imxuart.c revision 1.8.4.2 1 /* $NetBSD: imxuart.c,v 1.8.4.2 2014/05/22 11:39:32 yamt Exp $ */
2
3 /*
4 * Copyright (c) 2009, 2010 Genetec Corporation. All rights reserved.
5 * Written by Hiroyuki Bessho for Genetec Corporation.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26 * POSSIBILITY OF SUCH DAMAGE.
27 *
28 */
29
30 /*
31 * derived from sys/dev/ic/com.c
32 */
33
34 /*-
35 * Copyright (c) 1998, 1999, 2004, 2008 The NetBSD Foundation, Inc.
36 * All rights reserved.
37 *
38 * This code is derived from software contributed to The NetBSD Foundation
39 * by Charles M. Hannum.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
51 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
52 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
53 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
54 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
55 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
56 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
57 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
58 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
59 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
60 * POSSIBILITY OF SUCH DAMAGE.
61 */
62
63 /*
64 * Copyright (c) 1991 The Regents of the University of California.
65 * All rights reserved.
66 *
67 * Redistribution and use in source and binary forms, with or without
68 * modification, are permitted provided that the following conditions
69 * are met:
70 * 1. Redistributions of source code must retain the above copyright
71 * notice, this list of conditions and the following disclaimer.
72 * 2. Redistributions in binary form must reproduce the above copyright
73 * notice, this list of conditions and the following disclaimer in the
74 * documentation and/or other materials provided with the distribution.
75 * 3. Neither the name of the University nor the names of its contributors
76 * may be used to endorse or promote products derived from this software
77 * without specific prior written permission.
78 *
79 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
80 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
81 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
82 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
83 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
84 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
85 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
86 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
87 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
88 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
89 * SUCH DAMAGE.
90 *
91 * @(#)com.c 7.5 (Berkeley) 5/16/91
92 */
93
94 /*
95 * driver for UART in i.MX SoC.
96 */
97
98 #include <sys/cdefs.h>
99 __KERNEL_RCSID(0, "$NetBSD: imxuart.c,v 1.8.4.2 2014/05/22 11:39:32 yamt Exp $");
100
101 #include "opt_imxuart.h"
102 #include "opt_ddb.h"
103 #include "opt_kgdb.h"
104 #include "opt_lockdebug.h"
105 #include "opt_multiprocessor.h"
106 #include "opt_ntp.h"
107 #include "opt_imxuart.h"
108 #include "opt_imx.h"
109
110 #include "rnd.h"
111 #ifdef RND_COM
112 #include <sys/rnd.h>
113 #endif
114
115 #ifndef IMXUART_TOLERANCE
116 #define IMXUART_TOLERANCE 30 /* baud rate tolerance, in 0.1% units */
117 #endif
118
119 #ifndef IMXUART_FREQDIV
120 #define IMXUART_FREQDIV 2 /* XXX */
121 #endif
122
123 #ifndef IMXUART_FREQ
124 #define IMXUART_FREQ (56900000)
125 #endif
126
127 /*
128 * Override cnmagic(9) macro before including <sys/systm.h>.
129 * We need to know if cn_check_magic triggered debugger, so set a flag.
130 * Callers of cn_check_magic must declare int cn_trapped = 0;
131 * XXX: this is *ugly*!
132 */
133 #define cn_trap() \
134 do { \
135 console_debugger(); \
136 cn_trapped = 1; \
137 } while (/* CONSTCOND */ 0)
138
139 #include <sys/param.h>
140 #include <sys/systm.h>
141 #include <sys/ioctl.h>
142 #include <sys/select.h>
143 #include <sys/poll.h>
144 #include <sys/tty.h>
145 #include <sys/proc.h>
146 #include <sys/conf.h>
147 #include <sys/file.h>
148 #include <sys/uio.h>
149 #include <sys/kernel.h>
150 #include <sys/syslog.h>
151 #include <sys/device.h>
152 #include <sys/malloc.h>
153 #include <sys/timepps.h>
154 #include <sys/vnode.h>
155 #include <sys/kauth.h>
156 #include <sys/intr.h>
157
158 #include <sys/bus.h>
159
160 #include <arm/imx/imxuartreg.h>
161 #include <arm/imx/imxuartvar.h>
162 #include <dev/cons.h>
163
164 #ifndef IMXUART_RING_SIZE
165 #define IMXUART_RING_SIZE 2048
166 #endif
167
168 typedef struct imxuart_softc {
169 device_t sc_dev;
170
171 struct imxuart_regs {
172 bus_space_tag_t ur_iot;
173 bus_space_handle_t ur_ioh;
174 bus_addr_t ur_iobase;
175 #if 0
176 bus_size_t ur_nports;
177 bus_size_t ur_map[16];
178 #endif
179 } sc_regs;
180
181 #define sc_bt sc_regs.ur_iot
182 #define sc_bh sc_regs.ur_ioh
183
184 uint32_t sc_intrspec_enb;
185 uint32_t sc_ucr2_d; /* target value for UCR2 */
186 uint32_t sc_ucr[4]; /* cached value of UCRn */
187 #define sc_ucr1 sc_ucr[0]
188 #define sc_ucr2 sc_ucr[1]
189 #define sc_ucr3 sc_ucr[2]
190 #define sc_ucr4 sc_ucr[3]
191
192 uint sc_init_cnt;
193
194 bus_addr_t sc_addr;
195 bus_size_t sc_size;
196 int sc_intr;
197
198 u_char sc_hwflags;
199 /* Hardware flag masks */
200 #define IMXUART_HW_FLOW __BIT(0)
201 #define IMXUART_HW_DEV_OK __BIT(1)
202 #define IMXUART_HW_CONSOLE __BIT(2)
203 #define IMXUART_HW_KGDB __BIT(3)
204
205
206 bool enabled;
207
208 u_char sc_swflags;
209
210 u_char sc_rx_flags;
211 #define IMXUART_RX_TTY_BLOCKED __BIT(0)
212 #define IMXUART_RX_TTY_OVERFLOWED __BIT(1)
213 #define IMXUART_RX_IBUF_BLOCKED __BIT(2)
214 #define IMXUART_RX_IBUF_OVERFLOWED __BIT(3)
215 #define IMXUART_RX_ANY_BLOCK \
216 (IMXUART_RX_TTY_BLOCKED|IMXUART_RX_TTY_OVERFLOWED| \
217 IMXUART_RX_IBUF_BLOCKED|IMXUART_RX_IBUF_OVERFLOWED)
218
219 bool sc_tx_busy, sc_tx_done, sc_tx_stopped;
220 bool sc_rx_ready,sc_st_check;
221 u_short sc_txfifo_len, sc_txfifo_thresh;
222
223 uint16_t *sc_rbuf;
224 u_int sc_rbuf_size;
225 u_int sc_rbuf_in;
226 u_int sc_rbuf_out;
227 #define IMXUART_RBUF_AVAIL(sc) \
228 ((sc->sc_rbuf_out <= sc->sc_rbuf_in) ? \
229 (sc->sc_rbuf_in - sc->sc_rbuf_out) : \
230 (sc->sc_rbuf_size - (sc->sc_rbuf_out - sc->sc_rbuf_in)))
231
232 #define IMXUART_RBUF_SPACE(sc) \
233 ((sc->sc_rbuf_in <= sc->sc_rbuf_out ? \
234 sc->sc_rbuf_size - (sc->sc_rbuf_out - sc->sc_rbuf_in) : \
235 sc->sc_rbuf_in - sc->sc_rbuf_out) - 1)
236 /* increment ringbuffer pointer */
237 #define IMXUART_RBUF_INC(sc,v,i) (((v) + (i))&((sc->sc_rbuf_size)-1))
238 u_int sc_r_lowat;
239 u_int sc_r_hiwat;
240
241 /* output chunk */
242 u_char *sc_tba;
243 u_int sc_tbc;
244 u_int sc_heldtbc;
245 /* pending parameter changes */
246 u_char sc_pending;
247 #define IMXUART_PEND_PARAM __BIT(0)
248 #define IMXUART_PEND_SPEED __BIT(1)
249
250
251 struct callout sc_diag_callout;
252 kmutex_t sc_lock;
253 void *sc_ih; /* interrupt handler */
254 void *sc_si; /* soft interrupt */
255 struct tty *sc_tty;
256
257 /* power management hooks */
258 int (*enable)(struct imxuart_softc *);
259 void (*disable)(struct imxuart_softc *);
260
261 struct {
262 ulong err;
263 ulong brk;
264 ulong prerr;
265 ulong frmerr;
266 ulong ovrrun;
267 } sc_errors;
268
269 struct imxuart_baudrate_ratio {
270 uint16_t numerator; /* UBIR */
271 uint16_t modulator; /* UBMR */
272 } sc_ratio;
273
274 } imxuart_softc_t;
275
276
277 int imxuspeed(long, struct imxuart_baudrate_ratio *);
278 int imxuparam(struct tty *, struct termios *);
279 void imxustart(struct tty *);
280 int imxuhwiflow(struct tty *, int);
281
282 void imxuart_shutdown(struct imxuart_softc *);
283 void imxuart_loadchannelregs(struct imxuart_softc *);
284 void imxuart_hwiflow(struct imxuart_softc *);
285 void imxuart_break(struct imxuart_softc *, bool);
286 void imxuart_modem(struct imxuart_softc *, int);
287 void tiocm_to_imxu(struct imxuart_softc *, u_long, int);
288 int imxuart_to_tiocm(struct imxuart_softc *);
289 void imxuart_iflush(struct imxuart_softc *);
290 int imxuintr(void *);
291
292 int imxuart_common_getc(dev_t, struct imxuart_regs *);
293 void imxuart_common_putc(dev_t, struct imxuart_regs *, int);
294
295
296 int imxuart_init(struct imxuart_regs *, int, tcflag_t);
297
298 int imxucngetc(dev_t);
299 void imxucnputc(dev_t, int);
300 void imxucnpollc(dev_t, int);
301
302 static void imxuintr_read(struct imxuart_softc *);
303 static void imxuintr_send(struct imxuart_softc *);
304
305 static void imxuart_enable_debugport(struct imxuart_softc *);
306 static void imxuart_disable_all_interrupts(struct imxuart_softc *);
307 static void imxuart_control_rxint(struct imxuart_softc *, bool);
308 static void imxuart_control_txint(struct imxuart_softc *, bool);
309 static u_int imxuart_txfifo_space(struct imxuart_softc *sc);
310
311 static uint32_t cflag_to_ucr2(tcflag_t, uint32_t);
312
313 CFATTACH_DECL_NEW(imxuart, sizeof(struct imxuart_softc),
314 imxuart_match, imxuart_attach, NULL, NULL);
315
316
317 #define integrate static inline
318 void imxusoft(void *);
319 integrate void imxuart_rxsoft(struct imxuart_softc *, struct tty *);
320 integrate void imxuart_txsoft(struct imxuart_softc *, struct tty *);
321 integrate void imxuart_stsoft(struct imxuart_softc *, struct tty *);
322 integrate void imxuart_schedrx(struct imxuart_softc *);
323 void imxudiag(void *);
324 static void imxuart_load_speed(struct imxuart_softc *);
325 static void imxuart_load_params(struct imxuart_softc *);
326 integrate void imxuart_load_pendings(struct imxuart_softc *);
327
328
329 extern struct cfdriver imxuart_cd;
330
331 dev_type_open(imxuopen);
332 dev_type_close(imxuclose);
333 dev_type_read(imxuread);
334 dev_type_write(imxuwrite);
335 dev_type_ioctl(imxuioctl);
336 dev_type_stop(imxustop);
337 dev_type_tty(imxutty);
338 dev_type_poll(imxupoll);
339
340 const struct cdevsw imxcom_cdevsw = {
341 .d_open = imxuopen,
342 .d_close = imxuclose,
343 .d_read = imxuread,
344 .d_write = imxuwrite,
345 .d_ioctl = imxuioctl,
346 .d_stop = imxustop,
347 .d_tty = imxutty,
348 .d_poll = imxupoll,
349 .d_mmap = nommap,
350 .d_kqfilter = ttykqfilter,
351 .d_flag = D_TTY
352 };
353
354 /*
355 * Make this an option variable one can patch.
