imxuart.c revision 1.16 1 /* $NetBSD: imxuart.c,v 1.16 2014/11/15 19:20:01 christos Exp $ */
2
3 /*
4 * Copyright (c) 2009, 2010 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 *
28 */
29
30 /*
31 * derived from sys/dev/ic/com.c
32 */
33
34 /*-
35 * Copyright (c) 1998, 1999, 2004, 2008 The NetBSD Foundation, Inc.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to The NetBSD Foundation
39 * by Charles M. Hannum.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
51 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
52 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
60 * POSSIBILITY OF SUCH DAMAGE.
61 */
62
63 /*
64 * Copyright (c) 1991 The Regents of the University of California.
65 * All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. Neither the name of the University nor the names of its contributors
76 * may be used to endorse or promote products derived from this software
77 * without specific prior written permission.
78 *
79 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
80 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
81 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
82 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
83 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
84 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
85 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
86 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
87 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
88 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
89 * SUCH DAMAGE.
90 *
91 * @(#)com.c 7.5 (Berkeley) 5/16/91
92 */
93
94 /*
95 * driver for UART in i.MX SoC.
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: imxuart.c,v 1.16 2014/11/15 19:20:01 christos Exp $");
100
101 #include "opt_imxuart.h"
102 #include "opt_ddb.h"
103 #include "opt_ddbparam.h"
104 #include "opt_kgdb.h"
105 #include "opt_lockdebug.h"
106 #include "opt_multiprocessor.h"
107 #include "opt_ntp.h"
108 #include "opt_imxuart.h"
109 #include "opt_imx.h"
110
111 #include "rnd.h"
112 #ifdef RND_COM
113 #include <sys/rnd.h>
114 #endif
115
116 #ifndef IMXUART_TOLERANCE
117 #define IMXUART_TOLERANCE 30 /* baud rate tolerance, in 0.1% units */
118 #endif
119
120 #ifndef IMXUART_FREQDIV
121 #define IMXUART_FREQDIV 2 /* XXX */
122 #endif
123
124 #ifndef IMXUART_FREQ
125 #define IMXUART_FREQ (56900000)
126 #endif
127
128 /*
129 * Override cnmagic(9) macro before including <sys/systm.h>.
130 * We need to know if cn_check_magic triggered debugger, so set a flag.
131 * Callers of cn_check_magic must declare int cn_trapped = 0;
132 * XXX: this is *ugly*!
133 */
134 #define cn_trap() \
135 do { \
136 console_debugger(); \
137 cn_trapped = 1; \
138 } while (/* CONSTCOND */ 0)
139
140 #include <sys/param.h>
141 #include <sys/systm.h>
142 #include <sys/ioctl.h>
143 #include <sys/select.h>
144 #include <sys/poll.h>
145 #include <sys/tty.h>
146 #include <sys/proc.h>
147 #include <sys/conf.h>
148 #include <sys/file.h>
149 #include <sys/uio.h>
150 #include <sys/kernel.h>
151 #include <sys/syslog.h>
152 #include <sys/device.h>
153 #include <sys/malloc.h>
154 #include <sys/timepps.h>
155 #include <sys/vnode.h>
156 #include <sys/kauth.h>
157 #include <sys/intr.h>
158
159 #include <sys/bus.h>
160
161 #include <arm/imx/imxuartreg.h>
162 #include <arm/imx/imxuartvar.h>
163 #include <dev/cons.h>
164
165 #ifndef IMXUART_RING_SIZE
166 #define IMXUART_RING_SIZE 2048
167 #endif
168
169 typedef struct imxuart_softc {
170 device_t sc_dev;
171
172 struct imxuart_regs {
173 bus_space_tag_t ur_iot;
174 bus_space_handle_t ur_ioh;
175 bus_addr_t ur_iobase;
176 #if 0
177 bus_size_t ur_nports;
178 bus_size_t ur_map[16];
179 #endif
180 } sc_regs;
181
182 #define sc_bt sc_regs.ur_iot
183 #define sc_bh sc_regs.ur_ioh
184
185 uint32_t sc_intrspec_enb;
186 uint32_t sc_ucr2_d; /* target value for UCR2 */
187 uint32_t sc_ucr[4]; /* cached value of UCRn */
188 #define sc_ucr1 sc_ucr[0]
189 #define sc_ucr2 sc_ucr[1]
190 #define sc_ucr3 sc_ucr[2]
191 #define sc_ucr4 sc_ucr[3]
192
193 uint sc_init_cnt;
194
195 bus_addr_t sc_addr;
196 bus_size_t sc_size;
197 int sc_intr;
198
199 u_char sc_hwflags;
200 /* Hardware flag masks */
201 #define IMXUART_HW_FLOW __BIT(0)
202 #define IMXUART_HW_DEV_OK __BIT(1)
203 #define IMXUART_HW_CONSOLE __BIT(2)
204 #define IMXUART_HW_KGDB __BIT(3)
205
206
207 bool enabled;
208
209 u_char sc_swflags;
210
211 u_char sc_rx_flags;
212 #define IMXUART_RX_TTY_BLOCKED __BIT(0)
213 #define IMXUART_RX_TTY_OVERFLOWED __BIT(1)
214 #define IMXUART_RX_IBUF_BLOCKED __BIT(2)
215 #define IMXUART_RX_IBUF_OVERFLOWED __BIT(3)
216 #define IMXUART_RX_ANY_BLOCK \
217 (IMXUART_RX_TTY_BLOCKED|IMXUART_RX_TTY_OVERFLOWED| \
218 IMXUART_RX_IBUF_BLOCKED|IMXUART_RX_IBUF_OVERFLOWED)
219
220 bool sc_tx_busy, sc_tx_done, sc_tx_stopped;
221 bool sc_rx_ready,sc_st_check;
222 u_short sc_txfifo_len, sc_txfifo_thresh;
223
224 uint16_t *sc_rbuf;
225 u_int sc_rbuf_size;
226 u_int sc_rbuf_in;
227 u_int sc_rbuf_out;
228 #define IMXUART_RBUF_AVAIL(sc) \
229 ((sc->sc_rbuf_out <= sc->sc_rbuf_in) ? \
230 (sc->sc_rbuf_in - sc->sc_rbuf_out) : \
231 (sc->sc_rbuf_size - (sc->sc_rbuf_out - sc->sc_rbuf_in)))
232
233 #define IMXUART_RBUF_SPACE(sc) \
234 ((sc->sc_rbuf_in <= sc->sc_rbuf_out ? \
235 sc->sc_rbuf_size - (sc->sc_rbuf_out - sc->sc_rbuf_in) : \
236 sc->sc_rbuf_in - sc->sc_rbuf_out) - 1)
237 /* increment ringbuffer pointer */
238 #define IMXUART_RBUF_INC(sc,v,i) (((v) + (i))&((sc->sc_rbuf_size)-1))
239 u_int sc_r_lowat;
240 u_int sc_r_hiwat;
241
242 /* output chunk */
243 u_char *sc_tba;
244 u_int sc_tbc;
245 u_int sc_heldtbc;
246 /* pending parameter changes */
247 u_char sc_pending;
248 #define IMXUART_PEND_PARAM __BIT(0)
249 #define IMXUART_PEND_SPEED __BIT(1)
250
251
252 struct callout sc_diag_callout;
253 kmutex_t sc_lock;
254 void *sc_ih; /* interrupt handler */
255 void *sc_si; /* soft interrupt */
256 struct tty *sc_tty;
257
258 /* power management hooks */
259 int (*enable)(struct imxuart_softc *);
260 void (*disable)(struct imxuart_softc *);
261
262 struct {
263 ulong err;
264 ulong brk;
265 ulong prerr;
266 ulong frmerr;
267 ulong ovrrun;
268 } sc_errors;
269
270 struct imxuart_baudrate_ratio {
271 uint16_t numerator; /* UBIR */
272 uint16_t modulator; /* UBMR */
273 } sc_ratio;
274
275 } imxuart_softc_t;
276
277
278 int imxuspeed(long, struct imxuart_baudrate_ratio *);
279 int imxuparam(struct tty *, struct termios *);
280 void imxustart(struct tty *);
281 int imxuhwiflow(struct tty *, int);
282
283 void imxuart_shutdown(struct imxuart_softc *);
284 void imxuart_loadchannelregs(struct imxuart_softc *);
285 void imxuart_hwiflow(struct imxuart_softc *);
286 void imxuart_break(struct imxuart_softc *, bool);
287 void imxuart_modem(struct imxuart_softc *, int);
288 void tiocm_to_imxu(struct imxuart_softc *, u_long, int);
289 int imxuart_to_tiocm(struct imxuart_softc *);
290 void imxuart_iflush(struct imxuart_softc *);
291 int imxuintr(void *);
292
293 int imxuart_common_getc(dev_t, struct imxuart_regs *);
294 void imxuart_common_putc(dev_t, struct imxuart_regs *, int);
295
296
297 int imxuart_init(struct imxuart_regs *, int, tcflag_t);
298
299 int imxucngetc(dev_t);
300 void imxucnputc(dev_t, int);
301 void imxucnpollc(dev_t, int);
302
303 static void imxuintr_read(struct imxuart_softc *);
304 static void imxuintr_send(struct imxuart_softc *);
305
306 static void imxuart_enable_debugport(struct imxuart_softc *);
307 static void imxuart_disable_all_interrupts(struct imxuart_softc *);
308 static void imxuart_control_rxint(struct imxuart_softc *, bool);
309 static void imxuart_control_txint(struct imxuart_softc *, bool);
310 static u_int imxuart_txfifo_space(struct imxuart_softc *sc);
311
312 static uint32_t cflag_to_ucr2(tcflag_t, uint32_t);
313
314 CFATTACH_DECL_NEW(imxuart, sizeof(struct imxuart_softc),
315 imxuart_match, imxuart_attach, NULL, NULL);
316
317
318 #define integrate static inline
319 void imxusoft(void *);
320 integrate void imxuart_rxsoft(struct imxuart_softc *, struct tty *);
321 integrate void imxuart_txsoft(struct imxuart_softc *, struct tty *);
322 integrate void imxuart_stsoft(struct imxuart_softc *, struct tty *);
323 integrate void imxuart_schedrx(struct imxuart_softc *);
324 void imxudiag(void *);
325 static void imxuart_load_speed(struct imxuart_softc *);
326 static void imxuart_load_params(struct imxuart_softc *);
327 integrate void imxuart_load_pendings(struct imxuart_softc *);
328
329
330 extern struct cfdriver imxuart_cd;
331
332 dev_type_open(imxuopen);
333 dev_type_close(imxuclose);
334 dev_type_read(imxuread);
335 dev_type_write(imxuwrite);
336 dev_type_ioctl(imxuioctl);
337 dev_type_stop(imxustop);
338 dev_type_tty(imxutty);
339 dev_type_poll(imxupoll);
340
341 const struct cdevsw imxcom_cdevsw = {
342 .d_open = imxuopen,
343 .d_close = imxuclose,
344 .d_read = imxuread,
345 .d_write = imxuwrite,
346 .d_ioctl = imxuioctl,
347 .d_stop = imxustop,
348 .d_tty = imxutty,
349 .d_poll = imxupoll,
350 .d_mmap = nommap,
351 .d_kqfilter = ttykqfilter,
352 .d_discard = nodiscard,
353 .d_flag = D_TTY
354 };
355
356 /*
357 * Make this an option variable one can patch.
