ieee.h revision 1.1 1 1.1 bjh21 /* $NetBSD: ieee.h,v 1.1 2001/01/10 19:02:06 bjh21 Exp $ */
2 1.1 bjh21
3 1.1 bjh21 /*
4 1.1 bjh21 * Copyright (c) 1992, 1993
5 1.1 bjh21 * The Regents of the University of California. All rights reserved.
6 1.1 bjh21 *
7 1.1 bjh21 * This software was developed by the Computer Systems Engineering group
8 1.1 bjh21 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
9 1.1 bjh21 * contributed to Berkeley.
10 1.1 bjh21 *
11 1.1 bjh21 * All advertising materials mentioning features or use of this software
12 1.1 bjh21 * must display the following acknowledgement:
13 1.1 bjh21 * This product includes software developed by the University of
14 1.1 bjh21 * California, Lawrence Berkeley Laboratory.
15 1.1 bjh21 *
16 1.1 bjh21 * Redistribution and use in source and binary forms, with or without
17 1.1 bjh21 * modification, are permitted provided that the following conditions
18 1.1 bjh21 * are met:
19 1.1 bjh21 * 1. Redistributions of source code must retain the above copyright
20 1.1 bjh21 * notice, this list of conditions and the following disclaimer.
21 1.1 bjh21 * 2. Redistributions in binary form must reproduce the above copyright
22 1.1 bjh21 * notice, this list of conditions and the following disclaimer in the
23 1.1 bjh21 * documentation and/or other materials provided with the distribution.
24 1.1 bjh21 * 3. All advertising materials mentioning features or use of this software
25 1.1 bjh21 * must display the following acknowledgement:
26 1.1 bjh21 * This product includes software developed by the University of
27 1.1 bjh21 * California, Berkeley and its contributors.
28 1.1 bjh21 * 4. Neither the name of the University nor the names of its contributors
29 1.1 bjh21 * may be used to endorse or promote products derived from this software
30 1.1 bjh21 * without specific prior written permission.
31 1.1 bjh21 *
32 1.1 bjh21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
33 1.1 bjh21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
34 1.1 bjh21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
35 1.1 bjh21 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
36 1.1 bjh21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
37 1.1 bjh21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
38 1.1 bjh21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
39 1.1 bjh21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
40 1.1 bjh21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
41 1.1 bjh21 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
42 1.1 bjh21 * SUCH DAMAGE.
43 1.1 bjh21 *
44 1.1 bjh21 * @(#)ieee.h 8.1 (Berkeley) 6/11/93
45 1.1 bjh21 */
46 1.1 bjh21
47 1.1 bjh21 /*
48 1.1 bjh21 * ieee.h defines the machine-dependent layout of the machine's IEEE
49 1.1 bjh21 * floating point.
50 1.1 bjh21 */
51 1.1 bjh21
52 1.1 bjh21 /*
53 1.1 bjh21 * Define the number of bits in each fraction and exponent.
54 1.1 bjh21 *
55 1.1 bjh21 * k k+1
56 1.1 bjh21 * Note that 1.0 x 2 == 0.1 x 2 and that denorms are represented
57 1.1 bjh21 *
58 1.1 bjh21 * (-exp_bias+1)
59 1.1 bjh21 * as fractions that look like 0.fffff x 2 . This means that
60 1.1 bjh21 *
61 1.1 bjh21 * -126
62 1.1 bjh21 * the number 0.10000 x 2 , for instance, is the same as the normalized
63 1.1 bjh21 *
64 1.1 bjh21 * -127 -128
65 1.1 bjh21 * float 1.0 x 2 . Thus, to represent 2 , we need one leading zero
66 1.1 bjh21 *
67 1.1 bjh21 * -129
68 1.1 bjh21 * in the fraction; to represent 2 , we need two, and so on. This
69 1.1 bjh21 *
70 1.1 bjh21 * (-exp_bias-fracbits+1)
71 1.1 bjh21 * implies that the smallest denormalized number is 2
72 1.1 bjh21 *
73 1.1 bjh21 * for whichever format we are talking about: for single precision, for
74 1.1 bjh21 *
75 1.1 bjh21 * -126 -149
76 1.1 bjh21 * instance, we get .00000000000000000000001 x 2 , or 1.0 x 2 , and
77 1.1 bjh21 *
78 1.1 bjh21 * -149 == -127 - 23 + 1.