356 * But be warned: this must be a power of 2!
357 */
358 u_int imxuart_rbuf_size = IMXUART_RING_SIZE;
359
360 /* Stop input when 3/4 of the ring is full; restart when only 1/4 is full. */
361 u_int imxuart_rbuf_hiwat = (IMXUART_RING_SIZE * 1) / 4;
362 u_int imxuart_rbuf_lowat = (IMXUART_RING_SIZE * 3) / 4;
363
364 static struct imxuart_regs imxuconsregs;
365 static int imxuconsattached;
366 static int imxuconsrate;
367 static tcflag_t imxuconscflag;
368 static struct cnm_state imxuart_cnm_state;
369
370 u_int imxuart_freq = IMXUART_FREQ;
371 u_int imxuart_freqdiv = IMXUART_FREQDIV;
372
373 #ifdef KGDB
374 #include <sys/kgdb.h>
375
376 static struct imxuart_regs imxu_kgdb_regs;
377 static int imxu_kgdb_attached;
378
379 int imxuart_kgdb_getc(void *);
380 void imxuart_kgdb_putc(void *, int);
381 #endif /* KGDB */
382
383 #define IMXUART_UNIT_MASK 0x7ffff
384 #define IMXUART_DIALOUT_MASK 0x80000
385
386 #define IMXUART_UNIT(x) (minor(x) & IMXUART_UNIT_MASK)
387 #define IMXUART_DIALOUT(x) (minor(x) & IMXUART_DIALOUT_MASK)
388
389 #define IMXUART_ISALIVE(sc) ((sc)->enabled != 0 && \
390 device_is_active((sc)->sc_dev))
391
392 #define BR BUS_SPACE_BARRIER_READ
393 #define BW BUS_SPACE_BARRIER_WRITE
394 #define IMXUART_BARRIER(r, f) \
395 bus_space_barrier((r)->ur_iot, (r)->ur_ioh, 0, IMX_UART_SIZE, (f))
396
397
398 void
399 imxuart_attach_common(device_t parent, device_t self,
400 bus_space_tag_t iot, paddr_t iobase, size_t size, int intr, int flags)
401 {
402 imxuart_softc_t *sc = device_private(self);
403 struct imxuart_regs *regsp = &sc->sc_regs;
404 struct tty *tp;
405 bus_space_handle_t ioh;
406
407 aprint_naive("\n");
408 aprint_normal("\n");
409
410 sc->sc_dev = self;
411
412 if (size <= 0)
413 size = IMX_UART_SIZE;
414
415 sc->sc_intr = intr;
416 regsp->ur_iot = iot;
417 regsp->ur_iobase = iobase;
418
419 if (bus_space_map(iot, regsp->ur_iobase, size, 0, &ioh)) {
420 return;
421 }
422 regsp->ur_ioh = ioh;
423
424 callout_init(&sc->sc_diag_callout, 0);
425 mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_HIGH);
426
427 bus_space_read_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4);
428 sc->sc_ucr2_d = sc->sc_ucr2;
429
430 /* Disable interrupts before configuring the device. */
431 imxuart_disable_all_interrupts(sc);
432
433 if (regsp->ur_iobase == imxuconsregs.ur_iobase) {
434 imxuconsattached = 1;
435
436 /* Make sure the console is always "hardwired". */
437 #if 0
438 delay(10000); /* wait for output to finish */
439 #endif
440 SET(sc->sc_hwflags, IMXUART_HW_CONSOLE);
441 SET(sc->sc_swflags, TIOCFLAG_SOFTCAR);
442 }
443
444
445 tp = tty_alloc();
446 tp->t_oproc = imxustart;
447 tp->t_param = imxuparam;
448 tp->t_hwiflow = imxuhwiflow;
449
450 sc->sc_tty = tp;
451 sc->sc_rbuf = malloc(sizeof (*sc->sc_rbuf) * imxuart_rbuf_size,
452 M_DEVBUF, M_NOWAIT);
453 sc->sc_rbuf_size = imxuart_rbuf_size;
454 sc->sc_rbuf_in = sc->sc_rbuf_out = 0;
455 if (sc->sc_rbuf == NULL) {
456 aprint_error_dev(sc->sc_dev,
457 "unable to allocate ring buffer\n");
458 return;
459 }
460
461 sc->sc_txfifo_len = 32;
462 sc->sc_txfifo_thresh = 16; /* when USR1.TRDY, fifo has space
463 * for this many characters */
464
465 tty_attach(tp);
466
467 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
468 int maj;
469
470 /* locate the major number */
471 maj = cdevsw_lookup_major(&imxcom_cdevsw);
472
473 if (maj != NODEVMAJOR) {
474 tp->t_dev = cn_tab->cn_dev = makedev(maj,
475 device_unit(sc->sc_dev));
476
477 aprint_normal_dev(sc->sc_dev, "console\n");
478 }
479 }
480
481 sc->sc_ih = intr_establish(sc->sc_intr, IPL_SERIAL, IST_LEVEL,
482 imxuintr, sc);
483 if (sc->sc_ih == NULL)
484 aprint_error_dev(sc->sc_dev, "intr_establish failed\n");
485
486 #ifdef KGDB
487 /*
488 * Allow kgdb to "take over" this port. If this is
489 * not the console and is the kgdb device, it has
490 * exclusive use. If it's the console _and_ the
491 * kgdb device, it doesn't.
492 */
493 if (regsp->ur_iobase == imxu_kgdb_regs.ur_iobase) {
494 if (!ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
495 imxu_kgdb_attached = 1;
496
497 SET(sc->sc_hwflags, IMXUART_HW_KGDB);
498 }
499 aprint_normal_dev(sc->sc_dev, "kgdb\n");
500 }
501 #endif
502
503 sc->sc_si = softint_establish(SOFTINT_SERIAL, imxusoft, sc);
504
505 #ifdef RND_COM
506 rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
507 RND_TYPE_TTY, 0);
508 #endif
509
510 /* if there are no enable/disable functions, assume the device
511 is always enabled */
512 if (!sc->enable)
513 sc->enabled = 1;
514
515 imxuart_enable_debugport(sc);
516
517 SET(sc->sc_hwflags, IMXUART_HW_DEV_OK);
518
519 //shutdownhook_establish(imxuart_shutdownhook, sc);
520
521
522 #if 0
523 {
524 uint32_t reg;
525 reg = bus_space_read_4(iot, ioh, IMX_UCR1);
526 reg |= IMX_UCR1_TXDMAEN | IMX_UCR1_RXDMAEN;
527 bus_space_write_4(iot, ioh, IMX_UCR1, reg);
528 }
529 #endif
530 }
531
532 /*
533 * baudrate = RefFreq / (16 * (UMBR + 1)/(UBIR + 1))
534 *
535 * (UBIR + 1) / (UBMR + 1) = (16 * BaurdRate) / RefFreq
536 */
537
538 static long
539 gcd(long m, long n)
540 {
541
542 if (m < n)
543 return gcd(n, m);
544
545 if (n <= 0)
546 return m;
547 return gcd(n, m % n);
548 }
549
550
551 int
552 imxuspeed(long speed, struct imxuart_baudrate_ratio *ratio)
553 {
554 #define divrnd(n, q) (((n)*2/(q)+1)/2) /* divide and round off */
555 long b = 16 * speed;
556 long f = imxuart_freq / imxuart_freqdiv;
557 long d;
558 int err = 0;
559
560 /* reduce b/f */
561 while ((f > (1<<16) || b > (1<<16)) && (d = gcd(f, b)) > 1) {
562 f /= d;
563 b /= d;
564 }
565
566
567 while (f > (1<<16) || b > (1<<16)) {
568 f /= 2;
569 b /= 2;
570 }
571 if (f <= 0 || b <= 0)
572 return -1;
573
574 #ifdef DIAGNOSTIC
575 err = divrnd(((uint64_t)imxuart_freq) * 1000 / imxuart_freqdiv,
576 (uint64_t)speed * 16 * f / b) - 1000;
577 if (err < 0)
578 err = -err;
579 #endif
580
581 ratio->numerator = b-1;
582 ratio->modulator = f-1;
583
584 if (err > IMXUART_TOLERANCE)
585 return -1;
586
587 return 0;
588 #undef divrnd
589 }
590
591 #ifdef IMXUART_DEBUG
592 int imxuart_debug = 0;
593
594 void imxustatus(struct imxuart_softc *, const char *);
595 void
596 imxustatus(struct imxuart_softc *sc, const char *str)
597 {
598 struct tty *tp = sc->sc_tty;
599
600 aprint_normal_dev(sc->sc_dev,
601 "%s %cclocal %cdcd %cts_carr_on %cdtr %ctx_stopped\n",
602 str,
603 ISSET(tp->t_cflag, CLOCAL) ? '+' : '-',
604 ISSET(sc->sc_msr, MSR_DCD) ? '+' : '-',
605 ISSET(tp->t_state, TS_CARR_ON) ? '+' : '-',
606 ISSET(sc->sc_mcr, MCR_DTR) ? '+' : '-',
607 sc->sc_tx_stopped ? '+' : '-');
608
609 aprint_normal_dev(sc->sc_dev,
610 "%s %ccrtscts %ccts %cts_ttstop %crts rx_flags=0x%x\n",
611 str,
612 ISSET(tp->t_cflag, CRTSCTS) ? '+' : '-',
613 ISSET(sc->sc_msr, MSR_CTS) ? '+' : '-',
614 ISSET(tp->t_state, TS_TTSTOP) ? '+' : '-',
615 ISSET(sc->sc_mcr, MCR_RTS) ? '+' : '-',
616 sc->sc_rx_flags);
617 }
618 #endif
619
620 #if 0
621 int
622 imxuart_detach(device_t self, int flags)
623 {
624 struct imxuart_softc *sc = device_private(self);
625 int maj, mn;
626
627 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE))
628 return EBUSY;
629
630 /* locate the major number */
631 maj = cdevsw_lookup_major(&imxcom_cdevsw);
632
633 /* Nuke the vnodes for any open instances. */
634 mn = device_unit(self);
635 vdevgone(maj, mn, mn, VCHR);
636
637 mn |= IMXUART_DIALOUT_MASK;
638 vdevgone(maj, mn, mn, VCHR);
639
640 if (sc->sc_rbuf == NULL) {
641 /*
642 * Ring buffer allocation failed in the imxuart_attach_subr,
643 * only the tty is allocated, and nothing else.
