr_cts)) {
1757 /* Block or unblock output according to flow control. */
1758 if (ISSET(msr, sc->sc_msr_cts)) {
1759 sc->sc_tx_stopped = 0;
1760 (*tp->t_linesw->l_start)(tp);
1761 } else {
1762 sc->sc_tx_stopped = 1;
1763 }
1764 }
1765
1766 #endif
1767 #ifdef IMXUART_DEBUG
1768 if (imxuart_debug)
1769 imxustatus(sc, "imxuart_stsoft");
1770 #endif
1771 }
1772
1773 void
1774 imxusoft(void *arg)
1775 {
1776 struct imxuart_softc *sc = arg;
1777 struct tty *tp;
1778
1779 if (IMXUART_ISALIVE(sc) == 0)
1780 return;
1781
1782 tp = sc->sc_tty;
1783
1784 if (sc->sc_rx_ready) {
1785 sc->sc_rx_ready = 0;
1786 imxuart_rxsoft(sc, tp);
1787 }
1788
1789 if (sc->sc_st_check) {
1790 sc->sc_st_check = 0;
1791 imxuart_stsoft(sc, tp);
1792 }
1793
1794 if (sc->sc_tx_done) {
1795 sc->sc_tx_done = 0;
1796 imxuart_txsoft(sc, tp);
1797 }
1798 }
1799
1800 int
1801 imxuintr(void *arg)
1802 {
1803 struct imxuart_softc *sc = arg;
1804 uint32_t usr1, usr2;
1805 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1806 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1807
1808
1809 if (IMXUART_ISALIVE(sc) == 0)
1810 return (0);
1811
1812 mutex_spin_enter(&sc->sc_lock);
1813
1814 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1815
1816
1817 do {
1818 bus_space_write_4(iot, ioh, IMX_USR2,
1819 usr2 & (IMX_USR2_BRCD|IMX_USR2_ORE));
1820 if (usr2 & IMX_USR2_BRCD) {
1821 /* Break signal detected */
1822 int cn_trapped = 0;
1823
1824 cn_check_magic(sc->sc_tty->t_dev,
1825 CNC_BREAK, imxuart_cnm_state);
1826 if (cn_trapped)
1827 continue;
1828 #if defined(KGDB) && !defined(DDB)
1829 if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB)) {
1830 kgdb_connect(1);
1831 continue;
1832 }
1833 #endif
1834 }
1835
1836 if (usr2 & IMX_USR2_RDR)
1837 imxuintr_read(sc);
1838
1839 #ifdef IMXUART_PPS
1840 {
1841 u_char msr, delta;
1842
1843 msr = CSR_READ_1(regsp, IMXUART_REG_MSR);
1844 delta = msr ^ sc->sc_msr;
1845 sc->sc_msr = msr;
1846 if ((sc->sc_pps_state.ppsparam.mode & PPS_CAPTUREBOTH) &&
1847 (delta & MSR_DCD)) {
1848 mutex_spin_enter(&timecounter_lock);
1849 pps_capture(&sc->sc_pps_state);
1850 pps_event(&sc->sc_pps_state,
1851 (msr & MSR_DCD) ?
1852 PPS_CAPTUREASSERT :
1853 PPS_CAPTURECLEAR);
1854 mutex_spin_exit(&timecounter_lock);
1855 }
1856 }
1857 #endif
1858
1859 #ifdef notyet
1860 /*
1861 * Process normal status changes
1862 */
1863 if (ISSET(delta, sc->sc_msr_mask)) {
1864 SET(sc->sc_msr_delta, delta);
1865
1866 /*
1867 * Stop output immediately if we lose the output
1868 * flow control signal or carrier detect.