358 * But be warned: this must be a power of 2!
359 */
360 u_int imxuart_rbuf_size = IMXUART_RING_SIZE;
361
362 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
363 u_int imxuart_rbuf_hiwat = (IMXUART_RING_SIZE * 1) / 4;
364 u_int imxuart_rbuf_lowat = (IMXUART_RING_SIZE * 3) / 4;
365
366 static struct imxuart_regs imxuconsregs;
367 static int imxuconsattached;
368 static int imxuconsrate;
369 static tcflag_t imxuconscflag;
370 static struct cnm_state imxuart_cnm_state;
371
372 u_int imxuart_freq = IMXUART_FREQ;
373 u_int imxuart_freqdiv = IMXUART_FREQDIV;
374
375 #ifdef KGDB
376 #include <sys/kgdb.h>
377
378 static struct imxuart_regs imxu_kgdb_regs;
379 static int imxu_kgdb_attached;
380
381 int imxuart_kgdb_getc(void *);
382 void imxuart_kgdb_putc(void *, int);
383 #endif /* KGDB */
384
385 #define IMXUART_DIALOUT_MASK TTDIALOUT_MASK
386
387 #define IMXUART_UNIT(x) TTUNIT(x)
388 #define IMXUART_DIALOUT(x) TTDIALOUT(x)
389
390 #define IMXUART_ISALIVE(sc) ((sc)->enabled != 0 && \
391 device_is_active((sc)->sc_dev))
392
393 #define BR BUS_SPACE_BARRIER_READ
394 #define BW BUS_SPACE_BARRIER_WRITE
395 #define IMXUART_BARRIER(r, f) \
396 bus_space_barrier((r)->ur_iot, (r)->ur_ioh, 0, IMX_UART_SIZE, (f))
397
398
399 void
400 imxuart_attach_common(device_t parent, device_t self,
401 bus_space_tag_t iot, paddr_t iobase, size_t size, int intr, int flags)
402 {
403 imxuart_softc_t *sc = device_private(self);
404 struct imxuart_regs *regsp = &sc->sc_regs;
405 struct tty *tp;
406 bus_space_handle_t ioh;
407
408 aprint_naive("\n");
409 aprint_normal("\n");
410
411 sc->sc_dev = self;
412
413 if (size <= 0)
414 size = IMX_UART_SIZE;
415
416 sc->sc_intr = intr;
417 regsp->ur_iot = iot;
418 regsp->ur_iobase = iobase;
419
420 if (bus_space_map(iot, regsp->ur_iobase, size, 0, &ioh)) {
421 return;
422 }
423 regsp->ur_ioh = ioh;
424
425 callout_init(&sc->sc_diag_callout, 0);
426 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
427
428 bus_space_read_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4);
429 sc->sc_ucr2_d = sc->sc_ucr2;
430
431 /* Disable interrupts before configuring the device. */
432 imxuart_disable_all_interrupts(sc);
433
434 if (regsp->ur_iobase == imxuconsregs.ur_iobase) {
435 imxuconsattached = 1;
436
437 /* Make sure the console is always "hardwired". */
438 #if 0
439 delay(10000); /* wait for output to finish */
440 #endif
441 SET(sc->sc_hwflags, IMXUART_HW_CONSOLE);
442 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
443 }
444
445
446 tp = tty_alloc();
447 tp->t_oproc = imxustart;
448 tp->t_param = imxuparam;
449 tp->t_hwiflow = imxuhwiflow;
450
451 sc->sc_tty = tp;
452 sc->sc_rbuf = malloc(sizeof (*sc->sc_rbuf) * imxuart_rbuf_size,
453 M_DEVBUF, M_NOWAIT);
454 sc->sc_rbuf_size = imxuart_rbuf_size;
455 sc->sc_rbuf_in = sc->sc_rbuf_out = 0;
456 if (sc->sc_rbuf == NULL) {
457 aprint_error_dev(sc->sc_dev,
458 "unable to allocate ring buffer\n");
459 return;
460 }
461
462 sc->sc_txfifo_len = 32;
463 sc->sc_txfifo_thresh = 16; /* when USR1.TRDY, fifo has space
464 * for this many characters */
465
466 tty_attach(tp);
467
468 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
469 int maj;
470
471 /* locate the major number */
472 maj = cdevsw_lookup_major(&imxcom_cdevsw);
473
474 if (maj != NODEVMAJOR) {
475 tp->t_dev = cn_tab->cn_dev = makedev(maj,
476 device_unit(sc->sc_dev));
477
478 aprint_normal_dev(sc->sc_dev, "console\n");
479 }
480 }
481
482 sc->sc_ih = intr_establish(sc->sc_intr, IPL_SERIAL, IST_LEVEL,
483 imxuintr, sc);
484 if (sc->sc_ih == NULL)
485 aprint_error_dev(sc->sc_dev, "intr_establish failed\n");
486
487 #ifdef KGDB
488 /*
489 * Allow kgdb to "take over" this port. If this is
490 * not the console and is the kgdb device, it has
491 * exclusive use. If it's the console _and_ the
492 * kgdb device, it doesn't.
493 */
494 if (regsp->ur_iobase == imxu_kgdb_regs.ur_iobase) {
495 if (!ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
496 imxu_kgdb_attached = 1;
497
498 SET(sc->sc_hwflags, IMXUART_HW_KGDB);
499 }
500 aprint_normal_dev(sc->sc_dev, "kgdb\n");
501 }
502 #endif
503
504 sc->sc_si = softint_establish(SOFTINT_SERIAL, imxusoft, sc);
505
506 #ifdef RND_COM
507 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
508 RND_TYPE_TTY, RND_FLAG_COLLECT_TIME |
509 RND_FLAG_ESTIMATE_TIME);
510 #endif
511
512 /* if there are no enable/disable functions, assume the device
513 is always enabled */
514 if (!sc->enable)
515 sc->enabled = 1;
516
517 imxuart_enable_debugport(sc);
518
519 SET(sc->sc_hwflags, IMXUART_HW_DEV_OK);
520
521 //shutdownhook_establish(imxuart_shutdownhook, sc);
522
523
524 #if 0
525 {
526 uint32_t reg;
527 reg = bus_space_read_4(iot, ioh, IMX_UCR1);
528 reg |= IMX_UCR1_TXDMAEN | IMX_UCR1_RXDMAEN;
529 bus_space_write_4(iot, ioh, IMX_UCR1, reg);
530 }
531 #endif
532 }
533
534 /*
535 * baudrate = RefFreq / (16 * (UMBR + 1)/(UBIR + 1))
536 *
537 * (UBIR + 1) / (UBMR + 1) = (16 * BaurdRate) / RefFreq
538 */
539
540 static long
541 gcd(long m, long n)
542 {
543
544 if (m < n)
545 return gcd(n, m);
546
547 if (n <= 0)
548 return m;
549 return gcd(n, m % n);
550 }
551
552
553 int
554 imxuspeed(long speed, struct imxuart_baudrate_ratio *ratio)
555 {
556 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
557 long b = 16 * speed;
558 long f = imxuart_freq / imxuart_freqdiv;
559 long d;
560 int err = 0;
561
562 /* reduce b/f */
563 while ((f > (1<<16) || b > (1<<16)) && (d = gcd(f, b)) > 1) {
564 f /= d;
565 b /= d;
566 }
567
568
569 while (f > (1<<16) || b > (1<<16)) {
570 f /= 2;
571 b /= 2;
572 }
573 if (f <= 0 || b <= 0)
574 return -1;
575
576 #ifdef DIAGNOSTIC
577 err = divrnd(((uint64_t)imxuart_freq) * 1000 / imxuart_freqdiv,
578 (uint64_t)speed * 16 * f / b) - 1000;
579 if (err < 0)
580 err = -err;
581 #endif
582
583 ratio->numerator = b-1;
584 ratio->modulator = f-1;
585
586 if (err > IMXUART_TOLERANCE)
587 return -1;
588
589 return 0;
590 #undef divrnd
591 }
592
593 #ifdef IMXUART_DEBUG
594 int imxuart_debug = 0;
595
596 void imxustatus(struct imxuart_softc *, const char *);
597 void
598 imxustatus(struct imxuart_softc *sc, const char *str)
599 {
600 struct tty *tp = sc->sc_tty;
601
602 aprint_normal_dev(sc->sc_dev,
603 "%s %cclocal %cdcd %cts_carr_on %cdtr %ctx_stopped\n",
604 str,
605 ISSET(tp->t_cflag, CLOCAL) ? '+' : '-',
606 ISSET(sc->sc_msr, MSR_DCD) ? '+' : '-',
607 ISSET(tp->t_state, TS_CARR_ON) ? '+' : '-',
608 ISSET(sc->sc_mcr, MCR_DTR) ? '+' : '-',
609 sc->sc_tx_stopped ? '+' : '-');
610
611 aprint_normal_dev(sc->sc_dev,
612 "%s %ccrtscts %ccts %cts_ttstop %crts rx_flags=0x%x\n",
613 str,
614 ISSET(tp->t_cflag, CRTSCTS) ? '+' : '-',
615 ISSET(sc->sc_msr, MSR_CTS) ? '+' : '-',
616 ISSET(tp->t_state, TS_TTSTOP) ? '+' : '-',
617 ISSET(sc->sc_mcr, MCR_RTS) ? '+' : '-',
618 sc->sc_rx_flags);
619 }
620 #endif
621
622 #if 0
623 int
624 imxuart_detach(device_t self, int flags)
625 {
626 struct imxuart_softc *sc = device_private(self);
627 int maj, mn;
628
629 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE))
630 return EBUSY;
631
632 /* locate the major number */
633 maj = cdevsw_lookup_major(&imxcom_cdevsw);
634
635 /* Nuke the vnodes for any open instances. */
636 mn = device_unit(self);
637 vdevgone(maj, mn, mn, VCHR);
638
639 mn |= IMXUART_DIALOUT_MASK;
640 vdevgone(maj, mn, mn, VCHR);
641
642 if (sc->sc_rbuf == NULL) {
643 /*
644 * Ring buffer allocation failed in the imxuart_attach_subr,
645 * only the tty is allocated, and nothing else.
