1 1.8 skrll /* $NetBSD: asan.h,v 1.8 2022/04/02 11:16:07 skrll Exp $ */ 2 1.1 skrll 3 1.1 skrll /* 4 1.1 skrll * Copyright (c) 2020 The NetBSD Foundation, Inc. 5 1.1 skrll * All rights reserved. 6 1.1 skrll * 7 1.1 skrll * This code is derived from software contributed to The NetBSD Foundation 8 1.6 maxv * by Nick Hudson, and is part of the KASAN subsystem of the NetBSD kernel. 9 1.1 skrll * 10 1.1 skrll * Redistribution and use in source and binary forms, with or without 11 1.1 skrll * modification, are permitted provided that the following conditions 12 1.1 skrll * are met: 13 1.1 skrll * 1. Redistributions of source code must retain the above copyright 14 1.1 skrll * notice, this list of conditions and the following disclaimer. 15 1.1 skrll * 2. Redistributions in binary form must reproduce the above copyright 16 1.1 skrll * notice, this list of conditions and the following disclaimer in the 17 1.1 skrll * documentation and/or other materials provided with the distribution. 18 1.1 skrll * 19 1.1 skrll * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 1.1 skrll * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 1.1 skrll * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 1.1 skrll * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 1.1 skrll * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 1.1 skrll * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 1.1 skrll * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 1.1 skrll * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 1.1 skrll * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 1.1 skrll * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 1.1 skrll * POSSIBILITY OF SUCH DAMAGE. 30 1.1 skrll */ 31 1.1 skrll 32 1.8 skrll #include "opt_efi.h" 33 1.8 skrll 34 1.1 skrll #include <sys/atomic.h> 35 1.1 skrll #include <sys/ksyms.h> 36 1.1 skrll 37 1.5 riastrad #include <uvm/uvm.h> 38 1.5 riastrad 39 1.1 skrll #include <arm/vmparam.h> 40 1.1 skrll #include <arm/arm32/machdep.h> 41 1.1 skrll #include <arm/arm32/pmap.h> 42 1.1 skrll 43 1.1 skrll #define KASAN_MD_SHADOW_START VM_KERNEL_KASAN_BASE 44 1.1 skrll #define KASAN_MD_SHADOW_END VM_KERNEL_KASAN_END 45 1.1 skrll #define __MD_KERNMEM_BASE KERNEL_BASE 46 1.1 skrll 47 1.1 skrll static inline int8_t * 48 1.1 skrll kasan_md_addr_to_shad(const void *addr) 49 1.1 skrll { 50 1.1 skrll vaddr_t va = (vaddr_t)addr; 51 1.1 skrll return (int8_t *)(KASAN_MD_SHADOW_START + 52 1.1 skrll ((va - __MD_KERNMEM_BASE) >> KASAN_SHADOW_SCALE_SHIFT)); 53 1.1 skrll } 54 1.1 skrll 55 1.1 skrll static inline bool 56 1.1 skrll kasan_md_unsupported(vaddr_t addr) 57 1.1 skrll { 58 1.1 skrll return addr < VM_MIN_KERNEL_ADDRESS || 59 1.1 skrll addr >= KASAN_MD_SHADOW_START; 60 1.1 skrll } 61 1.1 skrll 62 1.1 skrll /* -------------------------------------------------------------------------- */ 63 1.1 