1869 */
1870 if (ISSET(~msr, sc->sc_msr_mask)) {
1871 sc->sc_tbc = 0;
1872 sc->sc_heldtbc = 0;
1873 #ifdef IMXUART_DEBUG
1874 if (imxuart_debug)
1875 imxustatus(sc, "imxuintr ");
1876 #endif
1877 }
1878
1879 sc->sc_st_check = 1;
1880 }
1881 #endif
1882
1883 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1884 } while (usr2 & (IMX_USR2_RDR|IMX_USR2_BRCD));
1885
1886 usr1 = bus_space_read_4(iot, ioh, IMX_USR1);
1887 if (usr1 & IMX_USR1_TRDY)
1888 imxuintr_send(sc);
1889
1890 mutex_spin_exit(&sc->sc_lock);
1891
1892 /* Wake up the poller. */
1893 softint_schedule(sc->sc_si);
1894
1895 #ifdef RND_COM
1896 rnd_add_uint32(&sc->rnd_source, iir | lsr);
1897 #endif
1898
1899 return (1);
1900 }
1901
1902
1903 /*
1904 * called when there is least one character in rxfifo
1905 *
1906 */
1907
1908 static void
1909 imxuintr_read(struct imxuart_softc *sc)
1910 {
1911 int cc;
1912 uint16_t rd;
1913 uint32_t usr2;
1914 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1915 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1916
1917 cc = IMXUART_RBUF_SPACE(sc);
1918
1919 /* clear aging timer interrupt */
1920 bus_space_write_4(iot, ioh, IMX_USR1, IMX_USR1_AGTIM);
1921
1922 while (cc > 0) {
1923 int cn_trapped = 0;
1924
1925
1926 sc->sc_rbuf[sc->sc_rbuf_in] = rd =
1927 bus_space_read_4(iot, ioh, IMX_URXD);
1928
1929 cn_check_magic(sc->sc_tty->t_dev,
1930 rd & 0xff, imxuart_cnm_state);
1931
1932 if (!cn_trapped) {
1933 sc->sc_rbuf_in = IMXUART_RBUF_INC(sc, sc->sc_rbuf_in, 1);
1934 cc--;
1935 }
1936
1937 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1938 if (!(usr2 & IMX_USR2_RDR))
1939 break;
1940 }
1941
1942 /*
1943 * Current string of incoming characters ended because
1944 * no more data was available or we ran out of space.
1945 * Schedule a receive event if any data was received.
1946 * If we're out of space, turn off receive interrupts.
1947 */
1948 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED))
1949 sc->sc_rx_ready = 1;
1950 /*
1951 * See if we are in danger of overflowing a buffer. If
1952 * so, use hardware flow control to ease the pressure.
1953 */
1954 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED) &&
1955 cc < sc->sc_r_hiwat) {
1956 sc->sc_rx_flags |= IMXUART_RX_IBUF_BLOCKED;
1957 imxuart_hwiflow(sc);
1958 }
1959
1960 /*
1961 * If we're out of space, disable receive interrupts
1962 * until the queue has drained a bit.
1963 */
1964 if (!cc) {
1965 sc->sc_rx_flags |= IMXUART_RX_IBUF_OVERFLOWED;
1966 imxuart_control_rxint(sc, false);
1967 }
1968 }
1969
1970
1971
1972 /*
1973 * find how many chars we can put into tx-fifo
1974 */
1975 static u_int
1976 imxuart_txfifo_space(struct imxuart_softc *sc)
1977 {
1978 uint32_t usr1, usr2;
1979 u_int cc;
1980 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1981 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1982
1983 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1984 if (usr2 & IMX_USR2_TXFE)
1985 cc = sc->sc_txfifo_len;
1986 else {
1987 usr1 = bus_space_read_4(iot, ioh, IMX_USR1);
1988 if (usr1 & IMX_USR1_TRDY)
1989 cc = sc->sc_txfifo_thresh;
1990 else
1991 cc = 0;
1992 }
1993
1994 return cc;
1995 }
1996
1997 void
1998 imxuintr_send(struct imxuart_softc *sc)
1999 {
2000 uint32_t usr2;
2001 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2002 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2003 int cc = 0;
2004
2005 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
2006
2007 if (sc->sc_pending) {
2008 if (usr2 & IMX_USR2_TXFE) {
2009 imxuart_load_pendings(sc);
2010 sc->sc_tbc = sc->sc_heldtbc;
2011 sc->sc_heldtbc = 0;
2012 }
2013 else {
2014 /* wait for TX fifo empty */
2015 imxuart_control_txint(sc, true);
2016 return;
2017 }
2018 }
2019
2020 cc = imxuart_txfifo_space(sc);
2021 cc = MIN(cc, sc->sc_tbc);
2022
2023 if (cc > 0) {
2024 bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, cc);
2025 sc->sc_tbc -= cc;
2026 sc->sc_tba += cc;
2027 }
2028
2029 if (sc->sc_tbc > 0)
2030 imxuart_control_txint(sc, true);
2031 else {
2032 /* no more chars to send.