646 */
647 tty_free(sc->sc_tty);
648 return 0;
649 }
650
651 /* Free the receive buffer. */
652 free(sc->sc_rbuf, M_DEVBUF);
653
654 /* Detach and free the tty. */
655 tty_detach(sc->sc_tty);
656 tty_free(sc->sc_tty);
657
658 /* Unhook the soft interrupt handler. */
659 softint_disestablish(sc->sc_si);
660
661 #ifdef RND_COM
662 /* Unhook the entropy source. */
663 rnd_detach_source(&sc->rnd_source);
664 #endif
665 callout_destroy(&sc->sc_diag_callout);
666
667 /* Destroy the lock. */
668 mutex_destroy(&sc->sc_lock);
669
670 return (0);
671 }
672 #endif
673
674 #ifdef notyet
675 int
676 imxuart_activate(device_t self, enum devact act)
677 {
678 struct imxuart_softc *sc = device_private(self);
679 int rv = 0;
680
681 switch (act) {
682 case DVACT_ACTIVATE:
683 rv = EOPNOTSUPP;
684 break;
685
686 case DVACT_DEACTIVATE:
687 if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) {
688 rv = EBUSY;
689 break;
690 }
691
692 if (sc->disable != NULL && sc->enabled != 0) {
693 (*sc->disable)(sc);
694 sc->enabled = 0;
695 }
696 break;
697 }
698
699 return (rv);
700 }
701 #endif
702
703 void
704 imxuart_shutdown(struct imxuart_softc *sc)
705 {
706 struct tty *tp = sc->sc_tty;
707
708 mutex_spin_enter(&sc->sc_lock);
709
710 /* If we were asserting flow control, then deassert it. */
711 SET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED);
712 imxuart_hwiflow(sc);
713
714 /* Clear any break condition set with TIOCSBRK. */
715 imxuart_break(sc, false);
716
717 /*
718 * Hang up if necessary. Wait a bit, so the other side has time to
719 * notice even if we immediately open the port again.
720 * Avoid tsleeping above splhigh().
721 */
722 if (ISSET(tp->t_cflag, HUPCL)) {
723 imxuart_modem(sc, 0);
724 mutex_spin_exit(&sc->sc_lock);
725 /* XXX will only timeout */
726 (void) kpause(ttclos, false, hz, NULL);
727 mutex_spin_enter(&sc->sc_lock);
728 }
729
730 /* Turn off interrupts. */
731 imxuart_disable_all_interrupts(sc);
732 /* re-enable recv interrupt for console or kgdb port */
733 imxuart_enable_debugport(sc);
734
735 mutex_spin_exit(&sc->sc_lock);
736
737 #ifdef notyet
738 if (sc->disable) {
739 #ifdef DIAGNOSTIC
740 if (!sc->enabled)
741 panic("imxuart_shutdown: not enabled?");
742 #endif
743 (*sc->disable)(sc);
744 sc->enabled = 0;
745 }
746 #endif
747 }
748
749 int
750 imxuopen(dev_t dev, int flag, int mode, struct lwp *l)
751 {
752 struct imxuart_softc *sc;
753 struct tty *tp;
754 int s;
755 int error;
756
757 sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
758 if (sc == NULL || !ISSET(sc->sc_hwflags, IMXUART_HW_DEV_OK) ||
759 sc->sc_rbuf == NULL)
760 return (ENXIO);
761
762 if (!device_is_active(sc->sc_dev))
763 return (ENXIO);
764
765 #ifdef KGDB
766 /*
767 * If this is the kgdb port, no other use is permitted.
768 */
769 if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB))
770 return (EBUSY);
771 #endif
772
773 tp = sc->sc_tty;
774
775 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
776 return (EBUSY);
777
778 s = spltty();
779
780 /*
781 * Do the following iff this is a first open.
782 */
783 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
784 struct termios t;
785
786 tp->t_dev = dev;
787
788
789 #ifdef notyet
790 if (sc->enable) {
791 if ((*sc->enable)(sc)) {
792 splx(s);
793 aprint_error_dev(sc->sc_dev,
794 "device enable failed\n");
795 return (EIO);
796 }
797 sc->enabled = 1;
798 }
799 #endif
800
801 mutex_spin_enter(&sc->sc_lock);
802
803 imxuart_disable_all_interrupts(sc);
804
805 /* Fetch the current modem control status, needed later. */
806
807 #ifdef IMXUART_PPS
808 /* Clear PPS capture state on first open. */
809 mutex_spin_enter(&timecounter_lock);
810 memset(&sc->sc_pps_state, 0, sizeof(sc->sc_pps_state));
811 sc->sc_pps_state.ppscap = PPS_CAPTUREASSERT | PPS_CAPTURECLEAR;
812 pps_init(&sc->sc_pps_state);
813 mutex_spin_exit(&timecounter_lock);
814 #endif
815
816 mutex_spin_exit(&sc->sc_lock);
817
818 /*
819 * Initialize the termios status to the defaults. Add in the
820 * sticky bits from TIOCSFLAGS.
821 */
822 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
823 t.c_ospeed = imxuconsrate;
824 t.c_cflag = imxuconscflag;
825 } else {
826 t.c_ospeed = TTYDEF_SPEED;
827 t.c_cflag = TTYDEF_CFLAG;
828 }
829 t.c_ispeed = t.c_ospeed;
830 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
831 SET(t.c_cflag, CLOCAL);
832 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
833 SET(t.c_cflag, CRTSCTS);
834 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
835 SET(t.c_cflag, MDMBUF);
836 /* Make sure imxuparam() will do something. */
837 tp->t_ospeed = 0;
838 (void) imxuparam(tp, &t);
839 tp->t_iflag = TTYDEF_IFLAG;
840 tp->t_oflag = TTYDEF_OFLAG;
841 tp->t_lflag = TTYDEF_LFLAG;
842 ttychars(tp);
843 ttsetwater(tp);
844
845 mutex_spin_enter(&sc->sc_lock);
846
847 /*
848 * Turn on DTR. We must always do this, even if carrier is not
849 * present, because otherwise we'd have to use TIOCSDTR
850 * immediately after setting CLOCAL, which applications do not
851 * expect. We always assert DTR while the device is open
852 * unless explicitly requested to deassert it.
853 */
854 imxuart_modem(sc, 1);
855
856 /* Clear the input ring, and unblock. */
857 sc->sc_rbuf_in = sc->sc_rbuf_out = 0;
858 imxuart_iflush(sc);
859 CLR(sc->sc_rx_flags, IMXUART_RX_ANY_BLOCK);
860 imxuart_hwiflow(sc);
861
862 /* Turn on interrupts. */
863 imxuart_control_rxint(sc, true);
864
865 #ifdef IMXUART_DEBUG
866 if (imxuart_debug)
867 imxustatus(sc, "imxuopen ");
868 #endif
869
870 mutex_spin_exit(&sc->sc_lock);
871 }
872
873 splx(s);
874
875 #if 0
876 error = ttyopen(tp, IMXUART_DIALOUT(dev), ISSET(flag, O_NONBLOCK));
877 #else
878 error = ttyopen(tp, 1, ISSET(flag, O_NONBLOCK));
879 #endif
880 if (error)
881 goto bad;
882
883 error = (*tp->t_linesw->l_open)(dev, tp);
884 if (error)
885 goto bad;
886
887 return (0);
888
889 bad:
890 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
891 /*
892 * We failed to open the device, and nobody else had it opened.
893 * Clean up the state as appropriate.
894 */
895 imxuart_shutdown(sc);
896 }
897
898 return (error);
899 }
900
901 int
902 imxuclose(dev_t dev, int flag, int mode, struct lwp *l)
903 {
904 struct imxuart_softc *sc =
905 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
906 struct tty *tp = sc->sc_tty;
907
908 /* XXX This is for cons.c. */
909 if (!ISSET(tp->t_state, TS_ISOPEN))
910 return (0);
911
912 (*tp->t_linesw->l_close)(tp, flag);
913 ttyclose(tp);
914
915 if (IMXUART_ISALIVE(sc) == 0)
916 return (0);
917
918 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
919 /*
920 * Although we got a last close, the device may still be in
921 * use; e.g. if this was the dialout node, and there are still
922 * processes waiting for carrier on the non-dialout node.
