lock.h revision 1.37 1 1.37 skrll /* $NetBSD: lock.h,v 1.37 2021/04/26 16:35:54 skrll Exp $ */
2 1.1 bjh21
3 1.1 bjh21 /*-
4 1.2 thorpej * Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
5 1.1 bjh21 * All rights reserved.
6 1.1 bjh21 *
7 1.1 bjh21 * This code is derived from software contributed to The NetBSD Foundation
8 1.1 bjh21 * by Jason R. Thorpe.
9 1.1 bjh21 *
10 1.1 bjh21 * Redistribution and use in source and binary forms, with or without
11 1.1 bjh21 * modification, are permitted provided that the following conditions
12 1.1 bjh21 * are met:
13 1.1 bjh21 * 1. Redistributions of source code must retain the above copyright
14 1.1 bjh21 * notice, this list of conditions and the following disclaimer.
15 1.1 bjh21 * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 bjh21 * notice, this list of conditions and the following disclaimer in the
17 1.1 bjh21 * documentation and/or other materials provided with the distribution.
18 1.1 bjh21 *
19 1.1 bjh21 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 bjh21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 bjh21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 bjh21 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 bjh21 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 bjh21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 bjh21 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 bjh21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 bjh21 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 bjh21 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 bjh21 * POSSIBILITY OF SUCH DAMAGE.
30 1.1 bjh21 */
31 1.1 bjh21
32 1.1 bjh21 /*
33 1.1 bjh21 * Machine-dependent spin lock operations.
34 1.2 thorpej *
35 1.2 thorpej * NOTE: The SWP insn used here is available only on ARM architecture
36 1.2 thorpej * version 3 and later (as well as 2a). What we are going to do is
37 1.2 thorpej * expect that the kernel will trap and emulate the insn. That will
38 1.2 thorpej * be slow, but give us the atomicity that we need.
39 1.1 bjh21 */
40 1.1 bjh21
41 1.2 thorpej #ifndef _ARM_LOCK_H_
42 1.2 thorpej #define _ARM_LOCK_H_
43 1.1 bjh21
44 1.14 skrll static __inline int
45 1.33 christos __SIMPLELOCK_LOCKED_P(const __cpu_simple_lock_t *__ptr)
46 1.14 skrll {
47 1.14 skrll return *__ptr == __SIMPLELOCK_LOCKED;
48 1.14 skrll }
49 1.14 skrll
50 1.14 skrll static __inline int
51 1.33 christos __SIMPLELOCK_UNLOCKED_P(const __cpu_simple_lock_t *__ptr)
52 1.14 skrll {
53 1.14 skrll return *__ptr == __SIMPLELOCK_UNLOCKED;
54 1.14 skrll }
55 1.14 skrll
56 1.14 skrll static __inline void
57 1.14 skrll __cpu_simple_lock_clear(__cpu_simple_lock_t *__ptr)
58 1.14 skrll {
59 1.14 skrll *__ptr = __SIMPLELOCK_UNLOCKED;
60 1.14 skrll }
61 1.14 skrll
62 1.14 skrll static __inline void
63 1.14 skrll __cpu_simple_lock_set(__cpu_simple_lock_t *__ptr)
64 1.14 skrll {
65 1.14 skrll *__ptr = __SIMPLELOCK_LOCKED;
66 1.14 skrll }
67 1.14 skrll
68 1.37 skrll #if defined(_ARM_ARCH_6)