2033 we don't need tx interrupt any more. */
2034 imxuart_control_txint(sc, false);
2035 if (sc->sc_tx_busy) {
2036 sc->sc_tx_busy = 0;
2037 sc->sc_tx_done = 1;
2038 }
2039 }
2040 }
2041
2042 static void
2043 imxuart_disable_all_interrupts(struct imxuart_softc *sc)
2044 {
2045 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2046 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2047
2048 sc->sc_ucr1 &= ~IMXUART_INTRS_UCR1;
2049 sc->sc_ucr2 &= ~IMXUART_INTRS_UCR2;
2050 sc->sc_ucr3 &= ~IMXUART_INTRS_UCR3;
2051 sc->sc_ucr4 &= ~IMXUART_INTRS_UCR4;
2052
2053
2054 bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4);
2055 }
2056
2057 static void
2058 imxuart_control_rxint(struct imxuart_softc *sc, bool enable)
2059 {
2060 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2061 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2062 uint32_t ucr1, ucr2;
2063
2064 ucr1 = sc->sc_ucr1;
2065 ucr2 = sc->sc_ucr2;
2066
2067 if (enable) {
2068 ucr1 |= IMX_UCR1_RRDYEN;
2069 ucr2 |= IMX_UCR2_ATEN;
2070 }
2071 else {
2072 ucr1 &= ~IMX_UCR1_RRDYEN;
2073 ucr2 &= ~IMX_UCR2_ATEN;
2074 }
2075
2076 if (ucr1 != sc->sc_ucr1 || ucr2 != sc->sc_ucr2) {
2077 sc->sc_ucr1 = ucr1;
2078 sc->sc_ucr2 = ucr2;
2079 bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 2);
2080 }
2081 }
2082
2083 static void
2084 imxuart_control_txint(struct imxuart_softc *sc, bool enable)
2085 {
2086 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2087 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2088 uint32_t ucr1;
2089 uint32_t mask;
2090
2091 /* if parameter change is pending, get interrupt when Tx fifo
2092 is completely empty. otherwise, get interrupt when txfifo
2093 has less characters than threshold */
2094 mask = sc->sc_pending ? IMX_UCR1_TXMPTYEN : IMX_UCR1_TRDYEN;
2095
2096 ucr1 = sc->sc_ucr1;
2097
2098 CLR(ucr1, IMX_UCR1_TXMPTYEN|IMX_UCR1_TRDYEN);
2099 if (enable)
2100 SET(ucr1, mask);
2101
2102 if (ucr1 != sc->sc_ucr1) {
2103 bus_space_write_4(iot, ioh, IMX_UCR1, ucr1);
2104 sc->sc_ucr1 = ucr1;
2105 }
2106 }
2107
2108
2109 static void
2110 imxuart_load_params(struct imxuart_softc *sc)
2111 {
2112 uint32_t ucr2;
2113 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2114 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2115
2116 ucr2 = (sc->sc_ucr2_d & ~IMX_UCR2_ATEN) |
2117 (sc->sc_ucr2 & IMX_UCR2_ATEN);
2118
2119 bus_space_write_4(iot, ioh, IMX_UCR2, ucr2);
2120 sc->sc_ucr2 = ucr2;
2121 }
2122
2123 static void
2124 imxuart_load_speed(struct imxuart_softc *sc)
2125 {
2126 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2127 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2128 int n, rfdiv, ufcr;
2129
2130 #ifdef notyet
2131 /*
2132 * Set the FIFO threshold based on the receive speed.
2133 *
2134 * * If it's a low speed, it's probably a mouse or some other
2135 * interactive device, so set the threshold low.
2136 * * If it's a high speed, trim the trigger level down to prevent
2137 * overflows.
2138 * * Otherwise set it a bit higher.
2139 */
2140 if (t->c_ospeed <= 1200)
2141 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_1;
2142 else if (t->c_ospeed <= 38400)
2143 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_8;
2144 else
2145 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_4;
2146 #endif
2147
2148 n = 32 - sc->sc_txfifo_thresh;
2149 n = MAX(2, n);
2150
2151 rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv);
2152
2153 ufcr = (n << IMX_UFCR_TXTL_SHIFT) |
2154 (rfdiv << IMX_UFCR_RFDIV_SHIFT) |
2155 (16 << IMX_UFCR_RXTL_SHIFT);
2156
2157 /* keep DCE/DTE bit */
2158 ufcr |= bus_space_read_4(iot, ioh, IMX_UFCR) & IMX_UFCR_DCEDTE;
2159
2160 bus_space_write_4(iot, ioh, IMX_UFCR, ufcr);
2161
2162 /* UBIR must updated before UBMR */
2163 bus_space_write_4(iot, ioh,
2164 IMX_UBIR, sc->sc_ratio.numerator);
2165 bus_space_write_4(iot, ioh,
2166 IMX_UBMR, sc->sc_ratio.modulator);
2167
2168
2169 }
2170
2171
2172 static void
2173 imxuart_load_pendings(struct imxuart_softc *sc)
2174 {
2175 if (sc->sc_pending & IMXUART_PEND_PARAM)
2176 imxuart_load_params(sc);
2177 if (sc->sc_pending & IMXUART_PEND_SPEED)
2178 imxuart_load_speed(sc);
2179 sc->sc_pending = 0;
2180 }
2181
2182 #if defined(IMXUARTCONSOLE) || defined(KGDB)
2183
2184 /*
2185 * The following functions are polled getc and putc routines, shared
2186 * by the console and kgdb glue.