923 */
924 imxuart_shutdown(sc);
925 }
926
927 return (0);
928 }
929
930 int
931 imxuread(dev_t dev, struct uio *uio, int flag)
932 {
933 struct imxuart_softc *sc =
934 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
935 struct tty *tp = sc->sc_tty;
936
937 if (IMXUART_ISALIVE(sc) == 0)
938 return (EIO);
939
940 return ((*tp->t_linesw->l_read)(tp, uio, flag));
941 }
942
943 int
944 imxuwrite(dev_t dev, struct uio *uio, int flag)
945 {
946 struct imxuart_softc *sc =
947 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
948 struct tty *tp = sc->sc_tty;
949
950 if (IMXUART_ISALIVE(sc) == 0)
951 return (EIO);
952
953 return ((*tp->t_linesw->l_write)(tp, uio, flag));
954 }
955
956 int
957 imxupoll(dev_t dev, int events, struct lwp *l)
958 {
959 struct imxuart_softc *sc =
960 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
961 struct tty *tp = sc->sc_tty;
962
963 if (IMXUART_ISALIVE(sc) == 0)
964 return (POLLHUP);
965
966 return ((*tp->t_linesw->l_poll)(tp, events, l));
967 }
968
969 struct tty *
970 imxutty(dev_t dev)
971 {
972 struct imxuart_softc *sc =
973 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
974 struct tty *tp = sc->sc_tty;
975
976 return (tp);
977 }
978
979 int
980 imxuioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
981 {
982 struct imxuart_softc *sc;
983 struct tty *tp;
984 int error;
985
986 sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
987 if (sc == NULL)
988 return ENXIO;
989 if (IMXUART_ISALIVE(sc) == 0)
990 return (EIO);
991
992 tp = sc->sc_tty;
993
994 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
995 if (error != EPASSTHROUGH)
996 return (error);
997
998 error = ttioctl(tp, cmd, data, flag, l);
999 if (error != EPASSTHROUGH)
1000 return (error);
1001
1002 error = 0;
1003 switch (cmd) {
1004 case TIOCSFLAGS:
1005 error = kauth_authorize_device_tty(l->l_cred,
1006 KAUTH_DEVICE_TTY_PRIVSET, tp);
1007 break;
1008 default:
1009 /* nothing */
1010 break;
1011 }
1012 if (error) {
1013 return error;
1014 }
1015
1016 mutex_spin_enter(&sc->sc_lock);
1017
1018 switch (cmd) {
1019 case TIOCSBRK:
1020 imxuart_break(sc, true);
1021 break;
1022
1023 case TIOCCBRK:
1024 imxuart_break(sc, false);
1025 break;
1026
1027 case TIOCSDTR:
1028 imxuart_modem(sc, 1);
1029 break;
1030
1031 case TIOCCDTR:
1032 imxuart_modem(sc, 0);
1033 break;
1034
1035 case TIOCGFLAGS:
1036 *(int *)data = sc->sc_swflags;
1037 break;
1038
1039 case TIOCSFLAGS:
1040 sc->sc_swflags = *(int *)data;
1041 break;
1042
1043 case TIOCMSET:
1044 case TIOCMBIS:
1045 case TIOCMBIC:
1046 tiocm_to_imxu(sc, cmd, *(int *)data);
1047 break;
1048
1049 case TIOCMGET:
1050 *(int *)data = imxuart_to_tiocm(sc);
1051 break;
1052
1053 #ifdef notyet
1054 case PPS_IOC_CREATE:
1055 case PPS_IOC_DESTROY:
1056 case PPS_IOC_GETPARAMS:
1057 case PPS_IOC_SETPARAMS:
1058 case PPS_IOC_GETCAP:
1059 case PPS_IOC_FETCH:
1060 #ifdef PPS_SYNC
1061 case PPS_IOC_KCBIND:
1062 #endif
1063 mutex_spin_enter(&timecounter_lock);
1064 error = pps_ioctl(cmd, data, &sc->sc_pps_state);
1065 mutex_spin_exit(&timecounter_lock);
1066 break;
1067
1068 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
1069 mutex_spin_enter(&timecounter_lock);
1070 #ifndef PPS_TRAILING_EDGE
1071 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1072 &sc->sc_pps_state.ppsinfo.assert_timestamp);
1073 #else
1074 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1075 &sc->sc_pps_state.ppsinfo.clear_timestamp);
1076 #endif
1077 mutex_spin_exit(&timecounter_lock);
1078 break;
1079 #endif
1080
1081 default:
1082 error = EPASSTHROUGH;
1083 break;
1084 }
1085
1086 mutex_spin_exit(&sc->sc_lock);
1087
1088 #ifdef IMXUART_DEBUG
1089 if (imxuart_debug)
1090 imxustatus(sc, "imxuioctl ");
1091 #endif
1092
1093 return (error);
1094 }
1095
1096 integrate void
1097 imxuart_schedrx(struct imxuart_softc *sc)
1098 {
1099 sc->sc_rx_ready = 1;
1100
1101 /* Wake up the poller. */
1102 softint_schedule(sc->sc_si);
1103 }
1104
1105 void
1106 imxuart_break(struct imxuart_softc *sc, bool onoff)
1107 {
1108 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1109 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1110
1111 if (onoff)
1112 SET(sc->sc_ucr1, IMX_UCR1_SNDBRK);
1113 else
1114 CLR(sc->sc_ucr1, IMX_UCR1_SNDBRK);
1115
1116 bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1);
1117 }
1118
1119 void
1120 imxuart_modem(struct imxuart_softc *sc, int onoff)
1121 {
1122 #ifdef notyet
1123 if (sc->sc_mcr_dtr == 0)
1124 return;
1125
1126 if (onoff)
1127 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1128 else
1129 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1130
1131 if (!sc->sc_heldchange) {
1132 if (sc->sc_tx_busy) {
1133 sc->sc_heldtbc = sc->sc_tbc;
1134 sc->sc_tbc = 0;
1135 sc->sc_heldchange = 1;
1136 } else
1137 imxuart_loadchannelregs(sc);
1138 }
1139 #endif
1140 }
1141
1142 /*
1143 * RTS output is controlled by UCR2.CTS bit.
1144 * DTR output is controlled by UCR3.DSR bit.
1145 * (i.MX reference manual uses names in DCE mode)
1146 *
1147 * note: if UCR2.CTSC == 1 for automatic HW flow control, UCR2.CTS is ignored.
1148 */
1149 void
1150 tiocm_to_imxu(struct imxuart_softc *sc, u_long how, int ttybits)
1151 {
1152 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1153 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1154
1155 uint32_t ucr2 = sc->sc_ucr2_d;
1156 uint32_t ucr3 = sc->sc_ucr3;
1157
1158 uint32_t ucr2_mask = 0;
1159 uint32_t ucr3_mask = 0;
1160
1161
1162 if (ISSET(ttybits, TIOCM_DTR))
1163 ucr3_mask = IMX_UCR3_DSR;
1164 if (ISSET(ttybits, TIOCM_RTS))
1165 ucr2_mask = IMX_UCR2_CTS;
1166
1167 switch (how) {
1168 case TIOCMBIC:
1169 CLR(ucr2, ucr2_mask);
1170 CLR(ucr3, ucr3_mask);
1171 break;
1172
1173 case TIOCMBIS:
1174 SET(ucr2, ucr2_mask);
1175 SET(ucr3, ucr3_mask);
1176 break;
1177
1178 case TIOCMSET:
1179 CLR(ucr2, ucr2_mask);
1180 CLR(ucr3, ucr3_mask);
1181 SET(ucr2, ucr2_mask);
1182 SET(ucr3, ucr3_mask);
1183 break;
1184 }
1185
1186 if (ucr3 != sc->sc_ucr3) {
1187 bus_space_write_4(iot, ioh, IMX_UCR3, ucr3);
1188 sc->sc_ucr3 = ucr3;
1189 }
1190
1191 if (ucr2 == sc->sc_ucr2_d)
1192 return;
1193
1194 sc->sc_ucr2_d = ucr2;
1195 /* update CTS bit only */
1196 ucr2 = (sc->sc_ucr2 & ~IMX_UCR2_CTS) |
1197 (ucr2 & IMX_UCR2_CTS);
1198
1199 bus_space_write_4(iot, ioh, IMX_UCR2, ucr2);
1200 sc->sc_ucr2 = ucr2;
1201 }
1202
1203 int
1204 imxuart_to_tiocm(struct imxuart_softc *sc)
1205 {
1206 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1207 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1208 int ttybits = 0;
1209 uint32_t usr[2];
1210
1211 if (ISSET(sc->sc_ucr3, IMX_UCR3_DSR))
1212 SET(ttybits, TIOCM_DTR);
1213 if (ISSET(sc->sc_ucr2, IMX_UCR2_CTS))
1214 SET(ttybits, TIOCM_RTS);
1215
1216 bus_space_read_region_4(iot, ioh, IMX_USR1, usr, 2);
1217
1218 if (ISSET(usr[0], IMX_USR1_RTSS))
1219 SET(ttybits, TIOCM_CTS);
1220
1221 if (ISSET(usr[1], IMX_USR2_DCDIN))
1222 SET(ttybits, TIOCM_CD);
1223
1224 #if 0
1225 /* XXXbsh: I couldn't find the way to read ipp_uart_dsr_dte_i signal,
1226 although there are bits in UART registers to detect delta of DSR.
1227 */
1228 if (ISSET(imxubits, MSR_DSR))
1229 SET(ttybits, TIOCM_DSR);
1230 #endif
1231
1232 if (ISSET(usr[1], IMX_USR2_RIIN))
1233 SET(ttybits, TIOCM_RI);
1234
1235
1236 #ifdef notyet
1237 if (ISSET(sc->sc_ier, IER_ERXRDY | IER_ETXRDY | IER_ERLS | IER_EMSC))
1238 SET(ttybits, TIOCM_LE);
1239 #endif
1240
1241 return (ttybits);
1242 }
1243
1244 static uint32_t
1245 cflag_to_ucr2(tcflag_t cflag, uint32_t oldval)
1246 {
1247 uint32_t val = oldval;
1248
1249 CLR(val,IMX_UCR2_WS|IMX_UCR2_PREN|IMX_UCR2_PROE|IMX_UCR2_STPB);
1250
1251 switch (cflag & CSIZE) {
1252 case CS5:
1253 case CS6:
1254 /* not suppreted. use 7-bits */
1255 case CS7:
1256 break;
1257 case CS8:
1258 SET(val, IMX_UCR2_WS);
1259 break;
1260 }
1261
1262
1263 if (ISSET(cflag, PARENB)) {
1264 SET(val, IMX_UCR2_PREN);
1265
1266 /* odd parity */
1267 if (!ISSET(cflag, PARODD))
1268 SET(val, IMX_UCR2_PROE);
1269 }
1270
1271 if (ISSET(cflag, CSTOPB))
1272 SET(val, IMX_UCR2_STPB);
1273
1274 val |= IMX_UCR2_TXEN| IMX_UCR2_RXEN|IMX_UCR2_SRST;
1275
1276 return val;
1277 }
1278
1279 int
1280 imxuparam(struct tty *tp, struct termios *t)
1281 {
1282 struct imxuart_softc *sc =
1283 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1284 struct imxuart_baudrate_ratio ratio;
1285 uint32_t ucr2;
1286 bool change_speed = tp->t_ospeed != t->c_ospeed;
1287
1288 if (IMXUART_ISALIVE(sc) == 0)
1289 return (EIO);
1290
1291 /* Check requested parameters. */
1292 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1293 return (EINVAL);
1294
1295 /*
1296 * For the console, always force CLOCAL and !HUPCL, so that the port
1297 * is always active.
1298 */
1299 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1300 ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
1301 SET(t->c_cflag, CLOCAL);
1302 CLR(t->c_cflag, HUPCL);
1303 }
1304
1305 /*
1306 * If there were no changes, don't do anything. This avoids dropping
1307 * input and improves performance when all we did was frob things like
1308 * VMIN and VTIME.