skrll 64 1.1 skrll /* 65 1.1 skrll * Early mapping, used to map just the stack at boot time. We rely on the fact 66 1.1 skrll * that VA = PA + KERNEL_BASE. 67 1.1 skrll */ 68 1.1 skrll 69 1.4 skrll /* 70 1.4 skrll * KASAN_NEARLYPAGES is hard to work out. 71 1.4 skrll * 72 1.4 skrll * The INIT_ARM_TOTAL_STACK shadow is reduced by the KASAN_SHADOW_SCALE_SIZE 73 1.4 skrll * factor. This shadow mapping is likely to span more than one L2 page tables 74 1.4 skrll * and, as a result, more than one PAGE_SIZE block. The L2 page tables might 75 1.4 skrll * span more than one L1 page table entry as well. 76 1.4 skrll * 77 1.4 skrll * To ensure we have enough start with the assumption of 1 L1 page table, and 78 1.4 skrll * the number of pages to map the shadow... then double for the spanning as 79 1.4 skrll * described above 80 1.4 skrll */ 81 1.4 skrll 82 1.4 skrll #define KASAN_NEARLYPAGES \ 83 1.4 skrll (2 * (1 + howmany(INIT_ARM_TOTAL_STACK / KASAN_SHADOW_SCALE_SIZE, PAGE_SIZE))) 84 1.1 skrll 85 1.1 skrll static bool __md_early __read_mostly; 86 1.4 skrll static size_t __md_nearlyl1pts __attribute__((__section__(".data"))) = 0; 87 1.1 skrll static size_t __md_nearlypages __attribute__((__section__(".data"))); 88 1.1 skrll static uint8_t __md_earlypages[KASAN_NEARLYPAGES * PAGE_SIZE] 89 1.1 skrll __aligned(PAGE_SIZE) __attribute__((__section__(".data"))); 90 1.1 skrll 91 1.1 skrll static vaddr_t 92 1.1 skrll __md_palloc(void) 93 1.1 skrll { 94 1.1 skrll paddr_t pa; 95 1.1 skrll 96 1.1 skrll if (__predict_false(__md_early)) { 97 1.1 skrll KASSERTMSG(__md_nearlypages < KASAN_NEARLYPAGES, 98 1.1 skrll "__md_nearlypages %zu", __md_nearlypages); 99 1.1 skrll 100 1.1 skrll vaddr_t va = (vaddr_t)(&__md_earlypages[0] + __md_nearlypages * PAGE_SIZE); 101 1.1 skrll __md_nearlypages++; 102 1.1 skrll __builtin_memset((void *)va, 0, PAGE_SIZE); 103 1.1 skrll 104 1.1 skrll return KERN_VTOPHYS(va); 105 1.1 skrll } 106 1.1 skrll 107 1.1 skrll if (!uvm.page_init_done) { 108 1.1 skrll if (uvm_page_physget(&pa) == false) 109 1.1 skrll panic("KASAN can't get a page"); 110 1.1 skrll 111 1.1 skrll return pa; 112 1.1 skrll } 113 1.1 skrll 114 1.1 skrll struct vm_page *pg; 115 1.1 skrll retry: 116 1.1 skrll pg = uvm_pagealloc(NULL, 0, NULL, 0); 117 1.1 skrll if (pg == NULL) { 118 1.1 skrll uvm_wait(__func__); 119 1.1 skrll goto retry; 120 1.1 skrll } 121 1.1 skrll pa = VM_PAGE_TO_PHYS(pg); 122 1.1 skrll 123 1.1 skrll return pa; 124 1.1 skrll } 125 1.1 skrll 126 1.1 skrll static void 127 1.1 skrll kasan_md_shadow_map_page(vaddr_t va) 128 1.1 skrll { 129 1.1 skrll const uint32_t mask = L1_TABLE_SIZE - 1; 130 1.1 skrll const paddr_t ttb = (paddr_t)(armreg_ttbr1_read() & ~mask); 131 1.1 skrll pd_entry_t * const pdep = (pd_entry_t *)KERN_PHYSTOV(ttb); 132 1.1 skrll 133 1.1 skrll const size_t l1slot = l1pte_index(va); 134 1.1 skrll vaddr_t