69 1.26 matt static __inline unsigned int
70 1.26 matt __arm_load_exclusive(__cpu_simple_lock_t *__alp)
71 1.13 thorpej {
72 1.26 matt unsigned int __rv;
73 1.29 christos if (/*CONSTCOND*/sizeof(*__alp) == 1) {
74 1.26 matt __asm __volatile("ldrexb\t%0,[%1]" : "=r"(__rv) : "r"(__alp));
75 1.26 matt } else {
76 1.26 matt __asm __volatile("ldrex\t%0,[%1]" : "=r"(__rv) : "r"(__alp));
77 1.26 matt }
78 1.26 matt return __rv;
79 1.26 matt }
80 1.26 matt
81 1.26 matt /* returns 0 on success and 1 on failure */
82 1.26 matt static __inline unsigned int
83 1.26 matt __arm_store_exclusive(__cpu_simple_lock_t *__alp, unsigned int __val)
84 1.26 matt {
85 1.26 matt unsigned int __rv;
86 1.29 christos if (/*CONSTCOND*/sizeof(*__alp) == 1) {
87 1.26 matt __asm __volatile("strexb\t%0,%1,[%2]"
88 1.26 matt : "=&r"(__rv) : "r"(__val), "r"(__alp) : "cc", "memory");
89 1.20 matt } else {
90 1.26 matt __asm __volatile("strex\t%0,%1,[%2]"
91 1.26 matt : "=&r"(__rv) : "r"(__val), "r"(__alp) : "cc", "memory");
92 1.20 matt }
93 1.18 matt return __rv;
94 1.26 matt }
95 1.26 matt #elif defined(_KERNEL)
96 1.26 matt static __inline unsigned char
97 1.26 matt __swp(unsigned char __val, __cpu_simple_lock_t *__ptr)
98 1.26 matt {
99 1.23 matt uint32_t __val32;
100 1.26 matt __asm volatile("swpb %0, %1, [%2]"
101 1.23 matt : "=&r" (__val32) : "r" (__val), "r" (__ptr) : "memory");
102 1.23 matt return __val32;
103 1.13 thorpej }
104 1.13 thorpej #else
105 1.20 matt /*
106 1.26 matt * On MP Cortex, SWP no longer guarantees atomic results. Thus we pad
107 1.26 matt * out SWP so that when the cpu generates an undefined exception we can replace
108 1.20 matt * the SWP/MOV instructions with the right LDREX/STREX instructions.
109 1.20 matt *
110 1.20 matt * This is why we force the SWP into the template needed for LDREX/STREX
111 1.20 matt * including the extra instructions and extra register for testing the result.
112 1.20 matt */
113 1.7 perry static __inline int
114 1.26 matt __swp(int __val, __cpu_simple_lock_t *__ptr)
115 1.3 bjh21 {
116 1.27 matt int __tmp, __rv;
117 1.20 matt __asm volatile(
118 1.26 matt #if 1
119 1.26 matt "1:\t" "swp %[__rv], %[__val], [%[__ptr]]"
120 1.26 matt "\n\t" "b 2f"
121 1.26 matt #else
122 1.26 matt "1:\t" "ldrex %[__rv],[%[__ptr]]"
123 1.26 matt "\n\t" "strex %[__tmp],%[__val],[%[__ptr]]"
124 1.26 matt #endif
125 1.26 matt "\n\t" "cmp %[__tmp],#0"
126 1.26 matt "\n\t" "bne 1b"
127 1.26 matt "\n" "2:"
128 1.27 matt : [__rv] "=&r" (__rv), [__tmp] "=&r" (__tmp)
129 1.26 matt : [__val] "r" (__val), [__ptr] "r" (__ptr) : "cc", "memory");
130 1.26 matt return __rv;
131 1.26 matt }
132 1.26 matt #endif /* !_ARM_ARCH_6 */
133 1.26 matt
134 1.30 joerg static __inline void
135 1.26 matt __arm_membar_producer(void)
136 1.26 matt {
137 1.37 skrll #if defined(_ARM_ARCH_7)
138 1.32 joerg __asm __volatile("dsb" ::: "memory");
139 1.26 matt #elif defined(_ARM_ARCH_6)
140 1.32 joerg __asm __volatile("mcr\tp15,0,%0,c7,c10,4" :: "r"(0) : "memory");