1309 */
1310 if ( !change_speed && tp->t_cflag == t->c_cflag)
1311 return (0);
1312
1313 if (change_speed) {
1314 /* calculate baudrate modulator value */
1315 if (imxuspeed(t->c_ospeed, &ratio) < 0)
1316 return (EINVAL);
1317 sc->sc_ratio = ratio;
1318 }
1319
1320 ucr2 = cflag_to_ucr2(t->c_cflag, sc->sc_ucr2_d);
1321
1322 mutex_spin_enter(&sc->sc_lock);
1323
1324 #if 0 /* flow control stuff. not yet */
1325 /*
1326 * If we're not in a mode that assumes a connection is present, then
1327 * ignore carrier changes.
1328 */
1329 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1330 sc->sc_msr_dcd = 0;
1331 else
1332 sc->sc_msr_dcd = MSR_DCD;
1333 /*
1334 * Set the flow control pins depending on the current flow control
1335 * mode.
1336 */
1337 if (ISSET(t->c_cflag, CRTSCTS)) {
1338 sc->sc_mcr_dtr = MCR_DTR;
1339 sc->sc_mcr_rts = MCR_RTS;
1340 sc->sc_msr_cts = MSR_CTS;
1341 sc->sc_efr = EFR_AUTORTS | EFR_AUTOCTS;
1342 } else if (ISSET(t->c_cflag, MDMBUF)) {
1343 /*
1344 * For DTR/DCD flow control, make sure we don't toggle DTR for
1345 * carrier detection.
1346 */
1347 sc->sc_mcr_dtr = 0;
1348 sc->sc_mcr_rts = MCR_DTR;
1349 sc->sc_msr_cts = MSR_DCD;
1350 sc->sc_efr = 0;
1351 } else {
1352 /*
1353 * If no flow control, then always set RTS. This will make
1354 * the other side happy if it mistakenly thinks we're doing
1355 * RTS/CTS flow control.
1356 */
1357 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
1358 sc->sc_mcr_rts = 0;
1359 sc->sc_msr_cts = 0;
1360 sc->sc_efr = 0;
1361 if (ISSET(sc->sc_mcr, MCR_DTR))
1362 SET(sc->sc_mcr, MCR_RTS);
1363 else
1364 CLR(sc->sc_mcr, MCR_RTS);
1365 }
1366 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1367 #endif
1368
1369 /* And copy to tty. */
1370 tp->t_ispeed = t->c_ospeed;
1371 tp->t_ospeed = t->c_ospeed;
1372 tp->t_cflag = t->c_cflag;
1373
1374 if (!change_speed && ucr2 == sc->sc_ucr2_d) {
1375 /* noop */
1376 }
1377 else if (!sc->sc_pending && !sc->sc_tx_busy) {
1378 if (ucr2 != sc->sc_ucr2_d) {
1379 sc->sc_ucr2_d = ucr2;
1380 imxuart_load_params(sc);
1381 }
1382 if (change_speed)
1383 imxuart_load_speed(sc);
1384 }
1385 else {
1386 if (!sc->sc_pending) {
1387 sc->sc_heldtbc = sc->sc_tbc;
1388 sc->sc_tbc = 0;
1389 }
1390 sc->sc_pending |=
1391 (ucr2 == sc->sc_ucr2_d ? 0 : IMXUART_PEND_PARAM) |
1392 (change_speed ? 0 : IMXUART_PEND_SPEED);
1393 sc->sc_ucr2_d = ucr2;
1394 }
1395
1396 if (!ISSET(t->c_cflag, CHWFLOW)) {
1397 /* Disable the high water mark. */
1398 sc->sc_r_hiwat = 0;
1399 sc->sc_r_lowat = 0;
1400 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) {
1401 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
1402 imxuart_schedrx(sc);
1403 }
1404 if (ISSET(sc->sc_rx_flags,
1405 IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED)) {
1406 CLR(sc->sc_rx_flags,
1407 IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED);
1408 imxuart_hwiflow(sc);
1409 }
1410 } else {
1411 sc->sc_r_hiwat = imxuart_rbuf_hiwat;
1412 sc->sc_r_lowat = imxuart_rbuf_lowat;
1413 }
1414
1415 mutex_spin_exit(&sc->sc_lock);
1416
1417 #if 0
1418 /*
1419 * Update the tty layer's idea of the carrier bit, in case we changed
1420 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1421 * explicit request.
1422 */
1423 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
1424 #else
1425 /* XXX: always report that we have DCD */
1426 (void) (*tp->t_linesw->l_modem)(tp, 1);
1427 #endif
1428
1429 #ifdef IMXUART_DEBUG
1430 if (imxuart_debug)
1431 imxustatus(sc, "imxuparam ");
1432 #endif
1433
1434 if (!ISSET(t->c_cflag, CHWFLOW)) {
1435 if (sc->sc_tx_stopped) {
1436 sc->sc_tx_stopped = 0;
1437 imxustart(tp);
1438 }
1439 }
1440
1441 return (0);
1442 }
1443
1444 void
1445 imxuart_iflush(struct imxuart_softc *sc)
1446 {
1447 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1448 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1449 #ifdef DIAGNOSTIC
1450 uint32_t reg = 0xffff;
1451 #endif
1452 int timo;
1453
1454 timo = 50000;
1455 /* flush any pending I/O */
1456 while (ISSET(bus_space_read_4(iot, ioh, IMX_USR2), IMX_USR2_RDR)
1457 && --timo)
1458 #ifdef DIAGNOSTIC
1459 reg =
1460 #else
1461 (void)
1462 #endif
1463 bus_space_read_4(iot, ioh, IMX_URXD);
1464 #ifdef DIAGNOSTIC
1465 if (!timo)
1466 aprint_error_dev(sc->sc_dev, "imxuart_iflush timeout %02x\n", reg);
1467 #endif
1468 }
1469
1470 int
1471 imxuhwiflow(struct tty *tp, int block)
1472 {
1473 struct imxuart_softc *sc =
1474 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1475
1476 if (IMXUART_ISALIVE(sc) == 0)
1477 return (0);
1478
1479 #ifdef notyet
1480 if (sc->sc_mcr_rts == 0)
1481 return (0);
1482 #endif
1483
1484 mutex_spin_enter(&sc->sc_lock);
1485
1486 if (block) {
1487 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
1488 SET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED);
1489 imxuart_hwiflow(sc);
1490 }
1491 } else {
1492 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) {
1493 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
1494 imxuart_schedrx(sc);
1495 }
1496 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
1497 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED);
1498 imxuart_hwiflow(sc);
1499 }
1500 }
1501
1502 mutex_spin_exit(&sc->sc_lock);
1503 return (1);
1504 }
1505
1506 /*
1507 * (un)block input via hw flowcontrol
1508 */
1509 void
1510 imxuart_hwiflow(struct imxuart_softc *sc)
1511 {
1512 #ifdef notyet
1513 struct imxuart_regs *regsp= &sc->sc_regs;
1514
1515 if (sc->sc_mcr_rts == 0)
1516 return;
1517
1518 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1519 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1520 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1521 } else {
1522 SET(sc->sc_mcr, sc->sc_mcr_rts);
1523 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1524 }
1525 UR_WRITE_1(regsp, IMXUART_REG_MCR, sc->sc_mcr_active);
1526 #endif
1527 }
1528
1529
1530 void
1531 imxustart(struct tty *tp)
1532 {
1533 struct imxuart_softc *sc =
1534 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1535 int s;
1536 u_char *tba;
1537 int tbc;
1538 u_int n;
1539 u_int space;
1540 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1541 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1542
1543 if (IMXUART_ISALIVE(sc) == 0)
1544 return;
1545
1546 s = spltty();
1547 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1548 goto out;
1549 if (sc->sc_tx_stopped)
1550 goto out;
1551 if (!ttypull(tp))
1552 goto out;
1553
1554 /* Grab the first contiguous region of buffer space. */
1555 tba = tp->t_outq.c_cf;
1556 tbc = ndqb(&tp->t_outq, 0);
1557
1558 mutex_spin_enter(&sc->sc_lock);
1559
1560 sc->sc_tba = tba;
1561 sc->sc_tbc = tbc;
1562
1563 SET(tp->t_state, TS_BUSY);
1564 sc->sc_tx_busy = 1;
1565
1566 space = imxuart_txfifo_space(sc);
1567 n = MIN(sc->sc_tbc, space);
1568
1569 bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, n);
1570 sc->sc_tbc -= n;
1571 sc->sc_tba += n;
1572
1573 /* Enable transmit completion interrupts */
1574 imxuart_control_txint(sc, true);
1575
1576 mutex_spin_exit(&sc->sc_lock);
1577 out:
1578 splx(s);
1579 return;
1580 }
1581
1582 /*
1583 * Stop output on a line.
