aeabi.h revision 1.2 1 1.2 matt /* $NetBSD: aeabi.h,v 1.2 2012/08/11 16:21:26 matt Exp $ */
2 1.1 matt
3 1.1 matt /*-
4 1.1 matt * Copyright (c) 2012 The NetBSD Foundation, Inc.
5 1.1 matt * All rights reserved.
6 1.1 matt *
7 1.1 matt * This code is derived from software contributed to The NetBSD Foundation
8 1.1 matt * by Matt Thomas of 3am Software Foundry.
9 1.1 matt *
10 1.1 matt * Redistribution and use in source and binary forms, with or without
11 1.1 matt * modification, are permitted provided that the following conditions
12 1.1 matt * are met:
13 1.1 matt * 1. Redistributions of source code must retain the above copyright
14 1.1 matt * notice, this list of conditions and the following disclaimer.
15 1.1 matt * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 matt * notice, this list of conditions and the following disclaimer in the
17 1.1 matt * documentation and/or other materials provided with the distribution.
18 1.1 matt *
19 1.1 matt * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 matt * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 matt * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 matt * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 matt * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 matt * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 matt * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 matt * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 matt * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 matt * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 matt * POSSIBILITY OF SUCH DAMAGE.
30 1.1 matt */
31 1.1 matt #ifndef _ARM_AEABI_H_
32 1.1 matt #define _ARM_AEABI_H_
33 1.1 matt
34 1.2 matt #include <stddef.h>
35 1.2 matt
36 1.1 matt #define __value_in_regs /* nothing */
37 1.1 matt
38 1.1 matt /*
39 1.1 matt * Standard double precision floating-point arithmetic helper functions
40 1.1 matt */
41 1.1 matt double __aeabi_dadd(double, double); // double-precision addition
42 1.1 matt double __aeabi_ddiv(double n, double d); // double-precision division, n / d
43 1.1 matt double __aeabi_dmul(double, double); // double-precision multiplication
44 1.1 matt double __aeabi_drsub(double x, double y); // double-precision reverse subtraction, y - x
45 1.1 matt double __aeabi_dsub(double x, double y); // double-precision subtraction, x - y
46 1.1 matt double __aeabi_dneg(double); // double-precision negation (obsolete, to be removed in r2.09)
47 1.1 matt
48 1.1 matt /*
49 1.1 matt * Double precision floating-point comparison helper functions
50 1.1 matt */
51 1.1 matt void __aeabi_cdcmpeq(double, double); // non-excepting equality comparison [1], result in PSR ZC flags
52 1.1 matt void __aeabi_cdcmple(double, double); // 3-way (<, =, >) compare [1], result in PSR ZC flags
53 1.1 matt void __aeabi_cdrcmple(double, double); // reversed 3-way (<, =, >) compare [1], result in PSR ZC flags
54 1.1 matt int __aeabi_dcmpeq(double, double); // result (1, 0) denotes (=, <>) [2], use for C == and !=
55 1.1 matt int __aeabi_dcmplt(double, double); // result (1, 0) denotes (<, >=) [2], use for C <
56 1.1 matt int __aeabi_dcmple(double, double); // result (1, 0) denotes (<=, >) [2], use for C <=
57 1.1 matt int __aeabi_dcmpge(double, double); // result (1, 0) denotes (>=, <) [2], use for C >=
58 1.1 matt int __aeabi_dcmpgt(double, double); // result (1, 0) denotes (>, <=) [2], use for C >
59 1.1 matt int __aeabi_dcmpun(double, double); // result (1, 0) denotes (?, <=>) [2], use for C99 isunordered()
60 1.1 matt
61 1.1 matt /*
62 1.1 matt * Standard single precision floating-point arithmetic helper functions
63 1.1 matt */
64 1.1 matt float __aeabi_fadd(float, float); // single-precision addition
65 1.1 matt float __aeabi_fdiv(float n, float d); // single-precision division, n / d
66 1.1 matt float __aeabi_fmul(float, float); // single-precision multiplication
67 1.1 matt float __aeabi_frsub(float x, float y); // single-precision reverse subtraction, y - x