644 */
645 tty_free(sc->sc_tty);
646 return 0;
647 }
648
649 /* Free the receive buffer. */
650 free(sc->sc_rbuf, M_DEVBUF);
651
652 /* Detach and free the tty. */
653 tty_detach(sc->sc_tty);
654 tty_free(sc->sc_tty);
655
656 /* Unhook the soft interrupt handler. */
657 softint_disestablish(sc->sc_si);
658
659 #ifdef RND_COM
660 /* Unhook the entropy source. */
661 rnd_detach_source(&sc->rnd_source);
662 #endif
663 callout_destroy(&sc->sc_diag_callout);
664
665 /* Destroy the lock. */
666 mutex_destroy(&sc->sc_lock);
667
668 return (0);
669 }
670 #endif
671
672 #ifdef notyet
673 int
674 imxuart_activate(device_t self, enum devact act)
675 {
676 struct imxuart_softc *sc = device_private(self);
677 int rv = 0;
678
679 switch (act) {
680 case DVACT_ACTIVATE:
681 rv = EOPNOTSUPP;
682 break;
683
684 case DVACT_DEACTIVATE:
685 if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) {
686 rv = EBUSY;
687 break;
688 }
689
690 if (sc->disable != NULL && sc->enabled != 0) {
691 (*sc->disable)(sc);
692 sc->enabled = 0;
693 }
694 break;
695 }
696
697 return (rv);
698 }
699 #endif
700
701 void
702 imxuart_shutdown(struct imxuart_softc *sc)
703 {
704 struct tty *tp = sc->sc_tty;
705
706 mutex_spin_enter(&sc->sc_lock);
707
708 /* If we were asserting flow control, then deassert it. */
709 SET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED);
710 imxuart_hwiflow(sc);
711
712 /* Clear any break condition set with TIOCSBRK. */
713 imxuart_break(sc, false);
714
715 /*
716 * Hang up if necessary. Wait a bit, so the other side has time to
717 * notice even if we immediately open the port again.
718 * Avoid tsleeping above splhigh().
719 */
720 if (ISSET(tp->t_cflag, HUPCL)) {
721 imxuart_modem(sc, 0);
722 mutex_spin_exit(&sc->sc_lock);
723 /* XXX will only timeout */
724 (void) kpause(ttclos, false, hz, NULL);
725 mutex_spin_enter(&sc->sc_lock);
726 }
727
728 /* Turn off interrupts. */
729 imxuart_disable_all_interrupts(sc);
730 /* re-enable recv interrupt for console or kgdb port */
731 imxuart_enable_debugport(sc);
732
733 mutex_spin_exit(&sc->sc_lock);
734
735 #ifdef notyet
736 if (sc->disable) {
737 #ifdef DIAGNOSTIC
738 if (!sc->enabled)
739 panic("imxuart_shutdown: not enabled?");
740 #endif
741 (*sc->disable)(sc);
742 sc->enabled = 0;
743 }
744 #endif
745 }
746
747 int
748 imxuopen(dev_t dev, int flag, int mode, struct lwp *l)
749 {
750 struct imxuart_softc *sc;
751 struct tty *tp;
752 int s;
753 int error;
754
755 sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
756 if (sc == NULL || !ISSET(sc->sc_hwflags, IMXUART_HW_DEV_OK) ||
757 sc->sc_rbuf == NULL)
758 return (ENXIO);
759
760 if (!device_is_active(sc->sc_dev))
761 return (ENXIO);
762
763 #ifdef KGDB
764 /*
765 * If this is the kgdb port, no other use is permitted.
766 */
767 if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB))
768 return (EBUSY);
769 #endif
770
771 tp = sc->sc_tty;
772
773 if (kauth_authorize_device_tty(l->l_cred, KAUTH_DEVICE_TTY_OPEN, tp))
774 return (EBUSY);
775
776 s = spltty();
777
778 /*
779 * Do the following iff this is a first open.
780 */
781 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
782 struct termios t;
783
784 tp->t_dev = dev;
785
786
787 #ifdef notyet
788 if (sc->enable) {
789 if ((*sc->enable)(sc)) {
790 splx(s);
791 aprint_error_dev(sc->sc_dev,
792 "device enable failed\n");
793 return (EIO);
794 }
795 sc->enabled = 1;
796 }
797 #endif
798
799 mutex_spin_enter(&sc->sc_lock);
800
801 imxuart_disable_all_interrupts(sc);
802
803 /* Fetch the current modem control status, needed later. */
804
805 #ifdef IMXUART_PPS
806 /* Clear PPS capture state on first open. */
807 mutex_spin_enter(&timecounter_lock);
808 memset(&sc->sc_pps_state, 0, sizeof(sc->sc_pps_state));
809 sc->sc_pps_state.ppscap = PPS_CAPTUREASSERT | PPS_CAPTURECLEAR;
810 pps_init(&sc->sc_pps_state);
811 mutex_spin_exit(&timecounter_lock);
812 #endif
813
814 mutex_spin_exit(&sc->sc_lock);
815
816 /*
817 * Initialize the termios status to the defaults. Add in the
818 * sticky bits from TIOCSFLAGS.
819 */
820 if (ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
821 t.c_ospeed = imxuconsrate;
822 t.c_cflag = imxuconscflag;
823 } else {
824 t.c_ospeed = TTYDEF_SPEED;
825 t.c_cflag = TTYDEF_CFLAG;
826 }
827 t.c_ispeed = t.c_ospeed;
828 if (ISSET(sc->sc_swflags, TIOCFLAG_CLOCAL))
829 SET(t.c_cflag, CLOCAL);
830 if (ISSET(sc->sc_swflags, TIOCFLAG_CRTSCTS))
831 SET(t.c_cflag, CRTSCTS);
832 if (ISSET(sc->sc_swflags, TIOCFLAG_MDMBUF))
833 SET(t.c_cflag, MDMBUF);
834 /* Make sure imxuparam() will do something. */
835 tp->t_ospeed = 0;
836 (void) imxuparam(tp, &t);
837 tp->t_iflag = TTYDEF_IFLAG;
838 tp->t_oflag = TTYDEF_OFLAG;
839 tp->t_lflag = TTYDEF_LFLAG;
840 ttychars(tp);
841 ttsetwater(tp);
842
843 mutex_spin_enter(&sc->sc_lock);
844
845 /*
846 * Turn on DTR. We must always do this, even if carrier is not
847 * present, because otherwise we'd have to use TIOCSDTR
848 * immediately after setting CLOCAL, which applications do not
849 * expect. We always assert DTR while the device is open
850 * unless explicitly requested to deassert it.
851 */
852 imxuart_modem(sc, 1);
853
854 /* Clear the input ring, and unblock. */
855 sc->sc_rbuf_in = sc->sc_rbuf_out = 0;
856 imxuart_iflush(sc);
857 CLR(sc->sc_rx_flags, IMXUART_RX_ANY_BLOCK);
858 imxuart_hwiflow(sc);
859
860 /* Turn on interrupts. */
861 imxuart_control_rxint(sc, true);
862
863 #ifdef IMXUART_DEBUG
864 if (imxuart_debug)
865 imxustatus(sc, "imxuopen ");
866 #endif
867
868 mutex_spin_exit(&sc->sc_lock);
869 }
870
871 splx(s);
872
873 #if 0
874 error = ttyopen(tp, IMXUART_DIALOUT(dev), ISSET(flag, O_NONBLOCK));
875 #else
876 error = ttyopen(tp, 1, ISSET(flag, O_NONBLOCK));
877 #endif
878 if (error)
879 goto bad;
880
881 error = (*tp->t_linesw->l_open)(dev, tp);
882 if (error)
883 goto bad;
884
885 return (0);
886
887 bad:
888 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
889 /*
890 * We failed to open the device, and nobody else had it opened.
891 * Clean up the state as appropriate.
892 */
893 imxuart_shutdown(sc);
894 }
895
896 return (error);
897 }
898
899 int
900 imxuclose(dev_t dev, int flag, int mode, struct lwp *l)
901 {
902 struct imxuart_softc *sc =
903 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
904 struct tty *tp = sc->sc_tty;
905
906 /* XXX This is for cons.c. */
907 if (!ISSET(tp->t_state, TS_ISOPEN))
908 return (0);
909
910 (*tp->t_linesw->l_close)(tp, flag);
911 ttyclose(tp);
912
913 if (IMXUART_ISALIVE(sc) == 0)
914 return (0);
915
916 if (!ISSET(tp->t_state, TS_ISOPEN) && tp->t_wopen == 0) {
917 /*
918 * Although we got a last close, the device may still be in
919 * use; e.g. if this was the dialout node, and there are still
920 * processes waiting for carrier on the non-dialout node.