1584 */
1585 void
1586 imxustop(struct tty *tp, int flag)
1587 {
1588 struct imxuart_softc *sc =
1589 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1590
1591 mutex_spin_enter(&sc->sc_lock);
1592 if (ISSET(tp->t_state, TS_BUSY)) {
1593 /* Stop transmitting at the next chunk. */
1594 sc->sc_tbc = 0;
1595 sc->sc_heldtbc = 0;
1596 if (!ISSET(tp->t_state, TS_TTSTOP))
1597 SET(tp->t_state, TS_FLUSH);
1598 }
1599 mutex_spin_exit(&sc->sc_lock);
1600 }
1601
1602 void
1603 imxudiag(void *arg)
1604 {
1605 #ifdef notyet
1606 struct imxuart_softc *sc = arg;
1607 int overflows, floods;
1608
1609 mutex_spin_enter(&sc->sc_lock);
1610 overflows = sc->sc_overflows;
1611 sc->sc_overflows = 0;
1612 floods = sc->sc_floods;
1613 sc->sc_floods = 0;
1614 sc->sc_errors = 0;
1615 mutex_spin_exit(&sc->sc_lock);
1616
1617 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1618 device_xname(sc->sc_dev),
1619 overflows, overflows == 1 ? "" : "s",
1620 floods, floods == 1 ? "" : "s");
1621 #endif
1622 }
1623
1624 integrate void
1625 imxuart_rxsoft(struct imxuart_softc *sc, struct tty *tp)
1626 {
1627 int (*rint)(int, struct tty *) = tp->t_linesw->l_rint;
1628 u_int cc, scc, outp;
1629 uint16_t data;
1630 u_int code;
1631
1632 scc = cc = IMXUART_RBUF_AVAIL(sc);
1633
1634 #if 0
1635 if (cc == imxuart_rbuf_size-1) {
1636 sc->sc_floods++;
1637 if (sc->sc_errors++ == 0)
1638 callout_reset(&sc->sc_diag_callout, 60 * hz,
1639 imxudiag, sc);
1640 }
1641 #endif
1642
1643 /* If not yet open, drop the entire buffer content here */
1644 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1645 sc->sc_rbuf_out = sc->sc_rbuf_in;
1646 cc = 0;
1647 }
1648
1649 outp = sc->sc_rbuf_out;
1650
1651 #define ERRBITS (IMX_URXD_PRERR|IMX_URXD_BRK|IMX_URXD_FRMERR|IMX_URXD_OVRRUN)
1652
1653 while (cc) {
1654 data = sc->sc_rbuf[outp];
1655 code = data & IMX_URXD_RX_DATA;
1656 if (ISSET(data, ERRBITS)) {
1657 if (sc->sc_errors.err == 0)
1658 callout_reset(&sc->sc_diag_callout,
1659 60 * hz, imxudiag, sc);
1660 if (ISSET(data, IMX_URXD_OVRRUN))
1661 sc->sc_errors.ovrrun++;
1662 if (ISSET(data, IMX_URXD_BRK)) {
1663 sc->sc_errors.brk++;
1664 SET(code, TTY_FE);
1665 }
1666 if (ISSET(data, IMX_URXD_FRMERR)) {
1667 sc->sc_errors.frmerr++;
1668 SET(code, TTY_FE);
1669 }
1670 if (ISSET(data, IMX_URXD_PRERR)) {
1671 sc->sc_errors.prerr++;
1672 SET(code, TTY_PE);
1673 }
1674 }
1675 if ((*rint)(code, tp) == -1) {
1676 /*
1677 * The line discipline's buffer is out of space.
1678 */
1679 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
1680 /*
1681 * We're either not using flow control, or the
1682 * line discipline didn't tell us to block for
1683 * some reason. Either way, we have no way to
1684 * know when there's more space available, so
1685 * just drop the rest of the data.
1686 */
1687 sc->sc_rbuf_out = sc->sc_rbuf_in;
1688 cc = 0;
1689 } else {
1690 /*
1691 * Don't schedule any more receive processing
1692 * until the line discipline tells us there's
1693 * space available (through imxuhwiflow()).
1694 * Leave the rest of the data in the input
1695 * buffer.
1696 */
1697 SET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
1698 }
1699 break;
1700 }
1701 outp = IMXUART_RBUF_INC(sc, outp, 1);
1702 cc--;
1703 }
1704
1705 if (cc != scc) {
1706 sc->sc_rbuf_out = outp;
1707 mutex_spin_enter(&sc->sc_lock);
1708
1709 cc = IMXUART_RBUF_SPACE(sc);
1710
1711 /* Buffers should be ok again, release possible block. */
1712 if (cc >= sc->sc_r_lowat) {
1713 if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED)) {
1714 CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED);
1715 imxuart_control_rxint(sc, true);
1716 }
1717 if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED)) {
1718 CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED);
1719 imxuart_hwiflow(sc);
1720 }
1721 }
1722 mutex_spin_exit(&sc->sc_lock);
1723 }
1724 }
1725
1726 integrate void
1727 imxuart_txsoft(struct imxuart_softc *sc, struct tty *tp)
1728 {
1729
1730 CLR(tp->t_state, TS_BUSY);
1731 if (ISSET(tp->t_state, TS_FLUSH))
1732 CLR(tp->t_state, TS_FLUSH);
1733 else
1734 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1735 (*tp->t_linesw->l_start)(tp);
1736 }
1737
1738 integrate void
1739 imxuart_stsoft(struct imxuart_softc *sc, struct tty *tp)
1740 {
1741 #ifdef notyet
1742 u_char msr, delta;
1743
1744 mutex_spin_enter(&sc->sc_lock);
1745 msr = sc->sc_msr;
1746 delta = sc->sc_msr_delta;
1747 sc->sc_msr_delta = 0;
1748 mutex_spin_exit(&sc->sc_lock);
1749
1750 if (ISSET(delta, sc->sc_msr_dcd)) {
1751 /*
1752 * Inform the tty layer that carrier detect changed.
1753 */
1754 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
1755 }
1756
1757 if (ISSET(delta, sc->sc_msr_cts)) {
1758 /* Block or unblock output according to flow control. */
1759 if (ISSET(msr, sc->sc_msr_cts)) {
1760 sc->sc_tx_stopped = 0;
1761 (*tp->t_linesw->l_start)(tp);
1762 } else {
1763 sc->sc_tx_stopped = 1;
1764 }
1765 }
1766
1767 #endif
1768 #ifdef IMXUART_DEBUG
1769 if (imxuart_debug)
1770 imxustatus(sc, "imxuart_stsoft");
1771 #endif
1772 }
1773
1774 void
1775 imxusoft(void *arg)
1776 {
1777 struct imxuart_softc *sc = arg;
1778 struct tty *tp;
1779
1780 if (IMXUART_ISALIVE(sc) == 0)
1781 return;
1782
1783 tp = sc->sc_tty;
1784
1785 if (sc->sc_rx_ready) {
1786 sc->sc_rx_ready = 0;
1787 imxuart_rxsoft(sc, tp);
1788 }
1789
1790 if (sc->sc_st_check) {
1791 sc->sc_st_check = 0;
1792 imxuart_stsoft(sc, tp);
1793 }
1794
1795 if (sc->sc_tx_done) {
1796 sc->sc_tx_done = 0;
1797 imxuart_txsoft(sc, tp);
1798 }
1799 }
1800
1801 int
1802 imxuintr(void *arg)
1803 {
1804 struct imxuart_softc *sc = arg;
1805 uint32_t usr1, usr2;
1806 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1807 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1808
1809
1810 if (IMXUART_ISALIVE(sc) == 0)
1811 return (0);
1812
1813 mutex_spin_enter(&sc->sc_lock);
1814
1815 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1816
1817
1818 do {
1819 bus_space_write_4(iot, ioh, IMX_USR2,
1820 usr2 & (IMX_USR2_BRCD|IMX_USR2_ORE));
1821 if (usr2 & IMX_USR2_BRCD) {
1822 /* Break signal detected */
1823 int cn_trapped = 0;
1824
1825 cn_check_magic(sc->sc_tty->t_dev,
1826 CNC_BREAK, imxuart_cnm_state);
1827 if (cn_trapped)
1828 continue;
1829 #if defined(KGDB) && !defined(DDB)
1830 if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB)) {
1831 kgdb_connect(1);
1832 continue;
1833 }
1834 #endif
1835 }
1836
1837 if (usr2 & IMX_USR2_RDR)
1838 imxuintr_read(sc);
1839
1840 #ifdef IMXUART_PPS
1841 {
1842 u_char msr, delta;
1843
1844 msr = CSR_READ_1(regsp, IMXUART_REG_MSR);
1845 delta = msr ^ sc->sc_msr;
1846 sc->sc_msr = msr;
1847 if ((sc->sc_pps_state.ppsparam.mode & PPS_CAPTUREBOTH) &&
1848 (delta & MSR_DCD)) {
1849 mutex_spin_enter(&timecounter_lock);
1850 pps_capture(&sc->sc_pps_state);
1851 pps_event(&sc->sc_pps_state,
1852 (msr & MSR_DCD) ?
1853 PPS_CAPTUREASSERT :
1854 PPS_CAPTURECLEAR);
1855 mutex_spin_exit(&timecounter_lock);
1856 }
1857 }
1858 #endif
1859
1860 #ifdef notyet
1861 /*
1862 * Process normal status changes
1863 */
1864 if (ISSET(delta, sc->sc_msr_mask)) {
1865 SET(sc->sc_msr_delta, delta);
1866
1867 /*
1868 * Stop output immediately if we lose the output
1869 * flow control signal or carrier detect.
1870 */
1871 if (ISSET(~msr, sc->sc_msr_mask)) {
1872 sc->sc_tbc = 0;
1873 sc->sc_heldtbc = 0;
1874 #ifdef IMXUART_DEBUG
1875 if (imxuart_debug)
1876 imxustatus(sc, "imxuintr ");
1877 #endif
1878 }
1879
1880 sc->sc_st_check = 1;
1881 }
1882 #endif
1883
1884 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1885 } while (usr2 & (IMX_USR2_RDR|IMX_USR2_BRCD));
1886
1887 usr1 = bus_space_read_4(iot, ioh, IMX_USR1);
1888 if (usr1 & IMX_USR1_TRDY)
1889 imxuintr_send(sc);
1890
1891 mutex_spin_exit(&sc->sc_lock);
1892
1893 /* Wake up the poller. */
1894 softint_schedule(sc->sc_si);
1895
1896 #ifdef RND_COM
1897 rnd_add_uint32(&sc->rnd_source, iir | lsr);
1898 #endif
1899
1900 return (1);
1901 }
1902
1903
1904 /*
1905 * called when there is least one character in rxfifo
1906 *
1907 */
1908
1909 static void
1910 imxuintr_read(struct imxuart_softc *sc)
1911 {
1912 int cc;
1913 uint16_t rd;
1914 uint32_t usr2;
1915 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1916 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1917
1918 cc = IMXUART_RBUF_SPACE(sc);
1919
1920 /* clear aging timer interrupt */
1921 bus_space_write_4(iot, ioh, IMX_USR1, IMX_USR1_AGTIM);
1922
1923 while (cc > 0) {
1924 int cn_trapped = 0;
1925
1926
1927 sc->sc_rbuf[sc->sc_rbuf_in] = rd =
1928 bus_space_read_4(iot, ioh, IMX_URXD);
1929
1930 cn_check_magic(sc->sc_tty->t_dev,
1931 rd & 0xff, imxuart_cnm_state);
1932
1933 if (!cn_trapped) {
1934 #if defined(DDB) && defined(DDB_KEYCODE)
1935 /*
1936 * Temporary hack so that I can force the kernel into
1937 * the debugger via the serial port
1938 */
1939 if ((rd & 0xff) == DDB_KEYCODE)
1940 Debugger();
1941 #endif
1942 sc->sc_rbuf_in = IMXUART_RBUF_INC(sc, sc->sc_rbuf_in, 1);
1943 cc--;
1944 }
1945
1946 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1947 if (!(usr2 & IMX_USR2_RDR))
1948 break;
1949 }
1950
1951 /*
1952 * Current string of incoming characters ended because
1953 * no more data was available or we ran out of space.