2187 *
2188 * The read-ahead code is so that you can detect pending in-band
2189 * cn_magic in polled mode while doing output rather than having to
2190 * wait until the kernel decides it needs input.
2191 */
2192
2193 #define READAHEAD_RING_LEN 16
2194 static int imxuart_readahead[READAHEAD_RING_LEN];
2195 static int imxuart_readahead_in = 0;
2196 static int imxuart_readahead_out = 0;
2197 #define READAHEAD_IS_EMPTY() (imxuart_readahead_in==imxuart_readahead_out)
2198 #define READAHEAD_IS_FULL() \
2199 (((imxuart_readahead_in+1) & (READAHEAD_RING_LEN-1)) ==imxuart_readahead_out)
2200
2201 int
2202 imxuart_common_getc(dev_t dev, struct imxuart_regs *regsp)
2203 {
2204 int s = splserial();
2205 u_char c;
2206 bus_space_tag_t iot = regsp->ur_iot;
2207 bus_space_handle_t ioh = regsp->ur_ioh;
2208 uint32_t usr2;
2209
2210 /* got a character from reading things earlier */
2211 if (imxuart_readahead_in != imxuart_readahead_out) {
2212
2213 c = imxuart_readahead[imxuart_readahead_out];
2214 imxuart_readahead_out = (imxuart_readahead_out + 1) &
2215 (READAHEAD_RING_LEN-1);
2216 splx(s);
2217 return (c);
2218 }
2219
2220 /* block until a character becomes available */
2221 while (!((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR))
2222 ;
2223
2224 c = 0xff & bus_space_read_4(iot, ioh, IMX_URXD);
2225
2226 {
2227 int __attribute__((__unused__))cn_trapped = 0; /* unused */
2228 #ifdef DDB
2229 extern int db_active;
2230 if (!db_active)
2231 #endif
2232 cn_check_magic(dev, c, imxuart_cnm_state);
2233 }
2234 splx(s);
2235 return (c);
2236 }
2237
2238 void
2239 imxuart_common_putc(dev_t dev, struct imxuart_regs *regsp, int c)
2240 {
2241 int s = splserial();
2242 int cin, timo;
2243 bus_space_tag_t iot = regsp->ur_iot;
2244 bus_space_handle_t ioh = regsp->ur_ioh;
2245 uint32_t usr2;
2246
2247 if (!READAHEAD_IS_FULL() &&
2248 ((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR)) {
2249
2250 int __attribute__((__unused__))cn_trapped = 0;
2251 cin = bus_space_read_4(iot, ioh, IMX_URXD);
2252 cn_check_magic(dev, cin & 0xff, imxuart_cnm_state);
2253 imxuart_readahead_in = (imxuart_readahead_in + 1) &
2254 (READAHEAD_RING_LEN-1);
2255 }
2256
2257 /* wait for any pending transmission to finish */
2258 timo = 150000;
2259 do {
2260 if (bus_space_read_4(iot, ioh, IMX_USR1) & IMX_USR1_TRDY) {
2261 bus_space_write_4(iot, ioh, IMX_UTXD, c);
2262 break;
2263 }
2264 } while(--timo > 0);
2265
2266 IMXUART_BARRIER(regsp, BR | BW);
2267
2268 splx(s);
2269 }
2270
2271 /*
2272 * Initialize UART for use as console or KGDB line.