79 1.1 bjh21 */
80 1.1 bjh21 #define SNG_EXPBITS 8
81 1.1 bjh21 #define SNG_FRACBITS 23
82 1.1 bjh21
83 1.1 bjh21 #define DBL_EXPBITS 11
84 1.1 bjh21 #define DBL_FRACBITS 52
85 1.1 bjh21
86 1.1 bjh21 #define E80_EXPBITS 15
87 1.1 bjh21 #define E80_FRACBITS 64
88 1.1 bjh21
89 1.1 bjh21 #define EXT_EXPBITS 15
90 1.1 bjh21 #define EXT_FRACBITS 112
91 1.1 bjh21
92 1.1 bjh21 struct ieee_single {
93 1.1 bjh21 u_int sng_frac:23;
94 1.1 bjh21 u_int sng_exponent:8;
95 1.1 bjh21 u_int sng_sign:1;
96 1.1 bjh21 };
97 1.1 bjh21
98 1.1 bjh21 struct ieee_double {
99 1.1 bjh21 u_int dbl_frach:20;
100 1.1 bjh21 u_int dbl_exp:11;
101 1.1 bjh21 u_int dbl_sign:1;
102 1.1 bjh21 u_int dbl_fracl;
103 1.1 bjh21 };
104 1.1 bjh21
105 1.1 bjh21 struct ieee_e80 {
106 1.1 bjh21 u_int e80_exp:15;
107 1.1 bjh21 u_int e80_zero:16;
108 1.1 bjh21 u_int e80_sign:1;
109 1.1 bjh21 u_int e80_frach:31;
110 1.1 bjh21 u_int e80_j:1;
111 1.1 bjh21 u_int e80_fracl;
112 1.1 bjh21 };
113 1.1 bjh21
114 1.1 bjh21 struct ieee_ext {
115 1.1 bjh21 u_int ext_frach:16;
116 1.1 bjh21 u_int ext_exp:15;
117 1.1 bjh21 u_int ext_sign:1;
118 1.1 bjh21 u_int ext_frachm;
119 1.1 bjh21 u_int ext_fraclm;
120 1.1 bjh21 u_int ext_fracl;
121 1.1 bjh21 };
122 1.1 bjh21
123 1.1 bjh21 /*
124 1.1 bjh21 * Floats whose exponent is in [1..INFNAN) (of whatever type) are
125 1.1 bjh21 * `normal'. Floats whose exponent is INFNAN are either Inf or NaN.
126 1.1 bjh21 * Floats whose exponent is zero are either zero (iff all fraction
127 1.1 bjh21 * bits are zero) or subnormal values.
128 1.1 bjh21 *
129 1.1 bjh21 * A NaN is a `signalling NaN' if its QUIETNAN bit is clear in its
130 1.1 bjh21 * high fraction; if the bit is set, it is a `quiet NaN'.
131 1.1 bjh21 */
132 1.1 bjh21 #define SNG_EXP_INFNAN 255
133 1.1 bjh21 #define DBL_EXP_INFNAN 2047
134 1.1 bjh21 #define E80_EXP_INFNAN 32767
135 1.1 bjh21 #define EXT_EXP_INFNAN 32767
136 1.1 bjh21
137 1.1 bjh21 #if 0
138 1.1 bjh21 #define SNG_QUIETNAN (1 << 22)
139 1.1 bjh21 #define DBL_QUIETNAN (1 << 19)
140 1.1 bjh21 #define E80_QUIETNAN (1 << 15)
141 1.1 bjh21 #define EXT_QUIETNAN (1 << 15)
142 1.1 bjh21 #endif
143 1.1 bjh21
144 1.1 bjh21 /*
145 1.1 bjh21 * Exponent biases.
146 1.1 bjh21 */
147 1.1 bjh21 #define SNG_EXP_BIAS 127
148 1.1 bjh21 #define DBL_EXP_BIAS 1023
149 1.1 bjh21 #define E80_EXP_BIAS 16383
150 1.1 bjh21 #define EXT_EXP_BIAS 16383
151