921 */
922 imxuart_shutdown(sc);
923 }
924
925 return (0);
926 }
927
928 int
929 imxuread(dev_t dev, struct uio *uio, int flag)
930 {
931 struct imxuart_softc *sc =
932 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
933 struct tty *tp = sc->sc_tty;
934
935 if (IMXUART_ISALIVE(sc) == 0)
936 return (EIO);
937
938 return ((*tp->t_linesw->l_read)(tp, uio, flag));
939 }
940
941 int
942 imxuwrite(dev_t dev, struct uio *uio, int flag)
943 {
944 struct imxuart_softc *sc =
945 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
946 struct tty *tp = sc->sc_tty;
947
948 if (IMXUART_ISALIVE(sc) == 0)
949 return (EIO);
950
951 return ((*tp->t_linesw->l_write)(tp, uio, flag));
952 }
953
954 int
955 imxupoll(dev_t dev, int events, struct lwp *l)
956 {
957 struct imxuart_softc *sc =
958 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
959 struct tty *tp = sc->sc_tty;
960
961 if (IMXUART_ISALIVE(sc) == 0)
962 return (POLLHUP);
963
964 return ((*tp->t_linesw->l_poll)(tp, events, l));
965 }
966
967 struct tty *
968 imxutty(dev_t dev)
969 {
970 struct imxuart_softc *sc =
971 device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
972 struct tty *tp = sc->sc_tty;
973
974 return (tp);
975 }
976
977 int
978 imxuioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
979 {
980 struct imxuart_softc *sc;
981 struct tty *tp;
982 int error;
983
984 sc = device_lookup_private(&imxuart_cd, IMXUART_UNIT(dev));
985 if (sc == NULL)
986 return ENXIO;
987 if (IMXUART_ISALIVE(sc) == 0)
988 return (EIO);
989
990 tp = sc->sc_tty;
991
992 error = (*tp->t_linesw->l_ioctl)(tp, cmd, data, flag, l);
993 if (error != EPASSTHROUGH)
994 return (error);
995
996 error = ttioctl(tp, cmd, data, flag, l);
997 if (error != EPASSTHROUGH)
998 return (error);
999
1000 error = 0;
1001 switch (cmd) {
1002 case TIOCSFLAGS:
1003 error = kauth_authorize_device_tty(l->l_cred,
1004 KAUTH_DEVICE_TTY_PRIVSET, tp);
1005 break;
1006 default:
1007 /* nothing */
1008 break;
1009 }
1010 if (error) {
1011 return error;
1012 }
1013
1014 mutex_spin_enter(&sc->sc_lock);
1015
1016 switch (cmd) {
1017 case TIOCSBRK:
1018 imxuart_break(sc, true);
1019 break;
1020
1021 case TIOCCBRK:
1022 imxuart_break(sc, false);
1023 break;
1024
1025 case TIOCSDTR:
1026 imxuart_modem(sc, 1);
1027 break;
1028
1029 case TIOCCDTR:
1030 imxuart_modem(sc, 0);
1031 break;
1032
1033 case TIOCGFLAGS:
1034 *(int *)data = sc->sc_swflags;
1035 break;
1036
1037 case TIOCSFLAGS:
1038 sc->sc_swflags = *(int *)data;
1039 break;
1040
1041 case TIOCMSET:
1042 case TIOCMBIS:
1043 case TIOCMBIC:
1044 tiocm_to_imxu(sc, cmd, *(int *)data);
1045 break;
1046
1047 case TIOCMGET:
1048 *(int *)data = imxuart_to_tiocm(sc);
1049 break;
1050
1051 #ifdef notyet
1052 case PPS_IOC_CREATE:
1053 case PPS_IOC_DESTROY:
1054 case PPS_IOC_GETPARAMS:
1055 case PPS_IOC_SETPARAMS:
1056 case PPS_IOC_GETCAP:
1057 case PPS_IOC_FETCH:
1058 #ifdef PPS_SYNC
1059 case PPS_IOC_KCBIND:
1060 #endif
1061 mutex_spin_enter(&timecounter_lock);
1062 error = pps_ioctl(cmd, data, &sc->sc_pps_state);
1063 mutex_spin_exit(&timecounter_lock);
1064 break;
1065
1066 case TIOCDCDTIMESTAMP: /* XXX old, overloaded API used by xntpd v3 */
1067 mutex_spin_enter(&timecounter_lock);
1068 #ifndef PPS_TRAILING_EDGE
1069 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1070 &sc->sc_pps_state.ppsinfo.assert_timestamp);
1071 #else
1072 TIMESPEC_TO_TIMEVAL((struct timeval *)data,
1073 &sc->sc_pps_state.ppsinfo.clear_timestamp);
1074 #endif
1075 mutex_spin_exit(&timecounter_lock);
1076 break;
1077 #endif
1078
1079 default:
1080 error = EPASSTHROUGH;
1081 break;
1082 }
1083
1084 mutex_spin_exit(&sc->sc_lock);
1085
1086 #ifdef IMXUART_DEBUG
1087 if (imxuart_debug)
1088 imxustatus(sc, "imxuioctl ");
1089 #endif
1090
1091 return (error);
1092 }
1093
1094 integrate void
1095 imxuart_schedrx(struct imxuart_softc *sc)
1096 {
1097 sc->sc_rx_ready = 1;
1098
1099 /* Wake up the poller. */
1100 softint_schedule(sc->sc_si);
1101 }
1102
1103 void
1104 imxuart_break(struct imxuart_softc *sc, bool onoff)
1105 {
1106 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1107 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1108
1109 if (onoff)
1110 SET(sc->sc_ucr1, IMX_UCR1_SNDBRK);
1111 else
1112 CLR(sc->sc_ucr1, IMX_UCR1_SNDBRK);
1113
1114 bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1);
1115 }
1116
1117 void
1118 imxuart_modem(struct imxuart_softc *sc, int onoff)
1119 {
1120 #ifdef notyet
1121 if (sc->sc_mcr_dtr == 0)
1122 return;
1123
1124 if (onoff)
1125 SET(sc->sc_mcr, sc->sc_mcr_dtr);
1126 else
1127 CLR(sc->sc_mcr, sc->sc_mcr_dtr);
1128
1129 if (!sc->sc_heldchange) {
1130 if (sc->sc_tx_busy) {
1131 sc->sc_heldtbc = sc->sc_tbc;
1132 sc->sc_tbc = 0;
1133 sc->sc_heldchange = 1;
1134 } else
1135 imxuart_loadchannelregs(sc);
1136 }
1137 #endif
1138 }
1139
1140 /*
1141 * RTS output is controlled by UCR2.CTS bit.
1142 * DTR output is controlled by UCR3.DSR bit.
1143 * (i.MX reference manual uses names in DCE mode)
1144 *
1145 * note: if UCR2.CTSC == 1 for automatic HW flow control, UCR2.CTS is ignored.
1146 */
1147 void
1148 tiocm_to_imxu(struct imxuart_softc *sc, u_long how, int ttybits)
1149 {
1150 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1151 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1152
1153 uint32_t ucr2 = sc->sc_ucr2_d;
1154 uint32_t ucr3 = sc->sc_ucr3;
1155
1156 uint32_t ucr2_mask = 0;
1157 uint32_t ucr3_mask = 0;
1158
1159
1160 if (ISSET(ttybits, TIOCM_DTR))
1161 ucr3_mask = IMX_UCR3_DSR;
1162 if (ISSET(ttybits, TIOCM_RTS))
1163 ucr2_mask = IMX_UCR2_CTS;
1164
1165 switch (how) {
1166 case TIOCMBIC:
1167 CLR(ucr2, ucr2_mask);
1168 CLR(ucr3, ucr3_mask);
1169 break;
1170
1171 case TIOCMBIS:
1172 SET(ucr2, ucr2_mask);
1173 SET(ucr3, ucr3_mask);
1174 break;
1175
1176 case TIOCMSET:
1177 CLR(ucr2, ucr2_mask);
1178 CLR(ucr3, ucr3_mask);
1179 SET(ucr2, ucr2_mask);
1180 SET(ucr3, ucr3_mask);
1181 break;
1182 }
1183
1184 if (ucr3 != sc->sc_ucr3) {
1185 bus_space_write_4(iot, ioh, IMX_UCR3, ucr3);
1186 sc->sc_ucr3 = ucr3;
1187 }
1188
1189 if (ucr2 == sc->sc_ucr2_d)
1190 return;
1191
1192 sc->sc_ucr2_d = ucr2;
1193 /* update CTS bit only */
1194 ucr2 = (sc->sc_ucr2 & ~IMX_UCR2_CTS) |
1195 (ucr2 & IMX_UCR2_CTS);
1196
1197 bus_space_write_4(iot, ioh, IMX_UCR2, ucr2);
1198 sc->sc_ucr2 = ucr2;
1199 }
1200
1201 int
1202 imxuart_to_tiocm(struct imxuart_softc *sc)
1203 {
1204 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1205 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1206 int ttybits = 0;
1207 uint32_t usr[2];
1208
1209 if (ISSET(sc->sc_ucr3, IMX_UCR3_DSR))
1210 SET(ttybits, TIOCM_DTR);
1211 if (ISSET(sc->sc_ucr2, IMX_UCR2_CTS))
1212 SET(ttybits, TIOCM_RTS);
1213
1214 bus_space_read_region_4(iot, ioh, IMX_USR1, usr, 2);
1215
1216 if (ISSET(usr[0], IMX_USR1_RTSS))
1217 SET(ttybits, TIOCM_CTS);
1218
1219 if (ISSET(usr[1], IMX_USR2_DCDIN))
1220 SET(ttybits, TIOCM_CD);
1221
1222 #if 0
1223 /* XXXbsh: I couldn't find the way to read ipp_uart_dsr_dte_i signal,
1224 although there are bits in UART registers to detect delta of DSR.
1225 */
1226 if (ISSET(imxubits, MSR_DSR))
1227 SET(ttybits, TIOCM_DSR);
1228 #endif
1229
1230 if (ISSET(usr[1], IMX_USR2_RIIN))
1231 SET(ttybits, TIOCM_RI);
1232
1233
1234 #ifdef notyet
1235 if (ISSET(sc->sc_ier, IER_ERXRDY | IER_ETXRDY | IER_ERLS | IER_EMSC))
1236 SET(ttybits, TIOCM_LE);
1237 #endif
1238
1239 return (ttybits);
1240 }
1241
1242 static uint32_t
1243 cflag_to_ucr2(tcflag_t cflag, uint32_t oldval)
1244 {
1245 uint32_t val = oldval;
1246
1247 CLR(val,IMX_UCR2_WS|IMX_UCR2_PREN|IMX_UCR2_PROE|IMX_UCR2_STPB);
1248
1249 switch (cflag & CSIZE) {
1250 case CS5:
1251 case CS6:
1252 /* not suppreted. use 7-bits */
1253 case CS7:
1254 break;
1255 case CS8:
1256 SET(val, IMX_UCR2_WS);
1257 break;
1258 }
1259
1260
1261 if (ISSET(cflag, PARENB)) {
1262 SET(val, IMX_UCR2_PREN);
1263
1264 /* odd parity */
1265 if (!ISSET(cflag, PARODD))
1266 SET(val, IMX_UCR2_PROE);
1267 }
1268
1269 if (ISSET(cflag, CSTOPB))
1270 SET(val, IMX_UCR2_STPB);
1271
1272 val |= IMX_UCR2_TXEN| IMX_UCR2_RXEN|IMX_UCR2_SRST;
1273
1274 return val;
1275 }
1276
1277 int
1278 imxuparam(struct tty *tp, struct termios *t)
1279 {
1280 struct imxuart_softc *sc =
1281 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1282 struct imxuart_baudrate_ratio ratio;
1283 uint32_t ucr2;
1284 bool change_speed = tp->t_ospeed != t->c_ospeed;
1285
1286 if (IMXUART_ISALIVE(sc) == 0)
1287 return (EIO);
1288
1289 /* Check requested parameters. */
1290 if (t->c_ispeed && t->c_ispeed != t->c_ospeed)
1291 return (EINVAL);
1292
1293 /*
1294 * For the console, always force CLOCAL and !HUPCL, so that the port
1295 * is always active.
1296 */
1297 if (ISSET(sc->sc_swflags, TIOCFLAG_SOFTCAR) ||
1298 ISSET(sc->sc_hwflags, IMXUART_HW_CONSOLE)) {
1299 SET(t->c_cflag, CLOCAL);
1300 CLR(t->c_cflag, HUPCL);
1301 }
1302
1303 /*
1304 * If there were no changes, don't do anything. This avoids dropping
1305 * input and improves performance when all we did was frob things like
1306 * VMIN and VTIME.