2273 */
2274 int
2275 imxuart_init(struct imxuart_regs *regsp, int rate, tcflag_t cflag)
2276 {
2277 struct imxuart_baudrate_ratio ratio;
2278 int rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv);
2279 uint32_t ufcr;
2280
2281 if (bus_space_map(regsp->ur_iot, regsp->ur_iobase, IMX_UART_SIZE, 0,
2282 ®sp->ur_ioh))
2283 return ENOMEM; /* ??? */
2284
2285 if (imxuspeed(rate, &ratio) < 0)
2286 return EINVAL;
2287
2288 /* UBIR must updated before UBMR */
2289 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh,
2290 IMX_UBIR, ratio.numerator);
2291 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh,
2292 IMX_UBMR, ratio.modulator);
2293
2294
2295 /* XXX: DTREN, DPEC */
2296 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR3,
2297 IMX_UCR3_DSR|IMX_UCR3_RXDMUXSEL);
2298
2299 ufcr = (8 << IMX_UFCR_TXTL_SHIFT) | (rfdiv << IMX_UFCR_RFDIV_SHIFT) |
2300 (1 << IMX_UFCR_RXTL_SHIFT);
2301 /* XXX: keep DCE/DTE bit */
2302 ufcr |= bus_space_read_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR) &
2303 IMX_UFCR_DCEDTE;
2304
2305 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR, ufcr);
2306
2307 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_ONEMS,
2308 imxuart_freq / imxuart_freqdiv / 1000);
2309
2310 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR2,
2311 IMX_UCR2_IRTS|
2312 IMX_UCR2_CTSC|
2313 IMX_UCR2_WS|IMX_UCR2_TXEN|
2314 IMX_UCR2_RXEN|IMX_UCR2_SRST);
2315 /* clear status registers */
2316 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR1, 0xffff);
2317 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR2, 0xffff);
2318
2319
2320 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR1,
2321 IMX_UCR1_UARTEN);
2322
2323 return (0);
2324 }
2325
2326
2327 #endif
2328
2329
2330 #ifdef IMXUARTCONSOLE
2331 /*
2332 * Following are all routines needed for UART to act as console
2333 */
2334 struct consdev imxucons = {
2335 NULL, NULL, imxucngetc, imxucnputc, imxucnpollc, NULL, NULL, NULL,
2336 NODEV, CN_NORMAL
2337 };
2338
2339
2340 int
2341 imxuart_cons_attach(bus_space_tag_t iot, paddr_t iobase, u_int rate,
2342 tcflag_t cflag)
2343 {
2344 struct imxuart_regs regs;
2345 int res;
2346
2347 regs.ur_iot = iot;
2348 regs.ur_iobase = iobase;
2349
2350 res = imxuart_init(®s, rate, cflag);
2351 if (res)
2352 return (res);
2353
2354 cn_tab = &imxucons;
2355 cn_init_magic(&imxuart_cnm_state);
2356 cn_set_magic("\047\001"); /* default magic is BREAK */
2357
2358 imxuconsrate = rate;
2359 imxuconscflag = cflag;
2360
2361 imxuconsregs = regs;
2362
2363 return 0;
2364 }
2365
2366 int
2367 imxucngetc(dev_t dev)
2368 {
2369 return (imxuart_common_getc(dev, &imxuconsregs));
2370 }
2371
2372 /*
2373 * Console kernel output character routine.
2374 */
2375 void
2376 imxucnputc(dev_t dev, int c)
2377 {
2378 imxuart_common_putc(dev, &imxuconsregs, c);
2379 }
2380
2381 void
2382 imxucnpollc(dev_t dev, int on)
2383 {
2384
2385 imxuart_readahead_in = 0;
2386 imxuart_readahead_out = 0;
2387 }
2388
2389 #endif /* IMXUARTCONSOLE */
2390
2391 #ifdef KGDB
2392 int
2393 imxuart_kgdb_attach(bus_space_tag_t iot, paddr_t iobase, u_int rate,
2394 tcflag_t cflag)
2395 {
2396 int res;
2397
2398 if (iot == imxuconsregs.ur_iot &&
2399 iobase == imxuconsregs.ur_iobase) {
2400 #if !defined(DDB)
2401 return (EBUSY); /* cannot share with console */
2402 #else
2403 imxu_kgdb_regs.ur_iot = iot;
2404 imxu_kgdb_regs.ur_ioh = imxuconsregs.ur_ioh;
2405 imxu_kgdb_regs.ur_iobase = iobase;
2406 #endif
2407 } else {
2408 imxu_kgdb_regs.ur_iot = iot;