1954 * Schedule a receive event if any data was received.
1955 * If we're out of space, turn off receive interrupts.
1956 */
1957 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED))
1958 sc->sc_rx_ready = 1;
1959 /*
1960 * See if we are in danger of overflowing a buffer. If
1961 * so, use hardware flow control to ease the pressure.
1962 */
1963 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED) &&
1964 cc < sc->sc_r_hiwat) {
1965 sc->sc_rx_flags |= IMXUART_RX_IBUF_BLOCKED;
1966 imxuart_hwiflow(sc);
1967 }
1968
1969 /*
1970 * If we're out of space, disable receive interrupts
1971 * until the queue has drained a bit.
1972 */
1973 if (!cc) {
1974 sc->sc_rx_flags |= IMXUART_RX_IBUF_OVERFLOWED;
1975 imxuart_control_rxint(sc, false);
1976 }
1977 }
1978
1979
1980
1981 /*
1982 * find how many chars we can put into tx-fifo
1983 */
1984 static u_int
1985 imxuart_txfifo_space(struct imxuart_softc *sc)
1986 {
1987 uint32_t usr1, usr2;
1988 u_int cc;
1989 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1990 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1991
1992 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1993 if (usr2 & IMX_USR2_TXFE)
1994 cc = sc->sc_txfifo_len;
1995 else {
1996 usr1 = bus_space_read_4(iot, ioh, IMX_USR1);
1997 if (usr1 & IMX_USR1_TRDY)
1998 cc = sc->sc_txfifo_thresh;
1999 else
2000 cc = 0;
2001 }
2002
2003 return cc;
2004 }
2005
2006 void
2007 imxuintr_send(struct imxuart_softc *sc)
2008 {
2009 uint32_t usr2;
2010 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2011 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2012 int cc = 0;
2013
2014 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
2015
2016 if (sc->sc_pending) {
2017 if (usr2 & IMX_USR2_TXFE) {
2018 imxuart_load_pendings(sc);
2019 sc->sc_tbc = sc->sc_heldtbc;
2020 sc->sc_heldtbc = 0;
2021 }
2022 else {
2023 /* wait for TX fifo empty */
2024 imxuart_control_txint(sc, true);
2025 return;
2026 }
2027 }
2028
2029 cc = imxuart_txfifo_space(sc);
2030 cc = MIN(cc, sc->sc_tbc);
2031
2032 if (cc > 0) {
2033 bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, cc);
2034 sc->sc_tbc -= cc;
2035 sc->sc_tba += cc;
2036 }
2037
2038 if (sc->sc_tbc > 0)
2039 imxuart_control_txint(sc, true);
2040 else {
2041 /* no more chars to send.
2042 we don't need tx interrupt any more. */
2043 imxuart_control_txint(sc, false);
2044 if (sc->sc_tx_busy) {
2045 sc->sc_tx_busy = 0;
2046 sc->sc_tx_done = 1;
2047 }
2048 }
2049 }
2050
2051 static void
2052 imxuart_disable_all_interrupts(struct imxuart_softc *sc)
2053 {
2054 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2055 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2056
2057 sc->sc_ucr1 &= ~IMXUART_INTRS_UCR1;
2058 sc->sc_ucr2 &= ~IMXUART_INTRS_UCR2;
2059 sc->sc_ucr3 &= ~IMXUART_INTRS_UCR3;
2060 sc->sc_ucr4 &= ~IMXUART_INTRS_UCR4;
2061
2062
2063 bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4);
2064 }
2065
2066 static void
2067 imxuart_control_rxint(struct imxuart_softc *sc, bool enable)
2068 {
2069 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2070 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2071 uint32_t ucr1, ucr2;
2072
2073 ucr1 = sc->sc_ucr1;
2074 ucr2 = sc->sc_ucr2;
2075
2076 if (enable) {
2077 ucr1 |= IMX_UCR1_RRDYEN;
2078 ucr2 |= IMX_UCR2_ATEN;
2079 }
2080 else {
2081 ucr1 &= ~IMX_UCR1_RRDYEN;
2082 ucr2 &= ~IMX_UCR2_ATEN;
2083 }
2084
2085 if (ucr1 != sc->sc_ucr1 || ucr2 != sc->sc_ucr2) {
2086 sc->sc_ucr1 = ucr1;
2087 sc->sc_ucr2 = ucr2;
2088 bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 2);
2089 }
2090 }
2091
2092 static void
2093 imxuart_control_txint(struct imxuart_softc *sc, bool enable)
2094 {
2095 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2096 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2097 uint32_t ucr1;
2098 uint32_t mask;
2099
2100 /* if parameter change is pending, get interrupt when Tx fifo
2101 is completely empty. otherwise, get interrupt when txfifo
2102 has less characters than threshold */
2103 mask = sc->sc_pending ? IMX_UCR1_TXMPTYEN : IMX_UCR1_TRDYEN;
2104
2105 ucr1 = sc->sc_ucr1;
2106
2107 CLR(ucr1, IMX_UCR1_TXMPTYEN|IMX_UCR1_TRDYEN);
2108 if (enable)
2109 SET(ucr1, mask);
2110
2111 if (ucr1 != sc->sc_ucr1) {
2112 bus_space_write_4(iot, ioh, IMX_UCR1, ucr1);
2113 sc->sc_ucr1 = ucr1;
2114 }
2115 }
2116
2117
2118 static void
2119 imxuart_load_params(struct imxuart_softc *sc)
2120 {
2121 uint32_t ucr2;
2122 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2123 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2124
2125 ucr2 = (sc->sc_ucr2_d & ~IMX_UCR2_ATEN) |
2126 (sc->sc_ucr2 & IMX_UCR2_ATEN);
2127
2128 bus_space_write_4(iot, ioh, IMX_UCR2, ucr2);
2129 sc->sc_ucr2 = ucr2;
2130 }
2131
2132 static void
2133 imxuart_load_speed(struct imxuart_softc *sc)
2134 {
2135 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2136 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2137 int n, rfdiv, ufcr;
2138
2139 #ifdef notyet
2140 /*
2141 * Set the FIFO threshold based on the receive speed.
2142 *
2143 * * If it's a low speed, it's probably a mouse or some other
2144 * interactive device, so set the threshold low.
2145 * * If it's a high speed, trim the trigger level down to prevent
2146 * overflows.
2147 * * Otherwise set it a bit higher.
2148 */
2149 if (t->c_ospeed <= 1200)
2150 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_1;
2151 else if (t->c_ospeed <= 38400)
2152 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_8;
2153 else
2154 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_4;
2155 #endif
2156
2157 n = 32 - sc->sc_txfifo_thresh;
2158 n = MAX(2, n);
2159
2160 rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv);
2161
2162 ufcr = (n << IMX_UFCR_TXTL_SHIFT) |
2163 (rfdiv << IMX_UFCR_RFDIV_SHIFT) |
2164 (16 << IMX_UFCR_RXTL_SHIFT);
2165
2166 /* keep DCE/DTE bit */
2167 ufcr |= bus_space_read_4(iot, ioh, IMX_UFCR) & IMX_UFCR_DCEDTE;
2168
2169 bus_space_write_4(iot, ioh, IMX_UFCR, ufcr);
2170
2171 /* UBIR must updated before UBMR */
2172 bus_space_write_4(iot, ioh,
2173 IMX_UBIR, sc->sc_ratio.numerator);
2174 bus_space_write_4(iot, ioh,
2175 IMX_UBMR, sc->sc_ratio.modulator);
2176
2177
2178 }
2179
2180
2181 static void
2182 imxuart_load_pendings(struct imxuart_softc *sc)
2183 {
2184 if (sc->sc_pending & IMXUART_PEND_PARAM)
2185 imxuart_load_params(sc);
2186 if (sc->sc_pending & IMXUART_PEND_SPEED)
2187 imxuart_load_speed(sc);
2188 sc->sc_pending = 0;
2189 }
2190
2191 #if defined(IMXUARTCONSOLE) || defined(KGDB)
2192
2193 /*
2194 * The following functions are polled getc and putc routines, shared
2195 * by the console and kgdb glue.
2196 *
2197 * The read-ahead code is so that you can detect pending in-band
2198 * cn_magic in polled mode while doing output rather than having to
2199 * wait until the kernel decides it needs input.
2200 */
2201
2202 #define READAHEAD_RING_LEN 16
2203 static int imxuart_readahead[READAHEAD_RING_LEN];
2204 static int imxuart_readahead_in = 0;
2205 static int imxuart_readahead_out = 0;
2206 #define READAHEAD_IS_EMPTY() (imxuart_readahead_in==imxuart_readahead_out)
2207 #define READAHEAD_IS_FULL() \
2208 (((imxuart_readahead_in+1) & (READAHEAD_RING_LEN-1)) ==imxuart_readahead_out)
2209
2210 int
2211 imxuart_common_getc(dev_t dev, struct imxuart_regs *regsp)
2212 {
2213 int s = splserial();
2214 u_char c;
2215 bus_space_tag_t iot = regsp->ur_iot;
2216 bus_space_handle_t ioh = regsp->ur_ioh;
2217 uint32_t usr2;
2218
2219 /* got a character from reading things earlier */
2220 if (imxuart_readahead_in != imxuart_readahead_out) {
2221
2222 c = imxuart_readahead[imxuart_readahead_out];
2223 imxuart_readahead_out = (imxuart_readahead_out + 1) &
2224 (READAHEAD_RING_LEN-1);
2225 splx(s);
2226 return (c);
2227 }
2228
2229 /* block until a character becomes available */
2230 while (!((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR))
2231 ;
2232
2233 c = 0xff & bus_space_read_4(iot, ioh, IMX_URXD);
2234
2235 {
2236 int __attribute__((__unused__))cn_trapped = 0; /* unused */
2237 #ifdef DDB
2238 extern int db_active;
2239 if (!db_active)
2240 #endif
2241 cn_check_magic(dev, c, imxuart_cnm_state);
2242 }
2243 splx(s);
2244 return (c);
2245 }
2246
2247 void
2248 imxuart_common_putc(dev_t dev, struct imxuart_regs *regsp, int c)
2249 {
2250 int s = splserial();
2251 int cin, timo;
2252 bus_space_tag_t iot = regsp->ur_iot;
2253 bus_space_handle_t ioh = regsp->ur_ioh;
2254 uint32_t usr2;
2255
2256 if (!READAHEAD_IS_FULL() &&
2257 ((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR)) {
2258
2259 int __attribute__((__unused__))cn_trapped = 0;
2260 cin = bus_space_read_4(iot, ioh, IMX_URXD);
2261 cn_check_magic(dev, cin & 0xff, imxuart_cnm_state);
2262 imxuart_readahead_in = (imxuart_readahead_in + 1) &
2263 (READAHEAD_RING_LEN-1);
2264 }
2265
2266 /* wait for any pending transmission to finish */
2267 timo = 150000;
2268 do {
2269 if (bus_space_read_4(iot, ioh, IMX_USR1) & IMX_USR1_TRDY) {
2270 bus_space_write_4(iot, ioh, IMX_UTXD, c);
2271 break;
2272 }
2273 } while(--timo > 0);
2274
2275 IMXUART_BARRIER(regsp, BR | BW);
2276
2277 splx(s);
2278 }
2279
2280 /*
2281 * Initialize UART for use as console or KGDB line.