68 1.1 matt float __aeabi_fsub(float x, float y); // single-precision subtraction, x - y
69 1.1 matt float __aeabi_fneg(float); // single-precision negation (obsolete, to be removed in r2.09)
70 1.1 matt
71 1.1 matt /*
72 1.1 matt * Standard single precision floating-point comparison helper functions
73 1.1 matt */
74 1.1 matt void __aeabi_cfcmpeq(float, float); // non-excepting equality comparison [1], result in PSR ZC flags
75 1.1 matt void __aeabi_cfcmple(float, float); // 3-way (<, =, ?>) compare [1], result in PSR ZC flags
76 1.1 matt void __aeabi_cfrcmple(float, float); // reversed 3-way (<, =, ?>) compare [1], result in PSR ZC flags
77 1.1 matt int __aeabi_fcmpeq(float, float); // result (1, 0) denotes (=, <>) [2], use for C == and !=
78 1.1 matt int __aeabi_fcmplt(float, float); // result (1, 0) denotes (<, >=) [2], use for C <
79 1.1 matt int __aeabi_fcmple(float, float); // result (1, 0) denotes (<=, >) [2], use for C <=
80 1.1 matt int __aeabi_fcmpge(float, float); // result (1, 0) denotes (>=, <) [2], use for C >=
81 1.1 matt int __aeabi_fcmpgt(float, float); // result (1, 0) denotes (>, <=) [2], use for C >
82 1.1 matt int __aeabi_fcmpun(float, float); // result (1, 0) denotes (?, <=>) [2], use for C99 isunordered()
83 1.1 matt
84 1.1 matt /*
85 1.1 matt * Standard conversions between floating types
86 1.1 matt */
87 1.1 matt float __aeabi_d2f(double); // double to float (single precision) conversion
88 1.1 matt double __aeabi_f2d(float); // float (single precision) to double conversion
89 1.1 matt float __aeabi_h2f(short hf); // IEEE 754 binary16 storage format (VFP half precision) to binary32 (float) conversion [4, 5]
90 1.1 matt short __aeabi_f2h(float f); // IEEE 754 binary32 (float) to binary16 storage format (VFP half precision) conversion [4, 6]
91 1.1 matt float __aeabi_h2f_alt(short hf); // __aeabi_h2f_alt converts from VFP alternative format [7].
92 1.1 matt short __aeabi_f2h_alt(float f); // __aeabi_f2h_alt converts to VFP alternative format [8].
93 1.1 matt
94 1.1 matt /*
95 1.1 matt * Standard floating-point to integer conversions
96 1.1 matt */
97 1.1 matt int __aeabi_d2iz(double); // double to integer C-style conversion [3]
98 1.1 matt unsigned __aeabi_d2uiz(double); // double to unsigned C-style conversion [3]
99 1.1 matt long long __aeabi_d2lz(double); // double to long long C-style conversion [3]
100 1.1 matt unsigned long long __aeabi_d2ulz(double); // double to unsigned long long C-style conversion [3]
101 1.1 matt int __aeabi_f2iz(float); // float (single precision) to integer C-style conversion [3]
102 1.1 matt unsigned __aeabi_f2uiz(float); // float (single precision) to unsigned C-style conversion [3]
103 1.1 matt long long __aeabi_f2lz(float); // float (single precision) to long long C-style conversion [3]
104 1.1 matt unsigned long long __aeabi_f2ulz(float); // float to unsigned long long C-style conversion [3]
105 1.1 matt
106 1.1 matt /*
107 1.1 matt * Standard integer to floating-point conversions
108 1.1 matt */
109 1.1 matt double __aeabi_i2d(int); // integer to double conversion
110 1.1 matt double __aeabi_ui2d(unsigned); // unsigned to double conversion
111 1.1 matt double __aeabi_l2d(long long); // long long to double conversion
112 1.1 matt double __aeabi_ul2d(unsigned long long); // unsigned long long to double conversion
113 1.1 matt float __aeabi_i2f(int); // integer to float (single precision) conversion
114 1.1 matt float __aeabi_ui2f(unsigned); // unsigned to float (single precision) conversion
115 1.1 matt float __aeabi_l2f(long long); // long long to float (single precision) conversion
116 1.1 matt float __aeabi_ul2f(unsigned long long); // unsigned long long to float (single precision) conversion
117 1.1 matt
118 1.1 matt /*
119 1.1 matt * Long long functions
120 1.1 matt */
121 1.1 matt long long __aeabi_lmul(long long, long long); // multiplication
122 1.1 matt
123 1.1 matt /*
124 1.1 matt * A pair of (unsigned) long longs is returned in {{r0, r1}, {r2, r3}},
125 1.1 matt * the quotient in {r0, r1}, and the remainder in {r2, r3}.