l2ptva; 135 1.1 skrll 136 1.1 skrll KASSERT((va & PAGE_MASK) == 0); 137 1.1 skrll 138 1.4 skrll extern bool kasan_l2pts_created; 139 1.4 skrll if (__predict_true(kasan_l2pts_created)) { 140 1.1 skrll /* 141 1.1 skrll * The shadow map area L2PTs were allocated and mapped 142 1.1 skrll * by arm32_kernel_vm_init. Use the array of pv_addr_t 143 1.1 skrll * to get the l2ptva. 144 1.1 skrll */ 145 1.1 skrll extern pv_addr_t kasan_l2pt[]; 146 1.1 skrll const size_t off = va - KASAN_MD_SHADOW_START; 147 1.1 skrll const size_t segoff = off & (L2_S_SEGSIZE - 1); 148 1.1 skrll const size_t idx = off / L2_S_SEGSIZE; 149 1.1 skrll const vaddr_t segl2ptva = kasan_l2pt[idx].pv_va; 150 1.1 skrll l2ptva = segl2ptva + l1pte_index(segoff) * L2_TABLE_SIZE_REAL; 151 1.4 skrll } else { 152 1.4 skrll /* 153 1.4 skrll * An L1PT entry is/may be required for bootstrap tables. As a 154 1.4 skrll * page gives enough space to multiple L2PTs the previous call 155 1.4 skrll * might have already created the L2PT. 156 1.4 skrll */ 157 1.4 skrll if (!l1pte_page_p(pdep[l1slot])) { 158 1.4 skrll const paddr_t l2ptpa = __md_palloc(); 159 1.4 skrll const vaddr_t segl2va = va & -L2_S_SEGSIZE; 160 1.4 skrll const size_t segl1slot = l1pte_index(segl2va); 161 1.4 skrll 162 1.4 skrll __md_nearlyl1pts++; 163 1.4 skrll 164 1.4 skrll const pd_entry_t npde = 165 1.4 skrll L1_C_PROTO | l2ptpa | L1_C_DOM(PMAP_DOMAIN_KERNEL); 166 1.4 skrll 167 1.4 skrll l1pte_set(pdep + segl1slot, npde); 168 1.4 skrll /* 169 1.4 skrll * No need for PDE_SYNC_RANGE here as we're creating 170 1.4 skrll * the bootstrap tables 171 1.4 skrll */ 172 1.4 skrll } 173 1.4 skrll l2ptva = KERN_PHYSTOV(l1pte_pa(pdep[l1slot])); 174 1.1 skrll } 175 1.1 skrll 176 1.1 skrll pt_entry_t * l2pt = (pt_entry_t *)l2ptva; 177 1.1 skrll pt_entry_t * const ptep = &l2pt[l2pte_index(va)]; 178 1.1 skrll 179 1.1 skrll if (!l2pte_valid_p(*ptep)) { 180 1.1 skrll const int prot = VM_PROT_READ | VM_PROT_WRITE; 181 1.1 skrll const paddr_t pa = __md_palloc(); 182 1.1 skrll pt_entry_t npte = 183 1.1 skrll L2_S_PROTO | 184 1.1 skrll pa | 185 1.4 skrll (__md_early ? 0 : pte_l2_s_cache_mode_pt) | 186 1.1 skrll L2_S_PROT(PTE_KERNEL, prot); 187 1.4 skrll l2pte_set(ptep, npte, 0); 188 1.4 skrll 189 1.4 skrll if (!__md_early) 190 1.4 skrll PTE_SYNC(ptep); 191 1.1 skrll 192 1.1 skrll __builtin_memset((void *)va, 0, PAGE_SIZE); 193 1.1 skrll } 194 1.1 skrll } 195 1.1 skrll 196 1.1 skrll /* 197 1.1 skrll * Map the init stacks of the BP and APs. We will map the rest in kasan_init. 198 1.1 skrll */ 199 1.1 skrll static void 200 1.1 skrll kasan_md_early_init(void *stack) 201 1.1 skrll { 202 1.1 skrll 203 1.4 skrll /* 204 1.4 skrll * We come through here twice. The first time is for generic_start 205 1.4 skrll * and the bootstrap tables. The second is for arm32_kernel_vm_init 206 1.4 skrll * and the real tables. 