2282 */
2283 int
2284 imxuart_init(struct imxuart_regs *regsp, int rate, tcflag_t cflag)
2285 {
2286 struct imxuart_baudrate_ratio ratio;
2287 int rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv);
2288 uint32_t ufcr;
2289
2290 if (bus_space_map(regsp->ur_iot, regsp->ur_iobase, IMX_UART_SIZE, 0,
2291 ®sp->ur_ioh))
2292 return ENOMEM; /* ??? */
2293
2294 if (imxuspeed(rate, &ratio) < 0)
2295 return EINVAL;
2296
2297 /* UBIR must updated before UBMR */
2298 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh,
2299 IMX_UBIR, ratio.numerator);
2300 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh,
2301 IMX_UBMR, ratio.modulator);
2302
2303
2304 /* XXX: DTREN, DPEC */
2305 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR3,
2306 IMX_UCR3_DSR|IMX_UCR3_RXDMUXSEL);
2307
2308 ufcr = (8 << IMX_UFCR_TXTL_SHIFT) | (rfdiv << IMX_UFCR_RFDIV_SHIFT) |
2309 (1 << IMX_UFCR_RXTL_SHIFT);
2310 /* XXX: keep DCE/DTE bit */
2311 ufcr |= bus_space_read_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR) &
2312 IMX_UFCR_DCEDTE;
2313
2314 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR, ufcr);
2315
2316 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_ONEMS,
2317 imxuart_freq / imxuart_freqdiv / 1000);
2318
2319 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR2,
2320 IMX_UCR2_IRTS|
2321 IMX_UCR2_CTSC|
2322 IMX_UCR2_WS|IMX_UCR2_TXEN|
2323 IMX_UCR2_RXEN|IMX_UCR2_SRST);
2324 /* clear status registers */
2325 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR1, 0xffff);
2326 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR2, 0xffff);
2327
2328
2329 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR1,
2330 IMX_UCR1_UARTEN);
2331
2332 return (0);
2333 }
2334
2335
2336 #endif
2337
2338
2339 #ifdef IMXUARTCONSOLE
2340 /*
2341 * Following are all routines needed for UART to act as console
2342 */
2343 struct consdev imxucons = {
2344 NULL, NULL, imxucngetc, imxucnputc, imxucnpollc, NULL, NULL, NULL,
2345 NODEV, CN_NORMAL
2346 };
2347
2348
2349 int
2350 imxuart_cons_attach(bus_space_tag_t iot, paddr_t iobase, u_int rate,
2351 tcflag_t cflag)
2352 {
2353 struct imxuart_regs regs;
2354 int res;
2355
2356 regs.ur_iot = iot;
2357 regs.ur_iobase = iobase;
2358
2359 res = imxuart_init(®s, rate, cflag);
2360 if (res)
2361 return (res);
2362
2363 cn_tab = &imxucons;
2364 cn_init_magic(&imxuart_cnm_state);
2365 cn_set_magic("\047\001"); /* default magic is BREAK */
2366
2367 imxuconsrate = rate;
2368 imxuconscflag = cflag;
2369
2370 imxuconsregs = regs;
2371
2372 return 0;
2373 }
2374
2375 int
2376 imxucngetc(dev_t dev)
2377 {
2378 return (imxuart_common_getc(dev, &imxuconsregs));
2379 }
2380
2381 /*
2382 * Console kernel output character routine.
2383 */
2384 void
2385 imxucnputc(dev_t dev, int c)
2386 {
2387 imxuart_common_putc(dev, &imxuconsregs, c);
2388 }
2389
2390 void
2391 imxucnpollc(dev_t dev, int on)
2392 {
2393
2394 imxuart_readahead_in = 0;
2395 imxuart_readahead_out = 0;
2396 }
2397
2398 #endif /* IMXUARTCONSOLE */
2399
2400 #ifdef KGDB
2401 int
2402 imxuart_kgdb_attach(bus_space_tag_t iot, paddr_t iobase, u_int rate,
2403 tcflag_t cflag)
2404 {
2405 int res;
2406
2407 if (iot == imxuconsregs.ur_iot &&
2408 iobase == imxuconsregs.ur_iobase) {
2409 #if !defined(DDB)
2410 return (EBUSY); /* cannot share with console */
2411 #else
2412 imxu_kgdb_regs.ur_iot = iot;
2413 imxu_kgdb_regs.ur_ioh = imxuconsregs.ur_ioh;
2414 imxu_kgdb_regs.ur_iobase = iobase;
2415 #endif
2416 } else {
2417 imxu_kgdb_regs.ur_iot = iot;
2418 imxu_kgdb_regs.ur_iobase = iobase;
2419
2420 res = imxuart_init(&imxu_kgdb_regs, rate, cflag);
2421 if (res)
2422 return (res);
2423
2424 /*
2425 * XXXfvdl this shouldn't be needed, but the cn_magic goo
2426 * expects this to be initialized
2427 */
2428 cn_init_magic(&imxuart_cnm_state);
2429 cn_set_magic("\047\001");
2430 }
2431
2432 kgdb_attach(imxuart_kgdb_getc, imxuart_kgdb_putc, &imxu_kgdb_regs);
2433 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2434
2435 return (0);
2436 }
2437
2438 /* ARGSUSED */
2439 int
2440 imxuart_kgdb_getc(void *arg)
2441 {
2442 struct imxuart_regs *regs = arg;
2443
2444 return (imxuart_common_getc(NODEV, regs));
2445 }
2446
2447 /* ARGSUSED */
2448 void
2449 imxuart_kgdb_putc(void *arg, int c)
2450 {
2451 struct imxuart_regs *regs = arg;
2452
2453 imxuart_common_putc(NODEV, regs, c);
2454 }
2455 #endif /* KGDB */
2456
2457 /* helper function to identify the imxu ports used by
2458 console or KGDB (and not yet autoconf attached) */
2459 int
2460 imxuart_is_console(bus_space_tag_t iot, bus_addr_t iobase, bus_space_handle_t *ioh)
2461 {
2462 bus_space_handle_t help;
2463
2464 if (!imxuconsattached &&
2465 iot == imxuconsregs.ur_iot && iobase == imxuconsregs.ur_iobase)
2466 help = imxuconsregs.ur_ioh;
2467 #ifdef KGDB
2468 else if (!imxu_kgdb_attached &&
2469 iot == imxu_kgdb_regs.ur_iot && iobase == imxu_kgdb_regs.ur_iobase)
2470 help = imxu_kgdb_regs.ur_ioh;
2471 #endif
2472 else
2473 return (0);
2474
2475 if (ioh)
2476 *ioh = help;
2477 return (1);
2478 }
2479
2480 #ifdef notyet
2481
2482 bool
2483 imxuart_cleanup(device_t self, int how)
2484 {
2485 /*
2486 * this routine exists to serve as a shutdown hook for systems that
2487 * have firmware which doesn't interact properly with a imxuart device in
2488 * FIFO mode.
2489 */
2490 struct imxuart_softc *sc = device_private(self);
2491
2492 if (ISSET(sc->sc_hwflags, IMXUART_HW_FIFO))
2493 UR_WRITE_1(&sc->sc_regs, IMXUART_REG_FIFO, 0);
2494
2495 return true;
2496 }
2497 #endif
2498
2499 #ifdef notyet
2500 bool
2501 imxuart_suspend(device_t self PMF_FN_ARGS)
2502 {
2503 struct imxuart_softc *sc = device_private(self);
2504
2505 UR_WRITE_1(&sc->sc_regs, IMXUART_REG_IER, 0);
2506 (void)CSR_READ_1(&sc->sc_regs, IMXUART_REG_IIR);
2507
2508 return true;
2509 }
2510 #endif
2511
2512 #ifdef notyet
2513 bool
2514 imxuart_resume(device_t self PMF_FN_ARGS)
2515 {
2516 struct imxuart_softc *sc = device_private(self);
2517
2518 mutex_spin_enter(&sc->sc_lock);
2519 imxuart_loadchannelregs(sc);
2520 mutex_spin_exit(&sc->sc_lock);
2521
2522 return true;
2523 }
2524 #endif
2525
2526 static void
2527 imxuart_enable_debugport(struct imxuart_softc *sc)
2528 {
2529 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2530 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2531
2532 if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) {
2533
2534 /* Turn on line break interrupt, set carrier. */
2535
2536 sc->sc_ucr3 |= IMX_UCR3_DSR;
2537 bus_space_write_4(iot, ioh, IMX_UCR3, sc->sc_ucr3);
2538
2539 sc->sc_ucr4 |= IMX_UCR4_BKEN;
2540 bus_space_write_4(iot, ioh, IMX_UCR4, sc->sc_ucr4);
2541
2542 sc->sc_ucr2 |= IMX_UCR2_TXEN|IMX_UCR2_RXEN|
2543 IMX_UCR2_CTS;
2544 bus_space_write_4(iot, ioh, IMX_UCR2, sc->sc_ucr2);
2545
2546 sc->sc_ucr1 |= IMX_UCR1_UARTEN;
2547 bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1);
2548 }
2549 }
2550
2551
2552 void
2553 imxuart_set_frequency(u_int freq, u_int div)
2554 {
2555 imxuart_freq = freq;
2556 imxuart_freqdiv = div;
2557 }
2558