126 1.1 matt */
127 1.1 matt typedef struct { long long quot; long long rem; } lldiv_t;
128 1.1 matt __value_in_regs lldiv_t __aeabi_ldivmod(long long n, long long d); // signed long long division and remainder, {q, r} = n / d [2]
129 1.1 matt
130 1.1 matt typedef struct { unsigned long long quot; unsigned long long rem; } ulldiv_t;
131 1.1 matt __value_in_regs ulldiv_t __aeabi_uldivmod(unsigned long long n, unsigned long long d); // unsigned signed ll division, remainder, {q, r} = n / d [2]
132 1.1 matt
133 1.1 matt /*
134 1.1 matt * Because of 2's complement number representation, these functions work
135 1.1 matt * identically with long long replaced uniformly by unsigned long long.
136 1.1 matt * Each returns its result in {r0, r1}, as specified by the [AAPCS].
137 1.1 matt */
138 1.1 matt long long __aeabi_llsl(long long, int); // logical shift left [1]
139 1.1 matt long long __aeabi_llsr(long long, int); // logical shift right [1]
140 1.1 matt long long __aeabi_lasr(long long, int); // arithmetic shift right [1]
141 1.1 matt
142 1.1 matt /*
143 1.1 matt * The comparison functions return negative, zero, or a positive integer
144 1.1 matt * according to whether the comparison result is <, ==, or >, respectively
145 1.1 matt * (like strcmp).
146 1.1 matt */
147 1.1 matt int __aeabi_lcmp(long long, long long); // signed long long comparison
148 1.1 matt int __aeabi_ulcmp(unsigned long long, unsigned long long); // unsigned long long comparison
149 1.1 matt
150 1.1 matt int __aeabi_idiv(int numerator, int denominator);
151 1.1 matt unsigned __aeabi_uidiv(unsigned numerator, unsigned denominator);
152 1.1 matt typedef struct { int quot, rem; } idiv_return;
153 1.1 matt typedef struct { unsigned int quot, rem; } uidiv_return;
154 1.1 matt __value_in_regs idiv_return __aeabi_idivmod(int, int);
155 1.1 matt __value_in_regs uidiv_return __aeabi_uidivmod(unsigned int, unsigned int);
156 1.1 matt
157 1.1 matt /*
158 1.1 matt * Division by zero
159 1.1 matt *
160 1.1 matt * If an integer or long long division helper function is called upon to
161 1.1 matt * divide by 0, it should return as quotient the value returned by a call
162 1.1 matt * to __aeabi_idiv0 or __aeabi_ldiv0, respectively. A *divmod helper should
163 1.1 matt * return as remainder either 0 or the original numerator.
164 1.1 matt */
165 1.1 matt int __aeabi_idiv0(int);
166 1.1 matt long long __aeabi_ldiv0(long long);
167 1.1 matt
168 1.1 matt /*
169 1.1 matt * These functions read and write 4-byte and 8-byte values at arbitrarily
170 1.1 matt * aligned addresses. Write functions return the value written,
171 1.1 matt * read functions the value read.
172 1.1 matt */
173 1.1 matt int __aeabi_uread4(void *);
174 1.1 matt int __aeabi_uwrite4(int, void *);
175 1.1 matt long long __aeabi_uread8(void *);
176 1.1 matt long long __aeabi_uwrite8(long long, void *);
177 1.1 matt
178 1.1 matt /*
179 1.1 matt * Memory copying, clearing, and setting
180 1.1 matt */
181 1.1 matt void __aeabi_memcpy8(void *, const void *, size_t);
182 1.1 matt void __aeabi_memcpy4(void *, const void *, size_t);
183 1.1 matt void __aeabi_memcpy(void *, const void *, size_t);
184 1.1 matt void __aeabi_memmove8(void *, const void *, size_t);
185 1.1 matt void __aeabi_memmove4(void *, const void *, size_t);
186 1.1 matt void __aeabi_memmove(void *, const void *, size_t);
187 1.1 matt
188 1.1 matt /*
189 1.1 matt * Memory clearing and setting
190 1.1 matt */
191 1.1 matt void __aeabi_memset8(void *, size_t, int);
192 1.1 matt void __aeabi_memset4(void *, size_t, int);
193 1.1 matt void __aeabi_memset(void *, size_t, int);
194 1.1 matt void __aeabi_memclr8(void *, size_t);
195 1.1 matt void __aeabi_memclr4(void *, size_t);
196 1.1 matt void __aeabi_memclr(void *, size_t);
197 1.1 matt
198 1.1 matt void *__aeabi_read_tp(void); // return the value of $tp
199 1.1 matt
200 1.1 matt #endif /* _ARM_AEABI_H_ */
201