207 1.4 skrll * 208 1.4 skrll * In the first we have to create L1PT entries, whereas in the 209 1.4 skrll * second arm32_kernel_vm_init has setup kasan_l1pts (and the L1PT 210 1.4 skrll * entries for them 211 1.4 skrll */ 212 1.1 skrll __md_early = true; 213 1.4 skrll __md_nearlypages = __md_nearlyl1pts; 214 1.4 skrll kasan_shadow_map(stack, INIT_ARM_TOTAL_STACK); 215 1.1 skrll __md_early = false; 216 1.1 skrll } 217 1.1 skrll 218 1.1 skrll static void 219 1.1 skrll kasan_md_init(void) 220 1.1 skrll { 221 1.1 skrll extern vaddr_t kasan_kernelstart; 222 1.1 skrll extern vaddr_t kasan_kernelsize; 223 1.1 skrll 224 1.1 skrll kasan_shadow_map((void *)kasan_kernelstart, kasan_kernelsize); 225 1.1 skrll 226 1.1 skrll /* The VAs we've created until now. */ 227 1.7 skrll vaddr_t eva = pmap_growkernel(VM_KERNEL_VM_BASE); 228 1.2 skrll kasan_shadow_map((void *)VM_KERNEL_VM_BASE, eva - VM_KERNEL_VM_BASE); 229 1.1 skrll } 230 1.1 skrll 231 1.1 skrll 232 1.1 skrll static inline bool 233 1.1 skrll __md_unwind_end(const char *name) 234 1.1 skrll { 235 1.1 skrll static const char * const vectors[] = { 236 1.1 skrll "undefined_entry", 237 1.1 skrll "swi_entry", 238 1.1 skrll "prefetch_abort_entry", 239 1.1 skrll "data_abort_entry", 240 1.1 skrll "address_exception_entry", 241 1.1 skrll "irq_entry", 242 1.1 skrll "fiqvector" 243 1.1 skrll }; 244 1.1 skrll 245 1.1 skrll for (size_t i = 0; i < __arraycount(vectors); i++) { 246 1.1 skrll if (!strncmp(name, vectors[i], strlen(vectors[i]))) 247 1.1 skrll return true; 248 1.1 skrll } 249 1.1 skrll 250 1.1 skrll return false; 251 1.1 skrll } 252 1.1 skrll 253 1.1 skrll static void 254 1.1 skrll kasan_md_unwind(void) 255 1.1 skrll { 256 1.1 skrll uint32_t lr, *fp; 257 1.1 skrll const char *mod; 258 1.1 skrll const char *sym; 259 1.1 skrll size_t nsym; 260 1.1 skrll int error; 261 1.1 skrll 262 1.1 skrll fp = (uint32_t *)__builtin_frame_address(0); 263 1.1 skrll nsym = 0; 264 1.1 skrll 265 1.1 skrll while (1) { 266 1.1 skrll /* 267 1.1 skrll * normal frame 268 1.1 skrll * fp[ 0] saved code pointer 269 1.1 skrll * fp[-1] saved lr value 270 1.1 skrll * fp[-2] saved sp value 271 1.1 skrll * fp[-3] saved fp value 272 1.1 skrll */ 273 1.1 skrll lr = fp[-1]; 274 1.1 skrll 275 1.1 skrll if (lr < VM_MIN_KERNEL_ADDRESS) { 276 1.1 skrll break; 277 1.1 skrll } 278 1.1 skrll error = ksyms_getname(&mod, &sym, (vaddr_t)lr, KSYMS_PROC); 279 1.1 skrll if (error) { 280 1.1 skrll break; 281 1.1 skrll } 282 1.1 skrll printf("#%zu %p in %s <%s>\n", nsym, (void *)lr, sym, mod); 283 1.1 skrll if (__md_unwind_end(sym)) { 284 1.1 skrll break; 285 1.1 skrll } 286 1.1 skrll 287 1.1 skrll fp = (uint32_t *)fp[-3]; 288 1.1 skrll if (fp == NULL) { 289 1.1 skrll break; 290 1.1 skrll } 291 1.1 skrll nsym++; 292 1.1 skrll 293 1.1 skrll if (nsym >= 15) { 294 1.1 skrll break; 295 1.1 skrll } 296 1.1 skrll } 297 1.1 skrll } 298