1307 */
1308 if ( !change_speed && tp->t_cflag == t->c_cflag)
1309 return (0);
1310
1311 if (change_speed) {
1312 /* calculate baudrate modulator value */
1313 if (imxuspeed(t->c_ospeed, &ratio) < 0)
1314 return (EINVAL);
1315 sc->sc_ratio = ratio;
1316 }
1317
1318 ucr2 = cflag_to_ucr2(t->c_cflag, sc->sc_ucr2_d);
1319
1320 mutex_spin_enter(&sc->sc_lock);
1321
1322 #if 0 /* flow control stuff. not yet */
1323 /*
1324 * If we're not in a mode that assumes a connection is present, then
1325 * ignore carrier changes.
1326 */
1327 if (ISSET(t->c_cflag, CLOCAL | MDMBUF))
1328 sc->sc_msr_dcd = 0;
1329 else
1330 sc->sc_msr_dcd = MSR_DCD;
1331 /*
1332 * Set the flow control pins depending on the current flow control
1333 * mode.
1334 */
1335 if (ISSET(t->c_cflag, CRTSCTS)) {
1336 sc->sc_mcr_dtr = MCR_DTR;
1337 sc->sc_mcr_rts = MCR_RTS;
1338 sc->sc_msr_cts = MSR_CTS;
1339 sc->sc_efr = EFR_AUTORTS | EFR_AUTOCTS;
1340 } else if (ISSET(t->c_cflag, MDMBUF)) {
1341 /*
1342 * For DTR/DCD flow control, make sure we don't toggle DTR for
1343 * carrier detection.
1344 */
1345 sc->sc_mcr_dtr = 0;
1346 sc->sc_mcr_rts = MCR_DTR;
1347 sc->sc_msr_cts = MSR_DCD;
1348 sc->sc_efr = 0;
1349 } else {
1350 /*
1351 * If no flow control, then always set RTS. This will make
1352 * the other side happy if it mistakenly thinks we're doing
1353 * RTS/CTS flow control.
1354 */
1355 sc->sc_mcr_dtr = MCR_DTR | MCR_RTS;
1356 sc->sc_mcr_rts = 0;
1357 sc->sc_msr_cts = 0;
1358 sc->sc_efr = 0;
1359 if (ISSET(sc->sc_mcr, MCR_DTR))
1360 SET(sc->sc_mcr, MCR_RTS);
1361 else
1362 CLR(sc->sc_mcr, MCR_RTS);
1363 }
1364 sc->sc_msr_mask = sc->sc_msr_cts | sc->sc_msr_dcd;
1365 #endif
1366
1367 /* And copy to tty. */
1368 tp->t_ispeed = t->c_ospeed;
1369 tp->t_ospeed = t->c_ospeed;
1370 tp->t_cflag = t->c_cflag;
1371
1372 if (!change_speed && ucr2 == sc->sc_ucr2_d) {
1373 /* noop */
1374 }
1375 else if (!sc->sc_pending && !sc->sc_tx_busy) {
1376 if (ucr2 != sc->sc_ucr2_d) {
1377 sc->sc_ucr2_d = ucr2;
1378 imxuart_load_params(sc);
1379 }
1380 if (change_speed)
1381 imxuart_load_speed(sc);
1382 }
1383 else {
1384 if (!sc->sc_pending) {
1385 sc->sc_heldtbc = sc->sc_tbc;
1386 sc->sc_tbc = 0;
1387 }
1388 sc->sc_pending |=
1389 (ucr2 == sc->sc_ucr2_d ? 0 : IMXUART_PEND_PARAM) |
1390 (change_speed ? 0 : IMXUART_PEND_SPEED);
1391 sc->sc_ucr2_d = ucr2;
1392 }
1393
1394 if (!ISSET(t->c_cflag, CHWFLOW)) {
1395 /* Disable the high water mark. */
1396 sc->sc_r_hiwat = 0;
1397 sc->sc_r_lowat = 0;
1398 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) {
1399 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
1400 imxuart_schedrx(sc);
1401 }
1402 if (ISSET(sc->sc_rx_flags,
1403 IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED)) {
1404 CLR(sc->sc_rx_flags,
1405 IMXUART_RX_TTY_BLOCKED|IMXUART_RX_IBUF_BLOCKED);
1406 imxuart_hwiflow(sc);
1407 }
1408 } else {
1409 sc->sc_r_hiwat = imxuart_rbuf_hiwat;
1410 sc->sc_r_lowat = imxuart_rbuf_lowat;
1411 }
1412
1413 mutex_spin_exit(&sc->sc_lock);
1414
1415 #if 0
1416 /*
1417 * Update the tty layer's idea of the carrier bit, in case we changed
1418 * CLOCAL or MDMBUF. We don't hang up here; we only do that by
1419 * explicit request.
1420 */
1421 (void) (*tp->t_linesw->l_modem)(tp, ISSET(sc->sc_msr, MSR_DCD));
1422 #else
1423 /* XXX: always report that we have DCD */
1424 (void) (*tp->t_linesw->l_modem)(tp, 1);
1425 #endif
1426
1427 #ifdef IMXUART_DEBUG
1428 if (imxuart_debug)
1429 imxustatus(sc, "imxuparam ");
1430 #endif
1431
1432 if (!ISSET(t->c_cflag, CHWFLOW)) {
1433 if (sc->sc_tx_stopped) {
1434 sc->sc_tx_stopped = 0;
1435 imxustart(tp);
1436 }
1437 }
1438
1439 return (0);
1440 }
1441
1442 void
1443 imxuart_iflush(struct imxuart_softc *sc)
1444 {
1445 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1446 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1447 #ifdef DIAGNOSTIC
1448 uint32_t reg = 0xffff;
1449 #endif
1450 int timo;
1451
1452 timo = 50000;
1453 /* flush any pending I/O */
1454 while (ISSET(bus_space_read_4(iot, ioh, IMX_USR2), IMX_USR2_RDR)
1455 && --timo)
1456 #ifdef DIAGNOSTIC
1457 reg =
1458 #else
1459 (void)
1460 #endif
1461 bus_space_read_4(iot, ioh, IMX_URXD);
1462 #ifdef DIAGNOSTIC
1463 if (!timo)
1464 aprint_error_dev(sc->sc_dev, "imxuart_iflush timeout %02x\n", reg);
1465 #endif
1466 }
1467
1468 int
1469 imxuhwiflow(struct tty *tp, int block)
1470 {
1471 struct imxuart_softc *sc =
1472 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1473
1474 if (IMXUART_ISALIVE(sc) == 0)
1475 return (0);
1476
1477 #ifdef notyet
1478 if (sc->sc_mcr_rts == 0)
1479 return (0);
1480 #endif
1481
1482 mutex_spin_enter(&sc->sc_lock);
1483
1484 if (block) {
1485 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
1486 SET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED);
1487 imxuart_hwiflow(sc);
1488 }
1489 } else {
1490 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED)) {
1491 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
1492 imxuart_schedrx(sc);
1493 }
1494 if (ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
1495 CLR(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED);
1496 imxuart_hwiflow(sc);
1497 }
1498 }
1499
1500 mutex_spin_exit(&sc->sc_lock);
1501 return (1);
1502 }
1503
1504 /*
1505 * (un)block input via hw flowcontrol
1506 */
1507 void
1508 imxuart_hwiflow(struct imxuart_softc *sc)
1509 {
1510 #ifdef notyet
1511 struct imxuart_regs *regsp= &sc->sc_regs;
1512
1513 if (sc->sc_mcr_rts == 0)
1514 return;
1515
1516 if (ISSET(sc->sc_rx_flags, RX_ANY_BLOCK)) {
1517 CLR(sc->sc_mcr, sc->sc_mcr_rts);
1518 CLR(sc->sc_mcr_active, sc->sc_mcr_rts);
1519 } else {
1520 SET(sc->sc_mcr, sc->sc_mcr_rts);
1521 SET(sc->sc_mcr_active, sc->sc_mcr_rts);
1522 }
1523 UR_WRITE_1(regsp, IMXUART_REG_MCR, sc->sc_mcr_active);
1524 #endif
1525 }
1526
1527
1528 void
1529 imxustart(struct tty *tp)
1530 {
1531 struct imxuart_softc *sc =
1532 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1533 int s;
1534 u_char *tba;
1535 int tbc;
1536 u_int n;
1537 u_int space;
1538 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1539 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1540
1541 if (IMXUART_ISALIVE(sc) == 0)
1542 return;
1543
1544 s = spltty();
1545 if (ISSET(tp->t_state, TS_BUSY | TS_TIMEOUT | TS_TTSTOP))
1546 goto out;
1547 if (sc->sc_tx_stopped)
1548 goto out;
1549 if (!ttypull(tp))
1550 goto out;
1551
1552 /* Grab the first contiguous region of buffer space. */
1553 tba = tp->t_outq.c_cf;
1554 tbc = ndqb(&tp->t_outq, 0);
1555
1556 mutex_spin_enter(&sc->sc_lock);
1557
1558 sc->sc_tba = tba;
1559 sc->sc_tbc = tbc;
1560
1561 SET(tp->t_state, TS_BUSY);
1562 sc->sc_tx_busy = 1;
1563
1564 space = imxuart_txfifo_space(sc);
1565 n = MIN(sc->sc_tbc, space);
1566
1567 bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, n);
1568 sc->sc_tbc -= n;
1569 sc->sc_tba += n;
1570
1571 /* Enable transmit completion interrupts */
1572 imxuart_control_txint(sc, true);
1573
1574 mutex_spin_exit(&sc->sc_lock);
1575 out:
1576 splx(s);
1577 return;
1578 }
1579
1580 /*
1581 * Stop output on a line.