2409 imxu_kgdb_regs.ur_iobase = iobase;
2410
2411 res = imxuart_init(&imxu_kgdb_regs, rate, cflag);
2412 if (res)
2413 return (res);
2414
2415 /*
2416 * XXXfvdl this shouldn't be needed, but the cn_magic goo
2417 * expects this to be initialized
2418 */
2419 cn_init_magic(&imxuart_cnm_state);
2420 cn_set_magic("\047\001");
2421 }
2422
2423 kgdb_attach(imxuart_kgdb_getc, imxuart_kgdb_putc, &imxu_kgdb_regs);
2424 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2425
2426 return (0);
2427 }
2428
2429 /* ARGSUSED */
2430 int
2431 imxuart_kgdb_getc(void *arg)
2432 {
2433 struct imxuart_regs *regs = arg;
2434
2435 return (imxuart_common_getc(NODEV, regs));
2436 }
2437
2438 /* ARGSUSED */
2439 void
2440 imxuart_kgdb_putc(void *arg, int c)
2441 {
2442 struct imxuart_regs *regs = arg;
2443
2444 imxuart_common_putc(NODEV, regs, c);
2445 }
2446 #endif /* KGDB */
2447
2448 /* helper function to identify the imxu ports used by
2449 console or KGDB (and not yet autoconf attached) */
2450 int
2451 imxuart_is_console(bus_space_tag_t iot, bus_addr_t iobase, bus_space_handle_t *ioh)
2452 {
2453 bus_space_handle_t help;
2454
2455 if (!imxuconsattached &&
2456 iot == imxuconsregs.ur_iot && iobase == imxuconsregs.ur_iobase)
2457 help = imxuconsregs.ur_ioh;
2458 #ifdef KGDB
2459 else if (!imxu_kgdb_attached &&
2460 iot == imxu_kgdb_regs.ur_iot && iobase == imxu_kgdb_regs.ur_iobase)
2461 help = imxu_kgdb_regs.ur_ioh;
2462 #endif
2463 else
2464 return (0);
2465
2466 if (ioh)
2467 *ioh = help;
2468 return (1);
2469 }
2470
2471 #ifdef notyet
2472
2473 bool
2474 imxuart_cleanup(device_t self, int how)
2475 {
2476 /*
2477 * this routine exists to serve as a shutdown hook for systems that
2478 * have firmware which doesn't interact properly with a imxuart device in
2479 * FIFO mode.
2480 */
2481 struct imxuart_softc *sc = device_private(self);
2482
2483 if (ISSET(sc->sc_hwflags, IMXUART_HW_FIFO))
2484 UR_WRITE_1(&sc->sc_regs, IMXUART_REG_FIFO, 0);
2485
2486 return true;
2487 }
2488 #endif
2489
2490 #ifdef notyet
2491 bool
2492 imxuart_suspend(device_t self PMF_FN_ARGS)
2493 {
2494 struct imxuart_softc *sc = device_private(self);
2495
2496 UR_WRITE_1(&sc->sc_regs, IMXUART_REG_IER, 0);
2497 (void)CSR_READ_1(&sc->sc_regs, IMXUART_REG_IIR);
2498
2499 return true;
2500 }
2501 #endif
2502
2503 #ifdef notyet
2504 bool
2505 imxuart_resume(device_t self PMF_FN_ARGS)
2506 {
2507 struct imxuart_softc *sc = device_private(self);
2508
2509 mutex_spin_enter(&sc->sc_lock);
2510 imxuart_loadchannelregs(sc);
2511 mutex_spin_exit(&sc->sc_lock);
2512
2513 return true;
2514 }
2515 #endif
2516
2517 static void
2518 imxuart_enable_debugport(struct imxuart_softc *sc)
2519 {
2520 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2521 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2522
2523 if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) {
2524
2525 /* Turn on line break interrupt, set carrier. */
2526
2527 sc->sc_ucr3 |= IMX_UCR3_DSR;
2528 bus_space_write_4(iot, ioh, IMX_UCR3, sc->sc_ucr3);
2529
2530 sc->sc_ucr4 |= IMX_UCR4_BKEN;
2531 bus_space_write_4(iot, ioh, IMX_UCR4, sc->sc_ucr4);
2532
2533 sc->sc_ucr2 |= IMX_UCR2_TXEN|IMX_UCR2_RXEN|
2534 IMX_UCR2_CTS;
2535 bus_space_write_4(iot, ioh, IMX_UCR2, sc->sc_ucr2);
2536
2537 sc->sc_ucr1 |= IMX_UCR1_UARTEN;
2538 bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1);
2539 }
2540 }
2541
2542
2543 void
2544 imxuart_set_frequency(u_int freq, u_int div)
2545 {
2546 imxuart_freq = freq;
2547 imxuart_freqdiv = div;
2548 }
2549