141 1.20 matt #endif
142 1.26 matt }
143 1.26 matt
144 1.30 joerg static __inline void
145 1.26 matt __arm_membar_consumer(void)
146 1.26 matt {
147 1.37 skrll #if defined(_ARM_ARCH_7)
148 1.32 joerg __asm __volatile("dmb" ::: "memory");
149 1.20 matt #elif defined(_ARM_ARCH_6)
150 1.32 joerg __asm __volatile("mcr\tp15,0,%0,c7,c10,5" :: "r"(0) : "memory");
151 1.20 matt #endif
152 1.3 bjh21 }
153 1.3 bjh21
154 1.25 matt static __inline void __unused
155 1.26 matt __cpu_simple_lock_init(__cpu_simple_lock_t *__alp)
156 1.2 thorpej {
157 1.2 thorpej
158 1.26 matt *__alp = __SIMPLELOCK_UNLOCKED;
159 1.26 matt __arm_membar_producer();
160 1.2 thorpej }
161 1.2 thorpej
162 1.25 matt #if !defined(__thumb__) || defined(_ARM_ARCH_T2)
163 1.25 matt static __inline void __unused
164 1.26 matt __cpu_simple_lock(__cpu_simple_lock_t *__alp)
165 1.2 thorpej {
166 1.37 skrll #if defined(_ARM_ARCH_6)
167 1.26 matt __arm_membar_consumer();
168 1.26 matt do {
169 1.26 matt /* spin */
170 1.26 matt } while (__arm_load_exclusive(__alp) != __SIMPLELOCK_UNLOCKED
171 1.26 matt || __arm_store_exclusive(__alp, __SIMPLELOCK_LOCKED));
172 1.26 matt __arm_membar_producer();
173 1.26 matt #else
174 1.26 matt while (__swp(__SIMPLELOCK_LOCKED, __alp) != __SIMPLELOCK_UNLOCKED)
175 1.3 bjh21 continue;
176 1.26 matt #endif
177 1.2 thorpej }
178 1.25 matt #else
179 1.25 matt void __cpu_simple_lock(__cpu_simple_lock_t *);
180 1.25 matt #endif
181 1.2 thorpej
182 1.25 matt #if !defined(__thumb__) || defined(_ARM_ARCH_T2)
183 1.25 matt static __inline int __unused
184 1.26 matt __cpu_simple_lock_try(__cpu_simple_lock_t *__alp)
185 1.2 thorpej {
186 1.37 skrll #if defined(_ARM_ARCH_6)
187 1.26 matt __arm_membar_consumer();
188 1.26 matt do {
189 1.26 matt if (__arm_load_exclusive(__alp) != __SIMPLELOCK_UNLOCKED) {
190 1.26 matt return 0;
191 1.26 matt }
192 1.26 matt } while (__arm_store_exclusive(__alp, __SIMPLELOCK_LOCKED));
193 1.26 matt __arm_membar_producer();
194 1.26 matt return 1;
195 1.26 matt #else
196 1.26 matt return (__swp(__SIMPLELOCK_LOCKED, __alp) == __SIMPLELOCK_UNLOCKED);
197 1.26 matt #endif
198 1.2 thorpej }
199 1.25 matt #else
200 1.25 matt int __cpu_simple_lock_try(__cpu_simple_lock_t *);
201 1.25 matt #endif
202 1.2 thorpej
203 1.25 matt static __inline void __unused
204 1.26 matt __cpu_simple_unlock(__cpu_simple_lock_t *__alp)
205 1.2 thorpej {
206 1.2 thorpej
207 1.37 skrll #if defined(_ARM_ARCH_8)
208 1.26 matt if (sizeof(*__alp) == 1) {
209 1.36 skrll __asm __volatile("stlrb\t%w0, [%1]"
210 1.26 matt :: "r"(__SIMPLELOCK_UNLOCKED), "r"(__alp) : "memory");
211 1.26 matt } else {
212 1.36 skrll __asm __volatile("stlr\t%0, [%1]"
213 1.26 matt :: "r"(__SIMPLELOCK_UNLOCKED), "r"(__alp) : "memory");
214 1.26 matt }
215 1.26 matt #else
216 1.26 matt __arm_membar_consumer();
217 1.26 matt *__alp = __SIMPLELOCK_UNLOCKED;
218 1.26 matt __arm_membar_producer();
219 1.20 matt #endif
220 1.2 thorpej }
221 1.2 thorpej
222 1.2 thorpej #endif /* _ARM_LOCK_H_ */
223