1582 */
1583 void
1584 imxustop(struct tty *tp, int flag)
1585 {
1586 struct imxuart_softc *sc =
1587 device_lookup_private(&imxuart_cd, IMXUART_UNIT(tp->t_dev));
1588
1589 mutex_spin_enter(&sc->sc_lock);
1590 if (ISSET(tp->t_state, TS_BUSY)) {
1591 /* Stop transmitting at the next chunk. */
1592 sc->sc_tbc = 0;
1593 sc->sc_heldtbc = 0;
1594 if (!ISSET(tp->t_state, TS_TTSTOP))
1595 SET(tp->t_state, TS_FLUSH);
1596 }
1597 mutex_spin_exit(&sc->sc_lock);
1598 }
1599
1600 void
1601 imxudiag(void *arg)
1602 {
1603 #ifdef notyet
1604 struct imxuart_softc *sc = arg;
1605 int overflows, floods;
1606
1607 mutex_spin_enter(&sc->sc_lock);
1608 overflows = sc->sc_overflows;
1609 sc->sc_overflows = 0;
1610 floods = sc->sc_floods;
1611 sc->sc_floods = 0;
1612 sc->sc_errors = 0;
1613 mutex_spin_exit(&sc->sc_lock);
1614
1615 log(LOG_WARNING, "%s: %d silo overflow%s, %d ibuf flood%s\n",
1616 device_xname(sc->sc_dev),
1617 overflows, overflows == 1 ? "" : "s",
1618 floods, floods == 1 ? "" : "s");
1619 #endif
1620 }
1621
1622 integrate void
1623 imxuart_rxsoft(struct imxuart_softc *sc, struct tty *tp)
1624 {
1625 int (*rint)(int, struct tty *) = tp->t_linesw->l_rint;
1626 u_int cc, scc, outp;
1627 uint16_t data;
1628 u_int code;
1629
1630 scc = cc = IMXUART_RBUF_AVAIL(sc);
1631
1632 #if 0
1633 if (cc == imxuart_rbuf_size-1) {
1634 sc->sc_floods++;
1635 if (sc->sc_errors++ == 0)
1636 callout_reset(&sc->sc_diag_callout, 60 * hz,
1637 imxudiag, sc);
1638 }
1639 #endif
1640
1641 /* If not yet open, drop the entire buffer content here */
1642 if (!ISSET(tp->t_state, TS_ISOPEN)) {
1643 sc->sc_rbuf_out = sc->sc_rbuf_in;
1644 cc = 0;
1645 }
1646
1647 outp = sc->sc_rbuf_out;
1648
1649 #define ERRBITS (IMX_URXD_PRERR|IMX_URXD_BRK|IMX_URXD_FRMERR|IMX_URXD_OVRRUN)
1650
1651 while (cc) {
1652 data = sc->sc_rbuf[outp];
1653 code = data & IMX_URXD_RX_DATA;
1654 if (ISSET(data, ERRBITS)) {
1655 if (sc->sc_errors.err == 0)
1656 callout_reset(&sc->sc_diag_callout,
1657 60 * hz, imxudiag, sc);
1658 if (ISSET(data, IMX_URXD_OVRRUN))
1659 sc->sc_errors.ovrrun++;
1660 if (ISSET(data, IMX_URXD_BRK)) {
1661 sc->sc_errors.brk++;
1662 SET(code, TTY_FE);
1663 }
1664 if (ISSET(data, IMX_URXD_FRMERR)) {
1665 sc->sc_errors.frmerr++;
1666 SET(code, TTY_FE);
1667 }
1668 if (ISSET(data, IMX_URXD_PRERR)) {
1669 sc->sc_errors.prerr++;
1670 SET(code, TTY_PE);
1671 }
1672 }
1673 if ((*rint)(code, tp) == -1) {
1674 /*
1675 * The line discipline's buffer is out of space.
1676 */
1677 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_BLOCKED)) {
1678 /*
1679 * We're either not using flow control, or the
1680 * line discipline didn't tell us to block for
1681 * some reason. Either way, we have no way to
1682 * know when there's more space available, so
1683 * just drop the rest of the data.
1684 */
1685 sc->sc_rbuf_out = sc->sc_rbuf_in;
1686 cc = 0;
1687 } else {
1688 /*
1689 * Don't schedule any more receive processing
1690 * until the line discipline tells us there's
1691 * space available (through imxuhwiflow()).
1692 * Leave the rest of the data in the input
1693 * buffer.
1694 */
1695 SET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED);
1696 }
1697 break;
1698 }
1699 outp = IMXUART_RBUF_INC(sc, outp, 1);
1700 cc--;
1701 }
1702
1703 if (cc != scc) {
1704 sc->sc_rbuf_out = outp;
1705 mutex_spin_enter(&sc->sc_lock);
1706
1707 cc = IMXUART_RBUF_SPACE(sc);
1708
1709 /* Buffers should be ok again, release possible block. */
1710 if (cc >= sc->sc_r_lowat) {
1711 if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED)) {
1712 CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_OVERFLOWED);
1713 imxuart_control_rxint(sc, true);
1714 }
1715 if (ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED)) {
1716 CLR(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED);
1717 imxuart_hwiflow(sc);
1718 }
1719 }
1720 mutex_spin_exit(&sc->sc_lock);
1721 }
1722 }
1723
1724 integrate void
1725 imxuart_txsoft(struct imxuart_softc *sc, struct tty *tp)
1726 {
1727
1728 CLR(tp->t_state, TS_BUSY);
1729 if (ISSET(tp->t_state, TS_FLUSH))
1730 CLR(tp->t_state, TS_FLUSH);
1731 else
1732 ndflush(&tp->t_outq, (int)(sc->sc_tba - tp->t_outq.c_cf));
1733 (*tp->t_linesw->l_start)(tp);
1734 }
1735
1736 integrate void
1737 imxuart_stsoft(struct imxuart_softc *sc, struct tty *tp)
1738 {
1739 #ifdef notyet
1740 u_char msr, delta;
1741
1742 mutex_spin_enter(&sc->sc_lock);
1743 msr = sc->sc_msr;
1744 delta = sc->sc_msr_delta;
1745 sc->sc_msr_delta = 0;
1746 mutex_spin_exit(&sc->sc_lock);
1747
1748 if (ISSET(delta, sc->sc_msr_dcd)) {
1749 /*
1750 * Inform the tty layer that carrier detect changed.
1751 */
1752 (void) (*tp->t_linesw->l_modem)(tp, ISSET(msr, MSR_DCD));
1753 }
1754
1755 if (ISSET(delta, sc->sc_msr_cts)) {
1756 /* Block or unblock output according to flow control. */
1757 if (ISSET(msr, sc->sc_msr_cts)) {
1758 sc->sc_tx_stopped = 0;
1759 (*tp->t_linesw->l_start)(tp);
1760 } else {
1761 sc->sc_tx_stopped = 1;
1762 }
1763 }
1764
1765 #endif
1766 #ifdef IMXUART_DEBUG
1767 if (imxuart_debug)
1768 imxustatus(sc, "imxuart_stsoft");
1769 #endif
1770 }
1771
1772 void
1773 imxusoft(void *arg)
1774 {
1775 struct imxuart_softc *sc = arg;
1776 struct tty *tp;
1777
1778 if (IMXUART_ISALIVE(sc) == 0)
1779 return;
1780
1781 tp = sc->sc_tty;
1782
1783 if (sc->sc_rx_ready) {
1784 sc->sc_rx_ready = 0;
1785 imxuart_rxsoft(sc, tp);
1786 }
1787
1788 if (sc->sc_st_check) {
1789 sc->sc_st_check = 0;
1790 imxuart_stsoft(sc, tp);
1791 }
1792
1793 if (sc->sc_tx_done) {
1794 sc->sc_tx_done = 0;
1795 imxuart_txsoft(sc, tp);
1796 }
1797 }
1798
1799 int
1800 imxuintr(void *arg)
1801 {
1802 struct imxuart_softc *sc = arg;
1803 uint32_t usr1, usr2;
1804 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1805 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1806
1807
1808 if (IMXUART_ISALIVE(sc) == 0)
1809 return (0);
1810
1811 mutex_spin_enter(&sc->sc_lock);
1812
1813 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1814
1815
1816 do {
1817 bus_space_write_4(iot, ioh, IMX_USR2,
1818 usr2 & (IMX_USR2_BRCD|IMX_USR2_ORE));
1819 if (usr2 & IMX_USR2_BRCD) {
1820 /* Break signal detected */
1821 int cn_trapped = 0;
1822
1823 cn_check_magic(sc->sc_tty->t_dev,
1824 CNC_BREAK, imxuart_cnm_state);
1825 if (cn_trapped)
1826 continue;
1827 #if defined(KGDB) && !defined(DDB)
1828 if (ISSET(sc->sc_hwflags, IMXUART_HW_KGDB)) {
1829 kgdb_connect(1);
1830 continue;
1831 }
1832 #endif
1833 }
1834
1835 if (usr2 & IMX_USR2_RDR)
1836 imxuintr_read(sc);
1837
1838 #ifdef IMXUART_PPS
1839 {
1840 u_char msr, delta;
1841
1842 msr = CSR_READ_1(regsp, IMXUART_REG_MSR);
1843 delta = msr ^ sc->sc_msr;
1844 sc->sc_msr = msr;
1845 if ((sc->sc_pps_state.ppsparam.mode & PPS_CAPTUREBOTH) &&
1846 (delta & MSR_DCD)) {
1847 mutex_spin_enter(&timecounter_lock);
1848 pps_capture(&sc->sc_pps_state);
1849 pps_event(&sc->sc_pps_state,
1850 (msr & MSR_DCD) ?
1851 PPS_CAPTUREASSERT :
1852 PPS_CAPTURECLEAR);
1853 mutex_spin_exit(&timecounter_lock);
1854 }
1855 }
1856 #endif
1857
1858 #ifdef notyet
1859 /*
1860 * Process normal status changes
1861 */
1862 if (ISSET(delta, sc->sc_msr_mask)) {
1863 SET(sc->sc_msr_delta, delta);
1864
1865 /*
1866 * Stop output immediately if we lose the output
1867 * flow control signal or carrier detect.
1868 */
1869 if (ISSET(~msr, sc->sc_msr_mask)) {
1870 sc->sc_tbc = 0;
1871 sc->sc_heldtbc = 0;
1872 #ifdef IMXUART_DEBUG
1873 if (imxuart_debug)
1874 imxustatus(sc, "imxuintr ");
1875 #endif
1876 }
1877
1878 sc->sc_st_check = 1;
1879 }
1880 #endif
1881
1882 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1883 } while (usr2 & (IMX_USR2_RDR|IMX_USR2_BRCD));
1884
1885 usr1 = bus_space_read_4(iot, ioh, IMX_USR1);
1886 if (usr1 & IMX_USR1_TRDY)
1887 imxuintr_send(sc);
1888
1889 mutex_spin_exit(&sc->sc_lock);
1890
1891 /* Wake up the poller. */
1892 softint_schedule(sc->sc_si);
1893
1894 #ifdef RND_COM
1895 rnd_add_uint32(&sc->rnd_source, iir | lsr);
1896 #endif
1897
1898 return (1);
1899 }
1900
1901
1902 /*
1903 * called when there is least one character in rxfifo
1904 *
1905 */
1906
1907 static void
1908 imxuintr_read(struct imxuart_softc *sc)
1909 {
1910 int cc;
1911 uint16_t rd;
1912 uint32_t usr2;
1913 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1914 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1915
1916 cc = IMXUART_RBUF_SPACE(sc);
1917
1918 /* clear aging timer interrupt */
1919 bus_space_write_4(iot, ioh, IMX_USR1, IMX_USR1_AGTIM);
1920
1921 while (cc > 0) {
1922 int cn_trapped = 0;
1923
1924
1925 sc->sc_rbuf[sc->sc_rbuf_in] = rd =
1926 bus_space_read_4(iot, ioh, IMX_URXD);
1927
1928 cn_check_magic(sc->sc_tty->t_dev,
1929 rd & 0xff, imxuart_cnm_state);
1930
1931 if (!cn_trapped) {
1932 sc->sc_rbuf_in = IMXUART_RBUF_INC(sc, sc->sc_rbuf_in, 1);
1933 cc--;
1934 }
1935
1936 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1937 if (!(usr2 & IMX_USR2_RDR))
1938 break;
1939 }
1940
1941 /*
1942 * Current string of incoming characters ended because
1943 * no more data was available or we ran out of space.
1944 * Schedule a receive event if any data was received.
1945 * If we're out of space, turn off receive interrupts.
1946 */
1947 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_TTY_OVERFLOWED))
1948 sc->sc_rx_ready = 1;
1949 /*
1950 * See if we are in danger of overflowing a buffer. If
1951 * so, use hardware flow control to ease the pressure.
1952 */
1953 if (!ISSET(sc->sc_rx_flags, IMXUART_RX_IBUF_BLOCKED) &&
1954 cc < sc->sc_r_hiwat) {
1955 sc->sc_rx_flags |= IMXUART_RX_IBUF_BLOCKED;
1956 imxuart_hwiflow(sc);
1957 }
1958
1959 /*
1960 * If we're out of space, disable receive interrupts
1961 * until the queue has drained a bit.
1962 */
1963 if (!cc) {
1964 sc->sc_rx_flags |= IMXUART_RX_IBUF_OVERFLOWED;
1965 imxuart_control_rxint(sc, false);
1966 }
1967 }
1968
1969
1970
1971 /*
1972 * find how many chars we can put into tx-fifo
1973 */
1974 static u_int
1975 imxuart_txfifo_space(struct imxuart_softc *sc)
1976 {
1977 uint32_t usr1, usr2;
1978 u_int cc;
1979 bus_space_tag_t iot = sc->sc_regs.ur_iot;
1980 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
1981
1982 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
1983 if (usr2 & IMX_USR2_TXFE)
1984 cc = sc->sc_txfifo_len;
1985 else {
1986 usr1 = bus_space_read_4(iot, ioh, IMX_USR1);
1987 if (usr1 & IMX_USR1_TRDY)
1988 cc = sc->sc_txfifo_thresh;
1989 else
1990 cc = 0;
1991 }
1992
1993 return cc;
1994 }
1995
1996 void
1997 imxuintr_send(struct imxuart_softc *sc)
1998 {
1999 uint32_t usr2;
2000 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2001 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2002 int cc = 0;
2003
2004 usr2 = bus_space_read_4(iot, ioh, IMX_USR2);
2005
2006 if (sc->sc_pending) {
2007 if (usr2 & IMX_USR2_TXFE) {
2008 imxuart_load_pendings(sc);
2009 sc->sc_tbc = sc->sc_heldtbc;
2010 sc->sc_heldtbc = 0;
2011 }
2012 else {
2013 /* wait for TX fifo empty */
2014 imxuart_control_txint(sc, true);
2015 return;
2016 }
2017 }
2018
2019 cc = imxuart_txfifo_space(sc);
2020 cc = MIN(cc, sc->sc_tbc);
2021
2022 if (cc > 0) {
2023 bus_space_write_multi_1(iot, ioh, IMX_UTXD, sc->sc_tba, cc);
2024 sc->sc_tbc -= cc;
2025 sc->sc_tba += cc;
2026 }
2027
2028 if (sc->sc_tbc > 0)
2029 imxuart_control_txint(sc, true);
2030 else {
2031 /* no more chars to send.
2032 we don't need tx interrupt any more. */
2033 imxuart_control_txint(sc, false);
2034 if (sc->sc_tx_busy) {
2035 sc->sc_tx_busy = 0;
2036 sc->sc_tx_done = 1;
2037 }
2038 }
2039 }
2040
2041 static void
2042 imxuart_disable_all_interrupts(struct imxuart_softc *sc)
2043 {
2044 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2045 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2046
2047 sc->sc_ucr1 &= ~IMXUART_INTRS_UCR1;
2048 sc->sc_ucr2 &= ~IMXUART_INTRS_UCR2;
2049 sc->sc_ucr3 &= ~IMXUART_INTRS_UCR3;
2050 sc->sc_ucr4 &= ~IMXUART_INTRS_UCR4;
2051
2052
2053 bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 4);
2054 }
2055
2056 static void
2057 imxuart_control_rxint(struct imxuart_softc *sc, bool enable)
2058 {
2059 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2060 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2061 uint32_t ucr1, ucr2;
2062
2063 ucr1 = sc->sc_ucr1;
2064 ucr2 = sc->sc_ucr2;
2065
2066 if (enable) {
2067 ucr1 |= IMX_UCR1_RRDYEN;
2068 ucr2 |= IMX_UCR2_ATEN;
2069 }
2070 else {
2071 ucr1 &= ~IMX_UCR1_RRDYEN;
2072 ucr2 &= ~IMX_UCR2_ATEN;
2073 }
2074
2075 if (ucr1 != sc->sc_ucr1 || ucr2 != sc->sc_ucr2) {
2076 sc->sc_ucr1 = ucr1;
2077 sc->sc_ucr2 = ucr2;
2078 bus_space_write_region_4(iot, ioh, IMX_UCR1, sc->sc_ucr, 2);
2079 }
2080 }
2081
2082 static void
2083 imxuart_control_txint(struct imxuart_softc *sc, bool enable)
2084 {
2085 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2086 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2087 uint32_t ucr1;
2088 uint32_t mask;
2089
2090 /* if parameter change is pending, get interrupt when Tx fifo
2091 is completely empty. otherwise, get interrupt when txfifo
2092 has less characters than threshold */
2093 mask = sc->sc_pending ? IMX_UCR1_TXMPTYEN : IMX_UCR1_TRDYEN;
2094
2095 ucr1 = sc->sc_ucr1;
2096
2097 CLR(ucr1, IMX_UCR1_TXMPTYEN|IMX_UCR1_TRDYEN);
2098 if (enable)
2099 SET(ucr1, mask);
2100
2101 if (ucr1 != sc->sc_ucr1) {
2102 bus_space_write_4(iot, ioh, IMX_UCR1, ucr1);
2103 sc->sc_ucr1 = ucr1;
2104 }
2105 }
2106
2107
2108 static void
2109 imxuart_load_params(struct imxuart_softc *sc)
2110 {
2111 uint32_t ucr2;
2112 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2113 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2114
2115 ucr2 = (sc->sc_ucr2_d & ~IMX_UCR2_ATEN) |
2116 (sc->sc_ucr2 & IMX_UCR2_ATEN);
2117
2118 bus_space_write_4(iot, ioh, IMX_UCR2, ucr2);
2119 sc->sc_ucr2 = ucr2;
2120 }
2121
2122 static void
2123 imxuart_load_speed(struct imxuart_softc *sc)
2124 {
2125 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2126 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2127 int n, rfdiv, ufcr;
2128
2129 #ifdef notyet
2130 /*
2131 * Set the FIFO threshold based on the receive speed.
2132 *
2133 * * If it's a low speed, it's probably a mouse or some other
2134 * interactive device, so set the threshold low.
2135 * * If it's a high speed, trim the trigger level down to prevent
2136 * overflows.
2137 * * Otherwise set it a bit higher.
2138 */
2139 if (t->c_ospeed <= 1200)
2140 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_1;
2141 else if (t->c_ospeed <= 38400)
2142 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_8;
2143 else
2144 sc->sc_fifo = FIFO_ENABLE | FIFO_TRIGGER_4;
2145 #endif
2146
2147 n = 32 - sc->sc_txfifo_thresh;
2148 n = MAX(2, n);
2149
2150 rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv);
2151
2152 ufcr = (n << IMX_UFCR_TXTL_SHIFT) |
2153 (rfdiv << IMX_UFCR_RFDIV_SHIFT) |
2154 (16 << IMX_UFCR_RXTL_SHIFT);
2155
2156 /* keep DCE/DTE bit */
2157 ufcr |= bus_space_read_4(iot, ioh, IMX_UFCR) & IMX_UFCR_DCEDTE;
2158
2159 bus_space_write_4(iot, ioh, IMX_UFCR, ufcr);
2160
2161 /* UBIR must updated before UBMR */
2162 bus_space_write_4(iot, ioh,
2163 IMX_UBIR, sc->sc_ratio.numerator);
2164 bus_space_write_4(iot, ioh,
2165 IMX_UBMR, sc->sc_ratio.modulator);
2166
2167
2168 }
2169
2170
2171 static void
2172 imxuart_load_pendings(struct imxuart_softc *sc)
2173 {
2174 if (sc->sc_pending & IMXUART_PEND_PARAM)
2175 imxuart_load_params(sc);
2176 if (sc->sc_pending & IMXUART_PEND_SPEED)
2177 imxuart_load_speed(sc);
2178 sc->sc_pending = 0;
2179 }
2180
2181 #if defined(IMXUARTCONSOLE) || defined(KGDB)
2182
2183 /*
2184 * The following functions are polled getc and putc routines, shared
2185 * by the console and kgdb glue.
2186 *
2187 * The read-ahead code is so that you can detect pending in-band
2188 * cn_magic in polled mode while doing output rather than having to
2189 * wait until the kernel decides it needs input.
2190 */
2191
2192 #define READAHEAD_RING_LEN 16
2193 static int imxuart_readahead[READAHEAD_RING_LEN];
2194 static int imxuart_readahead_in = 0;
2195 static int imxuart_readahead_out = 0;
2196 #define READAHEAD_IS_EMPTY() (imxuart_readahead_in==imxuart_readahead_out)
2197 #define READAHEAD_IS_FULL() \
2198 (((imxuart_readahead_in+1) & (READAHEAD_RING_LEN-1)) ==imxuart_readahead_out)
2199
2200 int
2201 imxuart_common_getc(dev_t dev, struct imxuart_regs *regsp)
2202 {
2203 int s = splserial();
2204 u_char c;
2205 bus_space_tag_t iot = regsp->ur_iot;
2206 bus_space_handle_t ioh = regsp->ur_ioh;
2207 uint32_t usr2;
2208
2209 /* got a character from reading things earlier */
2210 if (imxuart_readahead_in != imxuart_readahead_out) {
2211
2212 c = imxuart_readahead[imxuart_readahead_out];
2213 imxuart_readahead_out = (imxuart_readahead_out + 1) &
2214 (READAHEAD_RING_LEN-1);
2215 splx(s);
2216 return (c);
2217 }
2218
2219 /* block until a character becomes available */
2220 while (!((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR))
2221 ;
2222
2223 c = 0xff & bus_space_read_4(iot, ioh, IMX_URXD);
2224
2225 {
2226 int cn_trapped = 0; /* unused */
2227 #ifdef DDB
2228 extern int db_active;
2229 if (!db_active)
2230 #endif
2231 cn_check_magic(dev, c, imxuart_cnm_state);
2232 }
2233 splx(s);
2234 return (c);
2235 }
2236
2237 void
2238 imxuart_common_putc(dev_t dev, struct imxuart_regs *regsp, int c)
2239 {
2240 int s = splserial();
2241 int cin, timo;
2242 bus_space_tag_t iot = regsp->ur_iot;
2243 bus_space_handle_t ioh = regsp->ur_ioh;
2244 uint32_t usr2;
2245
2246 if (!READAHEAD_IS_FULL() &&
2247 ((usr2 = bus_space_read_4(iot, ioh, IMX_USR2)) & IMX_USR2_RDR)) {
2248
2249 int cn_trapped = 0;
2250 cin = bus_space_read_4(iot, ioh, IMX_URXD);
2251 cn_check_magic(dev, cin & 0xff, imxuart_cnm_state);
2252 imxuart_readahead_in = (imxuart_readahead_in + 1) &
2253 (READAHEAD_RING_LEN-1);
2254 }
2255
2256 /* wait for any pending transmission to finish */
2257 timo = 150000;
2258 do {
2259 if (bus_space_read_4(iot, ioh, IMX_USR1) & IMX_USR1_TRDY) {
2260 bus_space_write_4(iot, ioh, IMX_UTXD, c);
2261 break;
2262 }
2263 } while(--timo > 0);
2264
2265 IMXUART_BARRIER(regsp, BR | BW);
2266
2267 splx(s);
2268 }
2269
2270 /*
2271 * Initialize UART for use as console or KGDB line.
2272 */
2273 int
2274 imxuart_init(struct imxuart_regs *regsp, int rate, tcflag_t cflag)
2275 {
2276 struct imxuart_baudrate_ratio ratio;
2277 int rfdiv = IMX_UFCR_DIVIDER_TO_RFDIV(imxuart_freqdiv);
2278 uint32_t ufcr;
2279
2280 if (bus_space_map(regsp->ur_iot, regsp->ur_iobase, IMX_UART_SIZE, 0,
2281 ®sp->ur_ioh))
2282 return ENOMEM; /* ??? */
2283
2284 if (imxuspeed(rate, &ratio) < 0)
2285 return EINVAL;
2286
2287 /* UBIR must updated before UBMR */
2288 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh,
2289 IMX_UBIR, ratio.numerator);
2290 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh,
2291 IMX_UBMR, ratio.modulator);
2292
2293
2294 /* XXX: DTREN, DPEC */
2295 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR3,
2296 IMX_UCR3_DSR|IMX_UCR3_RXDMUXSEL);
2297
2298 ufcr = (8 << IMX_UFCR_TXTL_SHIFT) | (rfdiv << IMX_UFCR_RFDIV_SHIFT) |
2299 (1 << IMX_UFCR_RXTL_SHIFT);
2300 /* XXX: keep DCE/DTE bit */
2301 ufcr |= bus_space_read_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR) &
2302 IMX_UFCR_DCEDTE;
2303
2304 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UFCR, ufcr);
2305
2306 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_ONEMS,
2307 imxuart_freq / imxuart_freqdiv / 1000);
2308
2309 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR2,
2310 IMX_UCR2_IRTS|
2311 IMX_UCR2_CTSC|
2312 IMX_UCR2_WS|IMX_UCR2_TXEN|
2313 IMX_UCR2_RXEN|IMX_UCR2_SRST);
2314 /* clear status registers */
2315 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR1, 0xffff);
2316 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_USR2, 0xffff);
2317
2318
2319 bus_space_write_4(regsp->ur_iot, regsp->ur_ioh, IMX_UCR1,
2320 IMX_UCR1_UARTEN);
2321
2322 return (0);
2323 }
2324
2325
2326 #endif
2327
2328
2329 #ifdef IMXUARTCONSOLE
2330 /*
2331 * Following are all routines needed for UART to act as console
2332 */
2333 struct consdev imxucons = {
2334 NULL, NULL, imxucngetc, imxucnputc, imxucnpollc, NULL, NULL, NULL,
2335 NODEV, CN_NORMAL
2336 };
2337
2338
2339 int
2340 imxuart_cons_attach(bus_space_tag_t iot, paddr_t iobase, u_int rate,
2341 tcflag_t cflag)
2342 {
2343 struct imxuart_regs regs;
2344 int res;
2345
2346 regs.ur_iot = iot;
2347 regs.ur_iobase = iobase;
2348
2349 res = imxuart_init(®s, rate, cflag);
2350 if (res)
2351 return (res);
2352
2353 cn_tab = &imxucons;
2354 cn_init_magic(&imxuart_cnm_state);
2355 cn_set_magic("\047\001"); /* default magic is BREAK */
2356
2357 imxuconsrate = rate;
2358 imxuconscflag = cflag;
2359
2360 imxuconsregs = regs;
2361
2362 return 0;
2363 }
2364
2365 int
2366 imxucngetc(dev_t dev)
2367 {
2368 return (imxuart_common_getc(dev, &imxuconsregs));
2369 }
2370
2371 /*
2372 * Console kernel output character routine.
2373 */
2374 void
2375 imxucnputc(dev_t dev, int c)
2376 {
2377 imxuart_common_putc(dev, &imxuconsregs, c);
2378 }
2379
2380 void
2381 imxucnpollc(dev_t dev, int on)
2382 {
2383
2384 imxuart_readahead_in = 0;
2385 imxuart_readahead_out = 0;
2386 }
2387
2388 #endif /* IMXUARTCONSOLE */
2389
2390 #ifdef KGDB
2391 int
2392 imxuart_kgdb_attach(bus_space_tag_t iot, paddr_t iobase, u_int rate,
2393 tcflag_t cflag)
2394 {
2395 int res;
2396
2397 if (iot == imxuconsregs.ur_iot &&
2398 iobase == imxuconsregs.ur_iobase) {
2399 #if !defined(DDB)
2400 return (EBUSY); /* cannot share with console */
2401 #else
2402 imxu_kgdb_regs.ur_iot = iot;
2403 imxu_kgdb_regs.ur_ioh = imxuconsregs.ur_ioh;
2404 imxu_kgdb_regs.ur_iobase = iobase;
2405 #endif
2406 } else {
2407 imxu_kgdb_regs.ur_iot = iot;
2408 imxu_kgdb_regs.ur_iobase = iobase;
2409
2410 res = imxuart_init(&imxu_kgdb_regs, rate, cflag);
2411 if (res)
2412 return (res);
2413
2414 /*
2415 * XXXfvdl this shouldn't be needed, but the cn_magic goo
2416 * expects this to be initialized
2417 */
2418 cn_init_magic(&imxuart_cnm_state);
2419 cn_set_magic("\047\001");
2420 }
2421
2422 kgdb_attach(imxuart_kgdb_getc, imxuart_kgdb_putc, &imxu_kgdb_regs);
2423 kgdb_dev = 123; /* unneeded, only to satisfy some tests */
2424
2425 return (0);
2426 }
2427
2428 /* ARGSUSED */
2429 int
2430 imxuart_kgdb_getc(void *arg)
2431 {
2432 struct imxuart_regs *regs = arg;
2433
2434 return (imxuart_common_getc(NODEV, regs));
2435 }
2436
2437 /* ARGSUSED */
2438 void
2439 imxuart_kgdb_putc(void *arg, int c)
2440 {
2441 struct imxuart_regs *regs = arg;
2442
2443 imxuart_common_putc(NODEV, regs, c);
2444 }
2445 #endif /* KGDB */
2446
2447 /* helper function to identify the imxu ports used by
2448 console or KGDB (and not yet autoconf attached) */
2449 int
2450 imxuart_is_console(bus_space_tag_t iot, bus_addr_t iobase, bus_space_handle_t *ioh)
2451 {
2452 bus_space_handle_t help;
2453
2454 if (!imxuconsattached &&
2455 iot == imxuconsregs.ur_iot && iobase == imxuconsregs.ur_iobase)
2456 help = imxuconsregs.ur_ioh;
2457 #ifdef KGDB
2458 else if (!imxu_kgdb_attached &&
2459 iot == imxu_kgdb_regs.ur_iot && iobase == imxu_kgdb_regs.ur_iobase)
2460 help = imxu_kgdb_regs.ur_ioh;
2461 #endif
2462 else
2463 return (0);
2464
2465 if (ioh)
2466 *ioh = help;
2467 return (1);
2468 }
2469
2470 #ifdef notyet
2471
2472 bool
2473 imxuart_cleanup(device_t self, int how)
2474 {
2475 /*
2476 * this routine exists to serve as a shutdown hook for systems that
2477 * have firmware which doesn't interact properly with a imxuart device in
2478 * FIFO mode.
2479 */
2480 struct imxuart_softc *sc = device_private(self);
2481
2482 if (ISSET(sc->sc_hwflags, IMXUART_HW_FIFO))
2483 UR_WRITE_1(&sc->sc_regs, IMXUART_REG_FIFO, 0);
2484
2485 return true;
2486 }
2487 #endif
2488
2489 #ifdef notyet
2490 bool
2491 imxuart_suspend(device_t self PMF_FN_ARGS)
2492 {
2493 struct imxuart_softc *sc = device_private(self);
2494
2495 UR_WRITE_1(&sc->sc_regs, IMXUART_REG_IER, 0);
2496 (void)CSR_READ_1(&sc->sc_regs, IMXUART_REG_IIR);
2497
2498 return true;
2499 }
2500 #endif
2501
2502 #ifdef notyet
2503 bool
2504 imxuart_resume(device_t self PMF_FN_ARGS)
2505 {
2506 struct imxuart_softc *sc = device_private(self);
2507
2508 mutex_spin_enter(&sc->sc_lock);
2509 imxuart_loadchannelregs(sc);
2510 mutex_spin_exit(&sc->sc_lock);
2511
2512 return true;
2513 }
2514 #endif
2515
2516 static void
2517 imxuart_enable_debugport(struct imxuart_softc *sc)
2518 {
2519 bus_space_tag_t iot = sc->sc_regs.ur_iot;
2520 bus_space_handle_t ioh = sc->sc_regs.ur_ioh;
2521
2522 if (sc->sc_hwflags & (IMXUART_HW_CONSOLE|IMXUART_HW_KGDB)) {
2523
2524 /* Turn on line break interrupt, set carrier. */
2525
2526 sc->sc_ucr3 |= IMX_UCR3_DSR;
2527 bus_space_write_4(iot, ioh, IMX_UCR3, sc->sc_ucr3);
2528
2529 sc->sc_ucr4 |= IMX_UCR4_BKEN;
2530 bus_space_write_4(iot, ioh, IMX_UCR4, sc->sc_ucr4);
2531
2532 sc->sc_ucr2 |= IMX_UCR2_TXEN|IMX_UCR2_RXEN|
2533 IMX_UCR2_CTS;
2534 bus_space_write_4(iot, ioh, IMX_UCR2, sc->sc_ucr2);
2535
2536 sc->sc_ucr1 |= IMX_UCR1_UARTEN;
2537 bus_space_write_4(iot, ioh, IMX_UCR1, sc->sc_ucr1);
2538 }
2539 }
2540
2541
2542 void
2543 imxuart_set_frequency(u_int freq, u_int div)
2544 {
2545 imxuart_freq = freq;
2546 imxuart_freqdiv = div;
2547 }
2548